1
|
Nakhla DS, Naguib YW, Saha S, Gao D, Gupta N, Malkawi W, Acri TM, Salem AK. Cyclodextrin-Based Inclusion Complexes Improve the In Vitro Solubility and Pharmacokinetics of Ivacaftor Following Oral Administration in Mice. AAPS PharmSciTech 2025; 26:135. [PMID: 40379997 DOI: 10.1208/s12249-025-03131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/28/2025] [Indexed: 05/19/2025] Open
Abstract
Cystic fibrosis is a serious life-threatening hereditary disease that occurs due to a mutation in the cystic fibrosis transmembrane conductance regulator gene (CFTR). Ivacaftor (IVA) is a drug that targets the mutated CFTR protein. IVA is highly hydrophobic (log P = 5.6) with poor aqueous solubility (0.05 µg/mL) and is formulated as an amorphous solid dispersion tablet under the brand name Kalydeco®. The recommended daily dose of Kalydeco® is twice per day with a high fat meal to aid in IVA's absorption. In this research, we studied the application of cyclodextrins (CDs) to improve the dissolution of IVA. Phase solubility studies between IVA and four different CDs (α-, β-, γ-, and hydroxypropyl-β-CD [HP-β-CD]) were conducted and a significant improvement in IVA's aqueous solubility with HP-β-CD was observed. Solid state characterizations confirmed the formation of IVA/HP-β-CD inclusion complexes. In vitro dissolution studies were conducted at pH = 6.8 and showed improvement in IVA's rate and extent of dissolution with IVA/HP-β-CD (1:2) complexes in comparison to uncomplexed IVA. In vivo pharmacokinetics in mice showed a 2-fold increase in area under the curve (AUC) after the oral administration of the IVA/HP-β-CD complex in comparison to Kalydeco tablets. In addition, HP-β-CD extended the release of IVA from the IVA/HP-β-CD complexes with a longer Tmax of 7.05 h compared to 2.96 h with Kalydeco® tablets. These results demonstrate that CD inclusion complexes of IVA using HP-β-CD can be a successful alternative approach to improving the solubility of IVA while extending its release.
Collapse
Affiliation(s)
- David S Nakhla
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S. Grand Avenue, Iowa City, IA, 52242, USA
| | - Youssef W Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S. Grand Avenue, Iowa City, IA, 52242, USA
| | - Sanjib Saha
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S. Grand Avenue, Iowa City, IA, 52242, USA
| | - Dylan Gao
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S. Grand Avenue, Iowa City, IA, 52242, USA
| | - Nikesh Gupta
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S. Grand Avenue, Iowa City, IA, 52242, USA
| | - Walla Malkawi
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S. Grand Avenue, Iowa City, IA, 52242, USA
| | - Timothy M Acri
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S. Grand Avenue, Iowa City, IA, 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S. Grand Avenue, Iowa City, IA, 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
2
|
Din FU, Kim DS, Kim JS, Cheon S, Park S, Woo S, Woo MR, Ali Z, Kim JO, Jin SG, Choi HG. Comparative analysis of novel modified drug delivery systems for improving the oral bioavailability of water-insoluble tadalafil using copovidone, TPGS and hydroxypropyl-β-cyclodextrin. Biomed Pharmacother 2025; 186:118039. [PMID: 40194333 DOI: 10.1016/j.biopha.2025.118039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025] Open
Abstract
This study aims to develop novel modified drug delivery systems (MDDS) including solid dispersions, solid self-nanoemulsifying drug delivery system (S-SNEDDS) and inclusion compound (IC) of poorly water-soluble tadalafil using various biological macromolecules and compare their ability to improve solubility, dissolution and bioavailability. Ingredients of MDDS were extensively screened using SEM, DSC, and XRD. The MDDS were testified for improved solubilization, dissolution, and bioavailability and were compared with tadalafil powder and commercial product (Cialis tablets 20 mg). All MDDS demonstrated excellent physicochemical properties, improved solubility and dissolution of tadalafil. The sequence of highest solubilization and dissolution was found to be SE-solid dispersion, S-SNEDDS, SA-solid dispersion, and IC. SE-solid dispersion and IC showed spherical morphology and comparatively small particle size. In SA-solid dispersion, the hydrophilic carriers were found attached with the drug surface. Similarly, S-SNEDDS demonstrated the absorbance of L-SNEDDS inside the pores and surface of calcium silicate. All MDDS showed improved oral bioavailability (P < 0.05) in the order of SE-solid dispersion ≥ S-SNEDDS > SA-solid dispersion > commercial product > IC, when compared with tadalafil powder in rats. Thus, the SE-solid dispersion with highest solubility (660-folds) and oral bioavailability (10-folds) of tadalafil may be recommended as the most suitable candidate for the development of oral pharmaceutical products.
Collapse
Affiliation(s)
- Fakhar Ud Din
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea; Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Dong Shik Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seunghyun Cheon
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seonghyeon Park
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sanghyun Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Zakir Ali
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| |
Collapse
|
3
|
Radeva L, Kalampalika E, Yordanov Y, Petrov PD, Tzankova V, Yoncheva K. Formulation of Caffeine-Hydroxypropyl-β-Cyclodextrin Complex in Hydrogel for Skin Treatment. Gels 2025; 11:326. [PMID: 40422346 DOI: 10.3390/gels11050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 05/28/2025] Open
Abstract
Caffeine is a well-known xanthine that possesses antioxidant effects that could contribute to its application in different skin disorders. In order to enhance its effects, approaches for improving its permeation and penetration through skin layers could be applied. This study emphasizes the preparation of caffeine-cyclodextrin complex and its formulation in carbopol hydrogel. The complex was developed at a 1:1 molar ratio between caffeine and hydroxypropyl-β-cyclodextrin. It was found that the complex enhanced the radical scavenging activity of caffeine against ABTS radical as well as the protective effects against H2O2-induced oxidative stress in L929 fibroblasts. Then, the complex was formulated in hydrogel by applying 1% carbopol. The spreadability and penetration of the loaded hydrogel were improved in comparison with the empty hydrogel. The results revealed that the system could be appropriate for therapies of skin disorders, and its wound healing abilities could be further investigated.
Collapse
Affiliation(s)
- Lyubomira Radeva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | | | - Yordan Yordanov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Petar D Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Virginia Tzankova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | | |
Collapse
|
4
|
Nicolaescu OE, Ionescu C, Samide A, Tigae C, Spînu CI, Oprea B. Advancements in Cyclodextrin Complexes with Bioactive Secondary Metabolites and Their Pharmaceutical Applications. Pharmaceutics 2025; 17:506. [PMID: 40284503 PMCID: PMC12030412 DOI: 10.3390/pharmaceutics17040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Cyclodextrins (CDs) have largely been investigated during the last decades for their outstanding properties, such as biocompatibility and biodegradability, with wide applications in the pharmaceutical field, among which the formation of inclusion complexes (ICs) with natural or synthetic lipophilic compounds. This review prioritizes the research of recent years (2022-2025), being focused on (1) systematization of the research of ICs based on the structure of the secondary metabolite, namely (i) polyphenols (PPs), (ii) terpenes and terpenoids (TTs), and (iii) alkaloids (Alks); (2) for each type of inclusion complex, the following aspects have been discussed: benefits of complexation, composite materials, and in vitro/in vivo and theoretical studies; and (3) pharmacokinetics and pharmacodynamics, risks, limitations, and perspectives of cyclodextrin inclusion complexes with secondary metabolites.
Collapse
Affiliation(s)
- Oana Elena Nicolaescu
- Department of Pharmaceutical Technique, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş, 200349 Craiova, Dolj, Romania;
| | - Cătălina Ionescu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Dolj, Romania; (A.S.); (C.T.); (C.I.S.)
| | - Adriana Samide
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Dolj, Romania; (A.S.); (C.T.); (C.I.S.)
| | - Cristian Tigae
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Dolj, Romania; (A.S.); (C.T.); (C.I.S.)
| | - Cezar Ionuţ Spînu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Dolj, Romania; (A.S.); (C.T.); (C.I.S.)
| | - Bogdan Oprea
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rares, 200349 Craiova, Dolj, Romania;
| |
Collapse
|
5
|
Santos AM, Vieira EM, de Jesus JR, Santana Júnior CC, Nascimento Júnior JAC, Oliveira AMS, Araújo AADS, Picot L, Alves IA, Serafini MR. Development and characterization of farnesol complexed in β- and hydroxypropyl-β-cyclodextrin and their antibacterial activity. Carbohydr Res 2025; 550:109406. [PMID: 39864120 DOI: 10.1016/j.carres.2025.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Farnesol (FAR) belongs to terpenes group and is a sesquiterpene alcohol and a hydrophobic compound, which can be extracted from natural sources or obtained by organic chemical or biological synthesis. Recent advances in the field of nanotechnology allow the drawbacks of low drug solubility, which can improve the drug therapeutic index. Therefore, this study aimed to prepare the FAR inclusion complexes with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) through freeze-drying method, proposing their physicochemical characterization, comparing their toxicity, and evaluating their in vitro antibacterial activity. Initially, physical mixture and freeze-dried inclusion complexes of FAR/β-CD and FAR/HP-β-CD were obtained in the molar ratio (1:1). The samples were characterized by DSC, TG/DTG, FTIR, PXRD, SEM, pHPZC, and the complexation efficiency were performed by HPLC. In vivo toxicity assay was performed using Tenebrio molitor larvae to determine the LD50 and toxic dose of the samples. Also, it was proposed that the evaluation of the fluorescence suppression of Bovine Serum Albumin and the antibacterial activity. The complexation of FAR was evidenced with β-CD and HP-β-CD by the characterization techniques analyzed. The complexation efficiency of FAR/β-CD and FAR/HP-β-CD were 73,53 % and 74.12 %, respectively. The inclusion complexes demonstrated a reduction in toxicity, as evidenced by lower toxic and LD50 doses compared to the free FAR. The inclusion complexes induced conformational changes in BSA, suggesting that they reached the subdomains containing tryptophan residues. In terms of antibacterial activity, FAR/β-CD and FAR/HP-β-CD did not exhibit significant MIC results compared to free FAR, except for FAR/HP-β-CD against S. aureus ATCC 25923.
Collapse
Affiliation(s)
- Anamaria Mendonça Santos
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil.
| | - Edileuza Marcelo Vieira
- Research Laboratory in Biomaterials, LPBio, Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jemmyson Romário de Jesus
- Research Laboratory in Biomaterials, LPBio, Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Ana Maria Santos Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Laurent Picot
- La Rochelle Université, UMR CNRS 7266 LIENSs, La Rochelle, France
| | - Izabel Almeida Alves
- Postgraduate Program in Pharmaceutical Sciences, University of the State of Bahia and Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
6
|
Guo MQ, Hu P, Huang ZW. Cyclodextrin host-guest complex to facilitate sinomenine-based osteoporosis therapy. World J Stem Cells 2025; 17:101376. [PMID: 40160693 PMCID: PMC11947896 DOI: 10.4252/wjsc.v17.i3.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/09/2024] [Accepted: 03/06/2025] [Indexed: 03/21/2025] Open
Abstract
Xiao et al reported on the natural product sinomenine (SIN), which is a traditional Chinese medicine for treating osteoporosis via its modulation of autophagy; however, SIN was dissolved in dimethyl sulfoxide prior to administration, which is not conducive to the development of clinical injectables. By comparing solubilization techniques, including amorphisation, emulsification, micellisation, nano-crystallisation and host-guest inclusion, we found that the solubilization of SIN by host-guest inclusion can enhance solubility and improve stability and has an increased release rate and enhanced bioavailability. Therefore, we conclude that host-guest inclusion holds promise for SIN solubilization. To solubilise SIN, we selected β-cyclodextrin as the host agent considering its excellent biocompatibility, efficient encapsulation ability, mature preparation process and adequate drug stability. If the prerequisites of SIN-β-cyclodextrin complexes in terms of safety, efficacy, stability and the relevant laws and regulations are met, its clinical application for the treatment of osteoporosis may be achieved.
Collapse
Affiliation(s)
- Meng-Qin Guo
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong Province, China
| | - Ping Hu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong Province, China
| | - Zheng-Wei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong Province, China.
| |
Collapse
|
7
|
Banik R, Sardar R, Mondal BB, Ghosh S. A physicochemical investigation of the complex formation by β-cyclodextrin with Triton X-100 and Triton X-114 and their aggregation behaviour in aqueous solution: an experimental approach. Phys Chem Chem Phys 2025; 27:3782-3795. [PMID: 39885833 DOI: 10.1039/d4cp03264k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The complexation behavior and binding affinity of Triton X-100 (TX-100) and Triton X-114 (TX-114) with β-cyclodextrin (β-CD) were extensively studied in an aqueous medium using a comprehensive suite of experimental techniques. These techniques allowed for the evaluation of key physicochemical parameters, including critical micelle concentration (cmc), aggregation number (Nagg), Stern-Volmer constant, and particle size distribution. These metrics were instrumental in understanding the underlying mechanism of the host-guest interaction between β-CD and Triton-X. Dynamic light scattering (DLS) data provided strong evidence for the formation of inclusion complexes, demonstrating significant hydrophobic interactions between the hydrophobic regions of Triton-X and the cavity of β-CD. The disruption of micellar structures, caused by β-CD encapsulating the hydrophobic moieties of the surfactants, was clearly observed. This process also resulted in an increased CMC, further underscoring the impact of β-CD on the aggregation behavior of the surfactants. To quantify the interaction, the Benesi-Hildebrand method was utilized to determine the stoichiometry and binding constants of the β-CD/Triton-X complexes. The results confirmed a well-defined 1 : 1 binding mode, indicating the precise incorporation of the surfactant's hydrophobic tails into the β-CD cavity while leaving the hydrophilic regions exposed to the aqueous environment. This selective binding mechanism alters the thermodynamics of micellization and disrupts the native micellar equilibrium of the surfactant systems. This systematic and comparative investigation is among the few studies that thoroughly examine the interactions between Triton-X surfactants and β-CD. Such research not only enhances our understanding of these complexes, but also reveals their significant potential for various applications. In drug delivery, for example, β-CD/Triton-X complexes can improve the solubility, stability, and bioavailability of hydrophobic drugs. In supramolecular chemistry, these complexes serve as model systems for studying host-guest interactions and self-assembly processes. Furthermore, their ability to modulate surfactant behaviour opens avenues for their use in material science, cosmetics, and industrial formulations, where precise control over micelle formation and aggregation is essential. This study underscores the versatility and utility of β-CD in interacting with non-ionic surfactants, offering insights that can be applied to other amphiphilic systems and paving the way for innovative applications in diverse fields.
Collapse
Affiliation(s)
- Rajesh Banik
- Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India.
| | - Raju Sardar
- Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India.
| | - Bipin Bihari Mondal
- Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India.
| | - Soumen Ghosh
- Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India.
| |
Collapse
|
8
|
Ferrero R, Pantaleone S, Brunella V, Corno M, Jiménez-Osés G, Peccati F. Host-Guest Dynamic Behavior of Melatonin Encapsulated in β-Cyclodextrin Nanosponges. ACS OMEGA 2025; 10:4660-4669. [PMID: 39959078 PMCID: PMC11822501 DOI: 10.1021/acsomega.4c09367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 02/18/2025]
Abstract
Cyclodextrin-based nanosponges are cross-linked polymeric porous nanomaterials obtained by condensation of cyclodextrins with a polyfunctional reagent (cross-linker). Owing to their high surface area, they are attractive for encapsulation applications aimed at increasing the stability, solubility, and bioavailability of drugs. Due to the structural complexity of these emerging materials, computer modeling can provide atomistic-level insights into both the flexibility of nanosponges and their interactions with encapsulated drugs. In this contribution, we focus on nanosponges of β-cyclodextrin cross-linked with citric acid and provide full-atom models for linear and cyclic topologies. We use extensive molecular dynamics (MD) simulations to analyze the flexibility of these constructs and their interactions with encapsulated melatonin, a neurohormone involved in sleep-wake cycle regulation also used as an antioxidant and immunomodulator. We characterize the main interactions responsible for melatonin binding and show that it benefits from multivalence and crowding effects.
Collapse
Affiliation(s)
- Riccardo Ferrero
- Dipartimento
di Chimica and NIS Interdepartmental Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Stefano Pantaleone
- Dipartimento
di Chimica and NIS Interdepartmental Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Valentina Brunella
- Dipartimento
di Chimica and NIS Interdepartmental Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Marta Corno
- Dipartimento
di Chimica and NIS Interdepartmental Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Gonzalo Jiménez-Osés
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research
and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800, 48160 Derio, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| | - Francesca Peccati
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research
and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800, 48160 Derio, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
9
|
Abd El-Monaem EM, Al Harby N, El Batouti M, Eltaweil AS. Innovative zero-valent cobalt decoration on MIL-88 A(Fe)@β-CD for high-efficiency and reusable cr(VI) removal. Sci Rep 2025; 15:4316. [PMID: 39910154 PMCID: PMC11799185 DOI: 10.1038/s41598-025-88259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Herein, the magnetic ZVCo-MIL-88 A(Fe)@β-CD composite was fabricated via post-synthetic decoration of MIL-88 A(Fe)@β-CD with ZVCo to produce a magnetic efficient adsorbent for Cr(VI) removal. The experimental findings denoted that the ZVCo decoration boosted the adsorption capability of MIL-88 A(Fe)@β-CD, where the adsorption % of Cr(VI) improved from 73.07 to 94.02% after its decoration with 10 wt% of ZVCo. Furthermore, the ZVCo decoration ameliorated the recycling feature of MIL-88 A(Fe)@β-CD since the removal % of Cr(VI) by MIL-88 A(Fe)@β-CD and ZVCo-MIL-88 A(Fe)@β-CD reached 27.24 and 84.98%, respectively. The optimization experiments of the Cr(VI) ions clarified that the higher adsorption % fulfilled 94.02% at pH = 3, using ZVCo-MIL-88 A(Fe)@β-CD dosage = 0.5 g/L, Cr(VI) concentration = 50 mg/L, and at room temperature. Notably, the concentration of the adsorbed Cr(VI) brings off the equilibrium stage within an hour, implying the fast adsorption property of ZVCo-MIL-88 A(Fe)@β-CD. The kinetic and isotherms assessments denoted the contribution of the physical and chemical adsorption pathways in adsorbing the Cr(VI) species onto ZVCo-MIL-88 A(Fe)@β-CD. In addition, the XPS spectra and zeta potential results supposed that the process inside the Cr(VI)/ZVCo-MIL-88 A(Fe)@β-CD system proceeded through reduction reaction, coordination bonds, electrostatic interactions, and pore-filling mechanisms.
Collapse
Affiliation(s)
| | - Nouf Al Harby
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia.
| | - Mervette El Batouti
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abdelazeem S Eltaweil
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Ibra, Sultanate of Oman.
| |
Collapse
|
10
|
Gatiatulin AK, Ziganshin MA, Gorbatchuk VV. Guest inclusion by native cyclodextrins in solid state and solutions: A review. Carbohydr Polym 2025; 349:122962. [PMID: 39638503 DOI: 10.1016/j.carbpol.2024.122962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
In many industrial applications, preparation of cyclodextrin (CD) inclusion complexes with drugs, food additives, dyes and components of essence oils is performed in solid mixtures, slurries or paste-like systems having lack of water to dissolve cyclodextrin and guest completely. Such systems need a different description than supplied by classical analysis of CD complexation in aqueous solutions. The main feature of solid-state guest inclusion is the phase transition from solid CD to solid inclusion compound. This implies a complex interplay between a size exclusion effect for guest inclusion, a cooperative activation of this process by the third component such as water or organic compound and competition of guest and water for the space inside CD crystal lattice. The present review summarizes the current state of research of guest inclusion by native CDs in solid state and compares the driving forces of this process and its structure-property relationships with those of complexation in aqueous solutions. For an adequate comparison, the latter process was analyzed in thermodynamic activity scale, which allowed to separate hydrophobic effect and such important factors of complex stability as guest molecular shape and "high-energy" water.
Collapse
Affiliation(s)
- Askar K Gatiatulin
- Kazan (Volga region) Federal University, 18 Kremlyovskaya str., Kazan 420008, Russia
| | - Marat A Ziganshin
- Kazan (Volga region) Federal University, 18 Kremlyovskaya str., Kazan 420008, Russia
| | - Valery V Gorbatchuk
- Kazan (Volga region) Federal University, 18 Kremlyovskaya str., Kazan 420008, Russia.
| |
Collapse
|
11
|
Jacob S, Kather FS, Boddu SHS, Attimarad M, Nair AB. Nanosuspension Innovations: Expanding Horizons in Drug Delivery Techniques. Pharmaceutics 2025; 17:136. [PMID: 39861782 PMCID: PMC11768797 DOI: 10.3390/pharmaceutics17010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Nanosuspensions (NS), with their submicron particle sizes and unique physicochemical properties, provide a versatile solution for enhancing the administration of medications that are not highly soluble in water or lipids. This review highlights recent advancements, future prospects, and challenges in NS-based drug delivery, particularly for oral, ocular, transdermal, pulmonary, and parenteral routes. The conversion of oral NS into powders, pellets, granules, tablets, and capsules, and their incorporation into film dosage forms to address stability concerns is thoroughly reviewed. This article summarizes key stabilizers, polymers, surfactants, and excipients used in NS formulations, along with ongoing clinical trials and recent patents. Furthermore, a comprehensive analysis of various methods for NS preparation is provided. This article also explores various in vitro and in vivo characterization techniques, as well as scale-down technologies and bottom-up methods for NS preparation. Selected examples of commercial NS drug products are discussed. Rapid advances in the field of NS could resolve issues related to permeability-limited absorption and hepatic first-pass metabolism, offering promise for medications based on proteins and peptides. The evolution of novel stabilizers is essential to overcome the current limitations in NS formulations, enhancing their stability, bioavailability, targeting ability, and safety profile, which ultimately accelerates their clinical application and commercialization.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fathima Sheik Kather
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.); (A.B.N.)
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.); (A.B.N.)
| |
Collapse
|
12
|
Gulyaev IA, Sokol MB, Mollaeva MR, Klimenko MA, Yabbarov NG, Chirkina MV, Nikolskaya ED. Polymeric Drug Delivery Systems in Biomedicine. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S233-S262. [PMID: 40164161 DOI: 10.1134/s0006297924603976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 04/02/2025]
Abstract
Our review examines the key aspects of using polymeric carriers in biomedicine. The section "Polymers for Biomedicine" provides an overview of different types of polymers, their structural features and properties that determine their use as drug delivery vehicles. The section "Polymeric Carriers" characterizes the role of polymeric delivery systems in modern medicine. The main forms of polymeric carriers are described, as well as their key advantages for drug delivery. The section "Preclinical and Clinical Trials of Polymeric Drug Carriers" reviews the examples of clinical and preclinical studies of polymeric forms used for antitumor therapy, therapy for bacterial and infectious diseases. The final section "Targeted Drug Delivery Systems" is devoted to the discussion of approaches, as well as ligands that provide targeted drug delivery using polymeric carriers. We have paid special attention to modern approaches for increasing the efficacy of antibacterial therapy using vector molecules.
Collapse
Affiliation(s)
- Ivan A Gulyaev
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Maria B Sokol
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Mariia R Mollaeva
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Maksim A Klimenko
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Nikita G Yabbarov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Margarita V Chirkina
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Elena D Nikolskaya
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
13
|
Johnsen HM, Filtvedt W, Klaveness J, Hiorth M. Nano-strategies for advancing oral drug delivery: Porous silicon particles and cyclodextrin encapsulation for enhanced dissolution of poorly soluble drugs. Int J Pharm 2024; 666:124809. [PMID: 39384028 DOI: 10.1016/j.ijpharm.2024.124809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Development of novel active pharmaceutical ingredients (API) for oral use often face challenges due to low bioavailability. Nanoparticle-based drug delivery systems and cyclodextrin (CD) encapsulation offer promising solutions by enhancing API solubility or dissolution rates. Porous silicon nanoparticles have shown potential to encapsulate APIs in their amorphous form within the pores, improving their dissolution rates compared to crystalline counterparts. A novel synthesis approach, circumventing the expensive and tedious synthesis from Si wafer material, has been developed using centrifugal Chemical Vapor Deposition (cCVD). Herein, various cCVD Si particles were evaluated for their ability to enhance the dissolution rate of the model drugs celecoxib (CEL), phenytoin (PHT), griseofulvin (GRI), diclofenac (DCF) and naproxen (NAP). Our findings demonstrate increased dissolution rates of all tested APIs when formulated with cCVD Si particles, compared to free API in pH 7.4 or pH 2.0. Particle characteristics were largely retained after loading, and the solid state of the loaded APIs were evaluated using Differential Scanning Calorimetry (DSC). Dissolution kinetics were influenced by the particle properties, mass loading and API characteristics. Loading of CD-CEL, -GRI and -DCF complexes into the cCVD Si particles showed a potential for further enhanced dissolution rates, representing the first reported investigation of this combination. In conclusion, the cCVD Si particles are promising for improving the dissolution rate of poorly soluble drugs, potentially due to precipitation of amorphous or metastable forms. Further enhancements were observed upon loading CD-drug complexes, thereby offering promising strategies for optimizing drug bioavailability.
Collapse
Affiliation(s)
- Hennie Marie Johnsen
- Department of Pharmacy, University of Oslo. Sem Sælands vei 3, 0371 Oslo, Norway; Nacamed AS. Oslo Science Park, Gaustadalléen 21, 0349 Oslo, Norway.
| | - Werner Filtvedt
- Nacamed AS. Oslo Science Park, Gaustadalléen 21, 0349 Oslo, Norway
| | - Jo Klaveness
- Department of Pharmacy, University of Oslo. Sem Sælands vei 3, 0371 Oslo, Norway
| | - Marianne Hiorth
- Department of Pharmacy, University of Oslo. Sem Sælands vei 3, 0371 Oslo, Norway
| |
Collapse
|
14
|
Klarić D, Soldin Ž, Vincze A, Szolláth R, Balogh GT, Jug M, Galić N. Biopharmaceutical Characterization and Stability of Nabumetone-Cyclodextrins Complexes Prepared by Grinding. Pharmaceutics 2024; 16:1493. [PMID: 39771473 PMCID: PMC11679744 DOI: 10.3390/pharmaceutics16121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Nabumetone (NAB) is a poorly soluble nonsteroidal anti-inflammatory prodrug (BCS class II drug) whose solubility is significantly improved by complexation with cyclodextrins (CDs). Methods: The solid complexes, in a 1:1 molar ratio, were prepared by mechanochemical activation by grinding, using β-cyclodextrin (β-CD) and its derivatives, hydroxypropyl- and sulfobutylether-β-cyclodextrin (HP-β-CD and SBE-β-CD). The complexation was confirmed by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and attenuated total reflectance Fourier-transformed infrared spectroscopy (ATR-FTIR). Obtained products were further characterized regarding their solubility, in vitro dissolution, permeability and chemical stability. Results: Co-grinding with HP-β-CD and SBE-β-CD yielded products that showed in vitro dissolution profiles in hydrochloric acid medium (pH 1.2) that were substantially different from that of pure NAB, yielding dissolution efficiency enhancements of 34.86 ± 1.64 and 58.30 ± 0.28 times, respectively, for the optimized products. Their in vitro dissolution and gastrointestinal permeability were also studied in a low-volume environment at pH 6.8, corresponding to the intestinal environment. Both β-CD derivatives increased NAB dissolution rate and NAB mass transport across the biomimetic membrane. The effect of β-CD derivatives on NAB chemical stability was studied under the stress conditions by the developed and validated UHPLC-DAD-HRMS method. In acidic conditions, pure and complexed NAB was prone to hydrolytic degradation, yielding one degradation product-pharmacologically inactive NAB metabolite. However, under the oxidative conditions at elevated temperatures, 10 NAB degradation products were identified from co-ground samples. All systems were stable during photo- and long-term stability studies. Conclusions: NAB complexes with HP-β-CD and SBE-β-CD are promising candidates for pharmaceutical product development.
Collapse
Affiliation(s)
- David Klarić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia; (D.K.); (Ž.S.)
| | - Željka Soldin
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia; (D.K.); (Ž.S.)
| | - Anna Vincze
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u. 9., H-1092 Budapest, Hungary; (A.V.); (R.S.); (G.T.B.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői u. 26. H-1092 Budapest, Hungary
| | - Rita Szolláth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u. 9., H-1092 Budapest, Hungary; (A.V.); (R.S.); (G.T.B.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői u. 26. H-1092 Budapest, Hungary
| | - György Tibor Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u. 9., H-1092 Budapest, Hungary; (A.V.); (R.S.); (G.T.B.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői u. 26. H-1092 Budapest, Hungary
| | - Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Nives Galić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia; (D.K.); (Ž.S.)
| |
Collapse
|
15
|
Neaz S, Alam MM, Imran AB. Advancements in cyclodextrin-based controlled drug delivery: Insights into pharmacokinetic and pharmacodynamic profiles. Heliyon 2024; 10:e39917. [PMID: 39553547 PMCID: PMC11567044 DOI: 10.1016/j.heliyon.2024.e39917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
This article discusses and summarizes some fascinating outcomes and applications of cyclodextrins (CDs) and their derivatives in drug delivery. These applications include the administration of protein, peptide medications, and gene delivery. Several innovative drug delivery systems, including NPs, microspheres, microcapsules, and liposomes, are designed with the help of CD, which is highlighted in this article. The use of these compounds as excipients in medicine formulation is reviewed, in addition to their well-known effects on drug solubility and dissolution, as well as their bioavailability, safety, and stability. Furthermore, the article focuses on many factors that influence the development of inclusion complexes, as having this information is necessary to manage these diverse materials effectively. An overview of the commercial availability, regulatory status, and patent status of CDs for pharmaceutical formulation is also presented. Due to the fact that CDs can discover new uses in drug delivery consistently, it is predicted that they will solve a wide range of issues related to the distribution of a variety of unique medications through various delivery channels.
Collapse
Affiliation(s)
- Sharif Neaz
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Md Mahbub Alam
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| |
Collapse
|
16
|
Khurshid A, Anwar Z, Khurshid A, Ahmed S, Sheraz MA, Ahmad I. Cyclodextrins and their applications in pharmaceutical and related fields. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2024; 50:183-227. [PMID: 39855776 DOI: 10.1016/bs.podrm.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
This chapter presents an overall account of cyclodextrins (CDs) with a brief description of the history, classification, and properties of these macromolecules. CDs act as complexing agents for drugs to form CD-drug inclusion complexes by various techniques. These complexes lead to the modification of the physicochemical properties of drugs to make them more soluble, chemically, and photochemically stable, and less toxic. It focuses in detail on various pharmaceutical uses of CDs and their derived forms in drug solubility, bioavailability, drug stability, drug delivery, and drug safety which have been specifically highlighted. The role of CDs and derivatives as excipients in the drug formulation of solid dosage forms, parenteral dosage forms, and anticancer drugs has been emphasized. Some other applications of CDs in cosmetics, environmental protection, food technology, and analytical methods have been described.
Collapse
Affiliation(s)
- Adeela Khurshid
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Zubair Anwar
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan.
| | - Aqeela Khurshid
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Sofia Ahmed
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Muhammad Ali Sheraz
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Iqbal Ahmad
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| |
Collapse
|
17
|
Kang Y, Zhang S, Wang G, Yan Z, Wu G, Tang L, Wang W. Nanocarrier-Based Transdermal Drug Delivery Systems for Dermatological Therapy. Pharmaceutics 2024; 16:1384. [PMID: 39598508 PMCID: PMC11597219 DOI: 10.3390/pharmaceutics16111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Dermatoses are among the most prevalent non-fatal conditions worldwide. Given this context, it is imperative to introduce safe and effective dermatological treatments to address the diverse needs and concerns of individuals. Transdermal delivery technology offers a promising alternative compared to traditional administration methods such as oral or injection routes. Therefore, this review focuses on the recent achievements of nanocarrier-based transdermal delivery technology for dermatological therapy, which summarizes diverse delivery strategies to enhance skin penetration using various nanocarriers including vesicular nanocarriers, lipid-based nanocarriers, emulsion-based nanocarriers, and polymeric nanocarrier according to the pathogenesis of common dermatoses. The fundamentals of transdermal delivery including skin physiology structure and routes of penetration are introduced. Moreover, mechanisms to enhance skin penetration due to the utilization of nanocarriers such as skin hydration, system deformability, disruption of the stratum corneum, surface charge, and tunable particle size are outlined as well.
Collapse
Affiliation(s)
- Yunxiang Kang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
| | - Sunxin Zhang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guoqi Wang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ziwei Yan
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guyuan Wu
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lu Tang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
18
|
Anitha A, Rajamohan R, Murugan M, Seo JH. Inclusion Complexation of Remdesivir with Cyclodextrins: A Comprehensive Review on Combating Coronavirus Resistance-Current State and Future Perspectives. Molecules 2024; 29:4782. [PMID: 39407710 PMCID: PMC11477750 DOI: 10.3390/molecules29194782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Cyclodextrin (CD) derivatives have gained significant attention in biomedical applications due to their remarkable biocompatibility, unique inclusion capabilities, and potential for functionalization. This review focuses on recent advancements in CD-based assemblies, specifically their role in improving drug delivery, emphasizing remdesivir (RMD). The review introduces CD materials and their versatile applications in self-assembly and supramolecular assembly. CD materials offer immense potential for designing drug delivery systems with enhanced activity. Their inherent inclusion capabilities enable the encapsulation of diverse therapeutic agents, including RMD, resulting in improved solubility, stability, and bioavailability. The recent advances in CD-based assemblies, focusing on their integration with RMD have been concentrated here. Various strategies for constructing these assemblies are discussed, including physical encapsulation, covalent conjugation, and surface functionalization techniques. Furthermore, exploring future directions in these fields has also been provided. Ongoing research efforts are directed toward developing novel CD derivatives with enhanced properties, such as increased encapsulation efficiency and improved release kinetics. Moreover, the integration of CD-based assemblies with advanced technologies such as nanomedicine and gene therapy holds tremendous promise for personalized medicine and precision therapeutics.
Collapse
Affiliation(s)
- Arumugam Anitha
- PG and Research Department of Chemistry, Government Arts College, Chidambaram 608 102, Tamil Nadu, India;
| | - Rajaram Rajamohan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Moorthiraman Murugan
- Department of Chemistry, IFET College of Engineering, Villupuram 605 108, Tamil Nadu, India;
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
19
|
Bouchekhou Z, Hadj Ziane-Zafour A, Lupascu FG, Profire BȘ, Nicolescu A, Bostiog DI, Doroftei F, Dascalu IA, Varganici CD, Pinteala M, Profire L, Pinteala T, Bouzid B. Binary and Ternary Inclusion Complexes of Niflumic Acid: Synthesis, Characterization, and Dissolution Profile. Pharmaceutics 2024; 16:1190. [PMID: 39339226 PMCID: PMC11435181 DOI: 10.3390/pharmaceutics16091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Although niflumic acid (NA) is one of the most used non-steroidal anti-inflammatory drugs, it suffers from poor solubility, low bioavailability, and significant adverse effects. To address these limitations, the complexation of NA with cyclodextrins (CDs) is a promising strategy. However, complexing CDs with low molecular weight drugs like NA can lead to low CE. This study explores the development of inclusion complexes of NA with 2-hydroxypropyl-β-cyclodextrin (2HP-β-CD), including the effect of converting NA to its sodium salt (NAs) and adding hydroxypropyl methylcellulose (HPMC) on complex formation. Inclusion complexes were prepared using co-evaporation solvent and freeze-drying methods, and their CE and Ks were determined through a phase solubility study. The complexes were characterized using physicochemical analyses, including FT-IR, DSC, SEM, XRD, DLS, UV-Vis, 1H-NMR, and 1H-ROESY. The dissolution profiles of the complexes were also evaluated. The analyses confirmed complex formation for all systems, demonstrating drug-cyclodextrin interactions, amorphous drug states, morphological changes, and improved solubility and dissolution profiles. The NAs-2HP-β-CD-HPMC complex exhibited the highest CE and Ks values, a 1:1 host-guest molar ratio, and the best dissolution profile. The results indicate that the NAs-2HP-β-CD-HPMC complex has potential for delivering NA, which might enhance its therapeutic effectiveness and minimize side effects.
Collapse
Affiliation(s)
- Zohra Bouchekhou
- Chemical Engineering Laboratory, Process Engineering Department, Faculty of Technology, University of Blida 1, Road of Soumaa, BP 270, Blida 09000, Algeria
| | - Amel Hadj Ziane-Zafour
- Chemical Engineering Laboratory, Process Engineering Department, Faculty of Technology, University of Blida 1, Road of Soumaa, BP 270, Blida 09000, Algeria
| | - Florentina Geanina Lupascu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 Universitaty Street, 700115 Iași, Romania
| | - Bianca-Ștefania Profire
- Department of Internal Medicine, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iași, Romania
| | - Alina Nicolescu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica-Voda Alley, 700487 Iasi, Romania
| | - Denisse-Iulia Bostiog
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica-Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica-Voda Alley, 700487 Iasi, Romania
| | - Ioan-Andrei Dascalu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica-Voda Alley, 700487 Iasi, Romania
| | - Cristian-Dragoș Varganici
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica-Voda Alley, 700487 Iasi, Romania
| | - Mariana Pinteala
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica-Voda Alley, 700487 Iasi, Romania
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 Universitaty Street, 700115 Iași, Romania
| | - Tudor Pinteala
- Department of Orthopedics and Traumatology, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iași, Romania
| | - Bachir Bouzid
- Chemical Engineering Laboratory, Process Engineering Department, Faculty of Technology, University of Blida 1, Road of Soumaa, BP 270, Blida 09000, Algeria
| |
Collapse
|
20
|
Ji XY, Zou YX, Lei HF, Bi Y, Yang R, Tang JH, Jin QR. Advances in Cyclodextrins and Their Derivatives in Nano-Delivery Systems. Pharmaceutics 2024; 16:1054. [PMID: 39204399 PMCID: PMC11360519 DOI: 10.3390/pharmaceutics16081054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
The diversity of cyclodextrins and their derivatives is increasing with continuous research. In addition to monomolecular cyclodextrins with different branched chains, cyclodextrin-based polymers have emerged. The aim of this review is to summarize these innovations, with a special focus on the study of applications of cyclodextrins and their derivatives in nano-delivery systems. The areas covered include nanospheres, nano-sponges, nanogels, cyclodextrin metal-organic frameworks, liposomes, and emulsions, providing a comprehensive and in-depth understanding of the design and development of nano-delivery systems.
Collapse
Affiliation(s)
- Xin-Yu Ji
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China;
| | - Yi-Xuan Zou
- National institute of Metrology, Beijing 100029, China
| | - Han-Fang Lei
- College of Pharmacy, Anhui Medical University, Hefei 230032, China; (H.-F.L.); (Y.B.)
| | - Yong Bi
- College of Pharmacy, Anhui Medical University, Hefei 230032, China; (H.-F.L.); (Y.B.)
| | - Rui Yang
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China;
| | - Ji-Hui Tang
- College of Pharmacy, Anhui Medical University, Hefei 230032, China; (H.-F.L.); (Y.B.)
| | - Qing-Ri Jin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China;
| |
Collapse
|
21
|
Bonfield TL, Zuckerman ST, Sutton MT, Korley JN, von Recum HA. Polymerized cyclodextrin microparticles for sustained antibiotic delivery in lung infections. J Biomed Mater Res A 2024; 112:1305-1316. [PMID: 38380736 PMCID: PMC11187681 DOI: 10.1002/jbm.a.37680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Pulmonary infections complicate chronic lung diseases requiring attention to both the pathophysiology and complexity associated with infection management. Patients with cystic fibrosis (CF) struggle with continuous bouts of pulmonary infections, contributing to lung destruction and eventual mortality. Additionally, CF patients struggle with airways that are highly viscous, with accumulated mucus creating optimal environments for bacteria colonization. The unique physiology and altered airway environment provide an ideal niche for bacteria to change their phenotype often becoming resistant to current treatments. Colonization with multiple pathogens at the same time further complicate treatment algorithms, requiring drug combinations that can challenge CF patient tolerance to treatment. The goal of this research initiative was to explore the utilization of a microparticle antibiotic delivery system, which could provide localized and sustained antibiotic dosing. The outcome of this work demonstrates the feasibility of providing efficient localized delivery of antibiotics to manage infection using both preclinical in vitro and in vivo CF infection models. The studies outlined in this manuscript demonstrate the proof-of-concept and unique capacity of polymerized cyclodextrin microparticles to provide site-directed management of pulmonary infections.
Collapse
Affiliation(s)
- Tracey L. Bonfield
- Department of Genetics and Genome Sciences, Case Western Reserve University
| | - Sean T. Zuckerman
- Affinity Therapeutics, Cleveland Ohio, United States
- Department of Biomedical Engineering, Case Western Reserve University
| | - Morgan T. Sutton
- Department of Genetics and Genome Sciences, Case Western Reserve University
- Saint Jude Children Research Hospital Graduate School of Biomedical Sciences, Memphis Tennessee
| | | | - Horst A. von Recum
- Affinity Therapeutics, Cleveland Ohio, United States
- Department of Biomedical Engineering, Case Western Reserve University
| |
Collapse
|
22
|
Hosseiny A, Talebpour Z, Garkani-Nejad Z, Golestanifar F. The Binding Mechanism Between Cyclodextrins and Anticancer Drug Noscapine: A Spectroscopic and Molecular Docking Study. J Fluoresc 2024:10.1007/s10895-024-03869-5. [PMID: 39060827 DOI: 10.1007/s10895-024-03869-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
In this paper the binding of noscapine (NOS) as an anticancer drug with poor bioavailability and low solubility with beta and methyl-beta cyclodextrins (β-CD and M-β-CD) as the biocompatible drug carriers were discussed using ultraviolet-visible, fluorescence and nuclear magnetic resonance spectroscopy, as well as molecular docking. The absorption of NOS changed when it was bound to both cyclodextrins, resulting in a hyperchromic shift. It formed a 1:1 stoichiometry inclusion complex with both cyclodextrins according to the Benesi-Hildebrand equation. The binding affinity was larger in NOS-M-β-CD (5.9 (± 0.66) × 103 M- 1) than NOS-β-CD (3.7 (± 0.22) × 103 M- 1) complex. The fluorescence emission band of NOS at 408 nm was quenched when NOS was complexed with β-CD, and enhanced in the presence of M-β-CD, while the shoulder at 350 nm was enhanced selectively when NOS was complexed with M-β-CD. The fluorescence quenching of NOS with β-CD showed a negative deviation from the Stern-Volmer. The thermodynamic parameters have been estimated with the help of the Van't Hoff equation in different temperatures, and a dynamic mechanism was proposed for quenching. Also, both ΔH and ΔS have positive values thus the main interactions result in hydrophobic forces. Moreover, the negative value of ΔG indicates that the bonding process is spontaneous. 1H NMR chemical shift changes were observable for NOS and both CDs protons due to the chemical environment changes of some nuclei upon complexation. The molecular docking results revealed that the 1:1 inclusion complex possesses a good molecular shape complementarity score for their most probable structures, and indicated that the M-β-CD inclusion system gave the higher complexation efficiency. The binding energy values for β-CD and M-β-CD were determined to be -6.7 and - 9.5 kcal/mol, respectively. These findings suggest the same as the result of experimental tests that the NOS-M-β-CD complex is more stable than the NOS-β-CD complex.
Collapse
Affiliation(s)
- Arezu Hosseiny
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Zahra Talebpour
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran.
- Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran.
| | - Zahra Garkani-Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Fereshteh Golestanifar
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
23
|
Wang S, Xu Q, Furuishi T, Fukuzawa K, Yonemochi E. Characterization and drug solubilization of arginine-based ionic liquids - Impact of counterions and stoichiometry. Int J Pharm 2024; 659:124228. [PMID: 38744415 DOI: 10.1016/j.ijpharm.2024.124228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Ionic liquids (ILs) exhibit very diverse physicochemical properties, such as non-volatility, stability, and miscibility, which render them excellent candidate excipients for multi-purpose use. Six novel arginine (Arg)-based ILs were obtained using a one-step ultrasound method. Salt formation was confirmed by Fourier-transform infrared (FTIR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Moreover, the effects of anions and molar ratio on the molecular states and thermal properties of Arg-ILs were investigated. In addition, the solubilization of drugs with different pKa and LogP values was attempted using Arg-ILs consisting of asparagine, proline, octanoic acid, and malic acid, respectively, and a comparative study was performed. Furthermore, the interaction mode between the drugs and ILs was determined by FTIR and Raman spectroscopy. Presumably, partial interaction between the component of ILs and drugs such as ofloxacin and valsartan occurred, whereas flurbiprofen and isosorbide mononitrate were dispersed in the viscous IL. The development of strategies for the application of ILs as solubilizers or carriers of active pharmaceutical ingredients is an extremely promising and wide avenue of research.
Collapse
Affiliation(s)
- Siran Wang
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Qihui Xu
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takayuki Furuishi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Kaori Fukuzawa
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan
| | - Etsuo Yonemochi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
24
|
Marto-Costa C, Toffoletto N, Salema-Oom M, Antunes AMM, Pinto CA, Saraiva JA, Silva-Herdade AS, Alvarez-Lorenzo C, Serro AP. Improved triamcinolone acetonide-eluting contact lenses based on cyclodextrins and high hydrostatic pressure assisted complexation. Carbohydr Polym 2024; 331:121880. [PMID: 38388063 DOI: 10.1016/j.carbpol.2024.121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Contact lenses (CLs) constitute an advantageous platform for the topical release of corticosteroids due to their prolonged contact with the eye. However, the lipophilic nature of corticosteroids hampers CLs' ability to release therapeutic amounts. Two approaches to improve loading and release of triamcinolone acetonide (TA) from poly(2-hydroxyethyl methacrylate)-based hydrogels were investigated: adding 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) to the monomers solution before polymerization (HEMA/i-CD) and an hydrogels' post-treatment with HP-β-CD (HEMA/p-CD). The effect of HP-β-CD and sterilization by high hydrostatic pressure (HHP) on the hydrogel properties (water content, oxygen and ion permeability, roughness, transmittance, and stiffness) was evaluated. The HEMA/i-CD hydrogels had stronger affinity for TA, sustaining its release for one day. HHP sterilization promoted the formation of cyclodextrin-TA complexes within the hydrogels, improving their drug-loading capacity »60 %. Cytotoxicity and irritability tests confirmed the safety of the therapeutic CLs. TA released from the hydrogels permeated through ocular tissues ex vivo and showed anti-inflammatory activity. Finally, a previously validated mathematical model was used to estimate the ability of the TA-loaded CLs to deliver therapeutic drug concentrations to the posterior part of the eye. Overall, HP-β-CD-containing CLs are promising candidates for the topical ocular application of TA as an alternative delivery system to intraocular injections.
Collapse
Affiliation(s)
- Carolina Marto-Costa
- Centro de Química Estrutural (CQE) - Institute of Molecular Sciences and Chemical Engineering Department, Instituto Superior Técnico - University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Monte da Caparica, Almada, Portugal.
| | - Nadia Toffoletto
- Centro de Química Estrutural (CQE) - Institute of Molecular Sciences and Chemical Engineering Department, Instituto Superior Técnico - University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Monte da Caparica, Almada, Portugal.
| | - Madalena Salema-Oom
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Monte da Caparica, Almada, Portugal.
| | - Alexandra M M Antunes
- Centro de Química Estrutural (CQE) - Institute of Molecular Sciences and Chemical Engineering Department, Instituto Superior Técnico - University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Carlos A Pinto
- LAQV-REQUIMTE, Chemical Engineering Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Chemical Engineering Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana S Silva-Herdade
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina - University of Lisbon, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Ana Paula Serro
- Centro de Química Estrutural (CQE) - Institute of Molecular Sciences and Chemical Engineering Department, Instituto Superior Técnico - University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Monte da Caparica, Almada, Portugal.
| |
Collapse
|
25
|
Scattolin T, Tonon G, Botter E, Canale VC, Hasanzadeh M, Cuscela DM, Buschini A, Zarepour A, Khosravi A, Cordani M, Rizzolio F, Zarrabi A. Synergistic applications of cyclodextrin-based systems and metal-organic frameworks in transdermal drug delivery for skin cancer therapy. J Mater Chem B 2024; 12:3807-3839. [PMID: 38529820 DOI: 10.1039/d4tb00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This review article explores the innovative field of eco-friendly cyclodextrin-based coordination polymers and metal-organic frameworks (MOFs) for transdermal drug delivery in the case of skin cancer therapy. We critically examine the significant advancements in developing these nanocarriers, with a focus on their unique properties such as biocompatibility, targeted drug release, and enhanced skin permeability. These attributes are instrumental in addressing the limitations inherent in traditional skin cancer treatments and represent a paradigm shift towards more effective and patient-friendly therapeutic approaches. Furthermore, we discuss the challenges faced in optimizing the synthesis process for large-scale production while ensuring environmental sustainability. The review also emphasizes the immense potential for clinical applications of these nanocarriers in skin cancer therapy, highlighting their role in facilitating targeted, controlled drug release which minimizes systemic side effects. Future clinical applications could see these nanocarriers being customized to individual patient profiles, potentially revolutionizing personalized medicine in oncology. With further research and clinical trials, these nanocarriers hold the promise of transforming the landscape of skin cancer treatment. With this study, we aim to provide a comprehensive overview of the current state of research in this field and outline future directions for advancing the development and clinical application of these innovative nanocarriers.
Collapse
Affiliation(s)
- Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Giovanni Tonon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Eleonora Botter
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Viviana Claudia Canale
- Department of Chemical Science and Technologies, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd, Iran
| | - Denise Maria Cuscela
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkey
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid 28040, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid 28040, Spain
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, Aviano, Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
26
|
Ding Y, Zhao T, Fang J, Song J, Dong H, Liu J, Li S, Zhao M. Recent developments in the use of nanocrystals to improve bioavailability of APIs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1958. [PMID: 38629192 DOI: 10.1002/wnan.1958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/12/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Nanocrystals refer to materials with at least one dimension smaller than 100 nm, composing of atoms arranged in single crystals or polycrystals. Nanocrystals have significant research value as they offer unique advantages over conventional pharmaceutical formulations, such as high bioavailability, enhanced targeting selectivity and controlled release ability and are therefore suitable for the delivery of a wide range of drugs such as insoluble drugs, antitumor drugs and genetic drugs with broad application prospects. In recent years, research on nanocrystals has been progressively refined and new products have been launched or entered the clinical phase of studies. However, issues such as safety and stability still stand that need to be addressed for further development of nanocrystal formulations, and significant gaps do exist in research in various fields in this pharmaceutical arena. This paper presents a systematic overview of the advanced development of nanocrystals, ranging from the preparation approaches of nanocrystals with which the bioavailability of poorly water-soluble drugs is improved, critical properties of nanocrystals and associated characterization techniques, the recent development of nanocrystals with different administration routes, the advantages and associated limitations of nanocrystal formulations, the mechanisms of physical instability, and the enhanced dissolution performance, to the future perspectives, with a final view to shed more light on the future development of nanocrystals as a means of optimizing the bioavailability of drug candidates. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Yidan Ding
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Tongyi Zhao
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Jianing Fang
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Jiexin Song
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Haobo Dong
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Jiarui Liu
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Sijin Li
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Min Zhao
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
27
|
Wang H, Zhou W, Zhang Y, Wang C, Liu C, Xu J, Zhao Z, Liu H, Liu J, Ma Y. The synergistic effect of metal ions and amino acids on the fermentation of β-CGTase-producing statin DF257. 3 Biotech 2024; 14:53. [PMID: 38274847 PMCID: PMC10805693 DOI: 10.1007/s13205-023-03900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
To meet the growing demand of β-cyclodextrin (CD), innovative approaches are being developed to improve the production of β-CD by β-cyclodextrin glucose-transferase (CGTase). Considering the low production and efficacy of wild-type β-CGTase-producing strains, to obtain the strains suitable for industrial production of β-CGTase, the recombinant engineered bacteria strain DF257 is constructed by transfecting with the plasmid expressing His tagged β-CGTase. The fermentation of β-CGTase-expressing DF257 was optimized in the presence of different metal ions, amino acids, and incubated at a certain temperature and pH condition. The results showed that when Mg2+ and isoleucine were added into the culture medium at 0.5 mM and 0.5 g/L, respectively, the enzyme activity of β-CGTase increased significantly after incubation at 37 °C with the initial pH of 7.5. In addition, the optimal temperature for β-CGTase with the addition of Mg2+ and isoleucine was also determined. The T half of β-CGTase under 50, 55, 60 and 65 °C was 9.5, 8.8, 6.2 and 1.2 h, respectively. Further investigation showed that β-CGTase kept stable under the pH 6.0-10.0, and pH 7.5 was identified as the optimal pH condition of β-CGTase. With the addition of Mg2+ and isoleucine, the kinetic properties of β-CGTase in the cyclization reaction had a similar form with Michaelis equation under 50 °C and pH 7.5, and Vmax, Km, and Kcat was 3.74 mg/mL/min, 3.28 mg/mL, and 31.17/s, respectively. The possible underlying mechanism by which Mg2+ and isoleucine synergistically improved the thermostability of β-CGTase was investigated by the surface hydrophobicity index analysis, Fourier transform infrared spectroscopy and differential scanning calorimetry (DSC) analysis. The results indicated that addition of Mg2+ and isoleucine maintained the spatial structure and enhanced the thermostability of β-CGTase. These findings provided a theoretical basis for realizing the industrialization application of β-CGTase in promoting the generation of β-CD.
Collapse
Affiliation(s)
- Hua Wang
- Inner Mongolia Minzu University, No. 996, Xilamulun Street, Horqin District, Tongliao City, 028043 Inner Mongolia China
| | - Wenxi Zhou
- Tongliao Academy of Agricultural and Animal Husbanddry Sciences, Tongliao City, 028043 Inner Mongolia China
| | - Yifan Zhang
- Inner Mongolia Minzu University, No. 996, Xilamulun Street, Horqin District, Tongliao City, 028043 Inner Mongolia China
| | - Cuifang Wang
- Inner Mongolia Minzu University, No. 996, Xilamulun Street, Horqin District, Tongliao City, 028043 Inner Mongolia China
| | - Chen Liu
- Inner Mongolia Minzu University, No. 996, Xilamulun Street, Horqin District, Tongliao City, 028043 Inner Mongolia China
| | - Jiahui Xu
- Inner Mongolia Minzu University, No. 996, Xilamulun Street, Horqin District, Tongliao City, 028043 Inner Mongolia China
| | - Zejun Zhao
- Inner Mongolia Minzu University, No. 996, Xilamulun Street, Horqin District, Tongliao City, 028043 Inner Mongolia China
| | - Hongyu Liu
- Inner Mongolia Minzu University, No. 996, Xilamulun Street, Horqin District, Tongliao City, 028043 Inner Mongolia China
| | - Jia Liu
- Inner Mongolia Minzu University, No. 996, Xilamulun Street, Horqin District, Tongliao City, 028043 Inner Mongolia China
| | - Yunxiao Ma
- Inner Mongolia Minzu University, No. 996, Xilamulun Street, Horqin District, Tongliao City, 028043 Inner Mongolia China
| |
Collapse
|
28
|
Vodyashkin A, Sergorodceva A, Kezimana P, Morozova M, Nikolskaya E, Mollaeva M, Yabbarov N, Sokol M, Chirkina M, Butusov L, Timofeev A. Synthesis and activation of pH-sensitive metal-organic framework Sr(BDC) ∞ for oral drug delivery. Dalton Trans 2024; 53:1048-1057. [PMID: 38099594 DOI: 10.1039/d3dt02822d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-organic frameworks (MOFs) are widely used in the biomedical industry. In this study, we developed a new method for obtaining a metal-organic structure of strontium and terephthalic acid, Sr(BDC), and an alternative activation method for removing DMF from the pores. Sr(BDC) MOFs were successfully prepared and characterized by XRD, FTIR, TGA, and SEM. The importance of the activation steps was confirmed by TGA, which showed that the Sr(BDC)(DMF) sample can contain up to a quarter of the solvent (DMF) before activation. In our study, IR spectroscopy confirmed the possibility of removing DMF by ethanol treatment from the Sr-BDC crystals. A comparative analysis of the effect of the activation method on the specific surface and pore size of Sr-BDC and its sorption properties using the model drug doxorubicin showed that due to the undeveloped surface of the Sr-(BDC)(DMF) sample, it is not possible to obtain an adsorption isotherm and determine the pore size distribution, thus showing the importance of the activation step. Cytotoxicity and apoptosis assays were carried out to study the biological activity of MOFs, and we observed relatively low toxicity in the tested concentration range after 48 h, with over 92% cell survival for Sr(BDC)(DMF) and Sr(BDC)(260 °C), with a decrease only in the highest concentration (800 mg L-1). Similar results were observed in our apoptosis assays, as they revealed low apoptotic population generation of 2.52%, 3.23%, and 2.77% for Sr(BDC)(DMF), Sr(BDC) and Sr(BDC)(260 °C), respectively. Overall, the findings indicate that ethanol-activated Sr(BDC) shows potential as a safe and effective material for drug delivery.
Collapse
Affiliation(s)
- Andrey Vodyashkin
- RUDN University, 117198, Moscow, Russia
- Bauman Moscow State Technical University, 105005, Moscow, Russia.
| | | | | | | | - Elena Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Mariia Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Nikita Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Maria Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Margarita Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | | | - Alexey Timofeev
- RUDN University, 117198, Moscow, Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia
| |
Collapse
|
29
|
Kubeil M, Suzuki Y, Casulli MA, Kamal R, Hashimoto T, Bachmann M, Hayashita T, Stephan H. Exploring the Potential of Nanogels: From Drug Carriers to Radiopharmaceutical Agents. Adv Healthc Mater 2024; 13:e2301404. [PMID: 37717209 PMCID: PMC11468994 DOI: 10.1002/adhm.202301404] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/21/2023] [Indexed: 09/18/2023]
Abstract
Nanogels open up access to a wide range of applications and offer among others hopeful approaches for use in the field of biomedicine. This review provides a brief overview of current developments of nanogels in general, particularly in the fields of drug delivery, therapeutic applications, tissue engineering, and sensor systems. Specifically, cyclodextrin (CD)-based nanogels are important because they have exceptional complexation properties and are highly biocompatible. Nanogels as a whole and CD-based nanogels in particular can be customized in a wide range of sizes and equipped with a desired surface charge as well as containing additional molecules inside and outside, such as dyes, solubility-mediating groups or even biological vector molecules for pharmaceutical targeting. Currently, biological investigations are mainly carried out in vitro, but more and more in vivo applications are gaining importance. Modern molecular imaging methods are increasingly being used for the latter. Due to an extremely high sensitivity and the possibility of obtaining quantitative data on pharmacokinetic and pharmacodynamic properties, nuclear methods such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) using radiolabeled compounds are particularly suitable here. The use of radiolabeled nanogels for imaging, but also for therapy, is being discussed.
Collapse
Affiliation(s)
- Manja Kubeil
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| | - Yota Suzuki
- Graduate School of Science and EngineeringSaitama University255 Shimo‐OkuboSakura‐KuSaitama338‐8570Japan
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | | | - Rozy Kamal
- Department of Nuclear MedicineManipal College of Health ProfessionsManipal Academy of Higher EducationManipalKarnataka576104India
| | - Takeshi Hashimoto
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | - Michael Bachmann
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| | - Takashi Hayashita
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | - Holger Stephan
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| |
Collapse
|
30
|
Borzova VA, Chernikov AM, Mikhaylova VV, Kurganov BI. Change in the Kinetic Regime of Aggregation of Yeast Alcohol Dehydrogenase in the Presence of 2-Hydroxypropyl-β-cyclodextrin. Int J Mol Sci 2023; 24:16140. [PMID: 38003330 PMCID: PMC10671268 DOI: 10.3390/ijms242216140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Chemical chaperones are low-molecular-weight compounds that suppress protein aggregation. They can influence different stages of the aggregation process-the stage of protein denaturation, the nucleation stage and the stage of aggregate growth-and this may lead to a change in the aggregation kinetic regime. Here, the possibility of changing the kinetic regime in the presence of a chemical chaperone 2-hydroxypropyl-β-cyclodextrin (2-HP-β-CD) was investigated for a test system based on the thermally induced aggregation of yeast alcohol dehydrogenase (yADH) at 56 °C. According to differential scanning calorimetry data, 2-HP-β-CD did not affect the stage of the protein molecule unfolding. Dynamic light scattering data indicated changes in the aggregation kinetics of yADH during the nucleation and aggregate growth stages in the presence of the chaperone. The analysis of kinetic curves showed that the order of aggregation with respect to protein (nc), calculated for the stage of aggregate growth, changed from nc = 1 to nc = 2 with the addition of 100 mM 2-HP-β-CD. The mechanism of 2-HP-β-CD action on the yADH thermal aggregation leading to a change in its kinetic regime of aggregation is discussed.
Collapse
Affiliation(s)
- Vera A. Borzova
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky pr. 33, 119071 Moscow, Russia; (A.M.C.); (V.V.M.)
| | | | | | | |
Collapse
|
31
|
Kondoros BA, Kókai D, Burián K, Sorrenti M, Catenacci L, Csóka I, Ambrus R. Ternary cyclodextrin systems of terbinafine hydrochloride inclusion complexes: Solventless preparation, solid-state, and in vitro characterization. Heliyon 2023; 9:e21416. [PMID: 38027871 PMCID: PMC10663756 DOI: 10.1016/j.heliyon.2023.e21416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Cyclodextrins (CD) are used extensively in the pharmaceutical industry to improve the water solubility and bioavailability of drugs. Preparing ternary systems by applying a third component can enhance these beneficial effects. The complexation methods of these ternary systems are the same as those of two-component complexes. These methods are solvent (co-evaporation, co-precipitation, etc.) or solventless "green" techniques (co-grinding, microwave irradiation, etc.). Using solvent-free methods is considered to be an economically and environmentally desirable technology. This study aimed to prepare ternary systems by the co-grinding method and evaluate the effect of a third component by comparing it to products obtained by solvent methods, binary systems, and marketed products. For that, we used terbinafine hydrochloride as a model drug, sulfobutyl-ether-beta-cyclodextrin as a complexation agent and 5 or 15 w/w% of polyvinylpyrrolidone K-90 (PVP) or hydroxypropyl methylcellulose (HPMC) as auxiliary components. Physicochemical evaluation (X-Ray Diffractometry, Differential Scanning Calorimetry, Thermogravimetry) showed that new solid phases were formed, while Scanning Electron Microscopy was performed to study morphological aspects of the products. Fourier transform infrared spectroscopic measurements suggested different intermolecular interactions depending on the type of polymer. In vitro dissolution studies showed beneficial effects of CD and further improvement with the applied polymers. Products showed less cell toxicity with one exception. Both polymers enhanced the physicochemical and in vitro properties, suggesting a greater bioavailability of the model drug. However, the percentage of polymers applied did not appear to be an influencing factor for these properties.
Collapse
Affiliation(s)
- Balázs Attila Kondoros
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720, Szeged, Hungary
| | - Dávid Kókai
- Albert Szent-Györgyi Health Center, Department of Medical Microbiology, Faculty of Medicine, University of Szeged, H-6725, Szeged, Hungary
| | - Katalin Burián
- Albert Szent-Györgyi Health Center, Department of Medical Microbiology, Faculty of Medicine, University of Szeged, H-6725, Szeged, Hungary
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, 27100, Pavia, Italy
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, 27100, Pavia, Italy
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720, Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720, Szeged, Hungary
| |
Collapse
|
32
|
Singh N, Vishwas S, Kaur A, Kaur H, Kakoty V, Khursheed R, Chaitanya MVNL, Babu MR, Awasthi A, Corrie L, Harish V, Yanadaiah P, Gupta S, Sayed AA, El-Sayed A, Ali I, Kensara OA, Ghaboura N, Gupta G, Dou AM, Algahtani M, El-Kott AF, Dua K, Singh SK, Abdel-Daim MM. Harnessing role of sesamol and its nanoformulations against neurodegenerative diseases. Biomed Pharmacother 2023; 167:115512. [PMID: 37725878 DOI: 10.1016/j.biopha.2023.115512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
Sesamol is a lignan of sesame seeds and a natural phenolic molecule that has emerged as a useful medical agent. Sesamol is a non-toxic phytoconstituent, which exerts certain valuable effects in the management of cancer, diabetes, cardiovascular diseases, neurodegenerative diseases (NDs), etc. Sesamol is known to depict its neuroprotective role by various mechanisms, such as metabolic regulators, action on oxidative stress, neuroinflammation, etc. However, its poor oral bioavailability, rapid excretion (as conjugates), and susceptibility to gastric irritation/toxicity (particularly in rats' forestomach) may restrict its effectiveness. To overcome the associated limitations, novel drug delivery system-based formulations of sesamol are emerging and being researched extensively. These can conjugate with sesamol and enhance the bioavailability and solubility of free sesamol, along with delivery at the target site. In this review, we have summarized various research works highlighting the role of sesamol on various NDs, including Alzheimer's disease, Huntington's disease, Amyotrophic lateral sclerosis, and Parkinson's disease. Moreover, the formulation strategies and neuroprotective role of sesamol-based nano-formulations have also been discussed.
Collapse
Affiliation(s)
- Navneet Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Amandeep Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Harmanpreet Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Violina Kakoty
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | | | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Department of pharmaceutics, ISF college of Pharmacy, Moga, Punjab 142001, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Palakurthi Yanadaiah
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of pharmacology, Khandwa Road, Village Umrikheda, Near Toll booth, Indore, Madhya Pradesh 452020, India
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Amr El-Sayed
- Department of Animal Infectious Diseases, Faculty of Veterinary medicine, Cairo University, Egypt
| | - Iftikhar Ali
- Department of Biochemistry and Cell Biology, State University of New York at Stonybrook, New York, USA
| | - Osama A Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah 21955, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P. O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India
| | - Ali M Dou
- Division of blood bank, Department of medical laboratories, Riyadh security forces hospital, Ministry of interior, Riyadh, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damanhour University, Egypt
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
33
|
Saeidi Z, Giti R, Rostami M, Mohammadi F. Nanotechnology-Based Drug Delivery Systems in the Transdermal Treatment of Melanoma. Adv Pharm Bull 2023; 13:646-662. [PMID: 38022807 PMCID: PMC10676549 DOI: 10.34172/apb.2023.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 12/01/2023] Open
Abstract
The incidence rate of melanoma is dramatically increasing worldwide, raising it to the fifth most common cancer in men and the sixth in women currently. Resistance generally occurs to the agents used in chemotherapy; besides their high toxicity destroys the normal cells. This study reviewed a detailed summary of the structure, advantages, and disadvantages of nanotechnology-based drug delivery systems in the treatment of melanoma, as well as some nanocarrier applications in animal models or clinical studies. Respective databases were searched for the target keywords and 93 articles were reviewed and discussed. A close study of the liposomes, niosomes, transferosomes, ethosomes, transethosomes, cubosomes, dendrimers, cyclodextrins, solid lipid nanoparticles, and carbon nanotubes (CNTs) was conducted. It was found that these nanocarriers could inhibit metastasis and migration of melanoma cells and decrease cell viability. Conclusively, some nanocarriers like liposomes, niosomes, and transferosomes have been discussed as superior to conventional therapies for melanoma treatment.
Collapse
Affiliation(s)
- Zahra Saeidi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Rashin Giti
- Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Rostami
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farhad Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
34
|
Brenner MB, Flory S, Wüst M, Frank J, Wagner K. Novel Biphasic In Vitro Dissolution Method Correctly Predicts the Oral Bioavailability of Curcumin in Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15632-15643. [PMID: 37824789 DOI: 10.1021/acs.jafc.3c04990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
In vitro dissolution methods correctly predicting in vivo bioavailability of compounds from complex mixtures are lacking. We therefore used data on the in vivo performance of bioavailability-improved curcumin formulations to implement an in vivo predictive dissolution method (BiPHa+). BiPHa+ was applied for the characterization of eight curcumin formulations previously studied in a strictly controlled pharmacokinetic human trial. During dissolution, the dissolved proportion of curcumin in the aqueous medium underwent a formulation-dependent reduction, whereas the proportion remained stable in the organic layer. Compared with conventional dissolution systems, BiPHa+ was superior in terms of in vivo-relevant formulation characterization. All formulations could be precisely categorized according to their bioavailability in humans. In vitro-in vivo relationships for each dissolution method were established, with BiPHa+ providing the highest degree of linearity (r2 = 0.9975). The BiPHa+ assay correctly predicted the bioavailability of curcuminoids from complex mixtures and provided mechanistic information about formulation-dependent release characteristics.
Collapse
Affiliation(s)
- Marvin Benedikt Brenner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Pharmaceutical Institute, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Sandra Flory
- Department of Food Biofunctionality, University of Hohenheim, Institute of Nutritional Sciences, Garbenstr. 28, 70599 Stuttgart, Germany
| | - Matthias Wüst
- Food Chemistry, University of Bonn, Institute of Nutritional and Food Sciences, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Jan Frank
- Department of Food Biofunctionality, University of Hohenheim, Institute of Nutritional Sciences, Garbenstr. 28, 70599 Stuttgart, Germany
| | - Karl Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Pharmaceutical Institute, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| |
Collapse
|
35
|
Tsunoda C, Hasegawa K, Hiroshige R, Kasai T, Yokoyama H, Goto S. Effect of Cyclodextrin Complex Formation on Solubility Changes of Each Drug Due to Intermolecular Interactions between Acidic NSAIDs and Basic H2 Blockers. Mol Pharm 2023; 20:5032-5042. [PMID: 37688787 PMCID: PMC10548472 DOI: 10.1021/acs.molpharmaceut.3c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
One of the solubilization of poorly water-soluble drugs is the use of cyclodextrin (CD)-based inclusion complexes. On the other hand, few studies have investigated how CD functions on the solubility of drugs in the presence of multiple drugs that interact with each other. In this study, we used indomethacin (IND) and diclofenac (DIC) as acidic drugs, famotidine (FAM) and cimetidine (CIM) as basic drugs, and imidazole (IMZ), histidine (HIS), and arginine (ARG) as compounds structurally similar to basic drugs. We attempted to clarify the effect of β-CD on the solubility change of each drug in the presence of multiple drugs. IND and DIC formed a eutectic mixture in the presence of CIM, IMZ, and ARG, which greatly increased the intrinsic solubility of the drugs as well as their affinity for β-CD. Furthermore, the addition of high concentrations of β-CD to the DIC-FAM combination, which causes a decrease in solubility due to the interaction, improved the solubility of FAM, which was decreased in the presence of DIC. These results indicate that β-CD synergistically improves the solubility of drugs in drug-drug combinations, where the solubility is improved, whereas it effectively improves the dissolution rate of drugs in situations where the solubility is reduced by drug-drug interactions, such as FAM-DIC. This indicates that β-CD can be used to improve the physicochemical properties of drugs, even when they are administered in combination with drugs that interact with each other.
Collapse
Affiliation(s)
- Chihiro Tsunoda
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kanji Hasegawa
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ryosuke Hiroshige
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takahiro Kasai
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideshi Yokoyama
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Satoru Goto
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
36
|
Zhang C, Zeng F, Fan Z, He Z, Tai L, Peng Q, Zhang Y, Chao Z, Jiang W, Jia L, Han L. An oral polyphenol host-guest nanoparticle for targeted therapy of inflammatory bowel disease. Acta Biomater 2023; 169:422-433. [PMID: 37597682 DOI: 10.1016/j.actbio.2023.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Inflammatory bowel disease (IBD) is a global public health challenge that affects millions of people. Current medical treatments for IBD are not fully effective and may cause undesirable side effects on patients. Thus, there is an urgent need for safe, simple, and efficacious strategies to treat IBD in clinical settings. Here, we develop an oral polyphenol nanoparticle (PDT) by assembling dexamethasone sodium phosphate (DSP)-loaded poly-β-cyclodextrin with tannic acid via host-guest interactions for treating IBD. This one-step assembly process is rapid (within 10 s), reproducible, and free of harmful chemical agents, which can facilitate its clinical translation. PDT is negatively charged due to the three components, which enable it to specifically target the positively charged inflamed colonic mucosa through electrostatic attraction, thus localizing the drug at the inflamed site to reduce systemic exposure and side effects. Furthermore, PDT exhibits a strong reactive oxygen species (ROS)-scavenging ability derived from the tannic acid component, which can alleviate ROS-mediated inflammatory responses and ameliorate IBD symptoms. Compared with free DSP, PDT demonstrates sustained DSP release behavior in vitro and in vivo, as well as enhanced therapeutic efficacy in a colitis mouse model. These results suggest that PDT might be a potential therapeutic agent for the treatment of IBD. Moreover, this facile polyphenol host-guest assembly strategy may provide a promising drug-delivery platform for treating various diseases STATEMENT OF SIGNIFICANCE: To develop safe and effective treatments for inflammatory bowel disease (IBD), we have designed an oral polyphenol nanoparticle (PDT) using the host-guest assembly of dexamethasone sodium phosphate (DSP)-loaded poly-β-cyclodextrin with tannic acid. Through in vitro and in vivo experiments, PDT has demonstrated remarkable inflammation-targeting, ROS-scavenging, and anti-inflammatory properties, along with sustained release of DSP. Moreover, in an IBD mouse model, PDT has shown significantly improved therapeutic efficacy compared to free DSP. The host-guest assembly strategy employed for PDT is noteworthy for its rapidity, reproducibility, and safety due to the absence of harmful chemicals, holding great promise for designing a diverse range of nanomedicines customized for treating various diseases.
Collapse
Affiliation(s)
- Chong Zhang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Fen Zeng
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Zhengyang Fan
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Zhen He
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Liang Tai
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Qiang Peng
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Yixin Zhang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Zhenhua Chao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Wenning Jiang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China.
| | - Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China.
| |
Collapse
|
37
|
Lu Q. Bioresponsive and multifunctional cyclodextrin-based non-viral nanocomplexes in cancer therapy: Building foundations for gene and drug delivery, immunotherapy and bioimaging. ENVIRONMENTAL RESEARCH 2023; 234:116507. [PMID: 37364628 DOI: 10.1016/j.envres.2023.116507] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The interest towards application of nanomaterials in field of cancer therapy is that the drawbacks of conventional therapies including chemoresistance, radio-resistance and lack of specific targeting of tumor cells can be solved by nanotechnology. Cyclodextrins (CDs) are amphiphilic cyclic oligosaccharides that can be present in three forms of α-, β- and γ-CDs, and they can be synthesized from natural sources. The application of CDs in cancer shows an increasing trend due to benefits of these nanocomplexes in improving solubility and bioavailability of current bioactives and therapeutics for cancer. CDs are widely utilized in delivery of drugs and genes in cancer therapy, and by targeted delivery of these therapeutics into target site, they improve anti-proliferative and anti-cancer potential. The blood circulation time and tumor site accumulation of therapeutics can be improved using CD-based nanostructures. More importantly, the stimuli-responsive types of CDs including pH-, redox- and light-sensitive types can accelerate release of bioactive compound at tumor site. Interestingly, the CDs are able to mediate photothermal and photodynamic impact in impairing tumorigenesis in cancer, enhancing cell death and improving response to chemotherapy. In improving the targeting ability of CDs, their surface functionalization with ligands has been conducted. Moreover, CDs can be modified with green products such as chitosan and fucoidan, and they can be embedded in green-based nanostructures to suppress tumorigenesis. The internalization of CDs into tumor cells can occur through endocytosis and this can be clethrin-, caveolae- or receptor-mediated endocytosis. Furthermore, CDs are promising candidates in bioimaging, cancer cell and organelle imaging as well as isolating tumor cells. The main benefits of using CDs in cancer therapy including sustained and low release of drugs and genes, targeted delivery, bioresponsive release of cargo, ease of surface functionalization and complexation with other nanostructures. The application of CDs in overcoming drug resistance requires more investigation.
Collapse
Affiliation(s)
- Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
38
|
Riccio BVF, Meneguin AB, Baveloni FG, de Antoni JA, Robusti LMG, Gremião MPD, Ferrari PC, Chorilli M. Biopharmaceutical and nanotoxicological aspects of cyclodextrins for non-invasive topical treatments: A critical review. J Appl Toxicol 2023; 43:1410-1420. [PMID: 36579752 DOI: 10.1002/jat.4429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Cyclodextrins are nanometric cyclic oligosaccharides with amphiphilic characteristics that increase the stability of drugs in pharmaceutical forms and bioavailability, in addition to protecting them against oxidation and UV radiation. Some of their characteristics are low toxicity, biodegradability, and biocompatibility. They are divided into α-, β-, and γ-cyclodextrins, each with its own particularities. They can undergo surface modifications to improve their performances. Furthermore, their drug inclusion complexes can be made by various methods, including lyophilization, spray drying, magnetic stirring, kneading, and others. Cyclodextrins can solve several problems in drug stability when incorporated into dosage forms (including tablets, gels, films, nanoparticles, and suppositories) and allow better topical biological effects of drugs at administration sites such as skin, eyeballs, and oral, nasal, vaginal, and rectal cavities. However, as they are nanostructured systems and some of them can cause mild toxicity depending on the application site, they must be evaluated for their nanotoxicology and nanosafety aspects. Moreover, there is evidence that they can cause severe ototoxicity, killing cells from the ear canal even when applied by other administration routes. Therefore, they should be avoided in otologic administration and should have their permeation/penetration profiles and the in vivo hearing system integrity evaluated to certify that they will be safe and will not cause hearing loss.
Collapse
Affiliation(s)
- Bruno Vincenzo Fiod Riccio
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Franciele Garcia Baveloni
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Leda Maria Gorla Robusti
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
39
|
Kaplan Ö, Truszkowska M, Kali G, Knoll P, Blanco Massani M, Braun DE, Bernkop-Schnürch A. Thiolated α-cyclodextrin: The likely smallest drug carrier providing enhanced cellular uptake and endosomal escape. Carbohydr Polym 2023; 316:121070. [PMID: 37321712 DOI: 10.1016/j.carbpol.2023.121070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
This study aimed to evaluate the effect of thiolated α-cyclodextrin (α-CD-SH) on the cellular uptake of its payload. For this purpose, α-CD was thiolated using phosphorous pentasulfide. Thiolated α-CD was characterized by FT-IR and 1H NMR spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffractometry (PXRD). Cytotoxicity of α-CD-SH was evaluated on Caco-2, HEK 293, and MC3T3 cells. Dilauryl fluorescein (DLF) and coumarin-6 (Cou) serving as surrogates for a pharmaceutical payload were incorporated in α-CD-SH, and cellular uptake was analyzed by flow cytometry and confocal microscopy. Endosomal escape was investigated by confocal microscopy and hemolysis assay. Results showed no cytotoxic effect within 3 h, while dose-dependent cytotoxicity was observed within 24 h. The cellular uptake of DLF and Cou was up to 20- and 11-fold enhanced by α-CD-SH compared to native α-CD, respectively. Furthermore, α-CD-SH provided an endosomal escape. According to these results, α-CD-SH is a promising carrier to shuttle drugs into the cytoplasm of target cells.
Collapse
Affiliation(s)
- Özlem Kaplan
- Department of Genetics and Bioengineering, Rafet Kayış Faculty of Engineering, Alanya Alaaddin Keykubat University, 07400 Antalya, Turkey; Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Martyna Truszkowska
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Patrick Knoll
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Mariana Blanco Massani
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Doris Elfriede Braun
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
40
|
Shabani H, Karami MH, Kolour J, Sayyahi Z, Parvin MA, Soghala S, Baghini SS, Mardasi M, Chopani A, Moulavi P, Farkhondeh T, Darroudi M, Kabiri M, Samarghandian S. Anticancer activity of thymoquinone against breast cancer cells: Mechanisms of action and delivery approaches. Biomed Pharmacother 2023; 165:114972. [PMID: 37481931 DOI: 10.1016/j.biopha.2023.114972] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 07/25/2023] Open
Abstract
The rising incidence of breast cancer has been a significant source of concern in the medical community. Regarding the adverse effects and consequences of current treatments, cancers' health, and socio-economical aspects have become more complicated, leaving research aimed at improved or new treatments on top priority. Medicinal herbs contain multitarget compounds that can control cancer development and advancement. Owing to Nigella Sativa's elements, it can treat many disorders. Thymoquinone (TQ) is a natural chemical derived from the black seeds of Nigella sativa Linn proved to have anti-cancer and anti-inflammatory properties. TQ interferes in a broad spectrum of tumorigenic procedures and inhibits carcinogenesis, malignant development, invasion, migration, and angiogenesis owing to its multitargeting ability. It effectively facilitates miR-34a up-regulation, regulates the p53-dependent pathway, and suppresses Rac1 expression. TQ promotes apoptosis and controls the expression of pro- and anti-apoptotic genes. It has also been shown to diminish the phosphorylation of NF-B and IKK and decrease the metastasis and ERK1/2 and PI3K activity. We discuss TQ's cytotoxic effects for breast cancer treatment with a deep look at the relevant stimulatory or inhibitory signaling pathways. This review discusses the various forms of polymeric and non-polymeric nanocarriers (NC) and the encapsulation of TQ for increasing oral bioavailability and enhanced in vitro and in vivo efficacy of TQ-combined treatment with different chemotherapeutic agents against various breast cancer cell lines. This study can be useful to a broad scientific community, comprising pharmaceutical and biological scientists, as well as clinical investigators.
Collapse
Affiliation(s)
- Hadi Shabani
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Islamshahr Branch, Iran
| | | | - Jalili Kolour
- Cellular and Molecular Biology master student, Department of Life Sciences and Systems Biology, University of Turin, Italy
| | - Zeinab Sayyahi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Amir Parvin
- Department of Cell and Molecular Biology, school of Biology, University of Tehran, Tehran, Iran
| | - Shahrad Soghala
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology(NIGEB), Tehran, Iran
| | - Mahsa Mardasi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C., Evin, Tehran, Iran
| | - Ali Chopani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Pooria Moulavi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
41
|
Sri Varalakshmi G, Pawar C, Selvam R, Gem Pearl W, Manikantan V, Sumohan Pillai A, Alexander A, Rajendra Prasad N, Enoch IVMV, Dhanaraj P. Nickel sulfide and dysprosium-doped nickel sulfide nanoparticles: Dysprosium-induced variation in properties, in vitro chemo-photothermal behavior, and antibacterial activity. Int J Pharm 2023; 643:123282. [PMID: 37524253 DOI: 10.1016/j.ijpharm.2023.123282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Newer materials for utilization in multi-directional therapeutic actions are investigated, considering delicate design principles involving size and shape control, surface modification, and controllable drug loading and release. Multi-faceted properties are imparted to the engineered nanoparticles, like magnetism, near-infrared absorption, photothermal efficiency, and suitable size and shape. This report presents nickel sulfide and dysprosium-doped nickel sulfide nanoparticles with poly-β-cyclodextrin polymer coating. The nanoparticles belong to the orthorhombic crystal systems, as indicated by X-ray diffraction studies. The size and shape of the nanoparticles are investigated using Transmission Electron Microscope (TEM) and a particle-size analyzer. The particles show soft ferromagnetic characteristics with definite and moderate saturation magnetization values. The nickel sulfide nanoparticles' in vitro anticancer and antibacterial activities are investigated in free and 5-fluorouracil/penicillin benzathine-loaded forms. The 5-fluorouracil-encapsulation efficiency of the nanoparticles is around 87%, whereas it is above 92% in the case of penicillin benzathine. Both drugs are released slowly in a controlled fashion. The dysprosium-doped nickel sulfide nanoparticles show better anticancer activity, and the efficacy is more significant than the free drug. The nanoparticles are irradiated with a low-power 808 nm laser. The dysprosium-doped nickel sulfide nanoparticles attain a higher temperature on irradiation, i.e., above 59 °C. The photothermal conversion efficiency of this material is determined, and the significance of dysprosium doping is discussed. Contrarily, the undoped nickel sulfide nanoparticles show more significant antibacterial activity. This study presents a novel designed nanoparticle system and the exciting variation of properties on dysprosium doping in nickel sulfide nanoparticles.
Collapse
Affiliation(s)
- Govindaraj Sri Varalakshmi
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Charansingh Pawar
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram 608002, Tamil Nadu, India
| | - Rajakar Selvam
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Wrenit Gem Pearl
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Varnitha Manikantan
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Archana Sumohan Pillai
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Aleyamma Alexander
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram 608002, Tamil Nadu, India
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India.
| | - Premnath Dhanaraj
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India.
| |
Collapse
|
42
|
Abdellatif AAH, Ahmed F, Mohammed AM, Alsharidah M, Al-Subaiyel A, Samman WA, Alhaddad AA, Al-Mijalli SH, Amin MA, Barakat H, Osman SK. Recent Advances in the Pharmaceutical and Biomedical Applications of Cyclodextrin-Capped Gold Nanoparticles. Int J Nanomedicine 2023; 18:3247-3281. [PMID: 37337575 PMCID: PMC10277008 DOI: 10.2147/ijn.s405964] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
The real problem in pharmaceutical preparation is drugs' poor aqueous solubility, low permeability through biological membranes, and short biological t1/2. Conventional drug delivery systems are not able to overcome these problems. However, cyclodextrins (CDs) and their derivatives can solve these challenges. This article aims to summarize and review the history, properties, and different applications of cyclodextrins, especially the ability of inclusion complex formation. It also refers to the effects of cyclodextrin on drug solubility, bioavailability, and stability. Moreover, it focuses on preparing and applying gold nanoparticles (AuNPs) as novel drug delivery systems. It also studies the uses and effects of cyclodextrins in this field as novel drug carriers and targeting devices. The system formulated from AuNPs linked with CD molecules combines the advantages of both CD and AuNPs. Cyclodextrins benefit in increasing aqueous drug solubility, loading capacity, stability, and size control of gold NPs. Also, AuNPs are applied as diagnostic and therapeutic agents because of their unique chemical properties. Plus, AuNPs possess several advantages such as ease of detection, targeted and selective drug delivery, greater surface area, high loading efficiency, and higher stability than microparticles. In the present article, we tried to present the potential pharmaceutical applications of CD-derived AuNPs in biomedical applications including antibacterial, anticancer, gene-drug delivery, and various targeted drug delivery applications. Also, the article highlighted the role of CDs in the preparation and improvement of catalytic enzymes, the formation of self-assembling molecular print boards, the fabrication of supramolecular functionalized electrodes, and biosensors formation.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Fatma Ahmed
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Ahmed M Mohammed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Amal Al-Subaiyel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Waad A Samman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina, 42353, Saudi Arabia
| | - Aisha A Alhaddad
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina, 42353, Saudi Arabia
| | - Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Mohammed A Amin
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| | - Shaaban K Osman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
43
|
Tsunoda C, Goto S, Hiroshige R, Kasai T, Okumura Y, Yokoyama H. Optimization of the stability constants of the ternary system of diclofenac/famotidine/β-cyclodextrin by nonlinear least-squares method using theoretical equations. Int J Pharm 2023; 638:122913. [PMID: 37024067 DOI: 10.1016/j.ijpharm.2023.122913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
This study aimed to establish a new method for determining the stability constants of drug/β-cyclodextrin (β-CD) complexes when multiple drugs interacting with each other coexist in the solution of complexation. The basic drug famotidine (FAM) and the acidic drug diclofenac (DIC) were used as model drugs, their solubility decreasing owing to their mutual interaction. The dissolution of both FAM and DIC was characterized by AL-type phase solubility diagrams in the presence of the other's 1:1 complex with β-CD. When the stability constant was calculated from the slope of the phase solubility diagram using the conventional phase solubility diagram method, it was modified in the presence of the other drug. However, by performing optimization calculations that considered the interactions between the drug/β-CD complex and the drug, drug/β-CD complexes, and drugs, we were able to accurately calculate the stability constant of DIC/β-CD and FAM/β-CD complexes even in the presence of FAM and DIC, respectively. The results of the solubility profile indicated that various molecular species, which are attributed to drug-drug and drug/β-CD interactions, interfere with the values of the dissolution rate constants and saturated concentration in the solubility profiles.
Collapse
Affiliation(s)
- Chihiro Tsunoda
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Satoru Goto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Ryosuke Hiroshige
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Takahiro Kasai
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yuta Okumura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hideshi Yokoyama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
44
|
Li W, Wang D, Lao KU, Wang X. Inclusion Complexation of S-Nitrosoglutathione for Sustained Nitric Oxide Release from Catheter Surfaces: A Strategy to Prevent and Treat Device-Associated Infections. ACS Biomater Sci Eng 2023; 9:1694-1705. [PMID: 36542753 DOI: 10.1021/acsbiomaterials.2c01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
S-Nitrosoglutathione (GSNO) is a nontoxic nitric oxide (NO)-donating compound that occurs naturally in the human body. The use of GSNO to deliver exogenous NO for therapeutic and protective applications is limited by the high lability of dissolved GSNO in aqueous formulations. In this paper, we report a host-guest chemistry-based strategy to modulate the GSNO reactivity and NO release kinetics for the design of anti-infective catheters and hydrogels. Cyclodextrins (CDs) are host molecules that are typically used to encapsulate hydrophobic guest molecules into their hydrophobic cavities. However, we found that CDs form inclusion complexes with GSNO, an extremely hydrophilic molecule with a solubility of over 1 M at physiological pH. More interestingly, the host-guest complexation reduces the decomposition reactivity of GSNO in the order of αCD > γCD > hydroxypropyl βCD. The lifetime of 0.1 M GSNO is increased to up to 15 days in the presence of CDs at 37 °C, which is more than twice the lifetime of free GSNO. Quantum chemistry calculations indicate that GSNO in αCD undergoes a conformational change that significantly reduces the S-NO bond distance and increases its stability. The calculated S-NO bond dissociation enthalpies of free and complexed GSNO well agree with the experimentally observed GSNO decomposition kinetics. The NO release from GSNO-CD solutions, compared to GSNO solutions, has suppressed initial bursts and extended durations, enhancing the safety and efficacy of NO-based therapies and device protections. In an example application as an anti-infective lock solution for intravascular catheters, the GSNO-αCD solution exhibits potent antibacterial activities for both planktonic and biofilm bacteria, both intraluminal and extraluminal environments, both prevention and treatment of infections, and against multiple bacterial strains, including a multidrug-resistant strain. In addition to solutions, the inclusion complexation also enables the preparation of GSNO hydrogels with enhanced stability and improved antibacterial efficacy. Since methods to suppress and control the GSNO decomposition rate are rare, this supramolecular strategy provides new opportunities for the formulation and application of this natural NO donor.
Collapse
Affiliation(s)
- Wuwei Li
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| | - Danyang Wang
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| | - Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| | - Xuewei Wang
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
45
|
Nair AB, Dalal P, Kadian V, Kumar S, Garg M, Rao R, Almuqbil RM, Alnaim AS, Aldhubiab B, Alqattan F. Formulation Strategies for Enhancing Pharmaceutical and Nutraceutical Potential of Sesamol: A Natural Phenolic Bioactive. PLANTS (BASEL, SWITZERLAND) 2023; 12:1168. [PMID: 36904028 PMCID: PMC10005287 DOI: 10.3390/plants12051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Natural plants and their products continue to be the major source of phytoconstituents in food and therapeutics. Scientific studies have evidenced the benefits of sesame oil and its bioactives in various health conditions. Various bioactives present in it include sesamin, sasamolin, sesaminol, and sesamol; among these, sesamol represents a major constituent. This bioactive is responsible for preventing various diseases including cancer, hepatic disorders, cardiac ailments, and neurological diseases. In the last decade, the application of sesamol in the management of various disorders has attracted the increasing interest of the research community. Owing to its prominent pharmacological activities, such as antioxidant, antiinflammatory, antineoplastic, and antimicrobial, sesamol has been explored for the above-mentioned disorders. However, despite the above-mentioned therapeutic potential, its clinical utility is mainly hindered owing to low solubility, stability, bioavailability, and rapid clearance issues. In this regard, numerous strategies have been explored to surpass these restrictions with the formulation of novel carrier platforms. This review aims to describe the various reports and summarize the different pharmacological activities of sesamol. Furthermore, one part of this review is devoted to formulating strategies to improve sesamol's challenges. To resolve the issues such as the stability, low bioavailability, and high systemic clearance of sesamol, novel carrier systems have been developed to open a new avenue to utilize this bioactive as an efficient first-line treatment for various diseases.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pooja Dalal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Varsha Kadian
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
- Atam Institute of Pharmacy, Om Sterling Global University, Hisar 125001, India
| | - Minakshi Garg
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ahmed S. Alnaim
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatemah Alqattan
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
46
|
Dattilo S, Spitaleri F, Aleo D, Saita MG, Patti A. Solid-State Preparation and Characterization of 2-Hydroxypropylcyclodextrins-Iodine Complexes as Stable Iodophors. Biomolecules 2023; 13:biom13030474. [PMID: 36979409 PMCID: PMC10046614 DOI: 10.3390/biom13030474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The use of iodine as antiseptic poses some issues related to its low water solubility and high volatility. Stable solid iodine-containing formulations are highly advisable and currently limited to the povidone-iodine complex. In this study, complexes of molecular iodine with 2-hydroxypropyl α-, β- and γ-cyclodextrins were considered water-soluble iodophors and prepared in a solid state by using three different methods (liquid-assisted grinding, co-evaporation and sealed heating). The obtained solids were evaluated for their iodine content and stability over time in different conditions using a fully validated UV method. The assessment of the actual formation of an inclusion complex in a solid state was carried out by thermal analysis, and the presence of iodine was further confirmed by SEM/EDX and XPS analyses. High levels of iodine content (8.3–10.8%) were obtained with all the tested cyclodextrins, and some influence was exerted by the employed preparation method. Potential use as solid iodophors can be envisaged for these iodine complexes, among which those with 2-hydroxypropyl-α-cyclodextrin were found the most stable, regardless of the preparation technique. The three prepared cyclodextrin–iodine complexes proved effective as bactericides against S. epidermidis.
Collapse
Affiliation(s)
- Sandro Dattilo
- CNR-Istituto per i Polimeri, Compositi e Biomateriali, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | | | - Danilo Aleo
- MEDIVIS-Via Carnazza 34 C, I-95030 Catania, Italy
- Correspondence: (D.A.); (A.P.)
| | | | - Angela Patti
- CNR-Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy
- Correspondence: (D.A.); (A.P.)
| |
Collapse
|
47
|
Tirsoaga A, Cojocaru V, Badea M, Badea IA, Rostas AM, Stoica R, Bacalum M, Chifiriuc MC, Olar R. Copper (II) Species with Improved Anti-Melanoma and Antibacterial Activity by Inclusion in β-Cyclodextrin. Int J Mol Sci 2023; 24:ijms24032688. [PMID: 36769008 PMCID: PMC9916925 DOI: 10.3390/ijms24032688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
To improve their biological activity, complexes [Cu(bipy)(dmtp)2(OH2)](ClO4)2·dmtp (1) and [Cu(phen)(dmtp)2(OH2)](ClO4)2·dmtp (2) (bipy 2,2'-bipyridine, phen: 1,10-phenantroline, and dmtp: 5,7-dimethyl-1,2,4-triazolo [1,5-a]pyrimidine) were included in β-cyclodextrins (β-CD). During the inclusion, the co-crystalized dmtp molecule was lost, and UV-Vis spectra together with the docking studies indicated the synthesis of new materials with 1:1 and 1:2 molar ratios between complexes and β-CD. The association between Cu(II) compounds and β-CD has been proven by the identification of the components' patterns in the IR spectra and powder XRD diffractograms, while solid-state UV-Vis and EPR spectra analysis highlighted a slight modification of the square-pyramidal stereochemistry around Cu(II) in comparison with precursors. The inclusion species are stable in solution and exhibit the ability to scavenge or trap ROS species (O2·- and HO·) as indicated by the EPR experiments. Moreover, the two inclusion species exhibit anti-proliferative activity against murine melanoma B16 cells, which has been more significant for (2)@β-CD in comparison with (2). This behavior is associated with a cell cycle arrest in the G0/G1 phase. Compared with precursors, (1a)@β-CD and (2a)@β-CD exhibit 17 and 26 times more intense activity against planktonic Escherichia coli, respectively, while (2a)@β-CD is 3 times more active against the Staphylococcus aureus strain.
Collapse
Affiliation(s)
- Alina Tirsoaga
- Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., District 3, 030018 Bucharest, Romania
| | - Victor Cojocaru
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania
| | - Mihaela Badea
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania
| | - Irinel Adriana Badea
- Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., District 3, 030018 Bucharest, Romania
- Correspondence: (I.A.B.); (R.O.)
| | - Arpad Mihai Rostas
- National Institute for Research and Development of Isotopic and Molecular Technologies, Department of Physics of Nanostructured Systems, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Roberta Stoica
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, 30 Reactorului Str., 077125 Magurele-Ilfov, Romania
| | - Mihaela Bacalum
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, 30 Reactorului Str., 077125 Magurele-Ilfov, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor Str., District 5, 060101 Bucharest, Romania
- Romanian Academy of Scientists, 54 Spl. Independenței Str., District 5, 050085 Bucharest, Romania
- Biological Sciences Division, The Romanian Academy, 25 Calea Victoriei, Sector 1, District 1, 010071 Bucharest, Romania
| | - Rodica Olar
- Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., District 3, 030018 Bucharest, Romania
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania
- Correspondence: (I.A.B.); (R.O.)
| |
Collapse
|
48
|
Patil SM, Barji DS, Chavan T, Patel K, Collazo AJ, Prithipaul V, Muth A, Kunda NK. Solubility Enhancement and Inhalation Delivery of Cyclodextrin-Based Inclusion Complex of Delamanid for Pulmonary Tuberculosis Treatment. AAPS PharmSciTech 2023; 24:49. [PMID: 36702977 DOI: 10.1208/s12249-023-02510-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Tuberculosis (TB) is a contiguous airborne disease caused by Mycobacterium tuberculosis (M.tb), primarily affecting the human lungs. The progression of drug-susceptible TB to drug-resistant strains, MDR-TB and XDR-TB, has become a global challenge toward eradicating TB. Conventional TB treatment involves frequent dosing and prolonged treatment regimens predominantly by an oral or invasive route, leading to treatment-related systemic adverse effects and patient's noncompliance. Pulmonary delivery is an attractive option as we could reduce dose, limit systemic side-effects, and achieve rapid onset of action. Delamanid (DLD), an antituberculosis drug, has poor aqueous solubility, and in this study, we aim to improve its solubility using cyclodextrin complexation. We screened different cyclodextrins and found that HP-β-CD resulted in a 54-fold increase in solubility compared to a 27-fold and 13-fold increase by SBE-β-CD and HP-ɣ-CD, respectively. The stability constant (265 ± 15 M-1) and complexation efficiency (8.5 × 10-4) suggest the formation of a stable inclusion complex of DLD and HP-β-CD in a 2:1 ratio. Solid-state characterization studies (DSC, PXRD, and NMR) further confirmed successful complexation of DLD in HP-β-CD. The nebulized DLD-CD complex solution showed a mass median aerodynamic diameter of 4.42 ± 0.62 μm and fine particle fraction of 82.28 ± 2.79%, suggesting deposition in the respiratory airways. In bacterial studies, minimum inhibitory concentration of DLD-CD complex was significantly reduced (four-fold) compared to free DLD in M.tb (H37Ra strain). Furthermore, accelerated stability studies confirmed that the inclusion complex was stable for 4 weeks with 90%w/w drug content. In conclusion, we increased the aqueous solubility of DLD through cyclodextrin complexation and improved its efficacy in vitro.
Collapse
Affiliation(s)
- Suyash M Patil
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Druva Sarika Barji
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Tejashri Chavan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Kinjal Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Andrew J Collazo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Vasudha Prithipaul
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA.
| |
Collapse
|
49
|
Górnicka J, Mika M, Wróblewska O, Siudem P, Paradowska K. Methods to Improve the Solubility of Curcumin from Turmeric. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010207. [PMID: 36676157 PMCID: PMC9862957 DOI: 10.3390/life13010207] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Turmeric is a strong-taste component of spices characteristic of Indian cuisine. It is obtained from the turmeric rhizome (Curcumae longae rhizoma) and has been used for thousands of years not only for culinary purposes, but also for medicinal purposes. It contains a group of organic compounds called curcuminoids. Curcumin is the main representative of this group of compounds which is also most frequently studied. In recent years, bioactive curcuminoids (including curcumin in the first place) have become more and more popular due to a wide spectrum of their biological activity. The anticancer, antibacterial, anti-inflammatory, and antiaging effects of curcumin have been confirmed by numerous in vitro and in vivo studies, as well as in clinical trials. However, an obstacle to simple, clinical application of curcumin is its poor bioavailability (which is due to its hydrophobic nature) and its very weak water solubility. Therefore, many scientists are working on improving the solubility of curcumin in water, which is the topic of the present article. Attempts have been made to combine curcumin with nanoparticles (polysaccharide or silica). Nanosuspensions or complexes with cyclodextrins are also considered. A promising direction is the search for new polymorphic varieties as well as obtaining cocrystals with curcumin which are characterized by better water solubility.
Collapse
Affiliation(s)
- Julia Górnicka
- Student Research Group “Free Radicals”, Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Martyna Mika
- Student Research Group “Free Radicals”, Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Oliwia Wróblewska
- Student Research Group “Free Radicals”, Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Paweł Siudem
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Correspondence:
| | - Katarzyna Paradowska
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
50
|
Cheng B, Chu X, Liu R, Ma X, Wang M, Zhang J, Jiao P, Gao Q, Ma W, Zhang Y, Zhao C, Zhou D, Xiao S. Synthesis of Novel Pentacyclic Triterpenoid Derivatives that Induce Apoptosis in Cancer Cells through a ROS-dependent, Mitochondrial-Mediated Pathway. Mol Pharm 2023; 20:701-710. [PMID: 36458832 DOI: 10.1021/acs.molpharmaceut.2c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Betulinic acid (BA) and oleanolic acid (OA) are plant-derived conjugates found in various medicinal plants that have emerged as potential antitumor agents. Herein, a series of novel BA and OA derivatives were synthesized by conjugation with per-O-methylated-β-cyclodextrin (PM-β-CD), and their anticancer properties against a panel of three human cancer cell lines were evaluated. Two OA-PM-β-CD conjugates (48 and 50) were observed to be the most potent conjugates against the three cell lines (MCF-7, BGC-823, and HL-60), with a 15- to 20-fold decrease in the IC50 values (IC50: 6.06-8.47 μM) compared with their parental conjugate (OA). Annexin V-FITC/propidium iodide staining and Western blot analysis revealed that both conjugates induced apoptosis in HL-60 cells. Additionally, in the representative conjugate 48-treated HL-60 cells, a decrease in mitochondrial membrane potential and subsequent release of cytochrome c into the cytosol were observed, indicating the activation of the intrinsic apoptosis pathway. Furthermore, 48 dramatically induced the generation of reactive oxygen species (ROS) in HL-60 cells, and the corresponding effect could be reversed using the ROS scavenger N-acetylcysteine. Collectively, these results suggest that the novel pentacyclic triterpenoid derivatives trigger the intrinsic apoptotic pathways via the ROS-mediated activation of caspase-3 signaling, inducing cell death in human cancer cells.
Collapse
Affiliation(s)
- Boyang Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xindang Chu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ruiwen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Shenzhen Bay Laboratory, Institute of Chemical Biology, Shenzhen 518132, China
| | - Mengyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiayi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Pingxuan Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qianqian Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenxiao Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France
| | - Chuanke Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Shenzhen Bay Laboratory, Institute of Chemical Biology, Shenzhen 518132, China.,Peking University Ningbo Institute of Marine Medicine, Ningbo 315010, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Shenzhen Bay Laboratory, Institute of Chemical Biology, Shenzhen 518132, China.,Peking University Ningbo Institute of Marine Medicine, Ningbo 315010, China
| |
Collapse
|