1
|
Yazdanbakhsh P, Couch M, Gilbert KM, Der Hovagimian J, Rudko DA, Hoge RD. An 8-Channel Transceiver Coil for Carotid Artery Imaging at 7T Using an Optimized Shield Design. IEEE Trans Biomed Eng 2024; 71:2537-2544. [PMID: 38512743 DOI: 10.1109/tbme.2024.3379980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
OBJECTIVE To design and fabricate a transmit/receive (T/R) radiofrequency (RF) coil array for MRI of the carotid arteries at 7T with optimal shielding to improve transmit performance in parallel transmit (pTx) mode. METHODS The carotid coil included 8 total RF elements, with left and right subarrays, each consisting of 4 overlapping loops with RF shields. Electromagnetic (EM) simulations were performed to optimize and improve the transmit performance of the array by determining the optimal distance between the RF shield and each subarray. EM simulations were further used to calculate local specific absorption rate (SAR) matrices. Based on the SAR matrices, virtual observation points (VOPs) were applied to ensure safety during parallel transmission. The efficacy of the coil design was evaluated by measuring coil performance metrics when imaging a phantom and by acquiring in-vivo images. RESULTS The optimal distance between the RF shield and each subarray was determined to be 45 mm. This resulted in a maximum B1+ efficiency of 1.23 μT/ √W in the carotid arteries and a peak, 10-g-average SAR per Watt of 0.86 kg-1 when transmitting in the nominal CP+ mode. Optimizing the RF shield resulted in up to 37% improvement in B1+ efficiency and 14% improvement in SAR efficiency compared to an unshielded design. CONCLUSION AND SIGNIFICANCE Optimizing the distance between the RF shield and coil array provided significant improvement in the transmit characteristics of the bilateral carotid coil. The bilateral coil topology provides a compelling platform for imaging the carotid arteries with high field MRI.
Collapse
|
2
|
de Buck MHS, Jezzard P, Frost R, Randell C, Hurst K, Choudhury RP, Robson MD, Biasiolli L. 10-channel phased-array coil for carotid wall MRI at 3T. PLoS One 2023; 18:e0288529. [PMID: 37556496 PMCID: PMC10411804 DOI: 10.1371/journal.pone.0288529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/27/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Accurate assessment of plaque accumulation near the carotid bifurcation is important for the effective prevention and treatment of stroke. However, vessel and plaque delineation using MRI can be limited by low contrast-to-noise ratio (CNR) and long acquisition times. In this work, a 10-channel phased-array receive coil design for bilateral imaging of the carotid bifurcation using 3T MRI is proposed. METHODS The proposed 10-channel receive coil was compared to a commercial 4-channel receive coil configuration using data acquired from phantoms and healthy volunteers (N = 9). The relative performance of the coils was assessed, by comparing signal-to-noise ratio (SNR), noise correlation, g-factor noise amplification, and the CNR between vessel wall and lumen using black-blood sequences. Patient data were acquired from 12 atherosclerotic carotid artery disease patients. RESULTS The 10-channel coil consistently provided substantially increased SNR in phantoms (+77 ± 27%) and improved CNR in healthy carotid arteries (+62 ± 11%), or reduced g-factor noise amplification. Patient data showed excellent delineation of atherosclerotic plaque along the length of the carotid bifurcation using the 10-channel coil. CONCLUSIONS The proposed 10-channel coil design allows for improved visualization of the carotid arteries and the carotid bifurcation and increased parallel imaging acceleration factors relative to a commercial 4-channel coil design.
Collapse
Affiliation(s)
- Matthijs H. S. de Buck
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Robert Frost
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Department of Radiology, Harvard Medical School, Boston, MA, United States of America
| | | | - Katherine Hurst
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Robin P. Choudhury
- Acute Vascular Imaging Centre, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew D. Robson
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Perspectum, Gemini One, John Smith Drive, Oxford, United Kingdom
| | - Luca Biasiolli
- Acute Vascular Imaging Centre, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Li Y, Chen Q, Wei Z, Zhang L, Tie C, Zhu Y, Jia S, Xia J, Liang D, He Q, Zhang X, Liu X, Zhang B, Zheng H. One-Stop MR Neurovascular Vessel Wall Imaging With a 48-Channel Coil System at 3 T. IEEE Trans Biomed Eng 2019; 67:2317-2327. [PMID: 31831406 DOI: 10.1109/tbme.2019.2959030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The purpose of this article was to build a radio frequency (RF) coil system to achieve high vessel wall image quality with coverage extending from the aortic arch to the intracranial vessels. METHODS A 48-channel coil system was built and characterized at a 3 tesla (T) Magnetic Resonance Imaging (MRI) scanner (uMR 790, Shanghai United Imaging Healthcare, Shanghai, China). The coil's performance was compared with a commercially available 36-channel coil system. By human studies, signal-to-noise ratio (SNR) units were evaluated and g-factors were calculated in the transverse planes of the brain and neck regions. RESULTS The SNR was increased by at least 28% in the brain region and up to fourfold in the neck region. The average g-factor with the acceleration factor, R = 3, was lowered by 21% in the transverse plane of the neck region. Intracranial and carotid arterial wall images with an isotropic spatial resolution of 0.63 mm were acquired within 7.7 minutes and thoracic aorta wall images with an isotropic spatial resolution of 1.1 mm were acquired within 2.7 minutes with the 48-channel coil system. The vessel wall can be more clearly visualized with the 48-channel coil system compared with the 36-channel coil system. CONCLUSION A 48-channel coil system was developed and demonstrated superior performance for vessel wall imaging at the intracranial and cervical carotid arteries compared with a commercial 36-channel coil. SIGNIFICANCE The 48-channel coil system is potentially useful for clinical diagnostics, especially when attempting to diagnose ischemic stroke.
Collapse
|
4
|
Abstract
Background The quality of carotid wall MRI can benefit substantially from a dedicated RF coil that is tailored towards the human neck geometry and optimized for image signal-to-noise ratio (SNR), parallel imaging performance and RF penetration depth and coverage. In last decades, several of such dedicated carotid coils were introduced. However, a comparison of the more successful designs is still lacking. Objective To perform a head-to-head comparison over four dedicated MR carotid surface coils with 4, 6, 8 and 30 coil elements, respectively. Material and methods Ten volunteers were scanned on a 3T scanner. For each subject, multiple black-blood carotid vessel wall images were measured using the four coils with different parallel imaging settings. The performance of the coils was evaluated and compared in terms of image coverage, penetration depth and noise correlations between elements. Vessel wall of a common carotid section was delineated manually. Subsequently, images were assessed based on vessel wall morphology and image quality parameters. The morphological parameters consisted of the vessel wall area, thickness, and normalized wall index (wall area/total vessel area). Image quality parameters consisted of vessel wall SNR, wall-lumen contrast-to-noise ratio (CNR), the vessel g-factor, and CNRindex ((wall–lumen signal) / (wall+lumen signal)). Repeated measures analysis of variance (rmANOVA) was applied for each parameter for the averaged 10 slices for all volunteers to assess effect of coil and SENSE factor. If the rmANOVA was significant, post-hoc comparisons were conducted. Results No significant coil effect were found for vessel wall morphological parameters. SENSE acceleration affected some morphological parameters for 6- and 8-channel coils, but had no effect on the 30-channel coil. The 30-channel coil achieved high acceleration factors (10x) with significantly lower vessel g-factor values (ps ≤ 0.01), but lower vessel wall SNR and CNR values (ps ≤ 0.01). Conclusion All four coils were capable of high-quality carotid MRI. The 30-channel coil is recommended when rapid image acquisition acceleration is required for 3D measurements, whereas 6- and 8-channel coils demonstrated the highest SNR performance.
Collapse
|
5
|
Kerwin WS, Miller Z, Yuan C. Imaging of the high-risk carotid plaque: magnetic resonance imaging. Semin Vasc Surg 2017; 30:54-61. [PMID: 28818259 DOI: 10.1053/j.semvascsurg.2017.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emergence of the concept of high-risk atherosclerotic plaque has led to considerable interest in noninvasive imaging techniques to identify high-risk features before clinical sequelae. For plaques in the carotid arteries, magnetic resonance imaging has undergone considerable histologic validation to link imaging features to indicators of plaque instability, including plaque burden, intraplaque hemorrhage, fibrous cap disruption, lipid rich necrotic core, and calcification. Recently introduced imaging technologies, especially those focused on three-dimensional imaging sequences, are now poised for integration into the clinical workup of patients with suspected carotid atherosclerosis. The purpose of this article is to review the carotid plaque magnetic resonance imaging techniques that are most ready for integration into the clinic.
Collapse
Affiliation(s)
- William S Kerwin
- University of Washington Vascular Imaging Lab, Department of Radiology, 850 Republican Street, Seattle, WA 98109
| | - Zach Miller
- University of Washington Vascular Imaging Lab, Department of Radiology, 850 Republican Street, Seattle, WA 98109
| | - Chun Yuan
- University of Washington Vascular Imaging Lab, Department of Radiology, 850 Republican Street, Seattle, WA 98109.
| |
Collapse
|
6
|
Probst M, Richter V, Weitz J, Kirschke JS, Ganter C, Troeltzsch M, Nittka M, Cornelius CP, Zimmer C, Probst FA. Magnetic resonance imaging of the inferior alveolar nerve with special regard to metal artifact reduction. J Craniomaxillofac Surg 2017; 45:558-569. [DOI: 10.1016/j.jcms.2017.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 12/08/2016] [Accepted: 01/09/2017] [Indexed: 11/30/2022] Open
|
7
|
McNally JS, Kim SE, Mendes J, Hadley JR, Sakata A, De Havenon AH, Treiman GS, Parker DL. Magnetic Resonance Imaging Detection of Intraplaque Hemorrhage. MAGNETIC RESONANCE INSIGHTS 2017; 10:1-8. [PMID: 28469441 PMCID: PMC5348123 DOI: 10.1177/1178623x17694150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/25/2017] [Indexed: 11/16/2022]
Abstract
Carotid artery atherosclerosis is a major cause of ischemic stroke. For more than 30 years, future stroke risk and carotid stroke etiology have been determined using percent diameter stenosis based on clinical trials in the 1990s. In the past 10 years, magnetic resonance imaging (MRI) sequences have been developed to detect carotid intraplaque hemorrhage. By detecting carotid intraplaque hemorrhage, MRI identifies potential stroke sources that are often overlooked by lumen imaging. In addition, MRI can dramatically improve assessment of future stroke risk beyond lumen stenosis alone. In this review, we discuss the use of heavily T1-weighted MRI sequences used to detect carotid intraplaque hemorrhage. In addition, advances in ciné imaging, motion robust techniques, and specialized neck coils will be reviewed. Finally, the clinical use and future impact of MRI plaque hemorrhage imaging will be discussed.
Collapse
Affiliation(s)
- J Scott McNally
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, The University of Utah, Salt Lake City, UT, USA
| | - Seong-Eun Kim
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, The University of Utah, Salt Lake City, UT, USA
| | - Jason Mendes
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, The University of Utah, Salt Lake City, UT, USA
| | - J Rock Hadley
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, The University of Utah, Salt Lake City, UT, USA
| | - Akihiko Sakata
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, The University of Utah, Salt Lake City, UT, USA
| | - Adam H De Havenon
- Department of Neurology, The University of Utah, Salt Lake City, UT, USA
| | - Gerald S Treiman
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, The University of Utah, Salt Lake City, UT, USA
| | - Dennis L Parker
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Beck MJ, Parker DL, Bolster BD, Kim SE, McNally JS, Treiman GS, Hadley JR. Interchangeable neck shape-specific coils for a clinically realizable anterior neck phased array system. Magn Reson Med 2017; 78:2460-2468. [PMID: 28185303 DOI: 10.1002/mrm.26632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/22/2016] [Accepted: 01/11/2017] [Indexed: 11/08/2022]
Abstract
PURPOSE To demonstrate the interchangeable neck shape-specific (NSS) coil concept that supplements standard commercial spine and head/neck coils to provide simultaneous high-resolution (hi-res) head/neck imaging with high signal-to-noise ratio (SNR). METHODS Two NSS coils were constructed on formers designed to fit two different neck shapes. A 7-channel (7ch) ladder array was constructed on a medium neck former, and a 9-channel (9ch) ladder array was constructed on large neck former. Both coils were interchangeable with the same preamp housing. RESULTS The 7ch and 9ch coils demonstrate SNR gains of approximately 4 times and 3 times over the Siemens 20-channel head/neck coil in the carotid arteries of our volunteers, respectively. Coupling between the Siemens 32-channel spine coil, Siemens 20-channel head/neck coil, and the NSS coils was negligible, allowing for simultaneous hi-res head/neck imaging with high SNR. CONCLUSIONS This study demonstrates that supplementing existing commercial spine and head/neck coils with an NSS coil allows uniform simultaneous hi-res imaging with high SNR in the anterior neck, while maintaining SNR of the commercial coil in the head and posterior neck. Magn Reson Med 78:2460-2468, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Michael J Beck
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Seong-Eun Kim
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - J Scott McNally
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Gerald S Treiman
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA.,Department of Surgery, University of Utah, Salt Lake City, Utah, USA.,Veterans Affairs Department of Surgery (VASLCHCS), Salt Lake City, Utah, USA
| | - J Rock Hadley
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Hu X, Zhang L, Zhang X, Zhu H, Chen X, Zhang Y, Chung YC, Liu X, Zheng H, Li Y. An 8-channel RF coil array for carotid artery MR imaging in humans at 3 T. Med Phys 2016; 43:1897. [DOI: 10.1118/1.4944500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
10
|
Abstract
There has been significant progress made in 3-dimensional (3D) carotid plaque MR imaging techniques in recent years. Three-dimensional plaque imaging clearly represents the future in clinical use. With effective flow-suppression techniques, choices of different contrast weighting acquisitions, and time-efficient imaging approaches, 3D plaque imaging offers flexible imaging plane and view angle analysis, large coverage, multivascular beds capability, and even can be used in fast screening.
Collapse
Affiliation(s)
- Chun Yuan
- Vascular Imaging Lab, Department of Radiology, Bio-Molecular Imaging Center, University of Washington, Box 358050, 850 Republican Street, Seattle, WA 98109-4714, USA.
| | - Dennis L Parker
- Department of Radiology, Imaging & Neurosciences Center, Utah Center for Advanced Imaging Research (UCAIR), University of Utah, 729 Arapeen Drive, Salt Lake City, UT 84108, USA
| |
Collapse
|
11
|
Choi YJ, Jung SC, Lee DH. Vessel Wall Imaging of the Intracranial and Cervical Carotid Arteries. J Stroke 2015; 17:238-55. [PMID: 26437991 PMCID: PMC4635720 DOI: 10.5853/jos.2015.17.3.238] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 08/19/2015] [Accepted: 08/31/2015] [Indexed: 12/05/2022] Open
Abstract
Vessel wall imaging can depict the morphologies of atherosclerotic plaques, arterial walls, and surrounding structures in the intracranial and cervical carotid arteries beyond the simple luminal changes that can be observed with traditional luminal evaluation. Differentiating vulnerable from stable plaques and characterizing atherosclerotic plaques are vital parts of the early diagnosis, prevention, and treatment of stroke and the neurological adverse effects of atherosclerosis. Various techniques for vessel wall imaging have been developed and introduced to differentiate and analyze atherosclerotic plaques in the cervical carotid artery. High-resolution magnetic resonance imaging (HR-MRI) is the most important and popular vessel wall imaging technique for directly evaluating the vascular wall and intracranial artery disease. Intracranial artery atherosclerosis, dissection, moyamoya disease, vasculitis, and reversible cerebral vasoconstriction syndrome can also be diagnosed and differentiated by using HR-MRI. Here, we review the radiologic features of intracranial artery disease and cervical carotid artery atherosclerosis on HR-MRI and various other vessel wall imaging techniques (e.g., ultrasound, computed tomography, magnetic resonance, and positron emission tomography-computed tomography).
Collapse
Affiliation(s)
- Young Jun Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Seung Chai Jung
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Deok Hee Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
12
|
Singh N, Moody AR, Roifman I, Bluemke DA, Zavodni AEH. Advanced MRI for carotid plaque imaging. Int J Cardiovasc Imaging 2015; 32:83-9. [PMID: 26293362 PMCID: PMC4706840 DOI: 10.1007/s10554-015-0743-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/13/2015] [Indexed: 10/28/2022]
Abstract
Atherosclerosis is the ubiquitous underling pathological process that manifests in heart attack and stroke, cumulating in the death of one in three North American adults. High-resolution magnetic resonance imaging (MRI) is able to delineate atherosclerotic plaque components and total plaque burden within the carotid arteries. Using dedicated hardware, high resolution images can be obtained. Combining pre- and post-contrast T1, T2, proton-density, and magnetization-prepared rapid acquisition gradient echo weighted fat-saturation imaging, plaque components can be defined. Post-processing software allows for semi- and fully automated quantitative analysis. Imaging correlation with surgical specimens suggests that this technique accurately differentiates plaque features. Total plaque burden and specific plaque components such as a thin fibrous cap, large fatty or necrotic core and intraplaque hemorrhage are accepted markers of neuroischemic events. Given the systemic nature of atherosclerosis, emerging science suggests that the presence of carotid plaque is also an indicator of coronary artery plaque burden, although the preliminary data primarily involves patients with stable coronary disease. While the availability and cost-effectiveness of MRI will ultimately be important determinants of whether carotid MRI is adopted clinically in cardiovascular risk assessment, the high accuracy and reliability of this technique suggests that it has potential as an imaging biomarker of future risk.
Collapse
Affiliation(s)
- Navneet Singh
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Room AG56b, Toronto, ON, M4N 3M5, Canada
| | - Alan R Moody
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Room AG56b, Toronto, ON, M4N 3M5, Canada
| | - Idan Roifman
- Division of Cardiology, Department of Internal Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - David A Bluemke
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Anna E H Zavodni
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Room AG56b, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
13
|
Odéen H, Todd N, Diakite M, Minalga E, Payne A, Parker DL. Sampling strategies for subsampled segmented EPI PRF thermometry in MR guided high intensity focused ultrasound. Med Phys 2015; 41:092301. [PMID: 25186406 DOI: 10.1118/1.4892171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To investigate k-space subsampling strategies to achieve fast, large field-of-view (FOV) temperature monitoring using segmented echo planar imaging (EPI) proton resonance frequency shift thermometry for MR guided high intensity focused ultrasound (MRgHIFU) applications. METHODS Five different k-space sampling approaches were investigated, varying sample spacing (equally vs nonequally spaced within the echo train), sampling density (variable sampling density in zero, one, and two dimensions), and utilizing sequential or centric sampling. Three of the schemes utilized sequential sampling with the sampling density varied in zero, one, and two dimensions, to investigate sampling the k-space center more frequently. Two of the schemes utilized centric sampling to acquire the k-space center with a longer echo time for improved phase measurements, and vary the sampling density in zero and two dimensions, respectively. Phantom experiments and a theoretical point spread function analysis were performed to investigate their performance. Variable density sampling in zero and two dimensions was also implemented in a non-EPI GRE pulse sequence for comparison. All subsampled data were reconstructed with a previously described temporally constrained reconstruction (TCR) algorithm. RESULTS The accuracy of each sampling strategy in measuring the temperature rise in the HIFU focal spot was measured in terms of the root-mean-square-error (RMSE) compared to fully sampled "truth." For the schemes utilizing sequential sampling, the accuracy was found to improve with the dimensionality of the variable density sampling, giving values of 0.65 °C, 0.49 °C, and 0.35 °C for density variation in zero, one, and two dimensions, respectively. The schemes utilizing centric sampling were found to underestimate the temperature rise, with RMSE values of 1.05 °C and 1.31 °C, for variable density sampling in zero and two dimensions, respectively. Similar subsampling schemes with variable density sampling implemented in zero and two dimensions in a non-EPI GRE pulse sequence both resulted in accurate temperature measurements (RMSE of 0.70 °C and 0.63 °C, respectively). With sequential sampling in the described EPI implementation, temperature monitoring over a 192×144×135 mm3 FOV with a temporal resolution of 3.6 s was achieved, while keeping the RMSE compared to fully sampled "truth" below 0.35 °C. CONCLUSIONS When segmented EPI readouts are used in conjunction with k-space subsampling for MR thermometry applications, sampling schemes with sequential sampling, with or without variable density sampling, obtain accurate phase and temperature measurements when using a TCR reconstruction algorithm. Improved temperature measurement accuracy can be achieved with variable density sampling. Centric sampling leads to phase bias, resulting in temperature underestimations.
Collapse
Affiliation(s)
- Henrik Odéen
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84108 and Department of Radiology, University of Utah, Salt Lake City, Utah 84108
| | - Nick Todd
- Department of Radiology, University of Utah, Salt Lake City, Utah 84108
| | - Mahamadou Diakite
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84108 and Department of Radiology, University of Utah, Salt Lake City, Utah 84108
| | - Emilee Minalga
- Department of Radiology, University of Utah, Salt Lake City, Utah 84108
| | - Allison Payne
- Department of Radiology, University of Utah, Salt Lake City, Utah 84108
| | - Dennis L Parker
- Department of Radiology, University of Utah, Salt Lake City, Utah 84108
| |
Collapse
|
14
|
Odéen H, Todd N, Dillon C, Payne A, Parker DL. Model predictive filtering MR thermometry: Effects of model inaccuracies, k-space reduction factor, and temperature increase rate. Magn Reson Med 2015; 75:207-16. [PMID: 25726934 DOI: 10.1002/mrm.25622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 01/20/2023]
Abstract
PURPOSE Evaluate effects of model parameter inaccuracies (thermal conductivity, k, and ultrasound power deposition density, Q), k-space reduction factor (R), and rate of temperature increase ( T˙) in a thermal model-based reconstruction for MR-thermometry during focused-ultrasound heating. METHODS Simulations and ex vivo experiments were performed to investigate the accuracy of the thermal model and the model predictive filtering (MPF) algorithm for varying R and T˙, and their sensitivity to errors in k and Q. Ex vivo data was acquired with a segmented EPI pulse sequence to achieve large field-of-view (192 × 162 × 96 mm) four-dimensional temperature maps with high spatiotemporal resolution (1.5 × 1.5 × 2.0 mm, 1.7 s). RESULTS In the simulations, 50% errors in k and Q resulted in maximum temperature root mean square errors (RMSE) of 6 °C for model only and 3 °C for MPF. Using recently developed methods, estimates of k and Q were accurate to within 3%. The RMSE between MPF and true temperature increased with R and T˙. In the ex vivo study the RMSE remained below 0.7 °C for R ranging from 4 to 12 and T˙ of 0.28-0.75 °C/s. CONCLUSION Errors in MPF temperatures occur due to errors in k and Q. These MPF temperature errors increase with increase in R and T˙, but are smaller than those obtained using the thermal model alone.
Collapse
Affiliation(s)
- Henrik Odéen
- Department of Radiology, University of Utah, Salt Lake City, Utah, USA.,Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
| | - Nick Todd
- Department of Radiology, University of Utah, Salt Lake City, Utah, USA
| | - Christopher Dillon
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| | - Allison Payne
- Department of Radiology, University of Utah, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Department of Radiology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
15
|
Odéen H, de Bever J, Almquist S, Farrer A, Todd N, Payne A, Snell JW, Christensen DA, Parker DL. Treatment envelope evaluation in transcranial magnetic resonance-guided focused ultrasound utilizing 3D MR thermometry. J Ther Ultrasound 2014; 2:19. [PMID: 25343028 PMCID: PMC4199783 DOI: 10.1186/2050-5736-2-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current clinical targets for transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) are all located close to the geometric center of the skull convexity, which minimizes challenges related to focusing the ultrasound through the skull bone. Non-central targets will have to be reached to treat a wider variety of neurological disorders and solid tumors. Treatment envelope studies utilizing two-dimensional (2D) magnetic resonance (MR) thermometry have previously been performed to determine the regions in which therapeutic levels of FUS can currently be delivered. Since 2D MR thermometry was used, very limited information about unintended heating in near-field tissue/bone interfaces could be deduced. METHODS In this paper, we present a proof-of-concept treatment envelope study with three-dimensional (3D) MR thermometry monitoring of FUS heatings performed in a phantom and a lamb model. While the moderate-sized transducer used was not designed for transcranial geometries, the 3D temperature maps enable monitoring of the entire sonication field of view, including both the focal spot and near-field tissue/bone interfaces, for full characterization of all heating that may occur. 3D MR thermometry is achieved by a combination of k-space subsampling and a previously described temporally constrained reconstruction method. RESULTS We present two different types of treatment envelopes. The first is based only on the focal spot heating-the type that can be derived from 2D MR thermometry. The second type is based on the relative near-field heating and is calculated as the ratio between the focal spot heating and the near-field heating. This utilizes the full 3D MR thermometry data achieved in this study. CONCLUSIONS It is shown that 3D MR thermometry can be used to improve the safety assessment in treatment envelope evaluations. Using a non-optimal transducer, it is shown that some regions where therapeutic levels of FUS can be delivered, as suggested by the first type of envelope, are not necessarily safely treated due to the amount of unintended near-field heating occurring. The results presented in this study highlight the need for 3D MR thermometry in tcMRgFUS.
Collapse
Affiliation(s)
- Henrik Odéen
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, Utah 84108, USA
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| | - Joshua de Bever
- School of Computing, University of Utah, Salt Lake City, Utah 84112, USA
| | - Scott Almquist
- School of Computing, University of Utah, Salt Lake City, Utah 84112, USA
| | - Alexis Farrer
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Nick Todd
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, Utah 84108, USA
| | - Allison Payne
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, Utah 84108, USA
| | - John W Snell
- Focused Ultrasound Foundation, Charlottesville, Virginia 22903, USA
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Douglas A Christensen
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Dennis L Parker
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, Utah 84108, USA
| |
Collapse
|
16
|
Edema and fibrosis imaging by cardiovascular magnetic resonance: how can the experience of Cardiology be best utilized in rheumatological practice? Semin Arthritis Rheum 2014; 44:76-85. [PMID: 24582213 DOI: 10.1016/j.semarthrit.2014.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/19/2013] [Accepted: 01/17/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVES CMR, a non-invasive, non-radiating technique can detect myocardial oedema and fibrosis. METHOD CMR imaging, using T2-weighted and T1-weighted gadolinium enhanced images, has been successfully used in Cardiology to detect myocarditis, myocardial infarction and various cardiomyopathies. RESULTS Transmitting this experience from Cardiology into Rheumatology may be of important value because: (a) heart involvement with atypical clinical presentation is common in autoimmune connective tissue diseases (CTDs). (b) CMR can reliably and reproducibly detect early myocardial tissue changes. (c) CMR can identify disease acuity and detect various patterns of heart involvement in CTDs, including myocarditis, myocardial infarction and diffuse vasculitis. (d) CMR can assess heart lesion severity and aid therapeutic decisions in CTDs. CONCLUSION The CMR experience, transferred from Cardiology into Rheumatology, may facilitate early and accurate diagnosis of heart involvement in these diseases and potentially targeted heart treatment.
Collapse
|
17
|
Dyverfeldt P, Deshpande VS, Kober T, Krueger G, Saloner D. Reduction of motion artifacts in carotid MRI using free-induction decay navigators. J Magn Reson Imaging 2013; 40:214-20. [PMID: 24677562 DOI: 10.1002/jmri.24389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/10/2013] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To develop a framework for prospective free-induction decay (FID)-based navigator gating for suppression of motion artifacts in carotid magnetic resonance imaging (MRI) and to assess its capability in vivo. MATERIALS AND METHODS An FID-navigator, comprising a spatially selective low flip-angle sinc-pulse followed by an analog-to-digital converter (ADC) readout, was added to a conventional turbo spin-echo (TSE) sequence. Real-time navigator processing delivered accept/reject-and-reacquire decisions to the sequence. In this Institutional Review Board (IRB)-approved study, seven volunteers were scanned with a 2D T2-weighted TSE sequence. A reference scan with volunteers instructed to minimize motion as well as nongated and gated scans with volunteers instructed to perform different motion tasks were performed in each subject. Multiple image quality measures were employed to quantify the effect of gating. RESULTS There was no significant difference in lumen-to-wall sharpness (2.3 ± 0.3 vs. 2.3 ± 0.4), contrast-to-noise ratio (CNR) (9.0 ± 2.0 vs. 8.5 ± 2.0), or image quality score (3.1 ± 0.9 vs. 2.6 ± 1.2) between the reference and gated images. For images acquired during motion, all image quality measures were higher (P < 0.05) in the gated compared to nongated images (sharpness: 2.3 ± 0.4 vs. 1.8 ± 0.5, CNR: 8.5 ± 2.0 vs. 7.2 ± 2.0, score: 2.6 ± 1.2 vs. 1.8 ± 1.0). CONCLUSION Artifacts caused by the employed motion tasks deteriorated image quality in the nongated scans. These artifacts were alleviated with the proposed FID-navigator.
Collapse
Affiliation(s)
- Petter Dyverfeldt
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
18
|
Kaggie JD, Hadley JR, Badal J, Campbell JR, Park DJ, Parker DL, Morrell G, Newbould RD, Wood AF, Bangerter NK. A 3 T sodium and proton composite array breast coil. Magn Reson Med 2013; 71:2231-42. [PMID: 24105740 DOI: 10.1002/mrm.24860] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 11/07/2022]
Abstract
PURPOSE The objective of this study was to determine whether a sodium phased array would improve sodium breast MRI at 3 T. The secondary objective was to create acceptable proton images with the sodium phased array in place. METHODS A novel composite array for combined proton/sodium 3 T breast MRI is compared with a coil with a single proton and sodium channel. The composite array consists of a 7-channel sodium receive array, a larger sodium transmit coil, and a 4-channel proton transceive array. The new composite array design utilizes smaller sodium receive loops than typically used in sodium imaging, uses novel decoupling methods between the receive loops and transmit loops, and uses a novel multichannel proton transceive coil. The proton transceive coil reduces coupling between proton and sodium elements by intersecting the constituent loops to reduce their mutual inductance. The coil used for comparison consists of a concentric sodium and proton loop with passive decoupling traps. RESULTS The composite array coil demonstrates a 2-5× improvement in signal-to-noise ratio for sodium imaging and similar signal-to-noise ratio for proton imaging when compared with a simple single-loop dual resonant design. CONCLUSION The improved signal-to-noise ratio of the composite array gives breast sodium images of unprecedented quality in reasonable scan times.
Collapse
Affiliation(s)
- Joshua D Kaggie
- Department of Radiology, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA; Department of Physics, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Coppenrath EM, Lummel N, Linn J, Lenz O, Habs M, Nikolaou K, Reiser MF, Dichgans M, Pfefferkorn T, Saam T. Time-of-flight angiography: a viable alternative to contrast-enhanced MR angiography and fat-suppressed T1w images for the diagnosis of cervical artery dissection? Eur Radiol 2013; 23:2784-92. [DOI: 10.1007/s00330-013-2891-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 03/29/2013] [Accepted: 04/03/2013] [Indexed: 11/29/2022]
|
20
|
Keil B, Wald LL. Massively parallel MRI detector arrays. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:75-89. [PMID: 23453758 PMCID: PMC3740730 DOI: 10.1016/j.jmr.2013.02.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 05/15/2023]
Abstract
Originally proposed as a method to increase sensitivity by extending the locally high-sensitivity of small surface coil elements to larger areas via reception, the term parallel imaging now includes the use of array coils to perform image encoding. This methodology has impacted clinical imaging to the point where many examinations are performed with an array comprising multiple smaller surface coil elements as the detector of the MR signal. This article reviews the theoretical and experimental basis for the trend towards higher channel counts relying on insights gained from modeling and experimental studies as well as the theoretical analysis of the so-called "ultimate" SNR and g-factor. We also review the methods for optimally combining array data and changes in RF methodology needed to construct massively parallel MRI detector arrays and show some examples of state-of-the-art for highly accelerated imaging with the resulting highly parallel arrays.
Collapse
Affiliation(s)
- Boris Keil
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | |
Collapse
|
21
|
den Hartog A, Bovens S, Koning W, Hendrikse J, Luijten P, Moll F, Pasterkamp G, de Borst G. Current Status of Clinical Magnetic Resonance Imaging for Plaque Characterisation in Patients with Carotid Artery Stenosis. Eur J Vasc Endovasc Surg 2013. [PMID: 23200607 DOI: 10.1016/j.ejvs.2012.10.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Yuan C, Wang J, Balu N. High-field atherosclerotic plaque magnetic resonance imaging. Neuroimaging Clin N Am 2012; 22:271-84, xi. [PMID: 22548932 DOI: 10.1016/j.nic.2012.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Manifestations of atherosclerotic plaque in different arterial beds range from perfusion deficits to overt ischemia such as stroke and myocardial infarction. Atherosclerotic plaque composition is associated with its propensity to rupture and cause vascular events. Magnetic resonance (MR) imaging of atherosclerotic plaque using clinical 1.5 T scanners can detect plaque composition. Plaque MR imaging at higher field strengths offers both opportunities and challenges to improving the high spatial resolution and contrast required for this type of imaging. This article summarizes the technological requirements required for high-field plaque MR imaging and its application in detecting plaque components.
Collapse
Affiliation(s)
- Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
23
|
Soloperto G, Casciaro S. Progress in atherosclerotic plaque imaging. World J Radiol 2012; 4:353-71. [PMID: 22937215 PMCID: PMC3430733 DOI: 10.4329/wjr.v4.i8.353] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/14/2012] [Accepted: 05/21/2012] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are the primary cause of mortality in the industrialized world, and arterial obstruction, triggered by rupture-prone atherosclerotic plaques, lead to myocardial infarction and cerebral stroke. Vulnerable plaques do not necessarily occur with flow-limiting stenosis, thus conventional luminographic assessment of the pathology fails to identify unstable lesions. In this review we discuss the currently available imaging modalities used to investigate morphological features and biological characteristics of the atherosclerotic plaque. The different imaging modalities such as ultrasound, magnetic resonance imaging, computed tomography, nuclear imaging and their intravascular applications are illustrated, highlighting their specific diagnostic potential. Clinically available and upcoming methodologies are also reviewed along with the related challenges in their clinical translation, concerning the specific invasiveness, accuracy and cost-effectiveness of these methods.
Collapse
|
24
|
Tate Q, Kim SE, Treiman G, Parker DL, Hadley JR. Increased vessel depiction of the carotid bifurcation with a specialized 16-channel phased array coil at 3T. Magn Reson Med 2012; 69:1486-93. [PMID: 22777692 DOI: 10.1002/mrm.24380] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/23/2012] [Accepted: 05/26/2012] [Indexed: 11/11/2022]
Abstract
The purpose of this work was to design and construct a multichannel receive-only radiofrequency coil for 3T magnetic resonance imaging of the human carotid artery and bifurcation with optimized signal-to-noise ratio (SNR) in the carotid vessels along the full extent of the neck. A neck phantom designed to match the anatomy of a subject with a neck representing the body habitus often seen in subjects with carotid arterial disease was constructed. Sixteen circular coil elements were arranged on a semirigid fiberglass former that closely fit the shape of the phantom, resulting in a 16-channel bilateral phased array coil. Comparisons were made between this coil and a typical 4-channel carotid coil in a study of 10 carotid vessels in five healthy volunteers. The 16-channel carotid coil showed a 73% average improvement in SNR at the carotid bifurcation. This coil also maintained an SNR greater than the peak SNR of the 4-channel coil over a vessel length of 10 cm. The resulting increase in SNR improved vessel depiction of the carotid arteries over an extended field of view, and demonstrated better image quality for higher parallel imaging reduction factors compared to the 4-channel coil.
Collapse
Affiliation(s)
- Quinn Tate
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | | | | | |
Collapse
|
25
|
Zhao XQ, Dong L, Hatsukami T, Phan BA, Chu B, Moore A, Lane T, Neradilek MB, Polissar N, Monick D, Lee C, Underhill H, Yuan C. MR imaging of carotid plaque composition during lipid-lowering therapy a prospective assessment of effect and time course. JACC Cardiovasc Imaging 2012; 4:977-86. [PMID: 21920335 DOI: 10.1016/j.jcmg.2011.06.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 05/26/2011] [Accepted: 06/08/2011] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The purpose of this study was to test the lipid depletion hypothesis and to establish the time course of change in carotid plaque morphology and composition during lipid therapy using high-resolution magnetic resonance imaging (MRI). BACKGROUND Lipid therapy is thought to improve plaque stability and reduce cardiovascular events by targeting the plaque rupture risk features such as large lipid core, thin fibrous cap, and high level of inflammatory infiltrates. However, the plaque stabilizing process during lipid therapy has not been clearly demonstrated in humans and in vivo. METHODS Subjects with coronary or carotid artery disease, apolipoprotein B ≥120 mg/dl, and lipid treatment history <1 year, were randomly assigned to atorvastatin monotherapy or to atorvastatin-based combination therapies with appropriate placebos for 3 years. All subjects underwent high-resolution, multicontrast bilateral carotid MRI scans at baseline and annually for 3 years. All images were analyzed for quantification of wall area and plaque composition blinded to therapy, laboratory results, and clinical course. RESULTS After 3 years of lipid therapy, the 33 subjects with measurable lipid-rich necrotic core (LRNC) at baseline had a significant reduction in plaque lipid content: LRNC volume decreased from 60.4 ± 59.5 mm(3) to 37.4 ± 69.5 mm(3) (p < 0.001) and %LRNC (LRNC area/wall area in the lipid-rich regions) from 14.2 ± 7.0% to 7.4 ± 8.2% (p < 0.001). The time course showed that %LRNC decreased by 3.2 (p < 0.001) in the first year, by 3.0 (p = 0.005) in the second year, and by 0.91 (p = 0.2) in the third year. Changes in LRNC volume followed the same pattern. Percent wall volume (100 × wall/outer wall, a ratio of volumes) in the lipid-rich regions significantly decreased from 52.3 ± 8.5% to 48.6 ± 9.7% (p = 0.002). Slices containing LRNC had significantly more percent wall volume reduction than those without (-4.7% vs. -1.4%, p = 0.02). CONCLUSIONS Intensive lipid therapy significantly depletes carotid plaque lipid. Statistically significant plaque lipid depletion is observed after 1 year of treatment and continues in the second year, and precedes plaque regression. (Using Magnetic Resonance Imaging to Evaluate Carotid Artery Plaque Composition in People Receiving Cholesterol-Lowering Medications [The CPC Study]; NCT00715273).
Collapse
Affiliation(s)
- Xue-Qiao Zhao
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Würslin C, Springer F, Yang B, Schick F. Compensation of RF field and receiver coil induced inhomogeneity effects in abdominal MR images by a priori knowledge on the human adipose tissue distribution. J Magn Reson Imaging 2011; 34:716-26. [PMID: 21769975 DOI: 10.1002/jmri.22682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 05/23/2011] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To reliably compensate bias field effects in abdominal areas to accurately quantify visceral adipose tissue using standard T1-weighted sequences on MR scanners with up to 3 Tesla (T) field strength. MATERIALS AND METHODS Compensation is achieved in two steps: The bias field is first estimated by picking and fitting sampling points from the subcutaneous adipose tissue, using active contours and a thin plate fitting spline. Then, additional sampling points from visceral adipose tissue compartments are detected by thresholding and the bias field estimation is refined. It was compared with an established method using a simulated abdominal image and real 3T data. RESULTS At low bias field amplitudes (40-50%), the simulation study showed a good reduction of the mean coefficients of variance (CV) for both approaches (>80%). At higher amplitudes, the CV reduction was significantly higher for our approach (83.6%), compared with LEMS (54.3%). In the real data study, our approach showed reliable reduction of the inhomogeneities, while the LEMS algorithm sometimes even amplified the inhomogeneities. CONCLUSION The proposed method enables accurate and reliable segmentation of abdominal adipose tissue using simple thresholding techniques, even in severely corrupted images slices, obtained when using high field strengths and/or phased-array coils.
Collapse
Affiliation(s)
- Christian Würslin
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany.
| | | | | | | |
Collapse
|
27
|
Kraff O, Bitz AK, Breyer T, Kruszona S, Maderwald S, Brote I, Gizewski ER, Ladd ME, Quick HH. A Transmit/Receive Radiofrequency Array for Imaging the Carotid Arteries at 7 Tesla. Invest Radiol 2011; 46:246-54. [DOI: 10.1097/rli.0b013e318206cee4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Underhill HR, Yuan C. Carotid MRI: a tool for monitoring individual response to cardiovascular therapy? Expert Rev Cardiovasc Ther 2011; 9:63-80. [PMID: 21166529 DOI: 10.1586/erc.10.172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stroke remains a leading cause of morbidity and mortality. While stroke-related mortality has declined over the past four decades, data indicate that the mortality rate has begun to plateau. This change in trend may be attributable to variation in individual response to therapies that were derived from population-based studies. Further reductions in stroke mortality may require individualized care governed by directly monitoring the effects of cardiovascular therapy. In this article, carotid MRI is considered as a tool for monitoring in vivo carotid atherosclerotic disease, a principal etiology of stroke. Carotid MRI has been previously utilized to identify specific plaque features beyond luminal stenosis that are predictive of transient ischemic attack and stroke. To gain perspective on the possibility of monitoring plaque change within the individual, clinical trials and natural history studies that have used serial carotid MRI are considered. Data from these studies indicate that patients with a lipid-rich necrotic core with or without intraplaque hemorrhage may represent the desired phenotype for monitoring treatment effects in the individual. Advances in tissue-specific sequences, acquisition resolution, scan time, and techniques for monitoring inflammation and mechanical forces are expected to enable earlier detection of response to therapy. In so doing, cost-effective multicenter studies can be conducted to confirm the anticipated positive effects on outcomes of using carotid MRI for individualized care in patients with carotid atherosclerosis. In accordance, carotid MRI is poised to emerge as a powerful clinical tool for individualized management of carotid atherosclerotic disease to prevent stroke.
Collapse
Affiliation(s)
- Hunter R Underhill
- Department of Medicine, Division of Medical Genetics, University of Washington, 1705 NE Pacific Street, K253, Box 357720, Seattle, WA 98195, USA.
| | | |
Collapse
|
29
|
Wang J, Ferguson MS, Balu N, Yuan C, Hatsukami TS, Börnert P. Improved carotid intraplaque hemorrhage imaging using a slab-selective phase-sensitive inversion-recovery (SPI) sequence. Magn Reson Med 2011; 64:1332-40. [PMID: 20597120 DOI: 10.1002/mrm.22539] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intraplaque hemorrhage in atherosclerotic plaques has been associated with accelerated plaque growth as well as exacerbation of clinical symptoms. The identification of intraplaque hemorrhage using magnetic resonance imaging primarily relies on the detection of methemoglobin on T(1) weighted images. Current techniques are limited by insufficient intraplaque hemorrhage-wall contrast and poor blood suppression. In this study, a slab-selective phase-sensitive inversion-recovery (SPI) technique is proposed by combining a phase-sensitive reconstruction with a T(1) weighted sequence specifically designed to achieve improved intraplaque hemorrhage imaging. The SPI sequence was optimized and then used on ex vivo plaque specimens for histology based validation and intraplaque hemorrhage-wall contrast-to-noise ratio comparison with magnetization-prepared 3D rapid acquisition gradient echo MP-RAGE. SPI and MP-RAGE were also tested on a group of atherosclerosis patients to compare in vivo intraplaque hemorrhage-wall contrast-to-noise ratio and blood suppression effectiveness. On ex vivo specimens SPI had better intraplaque hemorrhage identification accuracy and a significantly higher intraplaque hemorrhage-wall contrast-to-noise ratio (P = 0.01) than MP-RAGE. Similar results were found in the in vivo test: Slab-selective phase-sensitive inversion-recovery provided a significantly improved intraplaque hemorrhage-wall contrast-to-noise ratio (P < 0.01) and blood suppression efficiency (P < 0.01). In conclusion, SPI is a novel technique optimized for intraplaque hemorrhage detection and validated against histology. It has demonstrated its capability for improved in vivo intraplaque hemorrhage identification and blood suppression in atherosclerosis patients.
Collapse
Affiliation(s)
- Jinnan Wang
- Clinical Sites Research Program, Philips Research North America, Briarcliff Manor, Seattle, WA 98109, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Underhill HR, Yuan C, Hayes CE. A combined solenoid-surface RF coil for high-resolution whole-brain rat imaging on a 3.0 Tesla clinical MR scanner. Magn Reson Med 2011; 64:883-92. [PMID: 20535812 DOI: 10.1002/mrm.22466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rat brain models effectively simulate a multitude of human neurological disorders. Improvements in coil design have facilitated the wider utilization of rat brain models by enabling the utilization of clinical MR scanners for image acquisition. In this study, a novel coil design, subsequently referred to as the rat brain coil, is described that exploits and combines the strengths of both solenoids and surface coils into a simple, multichannel, receive-only coil dedicated to whole-brain rat imaging on a 3.0 T clinical MR scanner. Compared with a multiturn solenoid mouse body coil, a 3-cm surface coil, a modified Helmholtz coil, and a phased-array surface coil, the rat brain coil improved signal-to-noise ratio by approximately 72, 61, 78, and 242%, respectively. Effects of the rat brain coil on amplitudes of static field and radiofrequency field uniformity were similar to each of the other coils. In vivo, whole-brain images of an adult male rat were acquired with a T(2)-weighted spin-echo sequence using an isotropic acquisition resolution of 0.25 x 0.25 x 0.25 mm(3) in 60.6 min. Multiplanar images of the in vivo rat brain with identification of anatomic structures are presented. Improvement in signal-to-noise ratio afforded by the rat brain coil may broaden experiments that utilize clinical MR scanners for in vivo image acquisition.
Collapse
Affiliation(s)
- Hunter R Underhill
- Department of Radiology, University of Washington, Seattle, Washington 98109, USA.
| | | | | |
Collapse
|
31
|
Abstract
Vessel wall imaging of large vessels has the potential to identify culprit atherosclerotic plaques that lead to cardiovascular events. Comprehensive assessment of atherosclerotic plaque size, composition, and biological activity is possible with magnetic resonance imaging (MRI). Magnetic resonance imaging of the atherosclerotic plaque has demonstrated high accuracy and measurement reproducibility for plaque size. The accuracy of in vivo multicontrast MRI for identification of plaque composition has been validated against histological findings. Magnetic resonance imaging markers of plaque biological activity such as neovasculature and inflammation have been demonstrated. In contrast to other plaque imaging modalities, MRI can be used to study multiple vascular beds noninvasively over time. In this review, we compare the status of in vivo plaque imaging by MRI to competing imaging modalities. Recent MR technological improvements allow fast, accurate, and reproducible plaque imaging. An overview of current MRI techniques required for carotid plaque imaging including hardware, specialized pulse sequences, and processing algorithms are presented. In addition, the application of these techniques to coronary, aortic, and peripheral vascular beds is reviewed.
Collapse
|
32
|
Demarco JK, Ota H, Underhill HR, Zhu DC, Reeves MJ, Potchen MJ, Majid A, Collar A, Talsma JA, Potru S, Oikawa M, Dong L, Zhao X, Yarnykh VL, Yuan C. MR carotid plaque imaging and contrast-enhanced MR angiography identifies lesions associated with recent ipsilateral thromboembolic symptoms: an in vivo study at 3T. AJNR Am J Neuroradiol 2010; 31:1395-402. [PMID: 20651015 DOI: 10.3174/ajnr.a2213] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Recent research has suggested the importance of plaque composition to identify patients at risk for stroke. This study aims to identify specific plaque features on 3T carotid MR imaging and CE-MRA associated with recent carotid thromboembolic symptoms in patients with mild/moderate versus severe stenosis. MATERIALS AND METHODS Ninety-seven consecutive patients (symptomatic, 13; asymptomatic, 84) with 50%-99% stenosis by sonography or CT angiography underwent carotid plaque imaging combined with MRA at 3T. The symptomatic carotid artery or the most stenotic asymptomatic carotid artery was chosen as the index vessel to be analyzed. Plaque features were compared by symptomatic status in patients with mild/moderate (30%-70%) versus severe (70%-99%) stenosis on MRA. RESULTS Ninety (92.8%) patients had sufficient image quality for interpretation. In 50 patients with mild/moderate stenosis, there were significant associations between the presence of the following plaque characteristics and symptoms: thin/ruptured fibrous cap (100% versus 36%, P = .006) and lipid-rich necrotic core (100% versus 39%, P = .022), with marginal association with hemorrhage (86% versus 33%, P = .055). In 40 patients with severe stenosis, only the angiographic presence of ulceration (86% versus 36%, P = .039) was associated with symptoms. CONCLUSIONS Several plaque components identified on 3T MR imaging are correlated with recent ipsilateral carotid thromboembolic symptoms. These preliminary results also suggest that associations between plaque characteristics and symptom history may vary by degree of stenosis. If confirmed in larger studies, carotid MR imaging may distinguish stable from unstable lesions, particularly in individuals with mild/moderate stenosis in whom the role of surgical intervention is currently unclear.
Collapse
Affiliation(s)
- J K Demarco
- Department of Radiology, Michigan State University, East Lansing, MI, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rebovich G, Duffis EJ, Caplan LR. Diagnosis of intracranial atherosclerosis. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2010; 4:267-279. [PMID: 23488535 DOI: 10.1517/17530051003725121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
IMPORTANCE OF THE FIELD Intracranial atherosclerosis is quickly becoming the most common stroke mechanism worldwide. Accurate diagnosis is important in making treatment decisions. AREAS COVERED IN THE REVIEW In this article the clinical and radiographic diagnosis of intracranial atherosclerosis is reviewed. An overview is provided of widely available invasive and non-invasive methods for the detection of intracranial atherosclerosis, including transcranial Doppler, magnetic resonance and computed tomography angiography, as well as conventional angiography. WHAT THE READER WILL GAIN The reader will become familiar with the advantages and limitations of various imaging modalities used in the diagnosis of intracranial atherosclerosis. TAKE HOME MESSAGE Non-invasive imaging modalities have a high negative predictive value in detecting intracranial atherosclerosis. The gold standard for confirmation of the diagnosis remains catheter angiography.
Collapse
Affiliation(s)
- Gayle Rebovich
- Beth Israel Deaconess Medical Center, Stroke Division, Boston, MA, USA +617 632 8911
| | | | | |
Collapse
|
34
|
Boussel L, Saloner D, Gamondes D, Serfaty J, Canet-Soulas E, Nighoghossian N, Douek P. [State of the art: high resolution MR imaging of carotid atherosclerotic plaque]. JOURNAL DE RADIOLOGIE 2010; 91:185-94. [PMID: 20389265 DOI: 10.1016/s0221-0363(10)70023-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A third of cerebrovascular accidents are a complication from carotid artery plaque. In addition to the degree of stenosis, plaque composition and morphology are key elements in determining the probability of complication from the atherosclerotic plaque. High resolution MRI can characterize plaque composition and morphology and therefore help identify unstable plaque. The purpose of this review is to summarize recent concepts on unstable plaque and underlying inflammation. The signal characteristics of the different components of plaque on high resolution MRI then be reviewed. Finally, current morphological and functional criteria for unstable plaque will be discussed.
Collapse
Affiliation(s)
- L Boussel
- Department of radiology, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Watanabe Y, Nagayama M. MR plaque imaging of the carotid artery. Neuroradiology 2010; 52:253-74. [PMID: 20155353 DOI: 10.1007/s00234-010-0663-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 01/13/2010] [Indexed: 02/08/2023]
Abstract
Atherosclerotic carotid plaque represents a major cause of cerebral ischemia. The detection of vulnerable plaque is important for preventing future cardiovascular events. The key factors in advanced plaque that are most likely to lead to patient complications are the condition of the fibrous cap, the size of the necrotic core and hemorrhage, and the extent of inflammatory activity within the plaque. Magnetic resonance (MR) imaging has excellent soft tissue contrast and can allow for a more accurate and objective estimation of carotid wall morphology and plaque composition. Recent advances in MR imaging techniques have permitted serial monitoring of atherosclerotic disease evolution and the identification of intraplaque risk factors for accelerated progression. The purpose of this review article is to review the current state of techniques of carotid wall MR imaging and the characterization of plaque components and surface morphology with MR imaging, and to describe the clinical practice of carotid wall MR imaging for the determination of treatment plan.
Collapse
Affiliation(s)
- Yuji Watanabe
- Department of Radiology, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, 710-8602, Japan.
| | | |
Collapse
|
36
|
Hatsukami TS, Yuan C. MRI in the early identification and classification of high-risk atherosclerotic carotid plaques. IMAGING IN MEDICINE 2010; 2:63-75. [PMID: 20953294 PMCID: PMC2953811 DOI: 10.2217/iim.09.33] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stroke is a leading cause of mortality and long-term morbidity. As a means for stroke prevention, an estimated 99,000 carotid endarterectomy procedures were performed in the USA in 2006. Traditionally, the degree of luminal stenosis has been used as a marker of the stage of atherosclerosis and as an indication for surgical intervention. However, prospective clinical trials have shown that the majority of patients with a history of recent transient ischemic attack or stroke have mild-to-moderate carotid stenosis. Using stenosis criteria, many of these symptomatic individuals would be considered to have early-stage carotid atherosclerosis. It is evident that improved criteria are needed for identifying the high-risk carotid plaque across a range of stenoses. Histological studies have led to the hypothesis that plaques with larger lipid-rich necrotic cores, thin fibrous cap rupture, intraplaque hemorrhage, plaque neovasculature and vessel wall inflammation are characteristics of the high-risk, 'vulnerable plaque'. Despite the widespread consensus on the importance of these plaque features, testing the vulnerable plaque hypothesis in prospective clinical studies has been hindered by the lack of reliable imaging tools for in vivo plaque characterization. MRI has been shown to accurately identify key carotid plaque features, including the fibrous cap, lipid-rich necrotic core, intraplaque hemorrhage, neovasculature and vascular wall inflammation. Thus, MRI is a histologically validated technique that will permit prospective testing of the vulnerable plaque hypothesis. This article will provide a summary of the histological validation of carotid MRI, and highlight its application in prospective clinical studies aimed at early identification of the high-risk atherosclerotic carotid plaque.
Collapse
Affiliation(s)
- Thomas S Hatsukami
- Department of Surgery, Vascular Imaging Lab, University of Washington, 815 Mercer Street, Box 358050, Seattle, WA 98109, USA, Tel.: +1 206 543 3061, ,
| | | |
Collapse
|
37
|
Balu N, Yarnykh VL, Scholnick J, Chu B, Yuan C, Hayes C. Improvements in carotid plaque imaging using a new eight-element phased array coil at 3T. J Magn Reson Imaging 2010; 30:1209-14. [PMID: 19780187 DOI: 10.1002/jmri.21890] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To design and compare an eight-channel phased array (PA) coil for carotid imaging to an established four-channel PA design at 3T. MATERIALS AND METHODS An eight-channel PA (8PA) coil was designed specifically for imaging the carotid bifurcation and compared with the existing four-channel (4PA) design using a phantom and by in vivo black-blood magnetic resonance imaging (MRI). The 8PA and 4PA were compared in terms of coverage, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). RESULTS The 8PA showed up to 1.7-fold improvement in SNR at a depth of 3.5 cm and greater longitudinal coverage at a given SNR on a phantom. The 8PA showed improved vessel wall SNR for high spatial resolution (0.63 mm(2)) PD, T1, and T2 (1.7, 1.7, 1.6 times, respectively; P <or= 0.002) and improved CNR (1.7, 1.6, 1.5 times, respectively; P <or= 0.002). Ultrahigh-resolution (0.27 mm(2)) T1-weighted images showed better SNR and CNR (1.4 times, P <or= 0.0001) on 8PA compared to 4PA. CONCLUSION Carotid imaging studies may benefit from the improved SNR and larger coverage provided by use of the 8PA.
Collapse
Affiliation(s)
- Niranjan Balu
- Department of Radiology, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Zhao X, Underhill HR, Yuan C, Oikawa M, Dong L, Ota H, Hatsukami TS, Wang Q, Ma L, Cai J. Minimization of MR contrast weightings for the comprehensive evaluation of carotid atherosclerotic disease. Invest Radiol 2010; 45:36-41. [PMID: 19996759 PMCID: PMC5531445 DOI: 10.1097/rli.0b013e3181beada7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Multicontrast, high-resolution carotid magnetic resonance imaging (MRI) has been validated with histology to quantify atherosclerotic plaque morphology and composition. For evaluating the lipid-rich necrotic core (LRNC) and fibrous cap, both of which are key elements in determining plaque stability, the combined pre- and postcontrast T1-weighted (T1W) sequences have been recently shown to have a higher reproducibility than other contrast weightings. In this study, we sought to determine whether contrast weightings beyond T1W (pre- and postcontrast) are necessary for comprehensive, quantitative, carotid plaque interpretation. MATERIALS AND METHODS Our HIPAA compliant study protocol was approved by the IRB and all participants gave written, informed consent. Sixty-five participants with carotid stenosis >50% detected by ultrasound underwent carotid MRI with a standard multicontrast protocol (time-of-flight [TOF], T1W, contrast-enhanced [CE]-T1W, proton density [PD], and T2W). For each subject, images were partitioned into 3 combinations of contrast weightings (CW): (1) 2CW: T1W and CE-T1W; (2) 3CW: T1W, CE-T1W, and TOF; and (3) 5CW: T1W, CE-T1W, TOF, PD, and T2W. Each CW set was interpreted by 2 reviewers, blinded to results of each of the other CW combinations, via consensus opinion. Wall, lumen, and total vessel volumes, along with mean wall thickness were recorded. The presence or absence of calcification, LRNC, intraplaque hemorrhage (IPH), and surface disruption was also documented. RESULTS Compared with 5CW, there was strong agreement in the parameters of plaque morphology for 2CW (intraclass correlation coefficient, 0.96-0.99) and 3CW (intraclass correlation coefficient, 0.97-1.00). Agreement with 5CW for the detection of plaque composition was stronger for 3CW compared with 2CW: Cohen's kappa, 0.59 versus 0.42 for calcification; 0.75 versus 0.47 for LRNC; 0.91 versus 0.88 for IPH; and 0.74 versus 0.34 for surface disruption. Using 5CW as the reference standard during receive-operating-characteristics analysis, 3CW compared with 2CW showed a larger area-under-the-curve for classifying the presence or absence of calcification (0.78 vs. 0.69), LRNC (0.98 vs. 0.69), and surface disruption (0.87 vs. 0.65), and similar area-under-the-curve in classifying IPH (0.96 vs. 0.94). CONCLUSION Comprehensive, quantitative carotid plaque interpretation can be performed with T1W, CE-T1W, and TOF sequences. Elimination of PD and T2W sequences from the carotid MRI protocol may result in a substantial reduction in scan time. The ability to perform plaque interpretation on images acquired within a clinically acceptable scan time may broaden the research utility of carotid MRI and increase translatability to clinical applications.
Collapse
Affiliation(s)
- Xihai Zhao
- Department of Radiology, University of Washington, Seattle, WA
| | | | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA
| | - Minako Oikawa
- Department of Radiology, University of Washington, Seattle, WA
| | - Li Dong
- Department of Radiology, University of Washington, Seattle, WA
| | - Hideki Ota
- Department of Radiology, University of Washington, Seattle, WA
| | | | - Qingjun Wang
- Department of Radiology, Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Lin Ma
- Department of Radiology, Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Jianming Cai
- Department of Radiology, Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
39
|
Dong L, Kerwin WS, Ferguson MS, Li R, Wang J, Chen H, Canton G, Hatsukami TS, Yuan C. Cardiovascular magnetic resonance in carotid atherosclerotic disease. J Cardiovasc Magn Reson 2009; 11:53. [PMID: 20003520 PMCID: PMC2806867 DOI: 10.1186/1532-429x-11-53] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 12/15/2009] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a chronic, progressive, inflammatory disease affecting many vascular beds. Disease progression leads to acute cardiovascular events such as myocardial infarction, stroke and death. The diseased carotid alone is responsible for one third of the 700,000 new or recurrent strokes occurring yearly in the United States. Imaging plays an important role in the management of atherosclerosis, and cardiovascular magnetic resonance (CMR) of the carotid vessel wall is one promising modality in the evaluation of patients with carotid atherosclerotic disease. Advances in carotid vessel wall CMR allow comprehensive assessment of morphology inside the wall, contributing substantial disease-specific information beyond luminal stenosis. Although carotid vessel wall CMR has not been widely used to screen for carotid atherosclerotic disease, many trials support its potential for this indication. This review summarizes the current state of knowledge regarding carotid vessel wall CMR and its potential clinical application for management of carotid atherosclerotic disease.
Collapse
Affiliation(s)
- Li Dong
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - William S Kerwin
- Department of Radiology, University of Washington, Seattle, WA, USA
| | | | - Rui Li
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Jinnan Wang
- Clinical Sites Research Program, Philips Research North America, Briarcliff Manor, NY, USA
| | - Huijun Chen
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Gador Canton
- Department of Radiology, University of Washington, Seattle, WA, USA
| | | | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
40
|
Kerwin WS, Zhao X, Yuan C, Hatsukami TS, Maravilla KR, Underhill HR, Zhao X. Contrast-enhanced MRI of carotid atherosclerosis: dependence on contrast agent. J Magn Reson Imaging 2009; 30:35-40. [PMID: 19557844 DOI: 10.1002/jmri.21826] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To investigate the dependence of contrast-enhanced magnetic resonance imaging (MRI) of carotid artery atherosclerotic plaque on the use of gadobenate dimeglumine versus gadodiamide. MATERIALS AND METHODS Fifteen subjects with carotid atherosclerotic plaque were imaged with 0.1 mmol/kg of each agent. For arteries with interpretable images, the areas of the lumen, wall, and necrotic core and overlying fibrous cap (when present) were measured, as were the percent enhancement and contrast-to-noise ratio (CNR). A kinetic model was applied to dynamic imaging results to determine the fractional plasma volume, v(p), and contrast agent transfer constant, K(trans). RESULTS For 12 subjects with interpretable images, the agent used did not significantly impact any area measurements or the presence or absence of necrotic core (P > 0.1 for all). However, the percent enhancement was greater for the fibrous cap (72% vs. 54%; P < 0.05) necrotic core (51% vs. 42%; P = 0.12), and lumen (42% vs. 63%; P < 0.05) when using gadobenate dimeglumine, although no apparent difference in CNR was found. Additionally, K(trans) was lower when using gadobenate dimeglumine (0.0846 min(-1) vs. 0.101 min(-1); P < 0.01), although v(p) showed no difference (9.5% vs. 10.1%; P = 0.39). CONCLUSION Plaque morphology measurements are similar with either contrast agent, but quantitative enhancement characteristics, such as percent enhancement and K(trans), differ.
Collapse
Affiliation(s)
- William S Kerwin
- Department of Radiology, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Yu W, Underhill HR, Ferguson MS, Hippe DS, Hatsukami TS, Yuan C, Chu B. The added value of longitudinal black-blood cardiovascular magnetic resonance angiography in the cross sectional identification of carotid atherosclerotic ulceration. J Cardiovasc Magn Reson 2009; 11:31. [PMID: 19689816 PMCID: PMC2737539 DOI: 10.1186/1532-429x-11-31] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 08/18/2009] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Carotid atherosclerotic ulceration is a significant source of stroke. This study evaluates the efficacy of adding longitudinal black-blood (BB) cardiovascular magnetic resonance (CMR) angiography to cross-sectional CMR images in the identification of carotid atherosclerotic ulceration. METHODS Thirty-two subjects (30 males and two females with ages between 48 and 83 years) scheduled for carotid endarterectomy were imaged on a 1.5T GE Signa scanner using multisequence [3D time-of-flight, T1, proton density, T2, contrast enhanced T1], cross-sectional CMR images and longitudinal BB CMR angiography (0.625 x 0.625 mm/pixel). Two rounds of review (round 1: cross-sectional CMR images alone and round 2: cross-sectional CMR images plus longitudinal BB CMR angiography) were conducted for the presence and volume measurements of ulceration. Ulceration was defined as a distinct depression into the plaque containing blood flow signal on cross-sectional CMR and longitudinal BB CMR angiography. RESULTS Of the 32 plaques examined by histology, 17 contained 21 ulcers. Using the longitudinal BB CMR angiography sequence in addition to the cross-sectional CMR images in round 2, the sensitivity improved to 80% for ulcers of at least 6 mm3 in volume by histology and 52.4% for all ulcers, compared to 30% and 23.8% in round 1, respectively. There was a slight decline in specificity from 88.2% to 82.3%, though both the positive and negative predictive values increased modestly from 71.4% to 78.6% and from 48.4% to 58.3%, respectively. CONCLUSION The addition of longitudinal BB CMR angiography to multisequence cross-sectional CMR images increases accuracy in the identification of carotid atherosclerotic ulceration.
Collapse
Affiliation(s)
- Wei Yu
- Department of Radiology, University of Washington, Seattle, WA, USA
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, PR China
| | | | | | - Daniel S Hippe
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Thomas S Hatsukami
- Department of Surgery, Vascular Surgery Division, University of Washington, Seattle, WA, USA
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Baocheng Chu
- Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
42
|
Abstract
This review examines the state of the art in vessel wall imaging by magnetic resonance imaging (MRI) with an emphasis on the biomechanical assessment of atherosclerotic plaque. Three areas of advanced techniques are discussed. First, alternative contrast mechanisms, including susceptibility, magnetization transfer, diffusion, and perfusion, are presented as to how they facilitate accurate determination of plaque constituents underlying biomechanics. Second, imaging technologies including hardware and sequences, are reviewed as to how they provide the resolution and signal-to-noise ratio necessary for determining plaque structure. Finally, techniques for combining MRI data into an overall assessment of plaque biomechanical properties, including wall shear stress and internal plaque strain, are presented. The paper closes with a discussion of the extent to which these techniques have been applied to different arteries commonly targeted by vessel wall MRI.
Collapse
Affiliation(s)
- William S Kerwin
- Department of Radiology, University of Washington, Seattle, WA 98109, USA.
| | | |
Collapse
|
43
|
Kerwin WS, Liu F, Yarnykh V, Underhill H, Oikawa M, Yu W, Hatsukami TS, Yuan C. Signal features of the atherosclerotic plaque at 3.0 Tesla versus 1.5 Tesla: impact on automatic classification. J Magn Reson Imaging 2009; 28:987-95. [PMID: 18821634 DOI: 10.1002/jmri.21529] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To investigate the impact of different field strengths on determining plaque composition with an automatic classifier. MATERIALS AND METHODS We applied a previously developed automatic classifier-the morphology enhanced probabilistic plaque segmentation (MEPPS) algorithm-to images from 20 subjects scanned at both 1.5 Tesla (T) and 3T. Average areas per slice of lipid-rich core, intraplaque hemorrhage, calcification, and fibrous tissue were recorded for each subject and field strength. RESULTS All measurements showed close agreement at the two field strengths, with correlation coefficients of 0.91, 0.93, 0.95, and 0.93, respectively. None of these measurements showed a statistically significant difference between field strengths in the average area per slice by a paired t-test, although calcification tended to be measured larger at 3T (P = 0.09). CONCLUSION Automated classification results using an identical algorithm at 1.5T and 3T produced highly similar results, suggesting that with this acquisition protocol, 3T signal characteristics of the atherosclerotic plaque are sufficiently similar to 1.5T characteristics for MEPPS to provide equivalent performance.
Collapse
Affiliation(s)
- William S Kerwin
- Department of Radiology, University of Washington, Seattle, Washington 98109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Terry CM, Kim SE, Li L, Goodrich KC, Hadley JR, Blumenthal DK, Parker DL, Cheung AK. Longitudinal assessment of hyperplasia using magnetic resonance imaging without contrast in a porcine arteriovenous graft model. Acad Radiol 2009; 16:96-107. [PMID: 19064217 DOI: 10.1016/j.acra.2008.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/19/2008] [Accepted: 05/19/2008] [Indexed: 12/25/2022]
Abstract
RATIONALE AND OBJECTIVES Chronic hemodialysis requires a vascular access that provides high blood-flow rates for the extracorporeal recirculation of blood. Synthetic arteriovenous (AV) grafts often fail because of clotting caused by underlying hyperplasia formation. The authors report the use of magnetic resonance (MR) imaging (MRI) without contrast agent to monitor tissue hyperplasia formation as well as luminal area in a porcine model of AV graft stenosis. MATERIALS AND METHODS Expanded reinforced polytetrafluoroethylene grafts were surgically placed between the common carotid artery and the external jugular vein, bilaterally, in pigs. Animals underwent MRI in a 3-T scanner at 3, 4, or 6 weeks after graft placement, followed by euthanasia and the collection of grafts and adjacent tissues for histologic analysis. Two animals underwent sequential scanning at 1, 2, 3, 5, and 7 weeks after graft placement, followed by histologic analysis. RESULTS Measurements of hyperplasia obtained from the MR images were compared with, and correlated well with, measurements obtained from the histologic cross-sections (r = 0.932, P = .02). The MR images provided a more complete view of the venous hyperplasia throughout the graft compared with histology. The MR images could be examined from multiple angles and were unaffected by histologic preparation artifacts. CONCLUSION Unlike histology, MRI provided longitudinal 3-dimensional views of hyperplasia within the AV grafts. This ability of MRI to more completely identify the geometry of hyperplasia and to quantify the tissue volume in vivo could provide benefits over histologic analysis in assessing the pathology of AV graft failure and the efficacy of antihyperplasia interventions.
Collapse
Affiliation(s)
- Christi M Terry
- Department of Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Chapman BE, Minalga ES, Brown C, Roberts JA, Hadley JR. Reducing morphological variability of the cervical carotid artery in serial magnetic resonance imaging using a head and neck immobilization device. J Magn Reson Imaging 2008; 28:258-62. [PMID: 18581389 DOI: 10.1002/jmri.21404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate how well a head and neck immobilization device performed in reducing lumen morphology variability in repeated MR imaging of the carotid artery. MATERIALS AND METHODS Quantitative measures of lumen and plaque characteristics may be important for longitudinal management of carotid atherosclerotic disease. However, quantitative measurements of the carotid artery are limited by their dependence on patient positioning, which can be quite variable. We created a head and neck immobilization device to reduce the variability of patient positioning during MR imaging of the carotid artery. In this article we describe the design and use of the immobilization device and assess how well its use reduced variability in vascular orientation and measurements of the carotid lumen cross-sectional area. Evaluation was based on 15 subjects who were repeatedly imaged without the immobilization device and 14 subjects who were repeatedly imaged with the device. RESULTS Use of the immobilization device decreased the orientation variability from 9.1 degrees to 5.3 degrees (P = 0.0006) and the variability (defined as the standard deviation divided by the mean) of the cross-sectional area decreased from 0.24 to 0.18 (P = 0.04). CONCLUSION Using the immobilization device effectively reduces variability in repeated imaging of the carotid arteries.
Collapse
Affiliation(s)
- Brian E Chapman
- Department of Biomedical Informatics, University of Pittsburgh, 200 Meyran Avenue, Pittsburgh, PA 15260, USA.
| | | | | | | | | |
Collapse
|
47
|
Underhill HR, Yarnykh VL, Hatsukami TS, Wang J, Balu N, Hayes CE, Oikawa M, Yu W, Xu D, Chu B, Wyman BT, Polissar NL, Yuan C. Carotid plaque morphology and composition: initial comparison between 1.5- and 3.0-T magnetic field strengths. Radiology 2008; 248:550-60. [PMID: 18574135 DOI: 10.1148/radiol.2482071114] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To prospectively compare the interpretation and quantification of carotid vessel wall morphology and plaque composition at 1.5-T with those at 3.0-T magnetic resonance (MR) imaging. MATERIALS AND METHODS Twenty participants (mean age, 69.8 years [standard deviation] +/- 10.5; 75% men) with 16%-79% carotid stenosis at duplex ultrasonography were imaged with 1.5-T and 3.0-T MR imaging units with bilateral four-element phased-array surface coils. This HIPAA-compliant study was approved by the institutional review board, and all participants gave written informed consent. Protocols designed for similar signal-to-noise ratios across platforms were implemented to acquire axial T1-weighted, T2-weighted, intermediate-weighted, time-of-flight, and contrast material-enhanced T1-weighted images. Lumen area, wall area, total vessel area, wall thickness, and presence or absence and area of plaque components were documented. Continuous variables from different field strengths were compared by using the intraclass correlation coefficient (ICC) and repeated measures analysis. The Cohen kappa was used to evaluate agreement between 1.5 T and 3.0 T on compositional dichotomous variables. RESULTS There was a strong level of agreement between field strengths for all morphologic variables, with ICCs ranging from 0.88 to 0.96. Agreement in the identification of presence or absence of plaque components was very good for calcification (kappa = 0.72), lipid-rich necrotic core (kappa = 0.73), and hemorrhage (kappa = 0.66). However, the visualization of hemorrhage was greater at 1.5 T than at 3.0 T (14.7% vs 7.8%, P < .001). Calcifications measured significantly (P = .03) larger at 3.0 T, while lipid-rich necrotic cores without hemorrhage were similar between field strengths (P = .9). CONCLUSION At higher field strengths, the increased susceptibility of calcification and paramagnetic ferric iron in hemorrhage may alter quantification and/or detection. Nevertheless, imaging criteria at 1.5 T for carotid vessel wall interpretation are applicable at 3.0 T.
Collapse
Affiliation(s)
- Hunter R Underhill
- Department of Radiology, University of Washington, 815 Mercer St, Box 358050, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Saam T, Underhill HR, Chu B, Takaya N, Cai J, Polissar NL, Yuan C, Hatsukami TS. Prevalence of American Heart Association Type VI Carotid Atherosclerotic Lesions Identified by Magnetic Resonance Imaging for Different Levels of Stenosis as Measured by Duplex Ultrasound. J Am Coll Cardiol 2008; 51:1014-21. [PMID: 18325441 DOI: 10.1016/j.jacc.2007.10.054] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/30/2007] [Accepted: 10/15/2007] [Indexed: 10/22/2022]
|
49
|
Abstract
OBJECTIVES The Computer-Aided System for CArdiovascular Disease Evaluation (CASCADE) has been developed for streamlined, automated analysis of carotid artery magnetic resonance imaging to measure atherosclerotic plaque burden and composition in vivo. The purpose of this investigation was to assess the performance of CASCADE compared with manual outlining. METHODS Magnetic resonance images were obtained from 26 subjects with 16% to 79% carotid artery stenosis by duplex ultrasound who were imaged twice in a 2-week period with a multiple-slice, multiple-contrast magnetic resonance imaging protocol as part of the Outcome of Rosuvastatin treatment on carotid artery atheroma: a magnetic resonance Imaging ObservatioN trial. Manual outlining was used to identify the boundaries of the lumen, wall, necrotic core (NC), and calcifications. After 6 months, the analysis was repeated using CASCADE. For each data set, the contours were used to compute the maximal normalized wall index (NWI; wall area divided by total vessel area), maximal wall thickness (WT), and the average NC and calcified (CA) areas per slice. Agreement between manual and automated reviews and the scan-scan measurement reproducibilities were evaluated. RESULTS Pearson correlation between manual and automated analyses was 0.94 for maximal NWI, 0.86 for maximal WT, 0.84 for NC, and 0.96 for CA. Intraclass correlation coefficients for manual and automated analyses were 0.90 and 0.97 for maximal NWI, 0.89 and 0.95 for maximal WT, 0.95 and 0.87 for NC, and 0.96 and 0.94 for CA, respectively. CONCLUSIONS Automated analysis tools are capable of providing accurate and reproducible measurements of carotid atherosclerotic burden and composition when compared with manually outlined results.
Collapse
|
50
|
Saam T, Hatsukami TS, Yarnykh VL, Hayes CE, Underhill H, Chu B, Takaya N, Cai J, Kerwin WS, Xu D, Polissar NL, Neradilek B, Hamar WK, Maki J, Shaw DW, Buck RJ, Wyman B, Yuan C. Reader and platform reproducibility for quantitative assessment of carotid atherosclerotic plaque using 1.5T Siemens, Philips, and General Electric scanners. J Magn Reson Imaging 2007; 26:344-52. [PMID: 17610283 DOI: 10.1002/jmri.21004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To evaluate the platform and reader reproducibility of quantitative carotid plaque measurements. MATERIALS AND METHODS A total of 32 individuals with >or=15% carotid stenosis by duplex ultrasound were each imaged once by a 1.5T General Electric (GE) whole body scanner and twice by either a 1.5T Philips scanner or a 1.5T Siemens scanner. A standardized multisequence protocol and identical phased-array carotid coils were used. Expert readers, blinded to subject information, scanner type, and time point, measured the lumen, wall, and total vessel areas and determined the modified American Heart Association lesion type (AHA-LT) on the cross-sectional images. RESULTS AHA-LT was consistently identified across the same (kappa = 0.75) and different scan platforms (kappa = 0.75). Furthermore, scan-rescan coefficients of variation (CV) of wall area measurements on Siemens and Philips scanners ranged from 6.3% to 7.5%. However, wall area measurements differed between Philips and GE (P = 0.003) and between Siemens and GE (P = 0.05). In general, intrareader reproducibility was higher than interreader reproducibility for AHA-LT identification as well as for quantitative measurements. CONCLUSION All three scanners produced images that allowed AHA-LT to be consistently identified. Reproducibility of quantitative measurements by Siemens and Philips scanners were comparable to previous studies using 1.5T GE scanners. However, bias was introduced with each scanner and the use of different readers substantially increased variability. We therefore recommend using the same platform and the same reader for scans of individual subjects undergoing serial assessment of carotid atherosclerosis.
Collapse
Affiliation(s)
- Tobias Saam
- Department of Clinical Radiology, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|