1
|
Klimeš F, Plummer JW, Willmering MM, Matheson AM, Bdaiwi AS, Gutberlet M, Voskrebenzev A, Wernz MM, Wacker F, Woods J, Cleveland ZI, Walkup LL, Vogel-Claussen J. Quantifying spatial and dynamic lung abnormalities with 3D PREFUL FLORET UTE imaging: A feasibility study. Magn Reson Med 2025; 93:1984-1998. [PMID: 39825520 DOI: 10.1002/mrm.30416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
PURPOSE Pulmonary MRI faces challenges due to low proton density, rapid transverse magnetization decay, and cardiac and respiratory motion. The fermat-looped orthogonally encoded trajectories (FLORET) sequence addresses these issues with high sampling efficiency, strong signal, and motion robustness, but has not yet been applied to phase-resolved functional lung (PREFUL) MRI-a contrast-free method for assessing pulmonary ventilation during free breathing. This study aims to develop a reconstruction pipeline for FLORET UTE, enhancing spatial resolution for three-dimensional (3D) PREFUL ventilation analysis. METHODS The FLORET sequence was used to continuously acquire data over 7 ± 2 min in 36 participants, including healthy subjects (N = 7) and patients with various pulmonary conditions (N = 29). Data were reconstructed into respiratory images using motion-compensated low-rank reconstruction, and a 3D PREFUL algorithm was adapted to quantify static and dynamic ventilation surrogates. Image sharpness and signal-to-noise ratio were evaluated across different motion states. PREFUL ventilation metrics were compared with static 129Xe ventilation MRI. RESULTS Optimal image sharpness and accurate ventilation dynamics were achieved using 24 respiratory bins, leading to their use in the study. A strong correlation was found between 3D PREFUL FLORET UTE ventilation defect percentages (VDPs) and 129Xe VDPs (r ≥ 0.61, p < 0.0001), although PREFUL FLORET static VDPs were significantly higher (mean bias = -10.1%, p < 0.0001). In diseased patients, dynamic ventilation parameters showed greater heterogeneity and better alignment with 129Xe VDPs. CONCLUSION The proposed reconstruction pipeline for FLORET UTE MRI offers improved spatial resolution and strong correlation with 129Xe MRI, enabling dynamic ventilation quantification that may reveal airflow abnormalities in lung disease.
Collapse
Affiliation(s)
- Filip Klimeš
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Joseph W Plummer
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Matthew M Willmering
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Alexander M Matheson
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Abdullah S Bdaiwi
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Marcel Gutberlet
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Andreas Voskrebenzev
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Marius M Wernz
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Frank Wacker
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Jason Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Physics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Laura L Walkup
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jens Vogel-Claussen
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| |
Collapse
|
2
|
Stewart NJ, Higano NS, Wucherpfennig L, Triphan SM, Simmons A, Smith LJ, Wielpütz MO, Woods JC, Wild JM. Pulmonary MRI in Newborns and Children. J Magn Reson Imaging 2025; 61:2094-2115. [PMID: 39639777 PMCID: PMC11987788 DOI: 10.1002/jmri.29669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Lung MRI is an important tool in the assessment and monitoring of pediatric and neonatal lung disorders. MRI can provide both similar and complementary image contrast to computed tomography for imaging the lung macrostructure, and beyond this, a number of techniques have been developed for imaging the key functions of the lungs, namely ventilation, perfusion, and gas exchange, through the use of free-breathing proton and hyperpolarized gas MRI. Here, we review the state-of-the-art in MRI methods that have found utility in pediatric and neonatal lung imaging, the structural and physiological information that can be gleaned from such images, and strategies that have been developed to deal with respiratory (and cardiac) motion, and other technological challenges. The application of lung MRI in neonatal and pediatric lung conditions, in particular bronchopulmonary dysplasia, cystic fibrosis, and asthma, is reviewed, highlighting our collective experiences in the clinical translation of these methods and technology, and the key current and future potential avenues for clinical utility of this methodology. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Neil J. Stewart
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, Faculty of HealthThe University of SheffieldSheffieldUK
- Insigneo Institute of In Silico Medicine, The University of SheffieldSheffieldUK
| | - Nara S. Higano
- Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Department of RadiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Lena Wucherpfennig
- Department of Diagnostic and Interventional RadiologyUniversity Hospital HeidelbergHeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL)HeidelbergGermany
- Department of Diagnostic and Interventional Radiology with Nuclear MedicineThoraxklinik at University Hospital HeidelbergHeidelbergGermany
| | - Simon M.F. Triphan
- Department of Diagnostic and Interventional RadiologyUniversity Hospital HeidelbergHeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL)HeidelbergGermany
- Department of Diagnostic and Interventional Radiology with Nuclear MedicineThoraxklinik at University Hospital HeidelbergHeidelbergGermany
| | - Amy Simmons
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, Faculty of HealthThe University of SheffieldSheffieldUK
| | - Laurie J. Smith
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, Faculty of HealthThe University of SheffieldSheffieldUK
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional RadiologyUniversity Hospital HeidelbergHeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL)HeidelbergGermany
- Department of Diagnostic and Interventional Radiology with Nuclear MedicineThoraxklinik at University Hospital HeidelbergHeidelbergGermany
| | - Jason C. Woods
- Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Department of RadiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Jim M. Wild
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, Faculty of HealthThe University of SheffieldSheffieldUK
- Insigneo Institute of In Silico Medicine, The University of SheffieldSheffieldUK
| |
Collapse
|
3
|
de Moura HL, Keerthivasan MB, Zibetti MVW, Su P, Alaia MJ, Regatte R. Feasibility of a UTE Stack-of-Spirals Sequence for Biexponential T 1ρ Mapping of Whole Knee Joint. NMR IN BIOMEDICINE 2025; 38:e70008. [PMID: 39929189 PMCID: PMC11984298 DOI: 10.1002/nbm.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 04/12/2025]
Abstract
This study aimed to develop and evaluate a novel magnetization-prepared, ultra-short echo time (UTE)-capable, stack-of-spirals sequence (STFL) to quantify monoexponential and biexponential T1ρ maps of the whole knee joint, addressing limitations of existing MRI techniques in assessing bone-patellar tendon-bone (BPTB) donor site healing and graft remodeling after anterior cruciate ligament (ACL) reconstruction (ACLR). Experiments were performed with agar-gel model phantoms, seven healthy volunteers (four males, average age 31.4 years old), and five ACLR patients (three males, average age 28.2 years old). Compared with a conventional Cartesian turbo fast low angle shot (CTFL) sequence, the STFL sequence demonstrated an improved signal-to-noise ratio (SNR), increasing from 16.5 for CTFL to 21.7 for STFL. In ACLR patients, the STFL sequence accurately detected increased fractions of short T1ρ components within the ACL graft, rising from 0.15 to 0.38, compared with 0.11 to 0.18 with CTFL. Furthermore, the STFL sequence revealed significant decreases in the fraction of short T1ρ components in the patellar tendon of ACLR patients (from 0.6 to 0.47) compared with healthy controls, whereas no significant changes were observed with the CTFL sequence. These findings suggest that the STFL sequence holds promise for noninvasive assessment of BPTB donor site healing and graft maturation following ACLR.
Collapse
Affiliation(s)
- Hector L de Moura
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | | | - Marcelo V W Zibetti
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Pan Su
- Siemens Medical Solutions USA, Inc., Malvern, Pennsylvania, USA
| | - Michael J Alaia
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, New York, USA
| | - Ravinder Regatte
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
4
|
Willmering MM, Krishnamoorthy G, Robison RK, Rosenberg JT, Woods JC, Pipe JG. High-quality FLORET UTE imaging for clinical translation. Magn Reson Med 2025; 93:276-288. [PMID: 39219306 DOI: 10.1002/mrm.30277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE To develop a robust 3D ultrashort-TE (UTE) protocol that can reproducibly provide high-quality images, assessed by the ability to yield clinically diagnostic images, and is suitable for clinical translation. THEORY AND METHODS Building on previous work, a UTE sampled with Fermat looped orthogonally encoded trajectories (FLORET) was chosen as a starting point due to its shorter, clinically reasonable scan times. Modifications to previous FLORET implementations included gradient waveform frequency limitations, a new trajectory ordering scheme, a balanced SSFP implementation, fast gradient spoiling, and full inline reconstruction. FLORET images were collected in phantoms and humans on multiple scanners and sites to demonstrate these improvements. RESULTS The updates to FLORET provided high-quality images in phantom, musculoskeletal, and pulmonary applications. The gradient waveform modifications and new trajectory ordering scheme significantly reduced visible artifacts. Fast spoiling reduced acquisition time by 20%-28%. Across the various scanners and sites, the inline image quality was consistent and of diagnostic quality. Total image acquisition plus reconstruction time was less than 4 min for musculoskeletal and pulmonary applications with reconstructions taking less than 1 min. CONCLUSION Recently developed improvements for the FLORET sequence have enabled robust, high-quality UTE acquisitions with short acquisition and reconstruction times. This enables clinical UTE imaging as demonstrated by the implementation of the sequence and acquisition on five MRI scanners, at three different sites, without the need for any additional system characterization or measurements.
Collapse
Affiliation(s)
- Matthew M Willmering
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Guruprasad Krishnamoorthy
- Philips Healthcare, Rochester, Minnesota, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan K Robison
- Philips Healthcare, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jens T Rosenberg
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - James G Pipe
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Licht C, Reichert S, Bydder M, Zapp J, Corella S, Guye M, Zöllner FG, Schad LR, Rapacchi S. Low-rank reconstruction for simultaneous double half-echo 23Na and undersampled 23Na multi-quantum coherences MRI. Magn Reson Med 2024; 92:1440-1455. [PMID: 38725430 DOI: 10.1002/mrm.30132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE To develop a new sequence to simultaneously acquire Cartesian sodium (23Na) MRI and accelerated Cartesian single (SQ) and triple quantum (TQ) sodium MRI of in vivo human brain at 7 T by leveraging two dedicated low-rank reconstruction frameworks. THEORY AND METHODS The Double Half-Echo technique enables short echo time Cartesian 23Na MRI and acquires two k-space halves, reconstructed by a low-rank coupling constraint. Additionally, three-dimensional (3D) 23Na Multi-Quantum Coherences (MQC) MRI requires multi-echo sampling paired with phase-cycling, exhibiting a redundant multidimensional space. Simultaneous Autocalibrating and k-Space Estimation (SAKE) were used to reconstruct highly undersampled 23Na MQC MRI. Reconstruction performance was assessed against five-dimensional (5D) CS, evaluating structural similarity index (SSIM), root mean squared error (RMSE), signal-to-noise ratio (SNR), and quantification of tissue sodium concentration and TQ/SQ ratio in silico, in vitro, and in vivo. RESULTS The proposed sequence enabled the simultaneous acquisition of fully sampled 23Na MRI while leveraging prospective undersampling for 23Na MQC MRI. SAKE improved TQ image reconstruction regarding SSIM by 6% and reduced RMSE by 35% compared to 5D CS in vivo. Thanks to prospective undersampling, the spatial resolution of 23Na MQC MRI was enhanced from8 × 8 × 15 $$ 8\times 8\times 15 $$ mm3 to8 × 8 × 8 $$ 8\times 8\times 8 $$ mm3 while reducing acquisition time from2 × 31 $$ 2\times 31 $$ min to2 × 23 $$ 2\times 23 $$ min. CONCLUSION The proposed sequence, coupled with low-rank reconstructions, provides an efficient framework for comprehensive whole-brain sodium MRI, combining TSC, T2*, and TQ/SQ ratio estimations. Additionally, low-rank matrix completion enables the reconstruction of highly undersampled 23Na MQC MRI, allowing for accelerated acquisition or enhanced spatial resolution.
Collapse
Affiliation(s)
- Christian Licht
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Simon Reichert
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mark Bydder
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Jascha Zapp
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shirley Corella
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, CEMEREM, Hôpital Universitaire Timone, Marseille, France
| | - Maxime Guye
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, CEMEREM, Hôpital Universitaire Timone, Marseille, France
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stanislas Rapacchi
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, CEMEREM, Hôpital Universitaire Timone, Marseille, France
| |
Collapse
|
6
|
Shen Q, Wu W, Chiew M, Ji Y, Woods JG, Okell TW. Efficient 3D cone trajectory design for improved combined angiographic and perfusion imaging using arterial spin labeling. Magn Reson Med 2024; 92:1568-1583. [PMID: 38767321 DOI: 10.1002/mrm.30149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE To improve the spatial resolution and repeatability of a non-contrast MRI technique for simultaneous time resolved 3D angiography and perfusion imaging by developing an efficient 3D cone trajectory design. METHODS A novel parameterized 3D cone trajectory design incorporating the 3D golden angle was integrated into 4D combined angiography and perfusion using radial imaging and arterial spin labeling (CAPRIA) to achieve higher spatial resolution and sampling efficiency for both dynamic angiography and perfusion imaging with flexible spatiotemporal resolution. Numerical simulations and physical phantom scanning were used to optimize the cone design. Eight healthy volunteers were scanned to compare the original radial trajectory in 4D CAPRIA with our newly designed cone trajectory. A locally low rank reconstruction method was used to leverage the complementary k-space sampling across time. RESULTS The improved sampling in the periphery of k-space obtained with the optimized 3D cone trajectory resulted in improved spatial resolution compared with the radial trajectory in phantom scans. Improved vessel sharpness and perfusion visualization were also achieved in vivo. Less dephasing was observed in the angiograms because of the short TE of our cone trajectory and the improved k-space sampling efficiency also resulted in higher repeatability compared to the original radial approach. CONCLUSION The proposed 3D cone trajectory combined with 3D golden angle ordering resulted in improved spatial resolution and image quality for both angiography and perfusion imaging and could potentially benefit other applications that require an efficient sampling scheme with flexible spatial and temporal resolution.
Collapse
Affiliation(s)
- Qijia Shen
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yang Ji
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Joseph G Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Gerhalter T, Chen AM, Dehkharghani S, Peralta R, Gajdosik M, Zarate A, Bushnik T, Silver JM, Im BS, Wall SP, Madelin G, Kirov II. Longitudinal changes in sodium concentration and in clinical outcome in mild traumatic brain injury. Brain Commun 2024; 6:fcae229. [PMID: 39035416 PMCID: PMC11258572 DOI: 10.1093/braincomms/fcae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Ionic imbalances and sodium channel dysfunction, well-known sequelae of traumatic brain injury (TBI), promote functional impairment in affected subjects. Therefore, non-invasive measurement of sodium concentrations using 23Na MRI has the potential to detect clinically relevant injury and predict persistent symptoms. Recently, we reported diffusely lower apparent total sodium concentrations (aTSC) in mild TBI patients compared to controls, as well as correlations between lower aTSC and worse clinical outcomes. The main goal of this study was to determine whether these aTSC findings, and their changes over time, predict outcomes at 3- and 12-month from injury. Twenty-seven patients previously studied with 23Na MRI and outcome measures at 22 ± 10 days (average ± standard deviation) after injury (visit-1, v1) were contacted at 3- (visit-2, v2) and 12-month after injury (visit-3, v3) to complete the Rivermead post-concussion symptoms questionnaire (RPQ), the extended Glasgow outcome scale (GOSE), and the brief test of adult cognition by telephone (BTACT). Follow-up 1H and 23Na MRI were additionally scheduled at v2. Linear regression was used to calculate aTSC in global grey and white matters. Six hypotheses were tested in relation to the serial changes in outcome measures and in aTSC, and in relation to the cross-sectional and serial relationships between aTSC and outcome. Twenty patients contributed data at v2 and fifteen at v3. Total RPQ and composite BTACT z-scores differed significantly for v2 and v3 in comparison to v1 (each P < 0.01), reflecting longitudinally reduced symptomatology and improved performance on cognitive testing. No associations between aTSC and outcome were observed at v2. Previously lower grey and white matter aTSC normalized at v2 in comparison to controls, in line with a statistically detectable longitudinal increase in grey matter aTSC between v1 and v2 (P = 0.0004). aTSC values at v1 predicted a subset of future BTACT subtest scores, but not future RPQ scores nor GOSE-defined recovery status. Similarly, aTSC rates of change correlated with BTACT rates of change, but not with those of RPQ. Tissue aTSC, previously shown to be diffusely decreased compared to controls at v1, was no longer reduced by v2, suggesting normalization of the sodium ionic equilibrium. These changes were accompanied by marked improvement in outcome. The results support the notion that early aTSC from 23Na MRI predicts future BTACT, but not RPQ scores, nor future GOSE status.
Collapse
Affiliation(s)
- Teresa Gerhalter
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anna M Chen
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Seena Dehkharghani
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rosemary Peralta
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Mia Gajdosik
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alejandro Zarate
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Tamara Bushnik
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan M Silver
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Brian S Im
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen P Wall
- Ronald O. Perelman Department of Emergency Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Guillaume Madelin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ivan I Kirov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
8
|
Assländer J, Gultekin C, Mao A, Zhang X, Duchemin Q, Liu K, Charlson RW, Shepherd TM, Fernandez-Granda C, Flassbeck S. Rapid quantitative magnetization transfer imaging: Utilizing the hybrid state and the generalized Bloch model. Magn Reson Med 2024; 91:1478-1497. [PMID: 38073093 DOI: 10.1002/mrm.29951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE To explore efficient encoding schemes for quantitative magnetization transfer (qMT) imaging with few constraints on model parameters. THEORY AND METHODS We combine two recently proposed models in a Bloch-McConnell equation: the dynamics of the free spin pool are confined to the hybrid state, and the dynamics of the semi-solid spin pool are described by the generalized Bloch model. We numerically optimize the flip angles and durations of a train of radio frequency pulses to enhance the encoding of three qMT parameters while accounting for all eight parameters of the two-pool model. We sparsely sample each time frame along this spin dynamics with a three-dimensional radial koosh-ball trajectory, reconstruct the data with subspace modeling, and fit the qMT model with a neural network for computational efficiency. RESULTS We extracted qMT parameter maps of the whole brain with an effective resolution of 1.24 mm from a 12.6-min scan. In lesions of multiple sclerosis subjects, we observe a decreased size of the semi-solid spin pool and longer relaxation times, consistent with previous reports. CONCLUSION The encoding power of the hybrid state, combined with regularized image reconstruction, and the accuracy of the generalized Bloch model provide an excellent basis for efficient quantitative magnetization transfer imaging with few constraints on model parameters.
Collapse
Affiliation(s)
- Jakob Assländer
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Cem Gultekin
- Courant Institute of Mathematical Sciences, New York University, New York, New York, USA
| | - Andrew Mao
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, New York, USA
| | - Xiaoxia Zhang
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Quentin Duchemin
- Laboratoire d'analyse et de mathématiques appliquées, Université Gustave Eiffel, Champs-sur-Marne, France
| | - Kangning Liu
- Center for Data Science, New York University, New York, New York, USA
| | - Robert W Charlson
- Department of Neurology, NYU School of Medicine, New York, New York, USA
| | - Timothy M Shepherd
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Carlos Fernandez-Granda
- Courant Institute of Mathematical Sciences, New York University, New York, New York, USA
- Center for Data Science, New York University, New York, New York, USA
| | - Sebastian Flassbeck
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, New York, USA
| |
Collapse
|
9
|
Chen Q, Worthoff WA, Shah NJ. Accelerated multiple-quantum-filtered sodium magnetic resonance imaging using compressed sensing at 7 T. Magn Reson Imaging 2024; 107:138-148. [PMID: 38171423 DOI: 10.1016/j.mri.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/17/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Multiple-quantum-filtered (MQF) sodium magnetic resonance imaging (MRI), such as enhanced single-quantum and triple-quantum-filtered imaging of 23Na (eSISTINA), enables images to be weighted towards restricted sodium, a promising biomarker in clinical practice, but often suffers from clinically infeasible acquisition times and low image quality. This study aims to mitigate the above limitation by implementing a novel eSISTINA sequence at 7 T with the application of compressed sensing (CS) to accelerate eSISTINA acquisitions without a noticeable loss of information. METHODS A novel eSISTINA sequence with a 3D spiral-based sampling scheme was implemented at 7 T for the application of CS. Fully sampled datasets were obtained from one phantom and ten healthy subjects, and were then retrospectively undersampled by various undersampling factors. CS undersampled reconstructions were compared to fully sampled and undersampled nonuniform fast Fourier transform (NUFFT) reconstructions. Reconstruction performance was evaluated based on structural similarity (SSIM), signal-to-noise ratio (SNR), weightings towards total and compartmental sodium, and in vivo quantitative estimates. RESULTS CS-based phantom and in vivo images have less noise and better structural delineation while maintaining the weightings towards total, non-restricted (predominantly extracellular), and restricted (primarily intracellular) sodium. CS generally outperforms NUFFT with a higher SNR and a better SSIM, except for the SSIM in TQ brain images, which is likely due to substantial noise contamination. CS enables in vivo quantitative estimates with <15% errors at an undersampling factor of up to two. CONCLUSIONS Successful implementation of an eSISTINA sequence with an incoherent sampling scheme at 7 T was demonstrated. CS can accelerate eSISTINA by up to twofold at 7 T with reduced noise levels compared to NUFFT, while maintaining major structural information, reasonable weightings towards total and compartmental sodium, and relatively reliable in vivo quantification. The associated reduction in acquisition time has the potential to facilitate the clinical applicability of MQF sodium MRI.
Collapse
Affiliation(s)
- Qingping Chen
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH, Jülich, Germany; Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Wieland A Worthoff
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH, Jülich, Germany.
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH, Jülich, Germany; Institute of Neuroscience and Medicine - 11, Forschungszentrum Jülich GmbH, Jülich, Germany; JARA-BRAIN-Translational Medicine, Aachen, Germany; Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Gast LV, Platt T, Nagel AM, Gerhalter T. Recent technical developments and clinical research applications of sodium ( 23Na) MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:1-51. [PMID: 38065665 DOI: 10.1016/j.pnmrs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 12/18/2023]
Abstract
Sodium is an essential ion that plays a central role in many physiological processes including the transmembrane electrochemical gradient and the maintenance of the body's homeostasis. Due to the crucial role of sodium in the human body, the sodium nucleus is a promising candidate for non-invasively assessing (patho-)physiological changes. Almost 10 years ago, Madelin et al. provided a comprehensive review of methods and applications of sodium (23Na) MRI (Madelin et al., 2014) [1]. More recent review articles have focused mainly on specific applications of 23Na MRI. For example, several articles covered 23Na MRI applications for diseases such as osteoarthritis (Zbyn et al., 2016, Zaric et al., 2020) [2,3], multiple sclerosis (Petracca et al., 2016, Huhn et al., 2019) [4,5] and brain tumors (Schepkin, 2016) [6], or for imaging certain organs such as the kidneys (Zollner et al., 2016) [7], the brain (Shah et al., 2016, Thulborn et al., 2018) [8,9], and the heart (Bottomley, 2016) [10]. Other articles have reviewed technical developments such as radiofrequency (RF) coils for 23Na MRI (Wiggins et al., 2016, Bangerter et al., 2016) [11,12], pulse sequences (Konstandin et al., 2014) [13], image reconstruction methods (Chen et al., 2021) [14], and interleaved/simultaneous imaging techniques (Lopez Kolkovsky et al., 2022) [15]. In addition, 23Na MRI topics have been covered in review articles with broader topics such as multinuclear MRI or ultra-high-field MRI (Niesporek et al., 2019, Hu et al., 2019, Ladd et al., 2018) [16-18]. During the past decade, various research groups have continued working on technical improvements to sodium MRI and have investigated its potential to serve as a diagnostic and prognostic tool. Clinical research applications of 23Na MRI have covered a broad spectrum of diseases, mainly focusing on the brain, cartilage, and skeletal muscle (see Fig. 1). In this article, we aim to provide a comprehensive summary of methodological and hardware developments, as well as a review of various clinical research applications of sodium (23Na) MRI in the last decade (i.e., published from the beginning of 2013 to the end of 2022).
Collapse
Affiliation(s)
- Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Tanja Platt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Teresa Gerhalter
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
11
|
Niedbalski PJ, Willmering MM, Thomen RP, Mugler JP, Choi J, Hall C, Castro M. A single-breath-hold protocol for hyperpolarized 129 Xe ventilation and gas exchange imaging. NMR IN BIOMEDICINE 2023; 36:e4923. [PMID: 36914278 PMCID: PMC11077533 DOI: 10.1002/nbm.4923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Hyperpolarized 129 Xe MRI (Xe-MRI) is increasingly used to image the structure and function of the lungs. Because 129 Xe imaging can provide multiple contrasts (ventilation, alveolar airspace size, and gas exchange), imaging often occurs over several breath-holds, which increases the time, expense, and patient burden of scans. We propose an imaging sequence that can be used to acquire Xe-MRI gas exchange and high-quality ventilation images within a single, approximately 10 s, breath-hold. This method uses a radial one-point Dixon approach to sample dissolved 129 Xe signal, which is interleaved with a 3D spiral ("FLORET") encoding pattern for gaseous 129 Xe. Thus, ventilation images are obtained at higher nominal spatial resolution (4.2 × 4.2 × 4.2 mm3 ) compared with gas-exchange images (6.25 × 6.25 × 6.25 mm3 ), both competitive with current standards within the Xe-MRI field. Moreover, the short 10 s Xe-MRI acquisition time allows for 1 H "anatomic" images used for thoracic cavity masking to be acquired within the same breath-hold for a total scan time of about 14 s. Images were acquired using this single-breath method in 11 volunteers (N = 4 healthy, N = 7 post-acute COVID). For 11 of these participants, a separate breath-hold was used to acquire a "dedicated" ventilation scan and five had an additional "dedicated" gas exchange scan. The images acquired using the single-breath protocol were compared with those from dedicated scans using Bland-Altman analysis, intraclass correlation (ICC), structural similarity, peak signal-to-noise ratio, Dice coefficients, and average distance. Imaging markers from the single-breath protocol showed high correlation with dedicated scans (ventilation defect percent, ICC = 0.77, p = 0.01; membrane/gas, ICC = 0.97, p = 0.001; red blood cell/gas, ICC = 0.99, p < 0.001). Images showed good qualitative and quantitative regional agreement. This single-breath protocol enables the collection of essential Xe-MRI information within one breath-hold, simplifying scanning sessions and reducing costs associated with Xe-MRI.
Collapse
Affiliation(s)
- Peter J. Niedbalski
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Bioengineering, University of Kansas, Lawrence, KS, USA
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Matthew M. Willmering
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Robert P. Thomen
- Departments of Radiology and Bioengineering, University of Missouri School of Medicine, Columbia, MO, USA
| | - John P. Mugler
- Department of Radiology & Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jiwoong Choi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Bioengineering, University of Kansas, Lawrence, KS, USA
| | - Chase Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
12
|
Bdaiwi AS, Willmering MM, Wang H, Cleveland ZI. Diffusion weighted hyperpolarized 129 Xe MRI of the lung with 2D and 3D (FLORET) spiral. Magn Reson Med 2023; 89:1342-1356. [PMID: 36352793 PMCID: PMC9892235 DOI: 10.1002/mrm.29518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE To enable efficient hyperpolarized 129 Xe diffusion imaging using 2D and 3D (Fermat Looped, ORthogonally Encoded Trajectories, FLORET) spiral sequences and demonstrate that 129 Xe ADCs obtained using these sequences are comparable to those obtained using a conventional, 2D gradient-recalled echo (GRE) sequence. THEORY AND METHODS Diffusion-weighted 129 Xe MRI (b-values = 0, 7.5, 15 s/cm2 ) was performed in four healthy volunteers and one subject with lymphangioleiomyomatosis using slice-selective 2D-GRE (scan time = 15 s), slice-selective 2D-Spiral (4 s), and 3D-FLORET (16 s) sequences. Experimental SNRs from b-value = 0 images ( SNR 0 EX $$ SNR{0}_{EX} $$ ) and mean ADC values were compared across sequences. In two healthy subjects, a second b = 0 image was acquired using the 2D-Spiral sequence to map flip angle and correct RF-induced, hyperpolarized signal decay at the voxel level, thus improving regional ADC estimates. RESULTS Diffusion-weighted images from spiral sequences displayed image quality comparable to 2D-GRE and produced sufficient SNR 0 EX $$ SNR{0}_{EX} $$ (16.8 ± 3.8 for 2D-GRE, 21.2 ± 3.5 for 2D-Spiral, 20.4 ± 3.5 for FLORET) to accurately calculate ADC. Whole-lung means and SDs of ADC obtained via spiral were not significantly different (P > 0.54) from those obtained via 2D-GRE. Finally, 2D-Spiral images were corrected for signal decay, which resulted in a whole-lung mean ADC decrease of ˜15%, relative to uncorrected images. CONCLUSIONS Relative to GRE, efficient spiral sequences allow 129 Xe diffusion images to be acquired with isotropic lung coverage (3D), higher SNR $$ SNR $$ (2D and 3D), and three-fold faster (2D) within a single breath-hold. In turn, shortened breath-holds enable flip-angle mapping, and thus, allow RF-induced signal decay to be corrected, increasing ADC accuracy.
Collapse
Affiliation(s)
- Abdullah S. Bdaiwi
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
| | - Matthew M. Willmering
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Hui Wang
- Philips Healthcare, Cincinnati, OH 45229, USA
| | - Zackary I. Cleveland
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221,Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Corresponding Author: Zackary I. Cleveland, Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., MLC-2021, Cincinnati, OH 45229, Telephone: (513) 803-7186, Facsimile: (513) 803-4783,
| |
Collapse
|
13
|
Vaeggemose M, Schulte RF, Laustsen C. Clinically feasible B 1 field correction for multi-organ sodium imaging at 3 T. NMR IN BIOMEDICINE 2023; 36:e4835. [PMID: 36115017 PMCID: PMC10078323 DOI: 10.1002/nbm.4835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Sodium MRI allows the non-invasive quantification of intra-organ sodium concentration. RF inhomogeneity introduces uncertainty in this estimated concentration. B1 field corrections can be used to overcome some of these limitations. However, the low signal-to-noise ratio in sodium MRI makes accurate B1 mapping in reasonable scan times challenging. The study aims to evaluate Bloch-Siegert off-resonance (BLOSI) B1 field correction for sodium MRI using a 3D Fermat looped, orthogonally encoded trajectories (FLORET) read-out trajectory. We propose a clinically feasible B1 field map correction method for sodium imaging at 3 T, evaluating five healthy subjects' brain, heart blood, kidneys, and thigh muscle. We scanned the subjects twice for repeatability measures and used sodium phantoms to determine organ total sodium concentration. Conventional proton scans were compared with sodium images for organ structural integrity. The BLOSI approach based on the 3D FLORET read-out trajectory was used in B1 field correction and 3D density-adapted radial acquisition for sodium imaging. Results indicate improvements in sodium imaging based on B1 field correction in a clinically feasible protocol. Improvements are determined in all organs by enhanced anatomical representation, organ homogeneity, and an increase in the total sodium concentration after applying a B1 field correction. The proposed BLOSI-based B1 field correction using a 3D FLORET read-out trajectory is clinically feasible for sodium imaging, which is shown in the brain, heart, kidney, and thigh muscle. This supports using fast B1 field mapping in the clinical setting.
Collapse
Affiliation(s)
- Michael Vaeggemose
- GE HealthcareBrondbyDenmark
- MR Research Centre, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
14
|
Haeger A, Boumezbeur F, Bottlaender M, Rabrait-Lerman C, Lagarde J, Mirzazade S, Krahe J, Hohenfeld C, Sarazin M, Schulz JB, Romanzetti S, Reetz K. 3T sodium MR imaging in Alzheimer's disease shows stage-dependent sodium increase influenced by age and local brain volume. NEUROIMAGE: CLINICAL 2022; 36:103274. [PMID: 36451374 PMCID: PMC9723320 DOI: 10.1016/j.nicl.2022.103274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Application of MRI in clinical routine mainly addresses structural alterations. However, pathological changes at a cellular level are expected to precede the occurrence of brain atrophy clusters and of clinical symptoms. In this context, 23Na-MRI examines sodium changes in the brain as a potential metabolic parameter. Recently, we have shown that 23Na-MRI at ultra-high-field (7 T) was able to detect increased tissue sodium concentration (TSC) in Alzheimer's disease (AD). In this work, we aimed at assessing AD-pathology with 23Na-MRI in a larger cohort and on a clinical 3T MR scanner. METHODS We used a multimodal MRI protocol on 52 prodromal to mild AD patients and 34 cognitively healthy control subjects on a clinical 3T MR scanner. We examined the TSC, brain volume, and cortical thickness in association with clinical parameters. We further compared TSC with intra-individual normalized TSC for the reduction of inter-individual TSC variability resulting from physiological as well as experimental conditions. Normalized TSC maps were created by normalizing each voxel to the mean TSC inside the brain stem. RESULTS We found increased normalized TSC in the AD cohort compared to elderly control subjects both on global as well as on a region-of-interest-based level. We further confirmed a significant association of local brain volume as well as age with TSC. TSC increase in the left temporal lobe was further associated with the cognitive state, evaluated via the Montreal cognitive assessment (MoCA) screening test. An increase of normalized TSC depending on disease stage reflected by the Clinical Dementia Rating (CDR) was found in our AD patients in temporal lobe regions. In comparison to classical brain volume and cortical thickness assessments, normalized TSC had a higher discriminative power between controls and prodromal AD patients in several regions of the temporal lobe. DISCUSSION We confirm the feasibility of 23Na-MRI at 3T and report an increase of TSC in AD in several regions of the brain, particularly in brain regions of the temporal lobe. Furthermore, to reduce inter-subject variability caused by physiological factors such as circadian rhythms and experimental conditions, we introduced normalized TSC maps. This showed a higher discriminative potential between different clinical groups in comparison to the classical TSC analysis. In conclusion, 23Na-MRI represents a potential translational imaging marker applicable e.g.for diagnostics and the assessment of intervention outcomes in AD even under clinically available field strengths such as 3T. Implication of 23Na-MRI in association with other metabolic imaging marker needs to be further elucidated.
Collapse
Affiliation(s)
- Alexa Haeger
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Fawzi Boumezbeur
- NeuroSpin, CEA, CNRS UMR9027, Paris-Saclay University, Gif-sur-Yvette, France
| | - Michel Bottlaender
- NeuroSpin, CEA, CNRS UMR9027, Paris-Saclay University, Gif-sur-Yvette, France,Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | | | - Julien Lagarde
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France,Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France,Université Paris-Cité, F-75006 Paris, France
| | - Shahram Mirzazade
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Janna Krahe
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Christian Hohenfeld
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Marie Sarazin
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France,Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France,Université Paris-Cité, F-75006 Paris, France
| | - Jörg B. Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany,Corresponding author at: Department of Neurology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
15
|
Krahe J, Dogan I, Didszun C, Mirzazade S, Haeger A, Joni Shah N, Giordano IA, Klockgether T, Madelin G, Schulz JB, Romanzetti S, Reetz K. Increased brain tissue sodium concentration in Friedreich ataxia: A multimodal MR imaging study. NEUROIMAGE: CLINICAL 2022; 34:103025. [PMID: 35500368 PMCID: PMC9065922 DOI: 10.1016/j.nicl.2022.103025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 04/24/2022] [Indexed: 11/28/2022] Open
Abstract
In patients with Friedreich ataxia, structural MRI is typically used to detect abnormalities primarily in the brainstem, cerebellum, and spinal cord. The aim of the present study was to additionally investigate possible metabolic changes in Friedreich ataxia using in vivo sodium MRI that may precede macroanatomical alterations, and to explore potential associations with clinical parameters of disease progression. Tissue sodium concentration across the whole brain was estimated from sodium MRI maps acquired at 3 T and compared between 24 patients with Friedreich ataxia (21-57 years old, 13 females) and 23 controls (21-60 years old, 12 females). Tensor-based morphometry was used to assess volumetric changes. Total sodium concentrations and volumetric data in brainstem and cerebellum were correlated with clinical parameters, such as severity of ataxia, activity of daily living and disability stage, age, age at onset, and disease duration. Compared to controls, patients showed reduced brain volume in the right cerebellar lobules I-V (difference in means: -0.039% of total intracranial volume [TICV]; Cohen's d = 0.83), cerebellar white matter (WM) (-0.105%TICV; d = 1.16), and brainstem (-0.167%TICV; d = 1.22), including pons (-0.102%TICV; d = 1.00), medulla (-0.036%TICV; d = 1.72), and midbrain (-0.028%TICV; d = 1.05). Increased sodium concentration was additionally detected in the total cerebellum (difference in means: 2.865 mmol; d = 0.68), and in several subregions with highest effect sizes in left (5.284 mmol; d = 1.01) and right cerebellar lobules I-V (5.456 mmol; d = 1.00), followed by increases in the vermis (4.261 mmol; d = 0.72), and in left (2.988 mmol; d = 0.67) and right lobules VI-VII (2.816 mmol; d = 0.68). In addition, sodium increases were also detected in all brainstem areas (3.807 mmol; d = 0.71 to 5.42 mmol; d = 1.19). After controlling for age, elevated total sodium concentrations in right cerebellar lobules IV were associated with younger age at onset (r = -0.43) and accordingly with longer disease duration in patients (r = 0.43). Our findings support the potential of in vivo sodium MRI to detect metabolic changes of increased total sodium concentration in the cerebellum and brainstem, the key regions in Friedreich ataxia. In addition to structural changes, sodium changes were present in cerebellar hemispheres and vermis without concomitant significant atrophy. Given the association with age at disease onset or disease duration, metabolic changes should be further investigated longitudinally and in larger cohorts of early disease stages to determine the usefulness of sodium MRI as a biomarker for early neuropathological changes in Friedreich ataxia and efficacy measure for future clinical trials.
Collapse
Affiliation(s)
- Janna Krahe
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Claire Didszun
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Shahram Mirzazade
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Alexa Haeger
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Nadim Joni Shah
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany,Institute of Neuroscience and Medicine 4 (INM-4), Research Centre Juelich GmbH, 52428 Juelich, Germany,Monash Institute of Medical Engineering, Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Ilaria A. Giordano
- Department of Neurology, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Guillaume Madelin
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York NY10016, USA
| | - Jörg B. Schulz
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
16
|
Polak P, Schulte RF, Noseworthy MD. An approach to evaluation of the point-spread function for 23 Na magnetic resonance imaging. NMR IN BIOMEDICINE 2022; 35:e4627. [PMID: 34652040 DOI: 10.1002/nbm.4627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/28/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Despite the technical challenges that require lengthy acquisitions to overcome poor signal-to-noise ratio (SNR), sodium (23 Na) magnetic resonance imaging (MRI) is an intriguing area of research due to its essential role in human metabolism. Low SNR images can impact the measurement of the point-spread function (PSF) by adding uncertainty into the resulting quantities. Here, we present methods to calculate the PSF by using the modulation transfer function (MTF), and a 3D-printed line-pair phantom in the context of 23 Na MRI. A simulation study investigated the effect of noise on the resulting MTF curves, which were derived by direct modulation (DM) and a method utilizing Fourier harmonics (FHs). Experimental data utilized a line-pair phantom with nine spatial frequencies, filled with different concentrations (15, 30, and 60 mM) of sodium in 3% agar. MTF curves were calculated using both methods from data acquired from density-adapted 3D radial projections (DA-3DRP) and Fermat looped orthogonally encoded trajectories (FLORET). Simulations indicated that the DM method increased variability in the MTF curves at all tested noise levels over the FH method. For the experimental data, the FH method resulted in PSFs with a narrower full width half maximum with reduced variability, although the improvement in variability was not as pronounced as predicted by simulations. The DA-3DRP data indicated an improvement in the PSF over FLORET. It was concluded that a 3D-printed line-pair phantom represents a convenient method to measure the PSF experimentally. The MTFs from the noisy images in 23 Na MRI have reduced variability from a FH method over DM.
Collapse
Affiliation(s)
- Paul Polak
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Imaging Research Centre, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | | | - Michael D Noseworthy
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Imaging Research Centre, St. Joseph's Healthcare, Hamilton, Ontario, Canada
- Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Radiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
17
|
Chen Q, Shah NJ, Worthoff WA. Compressed Sensing in Sodium Magnetic Resonance Imaging: Techniques, Applications, and Future Prospects. J Magn Reson Imaging 2021; 55:1340-1356. [PMID: 34918429 DOI: 10.1002/jmri.28029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/06/2022] Open
Abstract
Sodium (23 Na) yields the second strongest nuclear magnetic resonance (NMR) signal in biological tissues and plays a vital role in cell physiology. Sodium magnetic resonance imaging (MRI) can provide insights into cell integrity and tissue viability relative to pathologies without significant anatomical alternations, and thus it is considered to be a potential surrogate biomarker that provides complementary information for standard hydrogen (1 H) MRI in a noninvasive and quantitative manner. However, sodium MRI suffers from a relatively low signal-to-noise ratio and long acquisition times due to its relatively low NMR sensitivity. Compressed sensing-based (CS-based) methods have been shown to accelerate sodium imaging and/or improve sodium image quality significantly. In this manuscript, the basic concepts of CS and how CS might be applied to improve sodium MRI are described, and the historical milestones of CS-based sodium MRI are briefly presented. Representative advanced techniques and evaluation methods are discussed in detail, followed by an expose of clinical applications in multiple anatomical regions and diseases as well as thoughts and suggestions on potential future research prospects of CS in sodium MRI. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Qingping Chen
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany.,Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Wieland A Worthoff
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
18
|
Assessment of Low-Grade Focal Cartilage Lesions in the Knee With Sodium MRI at 7 T: Reproducibility and Short-Term, 6-Month Follow-up Data. Invest Radiol 2021; 55:430-437. [PMID: 32011573 DOI: 10.1097/rli.0000000000000652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Several articles have investigated potential of sodium (Na) magnetic resonance imaging (MRI) for the in vivo evaluation of cartilage health, but so far no study tested its feasibility for the evaluation of focal cartilage lesions of grade 1 or 2 as defined by the International Cartilage Repair Society. The aims of this study were to evaluate the ability of Na-MRI to differentiate between early focal lesions and normal-appearing cartilage, to evaluate within-subject reproducibility of Na-MRI, and to monitor longitudinal changes in participants with low-grade, focal chondral lesions. MATERIALS AND METHODS Thirteen participants (mean age, 50.1 ± 10.9 years; 7 women, 6 men) with low-grade, focal cartilage lesions in the weight-bearing region of femoral cartilage were included in this prospective cohort study. Participants were assessed at baseline, 1 week, 3 months, and 6 months using morphological MRI at 3 T and 7 T, compositional Na-MRI at 7 T, and the Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire. Na signal intensities corrected for coil sensitivity and partial volume effect (Na-cSI) were calculated in the lesion, and in weight-bearing and non-weight-bearing regions of healthy femoral cartilage. Coefficients of variation, repeated measures analysis of covariance models, and Pearson correlation coefficients were calculated to evaluate within-subject reproducibility as well as cross-sectional and longitudinal changes in Na-cSI values. RESULTS The mean coefficients of variation of Na-cSI values between the baseline and 1-week follow-up were 5.1% or less in all cartilage regions. Significantly lower Na-cSI values were observed in lesion than in weight-bearing and non-weight-bearing regions at all time points (all P values ≤ 0.002). Although a significant decrease from baseline Na-cSI values in lesion was found at 3-month visit (P = 0.015), no substantial change was observed at 6 months. KOOS scores have improved in all subscales at 3 months and 6 months visit, with a significant increase observed only in the quality of life subscale (P = 0.004). CONCLUSIONS In vivo Na-MRI is a robust and reproducible method that allows to differentiate between low-grade, focal cartilage lesions and normal-appearing articular cartilage, which supports the concept that compositional cartilage changes can be found early, before the development of advanced morphological changes visible at clinical 3-T MRI.
Collapse
|
19
|
Gerhalter T, Chen AM, Dehkharghani S, Peralta R, Adlparvar F, Babb JS, Bushnik T, Silver JM, Im BS, Wall SP, Brown R, Baete SH, Kirov II, Madelin G. Global decrease in brain sodium concentration after mild traumatic brain injury. Brain Commun 2021; 3:fcab051. [PMID: 33928248 PMCID: PMC8066885 DOI: 10.1093/braincomms/fcab051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 11/28/2022] Open
Abstract
The pathological cascade of tissue damage in mild traumatic brain injury is set forth by a perturbation in ionic homeostasis. However, whether this class of injury can be detected in vivo and serve as a surrogate marker of clinical outcome is unknown. We employ sodium MRI to test the hypotheses that regional and global total sodium concentrations: (i) are higher in patients than in controls and (ii) correlate with clinical presentation and neuropsychological function. Given the novelty of sodium imaging in traumatic brain injury, effect sizes from (i), and correlation types and strength from (ii), were compared to those obtained using standard diffusion imaging metrics. Twenty-seven patients (20 female, age 35.9 ± 12.2 years) within 2 months after injury and 19 controls were scanned with proton and sodium MRI at 3 Tesla. Total sodium concentration, fractional anisotropy and apparent diffusion coefficient were obtained with voxel averaging across 12 grey and white matter regions. Linear regression was used to obtain global grey and white matter total sodium concentrations. Patient outcome was assessed with global functioning, symptom profiles and neuropsychological function assessments. In the regional analysis, there were no statistically significant differences between patients and controls in apparent diffusion coefficient, while differences in sodium concentration and fractional anisotropy were found only in single regions. However, for each of the 12 regions, sodium concentration effect sizes were uni-directional, due to lower mean sodium concentration in patients compared to controls. Consequently, linear regression analysis found statistically significant lower global grey and white matter sodium concentrations in patients compared to controls. The strongest correlation with outcome was between global grey matter sodium concentration and the composite z-score from the neuropsychological testing. In conclusion, both sodium concentration and diffusion showed poor utility in differentiating patients from controls, and weak correlations with clinical presentation, when using a region-based approach. In contrast, sodium linear regression, capitalizing on partial volume correction and high sensitivity to global changes, revealed high effect sizes and associations with patient outcome. This suggests that well-recognized sodium imbalances in traumatic brain injury are (i) detectable non-invasively; (ii) non-focal; (iii) occur even when the antecedent injury is clinically mild. Finally, in contrast to our principle hypothesis, patients' sodium concentrations were lower than controls, indicating that the biological effect of traumatic brain injury on the sodium homeostasis may differ from that in other neurological disorders. Note: This figure has been annotated.
Collapse
Affiliation(s)
- Teresa Gerhalter
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anna M Chen
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Seena Dehkharghani
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rosemary Peralta
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Fatemeh Adlparvar
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - James S Babb
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Tamara Bushnik
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan M Silver
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Brian S Im
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen P Wall
- Ronald O. Perelman Department of Emergency Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ryan Brown
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Steven H Baete
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ivan I Kirov
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Guillaume Madelin
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
20
|
Ianniello C, Moy L, Fogarty J, Schnabel F, Adams S, Axelrod D, Axel L, Brown R, Madelin G. Multinuclear MRI to disentangle intracellular sodium concentration and extracellular volume fraction in breast cancer. Sci Rep 2021; 11:5156. [PMID: 33664340 PMCID: PMC7933187 DOI: 10.1038/s41598-021-84616-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
The purpose of this work was to develop a novel method to disentangle the intra- and extracellular components of the total sodium concentration (TSC) in breast cancer from a combination of proton ([Formula: see text]H) and sodium ([Formula: see text]) magnetic resonance imaging (MRI) measurements. To do so, TSC is expressed as function of the intracellular sodium concentration ([Formula: see text]), extracellular volume fraction (ECV) and the water fraction (WF) based on a three-compartment model of the tissue. TSC is measured from [Formula: see text] MRI, ECV is calculated from baseline and post-contrast [Formula: see text]H [Formula: see text] maps, while WF is measured with a [Formula: see text]H chemical shift technique. [Formula: see text] is then extrapolated from the model. Proof-of-concept was demonstrated in three healthy subjects and two patients with triple negative breast cancer. In both patients, TSC was two to threefold higher in the tumor than in normal tissue. This alteration mainly resulted from increased [Formula: see text] ([Formula: see text] 30 mM), which was [Formula: see text] 130% greater than in healthy conditions (10-15 mM) while the ECV was within the expected range of physiological values (0.2-0.25). Multinuclear MRI shows promise for disentangling [Formula: see text] and ECV by taking advantage of complementary [Formula: see text]H and [Formula: see text] measurements.
Collapse
Affiliation(s)
- Carlotta Ianniello
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Linda Moy
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Justin Fogarty
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Freya Schnabel
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Sylvia Adams
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Deborah Axelrod
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Leon Axel
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Guillaume Madelin
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
21
|
Abstract
OBJECTIVE. The purpose of this article is to review currently available and emerging techniques for pediatric lung MRI for general radiologists. CONCLUSION. MRI is a radiation-free alternative to CT, and clearly understanding the strengths and limitations of established and emerging techniques of pediatric lung MRI can allow practitioners to select and combine the optimal techniques, apply them in clinical practice, and potentially improve early diagnostic accuracy and patient management.
Collapse
|
22
|
Abstract
Regulatory approval of ultrahigh field (UHF) MR imaging scanners for clinical use has opened new opportunities for musculoskeletal imaging applications. UHF MR imaging has unique advantages in terms of signal-to-noise ratio, contrast-to-noise ratio, spectral resolution, and multinuclear applications, thus providing unique information not available at lower field strengths. But UHF also comes with a set of technical challenges that are yet to be resolved and may not be suitable for all imaging applications. This review focuses on the latest research in musculoskeletal MR imaging applications at UHF including morphologic imaging, T2, T2∗, and T1ρ mapping, chemical exchange saturation transfer, sodium imaging, and phosphorus spectroscopy imaging applications.
Collapse
|
23
|
Zi R, Zhu D, Qin Q. Quantitative T 2 mapping using accelerated 3D stack-of-spiral gradient echo readout. Magn Reson Imaging 2020; 73:138-147. [PMID: 32860871 PMCID: PMC7571618 DOI: 10.1016/j.mri.2020.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE To develop a rapid T2 mapping protocol using optimized spiral acquisition, accelerated reconstruction, and model fitting. MATERIALS AND METHODS A T2-prepared stack-of-spiral gradient echo (GRE) pulse sequence was applied. A model-based approach joined with compressed sensing was compared with the two methods applied separately for accelerated reconstruction and T2 mapping. A 2-parameter-weighted fitting method was compared with 2- or 3-parameter models for accurate T2 estimation under the influences of noise and B1 inhomogeneity. The performance was evaluated using both digital phantoms and healthy volunteers. Mitigating partial voluming with cerebrospinal fluid (CSF) was also tested. RESULTS Simulations demonstrates that the 2-parameter-weighted fitting approach was robust to a large range of B1 scales and SNR levels. With an in-plane acceleration factor of 5, the model-based compressed sensing-incorporated method yielded around 8% normalized errors compared to references. The T2 estimation with and without CSF nulling was consistent with literature values. CONCLUSION This work demonstrated the feasibility of a T2 quantification technique with 3D high-resolution and whole-brain coverage in 2-3 min. The proposed iterative reconstruction method, which utilized the model consistency, data consistency and spatial sparsity jointly, provided reasonable T2 estimation. The technique also allowed mitigation of CSF partial volume effect.
Collapse
Affiliation(s)
- Ruoxun Zi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qin Qin
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
24
|
Utzschneider M, Müller M, Gast LV, Lachner S, Behl NGR, Maier A, Uder M, Nagel AM. Towards accelerated quantitative sodium MRI at 7 T in the skeletal muscle: Comparison of anisotropic acquisition- and compressed sensing techniques. Magn Reson Imaging 2020; 75:72-88. [PMID: 32979516 DOI: 10.1016/j.mri.2020.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To compare three anisotropic acquisition schemes and three compressed sensing (CS) approaches for accelerated tissue sodium concentration (TSC) quantification using 23Na MRI at 7 T. MATERIALS AND METHODS Three anisotropic 3D-radial acquisition sequences were evaluated using simulations, phantom- and in vivo TSC measurements: An anisotropic density-adapted 3D-radial sequence (3DPR-C), a 3D acquisition-weighted density-adapted stack-of-stars sampling scheme (SOS) and a SOS approach with golden-ratio rotation (SOS-GR). Eight healthy volunteers were examined at a 7 Tesla MRI system. TSC measurements of the calf were conducted with a nominal spatial resolution of Δx = (3.0 × 3.0 × 15.0) mm3 and a field of view of (156.0 × 156.0 × 240.0) mm3 for multiple undersampling factors (USF). Three CS reconstructions were evaluated: Total variation CS (TV-CS), 3D dictionary-learning compressed sensing (3D-DLCS) and TV-CS with a block matching prior (TV-BL-CS). Results of the simulations and measurements were compared to a simulated ground truth (GT) or a fully sampled reference measurement (FS), respectively. The deviation of the mean TSC evaluated in multiple ROI (mEGT/FS) and the normalized root-mean-squared error (NRMSE) for simulations were evaluated for CS and NUFFT reconstructions. RESULTS In simulations, the SOS-GR yielded the lowest NRMSE and mEGT (< 4%) with NUFFT for an acquisition time (TA) of less than 2 min. CS further improved the results. In simulations and measurements, the best TSC quantification results were obtained with 3D-DLCS and SOS-GR (lowest NRMSE, mEGT < 2.6% in simulations, mEGT < 10.7% for phantom measurements and mEFS < 6% in vivo) with an USF = 4.1 (TA < 2 min). TV-CS showed no or only slight improvements to NUFFT. The results of TV-BL-CS were similar to 3D-DLCS. DISCUSSION The TA for TSC measurements could be reduced to less than 2 min by using adapted sequences such as SOS-GR and CS reconstruction approaches such as 3D-DLCS or TV-BL-CS, while the quantitative accuracy stays comparable to a fully sampled NUFFT reconstruction (approx. 8 min TA). In future, the lower TA could improve clinical applicability of TSC measurements.
Collapse
Affiliation(s)
- Matthias Utzschneider
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Max Müller
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Lachner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nicolas G R Behl
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Maier
- Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
25
|
Zaric O, Juras V, Szomolanyi P, Schreiner M, Raudner M, Giraudo C, Trattnig S. Frontiers of Sodium MRI Revisited: From Cartilage to Brain Imaging. J Magn Reson Imaging 2020; 54:58-75. [PMID: 32851736 PMCID: PMC8246730 DOI: 10.1002/jmri.27326] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
Sodium magnetic resonance imaging (23 Na-MRI) is a highly promising imaging modality that offers the possibility to noninvasively quantify sodium content in the tissue, one of the most relevant parameters for biochemical investigations. Despite its great potential, due to the intrinsically low signal-to-noise ratio (SNR) of sodium imaging generated by low in vivo sodium concentrations, low gyromagnetic ratio, and substantially shorter relaxation times than for proton (1 H) imaging, 23 Na-MRI is extremely challenging. In this article, we aim to provide a comprehensive overview of the literature that has been published in the last 10-15 years and which has demonstrated different technical designs for a range of 23 Na-MRI methods applicable for disease diagnoses and treatment efficacy evaluations. Currently, a wider use of 3.0T and 7.0T systems provide imaging with the expected increase in SNR and, consequently, an increased image resolution and a reduced scanning time. A great interest in translational research has enlarged the field of sodium MRI applications to almost all parts of the body: articular cartilage tendons, spine, heart, breast, muscle, kidney, and brain, etc., and several pathological conditions, such as tumors, neurological and degenerative diseases, and others. The quantitative parameter, tissue sodium concentration, which reflects changes in intracellular sodium concentration, extracellular sodium concentration, and intra-/extracellular volume fractions is becoming acknowledged as a reliable biomarker. Although the great potential of this technique is evident, there must be steady technical development for 23 Na-MRI to become a standard imaging tool. The future role of sodium imaging is not to be considered as an alternative to 1 H MRI, but to provide early, diagnostically valuable information about altered metabolism or tissue function associated with disease genesis and progression. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Olgica Zaric
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Vladimir Juras
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Szomolanyi
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Schreiner
- Deartment of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Marcus Raudner
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Chiara Giraudo
- Radiology Institute, Department of Medicine, DIMED Padova University Via Giustiniani 2, Padova, Italy
| | - Siegfried Trattnig
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria.,High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria
| |
Collapse
|
26
|
Yu Z, Madelin G, Sodickson DK, Cloos MA. Simultaneous proton magnetic resonance fingerprinting and sodium MRI. Magn Reson Med 2020; 83:2232-2242. [PMID: 31746048 PMCID: PMC7047525 DOI: 10.1002/mrm.28073] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE The goal of this work is to demonstrate a method for the simultaneous acquisition of proton multiparametric maps (T1 , T2 , and proton density) and sodium density images in 1 single scan. We hope that the development of such capabilities will help to ease the implementation of sodium MRI in clinical trials and provide more opportunities for researchers to investigate metabolism through sodium MRI. METHODS We developed a sequence based on magnetic resonance fingerprinting (MRF), which contains interleaved proton (1 H) and sodium (23 Na) excitations followed by a simultaneous center-out radial readout for both nuclei. The receive chain of a 7T scanner was modified to enable simultaneous acquisition of 1 H and 23 Na signal. The obtained signal-to-noise ratio (SNR) was evaluated, and the accuracy of both proton T1 , T2 , and B 1 + and sodium density maps were verified in phantoms. Finally, the method was demonstrated in 2 healthy subjects. RESULTS The SNR obtained using the simultaneous measurement was almost identical to single-nucleus measurements (<1% change). Similarly, the proton T1 and T2 maps remained stable (normalized root mean square error in T1 ≈ 2.2%, in T2 ≈ 1.4%, and B 1 + ≈ 5.4%), which indicates that the proposed sequence and hardware have no significant effects on the signal from either nucleus. In vivo measurements corroborated these results and demonstrated the feasibility of our method for in vivo application. CONCLUSIONS With the proposed approach, we were able to simultaneously acquire sodium density images in addition to proton T1 , T2 , and B 1 + maps as well as proton density images.
Collapse
Affiliation(s)
- Zidan Yu
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Guillaume Madelin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Daniel K. Sodickson
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Martijn A. Cloos
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
27
|
Kecskemeti SR, Alexander AL. Test-retest of automated segmentation with different motion correction strategies: A comparison of prospective versus retrospective methods. Neuroimage 2020; 209:116494. [PMID: 31899289 PMCID: PMC7056555 DOI: 10.1016/j.neuroimage.2019.116494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 01/10/2023] Open
Abstract
Test-retest of automated image segmentation algorithms (FSL FAST, FSL FIRST, and FREESURFER) are computed on magnetic resonance images from 12 unsedated children aged 9.4±2.6 years ([min,max] = [6.5 years, 13.8 years]) using different approaches to motion correction (prospective versus retrospective). The prospective technique, PROMO MPRAGE, dynamically estimates motion using specially acquired navigator images and adjusts the remaining acquisition accordingly, whereas the retrospective technique, MPnRAGE, uses a self-navigation property to retrospectively estimate and account for motion during image reconstruction. To increase the likelihood and range of motions, participants heads were not stabilized with padding during repeated scans. When motion was negligible both techniques had similar performance. When motion was not negligible, the automated image segmentation and anatomical labeling software tools showed the most consistent performance with the retrospectively corrected MPnRAGE technique (≥80% volume overlaps for 15 of 16 regions for FIRST and FREESURFER, with greater than 90% volume overlaps for 12 regions with FIRST and 11 regions with FREESURFER). Prospectively corrected MPRAGE with linear view-ordering also demonstrated lower performance than MPnRAGE without retrospective motion correction.
Collapse
|
28
|
Poku LO, Phil M, Cheng Y, Wang K, Sun X. 23 Na-MRI as a Noninvasive Biomarker for Cancer Diagnosis and Prognosis. J Magn Reson Imaging 2020; 53:995-1014. [PMID: 32219933 PMCID: PMC7984266 DOI: 10.1002/jmri.27147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022] Open
Abstract
The influx of sodium (Na+) ions into a resting cell is regulated by Na+ channels and by Na+/H+ and Na+/Ca2+ exchangers, whereas Na+ ion efflux is mediated by the activity of Na+/K+‐ATPase to maintain a high transmembrane Na+ ion gradient. Dysfunction of this system leads to changes in the intracellular sodium concentration that promotes cancer metastasis by mediating invasion and migration. In addition, the accumulation of extracellular Na+ ions in cancer due to inflammation contributes to tumor immunogenicity. Thus, alterations in the Na+ ion concentration may potentially be used as a biomarker for malignant tumor diagnosis and prognosis. However, current limitations in detection technology and a complex tumor microenvironment present significant challenges for the in vivo assessment of Na+ concentration in tumor. 23Na‐magnetic resonance imaging (23Na‐MRI) offers a unique opportunity to study the effects of Na+ ion concentration changes in cancer. Although challenged by a low signal‐to‐noise ratio, the development of ultrahigh magnetic field scanners and specialized sodium acquisition sequences has significantly advanced 23Na‐MRI. 23Na‐MRI provides biochemical information that reflects cell viability, structural integrity, and energy metabolism, and has been shown to reveal rapid treatment response at the molecular level before morphological changes occur. Here we review the basis of 23Na‐MRI technology and discuss its potential as a direct noninvasive in vivo diagnostic and prognostic biomarker for cancer therapy, particularly in cancer immunotherapy. We propose that 23Na‐MRI is a promising method with a wide range of applications in the tumor immuno‐microenvironment research field and in cancer immunotherapy monitoring. Level of Evidence 2 Technical Efficacy Stage 2
Collapse
Affiliation(s)
| | - M Phil
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Yongna Cheng
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Willmering MM, Niedbalski PJ, Wang H, Walkup LL, Robison RK, Pipe JG, Cleveland ZI, Woods JC. Improved pulmonary 129 Xe ventilation imaging via 3D-spiral UTE MRI. Magn Reson Med 2019; 84:312-320. [PMID: 31788858 DOI: 10.1002/mrm.28114] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 02/03/2023]
Abstract
PURPOSE Hyperpolarized 129 Xe MRI characterizes regional lung ventilation in a variety of disease populations, with high sensitivity to airway obstruction in early disease. However, ventilation images are usually limited to a single breath-hold and most-often acquired using gradient-recalled echo sequences with thick slices (~10-15 mm), which increases partial-volume effects, limits ability to observe small defects, and suffers from imperfect slice selection. We demonstrate higher-resolution ventilation images, in shorter breath-holds, using FLORET (Fermat Looped ORthogonally Encoded Trajectories), a center-out 3D-spiral UTE sequence. METHODS In vivo human adult (N = 4; 2 healthy, 2 with cystic fibrosis) 129 Xe images were acquired using 2D gradient-recalled echo, 3D radial, and FLORET. Each sequence was acquired at its highest possible resolution within a 16-second breath-hold with a minimum voxel dimension of 3 mm. Images were compared using 129 Xe ventilation defect percentage, SNR, similarity coefficients, and vasculature cross-sections. RESULTS The FLORET sequence obtained relative normalized SNR, 40% greater than 2D gradient-recalled echo (P = .012) and 26% greater than 3D radial (P = .067). Moreover, the FLORET images were acquired with 3-fold-higher nominal resolution in a 15% shorter breath-hold. Finally, vasculature was less prominent in FLORET, likely due to diminished susceptibility-induced dephasing at shorter TEs afforded by UTE sequences. CONCLUSION The FLORET sequence yields higher SNR for a given resolution with a shorter breath-hold than traditional ventilation imaging techniques. This sequence more accurately measures ventilation abnormalities and enables reduced scan times in patients with poor compliance and severe lung disease.
Collapse
Affiliation(s)
- Matthew M Willmering
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Peter J Niedbalski
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hui Wang
- Clinical Science, Philips, Cincinnati, Ohio.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Laura L Walkup
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Ryan K Robison
- Department of Radiology, Phoenix Children's Hospital, Phoenix, Arizona
| | - James G Pipe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati Medical Center, Cincinnati, Ohio.,Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati Medical Center, Cincinnati, Ohio
| |
Collapse
|
30
|
Lakshmanan K, Dehkharghani S, Madelin G, Brown R. A dual-tuned 17 O/ 1 H head array for direct brain oximetry at 3 Tesla. Magn Reson Med 2019; 83:1512-1518. [PMID: 31593372 DOI: 10.1002/mrm.28005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE To design and build a dual-tuned 17 O/1 H coil for direct brain oximetry at 3T. METHODS A dual-tuned 17 O/1 H coil comprising 2 degenerate mode birdcage coils was constructed to facilitate high-sensitivity 17 O and 1 H imaging. In vivo 17 O brain images were acquired in a healthy volunteer using a fermat looped orthogonally encoded trajectories sequence, together with high-resolution structural brain 1 H images. RESULTS Natural abundance 17 O images with a nominal resolution of 8 mm3 were acquired in under 20 minutes exhibiting clear delineation of the physiological 17 O distribution. One-millimeter isotropic 1 H structural brain images demonstrated excellent quality and anatomical detail using routine clinical imaging sequence parameters and parallel acceleration. CONCLUSION A dual-tuned 17 O/1 H array was constructed to enable high-sensitivity 17 O and 1 H imaging under standard clinical 3 T scanning conditions.
Collapse
Affiliation(s)
- Karthik Lakshmanan
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York
| | - Seena Dehkharghani
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Guillaume Madelin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York
| | - Ryan Brown
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York
| |
Collapse
|
31
|
Riemer F, McHugh D, Zaccagna F, Lewis D, McLean MA, Graves MJ, Gilbert FJ, Parker GJ, Gallagher FA. Measuring tissue sodium concentration: Cross-vendor repeatability and reproducibility of 23 Na-MRI across two sites. J Magn Reson Imaging 2019; 50:1278-1284. [PMID: 30859655 PMCID: PMC6767101 DOI: 10.1002/jmri.26705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sodium MRI (23 Na-MRI)-derived biomarkers such as total sodium concentration (TSC) have the potential to provide information on tumor cellularity and the changes in tumor microstructure that occur following therapy. PURPOSE To evaluate the repeatability and reproducibility of TSC measurements in the brains of healthy volunteers, providing evidence for the technical validation of 23 Na-MRI-derived biomarkers. STUDY TYPE Prospective multicenter study. SUBJECTS Eleven volunteers (32 ± 6 years; eight males, three females) were scanned twice at each of two sites. FIELD STRENGTH/SEQUENCE Comparable 3D-cones 23 Na-MRI ultrashort echo time acquisitions at 3T. ASSESSMENT TSC values, quantified from calibration phantoms placed in the field of view, were obtained from white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), based on automated segmentation of coregistered 1 H T1 -weighted images and hand-drawn regions of interest by two readers. STATISTICAL TESTS Coefficients of variation (CoVs) from mean TSC values were used to assess intrasite repeatability and intersite reproducibility. RESULTS Mean GM TSC concentrations (52.1 ± 7.1 mM) were ∼20% higher than for WM (41.8 ± 6.7 mM). Measurements were highly repeatable at both sites with mean scan-rescan CoVs between volunteers and regions of 2% and 4%, respectively. Mean intersite reproducibility CoVs were 3%, 3%, and 6% for WM, GM, and CSF, respectively. DATA CONCLUSION These results demonstrate technical validation of sodium MRI-derived biomarkers in healthy volunteers. We also show that comparable 23 Na imaging of the brain can be implemented across different sites and scanners with excellent repeatability and reproducibility. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1278-1284.
Collapse
Affiliation(s)
- Frank Riemer
- Department of RadiologyUniversity of CambridgeCambridgeUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| | - Damien McHugh
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
- Division of Neuroscience & Experimental PsychologyThe University of ManchesterManchesterUK
| | - Fulvio Zaccagna
- Department of RadiologyUniversity of CambridgeCambridgeUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| | - Daniel Lewis
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| | - Mary A. McLean
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | | | - Fiona J. Gilbert
- Department of RadiologyUniversity of CambridgeCambridgeUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| | - Geoff J.M. Parker
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
- Division of Neuroscience & Experimental PsychologyThe University of ManchesterManchesterUK
- Bioxydyn Ltd.ManchesterUK
| | - Ferdia A. Gallagher
- Department of RadiologyUniversity of CambridgeCambridgeUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| |
Collapse
|
32
|
Willmering MM, Robison RK, Wang H, Pipe JG, Woods JC. Implementation of the FLORET UTE sequence for lung imaging. Magn Reson Med 2019; 82:1091-1100. [PMID: 31081961 PMCID: PMC6559861 DOI: 10.1002/mrm.27800] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/21/2019] [Accepted: 04/15/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE Magnetic resonance imaging of lungs is inherently challenging, but it has become more common with the use of UTE sequences and their relative insensitivity to motion. Spiral UTE sequences have been touted recently as having greater k-space sampling efficiencies than radial UTE, but few are designed for the shorter T2 * of the lung. In this study, FLORET (Fermat looped, orthogonally encoded trajectories), a recently developed spiral 3D-UTE sequence designed for the short T2 * species, was implemented in human lungs for the first time and the images were compared with traditional radial UTE images. METHODS The FLORET sequence was implemented with parameters optimized for lung imaging on healthy and diseased (cystic fibrosis) subjects. On healthy subjects, radial UTE images (3D-radial and 2D-radial with phase encoding) were acquired for comparison to FLORET. Various metrics including SNR, vasculature contrast, diaphragm sharpness, and parenchymal density ratios were acquired and compared among the separate UTE sequences. RESULTS The FLORET sequence performed similarly to traditional radial UTE methods with a much shorter total scan time for fully sampled images (FLORET: 1 minute 55 seconds, 3D-radial: 3 minutes 25 seconds, 2D-radial with phase encoding: 7 minutes 22 seconds). Additionally, the FLORET image obtained on the cystic fibrosis subject resulted in the observation of cystic fibrosis lung pathology similar or superior to that of the other UTE-MRI techniques. CONCLUSION The FLORET sequence allows for faster acquisition of high diagnostic-quality lung images and its short T2 * components without sacrificing SNR, image quality, or tissue/disease quantification.
Collapse
Affiliation(s)
- Matthew M. Willmering
- Center for Pulmonary Imaging Research, Divisions of Pulmonary Medicine and Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ryan K. Robison
- Department of Radiology, Phoenix Children’s Hospital, Phoenix, AZ, 85016, USA
| | - Hui Wang
- Center for Pulmonary Imaging Research, Divisions of Pulmonary Medicine and Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Clinical Science, Philips Healthcare, Gainesville, FL, 32608, USA
| | - James G. Pipe
- Imaging Research, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Jason C. Woods
- Center for Pulmonary Imaging Research, Divisions of Pulmonary Medicine and Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Departments of Pediatrics, Radiology, and Physics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| |
Collapse
|
33
|
Milani B, Delacoste J, Burnier M, Pruijm M. Exploring a new method for quantitative sodium MRI in the human upper leg with a surface coil and symmetrically arranged reference phantoms. Quant Imaging Med Surg 2019; 9:985-999. [PMID: 31367553 DOI: 10.21037/qims.2019.06.08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The aim of this study is to validate and evaluate the reproducibility of a new setup for the quantification of the tissue sodium concentration (TSC) in the human upper leg muscles with sodium MRI at 3 Tesla. This setup is making use of an emit and receive single loop surface coil together with a set of square, symmetrically arranged reference phantoms. As a second aim, the performances of two MRI protocols for the TSC quantification in the upper leg muscles are compared: one using an ultra-short echo time (UTE) 3-dimensional radial sequence (UTE-protocol), and the other one using standard gradient echo sequence (GRE-protocol). Methods A validation test of the quantification of sodium concentration is performed in phantoms. The bias of the method is estimated and compared between both protocols. The reproducibility of TSC quantification is assessed in phantoms by the coefficient of variation (CV) and compared between both protocols. The reproducibility is also assessed in 11 health volunteers. Signal to noise ratio (SNR) maps are acquired in phantoms with both protocols in order to compare the resulting SNR. Results The apparatus and post processing were successfully implemented. The bias of the method was smaller than 10% in phantoms (excepted for Na concentration of 10 mmol/L when using the GRE protocol). The reproducibility of the method using symmetrically arranged phantoms was high in phantoms and humans (CV <5%). The GRE-protocol leads to a better SNR than the UTE-protocol in 2D images. Conclusions The use of symmetrically arranged reference phantoms lead to reproducible results in phantoms and humans. Sodium imaging in the human upper leg with a single loop surface coil should be performed with a standard 2-dimensional GRE protocol if an optimal SNR is needed. However, the quantification of the fast and slow decay time constants of the sodium signal, which plays a role in the TSC quantification, still has to be done with a UTE sequence. Moreover, the quantification of sodium concentration is more accurate with the UTE protocol for small sodium concentrations (<20 mmol).
Collapse
Affiliation(s)
- Bastien Milani
- Division of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Departement de Radiologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jean Delacoste
- Departement de Radiologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Michel Burnier
- Division of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Menno Pruijm
- Division of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Speidel T, Metze P, Rasche V. Efficient 3D Low-Discrepancy k -Space Sampling Using Highly Adaptable Seiffert Spirals. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1833-1840. [PMID: 30582531 DOI: 10.1109/tmi.2018.2888695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The overall duration of acquiring a Nyquist sampled 3D dataset can be significantly shortened by enhancing the efficiency of k -space sampling. This can be achieved by increasing the coverage of k -space for every trajectory interleave. Furthermore, acceleration is possible by making use of advantageous undersampling properties. In this paper, a versatile 3D center-out k -space trajectory based on Jacobian elliptic functions (Seiffert's spiral) is presented. The trajectory leads to a low-discrepancy coverage of k -space using a considerably reduced number of readouts compared with other approaches. Such a coverage is achieved for any number of interleaves, and, therefore, even single-shot trajectories can be constructed to be combined with, for example, hyperpolarized media. Furthermore, acceleration is achievable due to non-coherent undersampling properties of the trajectory in combination with non-linear reconstruction techniques like compressed sensing (CS). Simulations of point-spread functions and discrepancy evaluations compare Seiffert's spiral to the established 3D cones approach. Imaging capabilities are evaluated by comparison of in vivo knee images using Nyquist and undersampled datasets in combination with CS reconstructions.
Collapse
|
35
|
Lachner S, Zaric O, Utzschneider M, Minarikova L, Zbýň Š, Hensel B, Trattnig S, Uder M, Nagel AM. Compressed sensing reconstruction of 7 Tesla 23Na multi-channel breast data using 1H MRI constraint. Magn Reson Imaging 2019; 60:145-156. [DOI: 10.1016/j.mri.2019.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/01/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
|
36
|
Abstract
In this article, an overview of the current developments and research applications for non-proton magnetic resonance imaging (MRI) at ultrahigh magnetic fields (UHFs) is given. Due to technical and methodical advances, efficient MRI of physiologically relevant nuclei, such as Na, Cl, Cl, K, O, or P has become feasible and is of interest to obtain spatially and temporally resolved information that can be used for biomedical and diagnostic applications. Sodium (Na) MRI is the most widespread multinuclear imaging method with applications ranging over all regions of the human body. Na MRI yields the second largest in vivo NMR signal after the clinically used proton signal (H). However, other nuclei such as O and P (energy metabolism) or Cl and K (cell viability) are used in an increasing number of MRI studies at UHF. One major advancement has been the increased availability of whole-body MR scanners with UHFs (B0 ≥7T) expanding the range of detectable nuclei. Nevertheless, efforts in terms of pulse sequence and post-processing developments as well as hardware designs must be made to obtain valuable information in clinically feasible measurement times. This review summarizes the available methods in the field of non-proton UHF MRI, especially for Na MRI, as well as introduces potential applications in clinical research.
Collapse
Affiliation(s)
- Sebastian C Niesporek
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin M Nagel
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tanja Platt
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
37
|
Ianniello C, Madelin G, Moy L, Brown R. A dual-tuned multichannel bilateral RF coil for 1 H/ 23 Na breast MRI at 7 T. Magn Reson Med 2019; 82:1566-1575. [PMID: 31148249 DOI: 10.1002/mrm.27829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Sodium MRI has shown promise for monitoring neoadjuvant chemotherapy response in breast cancer. The purpose of this work was to build a dual-tuned bilateral proton/sodium breast coil for 7T MRI that provides sufficient SNR to enable sodium breast imaging in less than 10 minutes. METHODS The proton/sodium coil consists of 2 shielded unilateral units: 1 for each breast. Each unit consists of 3 nested layers: (1) a 3-loop solenoid for sodium excitation, (2) a 3-loop solenoid for proton excitation and signal reception, and (3) a 4-channel receive array for sodium signal reception. Benchmark measurements were performed in phantoms with and without the sodium receive array insert. In vivo images were acquired on a healthy volunteer. RESULTS The sodium receive array boosted 1.5 to 3 times the SNR compared with the solenoid. Proton SNR loss due to residual interaction with the sodium array was less than 10%. The coil enabled sodium imaging in vivo with 2.8-mm isotropic nominal resolution (~5-mm real resolution) in 9:36 minutes. CONCLUSION The coil design that we propose addresses challenges associated with sodium's low SNR from a hardware perspective and offers the opportunity to investigate noninvasively breast tumor metabolism as a function of sodium concentration in patients undergoing neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Carlotta Ianniello
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York
| | - Guillaume Madelin
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York
| | - Linda Moy
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York
| |
Collapse
|
38
|
Zeng DY, Shaikh J, Holmes S, Brunsing RL, Pauly JM, Nishimura DG, Vasanawala SS, Cheng JY. Deep residual network for off-resonance artifact correction with application to pediatric body MRA with 3D cones. Magn Reson Med 2019; 82:1398-1411. [PMID: 31115936 DOI: 10.1002/mrm.27825] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/28/2019] [Accepted: 05/01/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE To enable rapid imaging with a scan time-efficient 3D cones trajectory with a deep-learning off-resonance artifact correction technique. METHODS A residual convolutional neural network to correct off-resonance artifacts (Off-ResNet) was trained with a prospective study of pediatric MRA exams. Each exam acquired a short readout scan (1.18 ms ± 0.38) and a long readout scan (3.35 ms ± 0.74) at 3 T. Short readout scans, with longer scan times but negligible off-resonance blurring, were used as reference images and augmented with additional off-resonance for supervised training examples. Long readout scans, with greater off-resonance artifacts but shorter scan time, were corrected by autofocus and Off-ResNet and compared with short readout scans by normalized RMS error, structural similarity index, and peak SNR. Scans were also compared by scoring on 8 anatomical features by two radiologists, using analysis of variance with post hoc Tukey's test and two one-sided t-tests. Reader agreement was determined with intraclass correlation. RESULTS The total scan time for long readout scans was on average 59.3% shorter than short readout scans. Images from Off-ResNet had superior normalized RMS error, structural similarity index, and peak SNR compared with uncorrected images across ±1 kHz off-resonance (P < .01). The proposed method had superior normalized RMS error over -677 Hz to +1 kHz and superior structural similarity index and peak SNR over ±1 kHz compared with autofocus (P < .01). Radiologic scoring demonstrated that long readout scans corrected with Off-ResNet were noninferior to short readout scans (P < .05). CONCLUSION The proposed method can correct off-resonance artifacts from rapid long-readout 3D cones scans to a noninferior image quality compared with diagnostically standard short readout scans.
Collapse
Affiliation(s)
- David Y Zeng
- Department of Electrical Engineering, Stanford University, Stanford, California
| | - Jamil Shaikh
- Department of Radiology, Stanford University, Stanford, California
| | - Signy Holmes
- Department of Radiology, Stanford University, Stanford, California
| | - Ryan L Brunsing
- Department of Radiology, Stanford University, Stanford, California
| | - John M Pauly
- Department of Electrical Engineering, Stanford University, Stanford, California
| | - Dwight G Nishimura
- Department of Electrical Engineering, Stanford University, Stanford, California
| | | | - Joseph Y Cheng
- Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
39
|
Hu R, Kleimaier D, Malzacher M, Hoesl MA, Paschke NK, Schad LR. X‐nuclei imaging: Current state, technical challenges, and future directions. J Magn Reson Imaging 2019; 51:355-376. [DOI: 10.1002/jmri.26780] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ruomin Hu
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Dennis Kleimaier
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Matthias Malzacher
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | | | - Nadia K. Paschke
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Lothar R. Schad
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| |
Collapse
|
40
|
Ye JC. Compressed sensing MRI: a review from signal processing perspective. BMC Biomed Eng 2019; 1:8. [PMID: 32903346 PMCID: PMC7412677 DOI: 10.1186/s42490-019-0006-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/04/2019] [Indexed: 11/27/2022] Open
Abstract
Magnetic resonance imaging (MRI) is an inherently slow imaging modality, since it acquires multi-dimensional k-space data through 1-D free induction decay or echo signals. This often limits the use of MRI, especially for high resolution or dynamic imaging. Accordingly, many investigators has developed various acceleration techniques to allow fast MR imaging. For the last two decades, one of the most important breakthroughs in this direction is the introduction of compressed sensing (CS) that allows accurate reconstruction from sparsely sampled k-space data. The recent FDA approval of compressed sensing products for clinical scans clearly reflect the maturity of this technology. Therefore, this paper reviews the basic idea of CS and how this technology have been evolved for various MR imaging problems.
Collapse
Affiliation(s)
- Jong Chul Ye
- Department of Bio and Brain Engineering, Korea Adv. Inst. of Science & Technology (KAIST), 291 Daehak-ro, Daejeon, Korea
| |
Collapse
|
41
|
Malzacher M, Chacon-Caldera J, Paschke N, Schad LR. Feasibility study of a double resonant 8-channel 1H/ 8-channel 23Na receive-only head coil at 3 Tesla. Magn Reson Imaging 2019; 59:97-104. [PMID: 30880113 DOI: 10.1016/j.mri.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 01/12/2023]
Abstract
Sodium (23Na) magnetic resonance imaging (MRI), especially brain applications are increasingly interesting since sodium MRI can provide additional information about tissue viability and vitality. In order to include sodium MRI in the clinical routine, a single RF setup is preferable which provides high sodium sensitivity and full proton performance in terms of signal-to-noise ratio (SNR) and parallel imaging performance. The aim of this work was to evaluate the feasibility of a double resonant receive (Rx) coil array for proton and sodium head MRI. The coil was designed to provide high sodium SNR and full proton performance comparable to commercial coils which are optimized for sodium MRI or for proton MRI, respectively. A measurement setup was built which comprised an 8-channel Rx degenerate Birdcage for sodium imaging and an 8-channel Rx array for proton imaging. The performance of the coil was evaluated against commercial sodium and proton coils using phantom and in-vivo measurements of two healthy volunteers.
Collapse
Affiliation(s)
- Matthias Malzacher
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Jorge Chacon-Caldera
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadia Paschke
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
42
|
Coste A, Boumezbeur F, Vignaud A, Madelin G, Reetz K, Le Bihan D, Rabrait-Lerman C, Romanzetti S. Tissue sodium concentration and sodium T 1 mapping of the human brain at 3 T using a Variable Flip Angle method. Magn Reson Imaging 2019; 58:116-124. [PMID: 30695720 DOI: 10.1016/j.mri.2019.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/28/2018] [Accepted: 01/15/2019] [Indexed: 01/18/2023]
Abstract
PURPOSE The state-of-the-art method to quantify sodium concentrations in vivo consists in a fully relaxed 3D spin-density (SD) weighted acquisition. Nevertheless, most sodium MRI clinical studies use short-TR SD acquisitions to reduce acquisition durations. We present a clinically viable implementation of the Variable Flip Angle (VFA) method for robust and clinically viable quantification of total sodium concentration (TSC) and longitudinal relaxation rates in vivo in human brain at 3 T. METHODS Two non-Cartesian steady-state spoiled ultrashort echo time (UTE) scans, performed at optimized flip angles, repetition time and pulse length determined under specific absorption rate constraints, are used to simultaneously compute T1 and total sodium concentration (TSC) maps using the VFA method. Images are reconstructed using the non-uniform Fast Fourier Transform algorithm and TSC maps are corrected for possible inhomogeneity of coil transmission and reception profiles. Fractioned acquisitions are used to correct for potential patient motion. TSC quantifications obtained using the VFA method are validated at first in comparison with a fully-relaxed SD acquisition in a calibration phantom. The robustness of similar VFA acquisitions are compared to the short-TR SD approach in vivo on seven healthy volunteers. RESULTS The VFA method resulted in consistent TSC and T1 estimates across our cohort of healthy subjects, with mean TSC of 38.1 ± 5.0 mmol/L and T1 of 39.2 ± 4.4 ms. These results are in agreement with previously reported values in literature TSC estimations and with the predictions of a 2-compartment model. However, the short-TR SD acquisition systematically underestimated the sodium concentration with a mean TSC of 31 ± 4.5 mmol/L. CONCLUSION The VFA method can be applied successfully to image sodium at 3 T in about 20 min and provides robust and intrinsically T1-corrected TSC maps.
Collapse
Affiliation(s)
- Arthur Coste
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fawzi Boumezbeur
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | - Alexandre Vignaud
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | - Guillaume Madelin
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, USA
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Denis Le Bihan
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | | | | |
Collapse
|
43
|
Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, Schmitter S, Speck O, Straub S, Zaiss M. Pros and cons of ultra-high-field MRI/MRS for human application. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:1-50. [PMID: 30527132 DOI: 10.1016/j.pnmrs.2018.06.001] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 05/08/2023]
Abstract
Magnetic resonance imaging and spectroscopic techniques are widely used in humans both for clinical diagnostic applications and in basic research areas such as cognitive neuroimaging. In recent years, new human MR systems have become available operating at static magnetic fields of 7 T or higher (≥300 MHz proton frequency). Imaging human-sized objects at such high frequencies presents several challenges including non-uniform radiofrequency fields, enhanced susceptibility artifacts, and higher radiofrequency energy deposition in the tissue. On the other side of the scale are gains in signal-to-noise or contrast-to-noise ratio that allow finer structures to be visualized and smaller physiological effects to be detected. This review presents an overview of some of the latest methodological developments in human ultra-high field MRI/MRS as well as associated clinical and scientific applications. Emphasis is given to techniques that particularly benefit from the changing physical characteristics at high magnetic fields, including susceptibility-weighted imaging and phase-contrast techniques, imaging with X-nuclei, MR spectroscopy, CEST imaging, as well as functional MRI. In addition, more general methodological developments such as parallel transmission and motion correction will be discussed that are required to leverage the full potential of higher magnetic fields, and an overview of relevant physiological considerations of human high magnetic field exposure is provided.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Peter Bachert
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.
| | - Martin Meyerspeer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Sebastian Schmitter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany; Center for Behavioural Brain Sciences, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Sina Straub
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Moritz Zaiss
- High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
44
|
Robison RK, Li Z, Wang D, Ooi MB, Pipe JG. Correction of B
0
eddy current effects in spiral MRI. Magn Reson Med 2018; 81:2501-2513. [DOI: 10.1002/mrm.27583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ryan K. Robison
- Phoenix Children's Hospital Phoenix Arizona
- Barrow Neurological Institute Phoenix Arizona
| | - Zhiqiang Li
- Barrow Neurological Institute Phoenix Arizona
| | | | - Melvyn B. Ooi
- Barrow Neurological Institute Phoenix Arizona
- Philips Healthcare Gainesville Florida
| | | |
Collapse
|
45
|
Nunes Neto LP, Madelin G, Sood TP, Wu CC, Kondziolka D, Placantonakis D, Golfinos JG, Chi A, Jain R. Quantitative sodium imaging and gliomas: a feasibility study. Neuroradiology 2018; 60:795-802. [PMID: 29862413 DOI: 10.1007/s00234-018-2041-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/21/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Recent advances in sodium brain MRI have allowed for increased signal-to-noise ratio, faster imaging, and the ability of differentiating intracellular from extracellular sodium concentration, opening a new window of opportunity for clinical application. In gliomas, there are significant alterations in sodium metabolism, including increase in the total sodium concentration and extracellular volume fraction. The purpose of this study is to assess the feasibility of using sodium MRI quantitative measurements to evaluate gliomas. METHODS Eight patients with treatment-naïve gliomas were scanned at 3 T with a homemade 1H/23Na head coil, generating maps of pseudo-intracellular sodium concentration (C1), pseudo-extracellular volume fraction (α2), apparent intracellular sodium concentration (aISC), and apparent total sodium concentration (aTSC). Measurements were made within the contralateral normal-appearing putamen, contralateral normal-appearing white matter (NAWM), and solid tumor regions (area of T2-FLAIR abnormality, excluding highly likely areas of edema, cysts, or necrosis). Paired samples t test were performed comparing NAWM and putamen and between NAWM and solid tumor. RESULTS The normal-appearing putamen demonstrated significantly higher values for aTSC, aISC, C1 (p < 0.001), and α2 (p = 0.002) when compared to those of NAWM. The mean average of all solid tumors, when compared to that of NAWM, demonstrated significantly higher values of aTSC and α2 (p < 0.001), and significantly lower values of aISC (p = 0.02) for each patient. There was no significant difference between the values of C1 (p = 0.19). CONCLUSION Quantitative sodium measurements can be done in glioma patients and also has provided further evidence that total sodium and extracellular volume fraction are increased in gliomas.
Collapse
Affiliation(s)
- Lucidio P Nunes Neto
- Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Guillaume Madelin
- Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Terlika Pandit Sood
- Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Chih-Chun Wu
- Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Douglas Kondziolka
- Department of Neurosurgery, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Dimitris Placantonakis
- Department of Neurosurgery, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - John G Golfinos
- Department of Neurosurgery, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Andrew Chi
- Department of Medicine, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Rajan Jain
- Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA. .,Department of Neurosurgery, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA.
| |
Collapse
|
46
|
Menon RG, Chang G, Regatte RR. The Emerging Role of 7 Tesla MRI in Musculoskeletal Imaging. CURRENT RADIOLOGY REPORTS 2018. [DOI: 10.1007/s40134-018-0286-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Ma D, Jiang Y, Chen Y, McGivney D, Mehta B, Gulani V, Griswold M. Fast 3D magnetic resonance fingerprinting for a whole-brain coverage. Magn Reson Med 2018; 79:2190-2197. [PMID: 28833436 PMCID: PMC5868964 DOI: 10.1002/mrm.26886] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/19/2017] [Accepted: 08/03/2017] [Indexed: 12/24/2022]
Abstract
PURPOSE The purpose of this study was to accelerate the acquisition and reconstruction time of 3D magnetic resonance fingerprinting scans. METHODS A 3D magnetic resonance fingerprinting scan was accelerated by using a single-shot spiral trajectory with an undersampling factor of 48 in the x-y plane, and an interleaved sampling pattern with an undersampling factor of 3 through plane. Further acceleration came from reducing the waiting time between neighboring partitions. The reconstruction time was accelerated by applying singular value decomposition compression in k-space. Finally, a 3D premeasured B1 map was used to correct for the B1 inhomogeneity. RESULTS The T1 and T2 values of the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology MRI phantom showed a good agreement with the standard values, with an average concordance correlation coefficient of 0.99, and coefficient of variation of 7% in the repeatability scans. The results from in vivo scans also showed high image quality in both transverse and coronal views. CONCLUSIONS This study applied a fast acquisition scheme for a fully quantitative 3D magnetic resonance fingerprinting scan with a total acceleration factor of 144 as compared with the Nyquist rate, such that 3D T1 , T2 , and proton density maps can be acquired with whole-brain coverage at clinical resolution in less than 5 min. Magn Reson Med 79:2190-2197, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Dan Ma
- Department of Radiology, Case Western Reserve University, Cleveland, OH
| | - Yun Jiang
- Department of Radiology, Case Western Reserve University, Cleveland, OH
| | - Yong Chen
- Department of Radiology, Case Western Reserve University, Cleveland, OH
| | - Debra McGivney
- Department of Radiology, Case Western Reserve University, Cleveland, OH
| | - Bhairav Mehta
- Department of Radiology, Case Western Reserve University, Cleveland, OH
| | - Vikas Gulani
- Department of Radiology, Case Western Reserve University, Cleveland, OH
| | - Mark Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
48
|
Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage 2018; 168:250-268. [PMID: 27890804 PMCID: PMC5443706 DOI: 10.1016/j.neuroimage.2016.11.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022] Open
Abstract
Sodium magnetic resonance (MR) imaging in humans has promised metabolic information that can improve medical management in important diseases. This technology has yet to find a role in clinical practice, lagging proton MR imaging by decades. This review covers the literature that demonstrates that this delay is explained by initial challenges of low sensitivity at low magnetic fields and the limited performance of gradients and electronics available in the 1980s. These constraints were removed by the introduction of 3T and now ultrahigh (≥7T) magnetic field scanners with superior gradients and electronics for proton MR imaging. New projection pulse sequence designs have greatly improved sodium acquisition efficiency. The increased field strength has provided the expected increased sensitivity to achieve resolutions acceptable for metabolic interpretation even in small target tissues. Consistency of quantification of the sodium MR image to provide metabolic parametric maps has been demonstrated by several different pulse sequences and calibration procedures. The vital roles of sodium ion in membrane transport and the extracellular matrix will be reviewed to indicate the broad opportunities that now exist for clinical sodium MR imaging. The final challenge is for the technology to be supplied on clinical ≥3T scanners.
Collapse
Affiliation(s)
- Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, 1801 West Taylor Street, Chicago, IL 60612, United States.
| |
Collapse
|
49
|
Lakshmanan K, Brown R, Madelin G, Qian Y, Boada F, Wiggins GC. An eight-channel sodium/proton coil for brain MRI at 3 T. NMR IN BIOMEDICINE 2018; 31:10.1002/nbm.3867. [PMID: 29280204 PMCID: PMC5779625 DOI: 10.1002/nbm.3867] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
The purpose of this work is to illustrate a new coil decoupling strategy and its application to a transmit/receive sodium/proton phased array for magnetic resonance imaging (MRI) of the human brain. We implemented an array of eight triangular coils that encircled the head. The ensemble of coils was arranged to form a modified degenerate mode birdcage whose eight shared rungs were offset from the z-axis at interleaved angles of ±30°. This key geometric modification resulted in triangular elements whose vertices were shared between next-nearest neighbors, which provided a convenient location for counter-wound decoupling inductors, whilst nearest-neighbor decoupling was addressed with shared capacitors along the rungs. This decoupling strategy alleviated the strong interaction that is characteristic of array coils at low frequency (32.6 MHz in this case) and allowed the coil to operate efficiently in transceive mode. The sodium array provided a 1.6-fold signal-to-noise ratio advantage over a dual-nuclei birdcage coil in the center of the head and up to 2.3-fold gain in the periphery. The array enabled sodium MRI of the brain with 5-mm isotropic resolution in approximately 13 min, thus helping to overcome low sodium MR sensitivity and improving quantification in neurological studies. An eight-channel proton array was integrated into the sodium array to enable anatomical imaging.
Collapse
Affiliation(s)
- Karthik Lakshmanan
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY USA
| | - Ryan Brown
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY USA
| | - Guillaume Madelin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY USA
| | - Yongxian Qian
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY USA
| | - Fernando Boada
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY USA
| | - Graham C. Wiggins
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY USA
| |
Collapse
|
50
|
Xia D, Lee JS, Regatte RR. Quadrupolar jump-and-return pulse sequence for fluid-suppressed sodium MRI of the knee joint at 7T. Magn Reson Med 2017; 80:641-647. [PMID: 29266468 DOI: 10.1002/mrm.27047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/02/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE To demonstrate the feasibility of the so-called quadrupolar jump-and-return (QJR) pulse sequence by assessing its performance on the contrast modification to knee cartilage and quality of fluid suppression in the knee joint in vivo at 7T. METHODS The right knee joints of five healthy volunteers (3 males: mean age = 32.4 ± 1.3 years; 2 females: mean age = 27.9 ± 1.0 years; mean age = 30.6 ± 2.7 years) were scanned on a 7T scanner with variation of the delay in the QJR sequence from 1 ms to 5 ms. For one healthy volunteer, the QJR scan with the delay of 3 ms and the inversion-recovery (IR) scan were performed. Numerical simulations were conducted to evaluate the effects of B0 - and B1 -field inhomogeneities and residual quadrupolar couplings on fluid suppression and tissue contrast, respectively. RESULTS The QJR sequence suppressed the fluid signal from the artery and produced the contrast of knee cartilage in vivo. Its performance was comparable to that of the conventional IR sequence. Numerical simulations suggested that the fluid suppression may not be affected much by field inhomogeneities but that a distribution of residual quadrupolar couplings and weak RF pulses may interfere with the clear interpretation of cartilage contrast. CONCLUSION This preliminary work demonstrated that the QJR pulse sequence produces contrast for knee cartilage while suppressing the fluid signal from the artery. The knee cartilage contrast and quality of fluid suppression obtained from the QJR sequence were comparable to those of the IR sequence. Magn Reson Med 80:641-647, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ding Xia
- Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| | - Jae-Seung Lee
- Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| | - Ravinder R Regatte
- Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|