1
|
Renzi F, Vergara C, Fedele M, Giambruno V, Quarteroni A, Puppini G, Luciani GB. Accurate Reconstruction of Right Heart Shape and Motion From Cine-MRI for Image-Driven Computational Hemodynamics. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2025; 41:e3891. [PMID: 39822179 PMCID: PMC11740007 DOI: 10.1002/cnm.3891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/26/2024] [Accepted: 11/19/2024] [Indexed: 01/19/2025]
Abstract
Accurate reconstruction of the right heart geometry and motion from time-resolved medical images is crucial for diagnostic enhancement and computational analysis of cardiac blood dynamics. Commonly used segmentation and/or reconstruction techniques, exclusively relying on short-axis cine-MRI, lack precision in critical regions of the right heart, such as the ventricular base and the outflow tract, due to its unique morphology and motion. Furthermore, the reconstruction procedure is time-consuming and necessitates significant manual intervention for generating computational domains. This study introduces an end-to-end hybrid reconstruction method specifically designed for computational simulations. Integrating information from various cine-MRI series (short/long-axis and 2/3/4 chambers views) with minimal user contribution, our method leverages registration- and morphing-based algorithms to accurately reconstruct crucial cardiac features and complete cardiac motion. The reconstructed data enable the creation of patient-specific computational fluid dynamics models, facilitating the analysis of the hemodynamics in healthy and clinically relevant scenarios. We assessed the accuracy of our reconstruction method against ground truth and a standard method. We also evaluated volumetric clinical parameters and compared them with the literature values. The method's adaptability was investigated by reducing the number of cine-MRI views, highlighting its robustness with varying imaging data. Numerical findings supported the reliability of the approach for simulating hemodynamics. Combining registration- and morphing-based algorithms, our method offers accurate reconstructions of the right heart chambers' morphology and motion. These reconstructions can serve as valuable tools as domain and boundary conditions for computational fluid dynamics simulations, ensuring seamless and effective analysis.
Collapse
Affiliation(s)
- Francesca Renzi
- Dipartimento di Scienze Chirurgiche Odontostomatologiche e Materno‐InfantiliUniversità di VeronaVeronaItaly
| | - Christian Vergara
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria ChimicaPolitecnico di MilanoMilanItaly
| | - Marco Fedele
- MOX, Dipartimento di MatematicaPolitecnico di MilanoMilanItaly
| | - Vincenzo Giambruno
- Dipartimento di Scienze Chirurgiche Odontostomatologiche e Materno‐InfantiliUniversità di VeronaVeronaItaly
| | - Alfio Quarteroni
- MOX, Dipartimento di MatematicaPolitecnico di MilanoMilanItaly
- Institute of MathematicsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | | | - Giovanni Battista Luciani
- Dipartimento di Scienze Chirurgiche Odontostomatologiche e Materno‐InfantiliUniversità di VeronaVeronaItaly
| |
Collapse
|
2
|
Chang Q, Wang Y, Zhang J. Independently Trained Multi-Scale Registration Network Based on Image Pyramid. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1557-1566. [PMID: 38441699 PMCID: PMC11300729 DOI: 10.1007/s10278-024-01019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 08/07/2024]
Abstract
Image registration is a fundamental task in various applications of medical image analysis and plays a crucial role in auxiliary diagnosis, treatment, and surgical navigation. However, cardiac image registration is challenging due to the large non-rigid deformation of the heart and the complex anatomical structure. To address this challenge, this paper proposes an independently trained multi-scale registration network based on an image pyramid. By down-sampling the original input image multiple times, we can construct image pyramid pairs, and design a multi-scale registration network using image pyramid pairs of different resolutions as the training set. Using image pairs of different resolutions, train each registration network independently to extract image features from the image pairs at different resolutions. During the testing stage, the large deformation registration is decomposed into a multi-scale registration process. The deformation fields of different resolutions are fused by a step-by-step deformation method, thereby addressing the challenge of directly handling large deformations. Experiments were conducted on the open cardiac dataset ACDC (Automated Cardiac Diagnosis Challenge); the proposed method achieved an average Dice score of 0.828 in the experimental results. Through comparative experiments, it has been demonstrated that the proposed method effectively addressed the challenge of heart image registration and achieved superior registration results for cardiac images.
Collapse
Affiliation(s)
- Qing Chang
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China.
| | - Yaqi Wang
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Jieming Zhang
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Chang Q, Wang Y. Structure-aware independently trained multi-scale registration network for cardiac images. Med Biol Eng Comput 2024; 62:1795-1808. [PMID: 38381202 DOI: 10.1007/s11517-024-03039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Image registration is a primary task in various medical image analysis applications. However, cardiac image registration is difficult due to the large non-rigid deformation of the heart and the complex anatomical structure. This paper proposes a structure-aware independently trained multi-scale registration network (SIMReg) to address this challenge. Using image pairs of different resolutions, independently train each registration network to extract image features of large deformation image pairs at different resolutions. In the testing stage, the large deformation registration is decomposed into a multi-scale registration process, and the deformation fields of different resolutions are fused by a step-by-step deformation method, thus solving the difficulty of directly processing large deformation. Meanwhile, the targeted introduction of MIND (modality independent neighborhood descriptor) structural features to guide network training enhances the registration of cardiac structural contours and improves the registration effect of local details. Experiments were carried out on the open cardiac dataset ACDC (automated cardiac diagnosis challenge), and the average Dice value of the experimental results of the proposed method was 0.833. Comparative experiments showed that the proposed SIMReg could better solve the problem of heart image registration and achieve a better registration effect on cardiac images.
Collapse
Affiliation(s)
- Qing Chang
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Yaqi Wang
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
4
|
Hill DLG. AI in imaging: the regulatory landscape. Br J Radiol 2024; 97:483-491. [PMID: 38366148 PMCID: PMC11027239 DOI: 10.1093/bjr/tqae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 02/18/2024] Open
Abstract
Artificial intelligence (AI) methods have been applied to medical imaging for several decades, but in the last few years, the number of publications and the number of AI-enabled medical devices coming on the market have significantly increased. While some AI-enabled approaches are proving very valuable, systematic reviews of the AI imaging field identify significant weaknesses in a significant proportion of the literature. Medical device regulators have recently become more proactive in publishing guidance documents and recognizing standards that will require that the development and validation of AI-enabled medical devices need to be more rigorous than required for tradition "rule-based" software. In particular, developers are required to better identify and mitigate risks (such as bias) that arise in AI-enabled devices, and to ensure that the devices are validated in a realistic clinical setting to ensure their output is clinically meaningful. While this evolving regulatory landscape will mean that device developers will take longer to bring novel AI-based medical imaging devices to market, such additional rigour is necessary to address existing weaknesses in the field and ensure that patients and healthcare professionals can trust AI-enabled devices. There would also be benefits in the academic community taking into account this regulatory framework, to improve the quality of the literature and make it easier for academically developed AI tools to make the transition to medical devices that impact healthcare.
Collapse
|
5
|
Priya S, Dhruba DD, Perry SS, Aher PY, Gupta A, Nagpal P, Jacob M. Optimizing Deep Learning for Cardiac MRI Segmentation: The Impact of Automated Slice Range Classification. Acad Radiol 2024; 31:503-513. [PMID: 37541826 DOI: 10.1016/j.acra.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 08/06/2023]
Abstract
RATIONALE AND OBJECTIVES Cardiac magnetic resonance imaging is crucial for diagnosing cardiovascular diseases, but lengthy postprocessing and manual segmentation can lead to observer bias. Deep learning (DL) has been proposed for automated cardiac segmentation; however, its effectiveness is limited by the slice range selection from base to apex. MATERIALS AND METHODS In this study, we integrated an automated slice range classification step to identify basal to apical short-axis slices before DL-based segmentation. We employed publicly available Multi-Disease, Multi-View & Multi-Center Right Ventricular Segmentation in Cardiac MRI data set with short-axis cine data from 160 training, 40 validation, and 160 testing cases. Three classification and seven segmentation DL models were studied. The top-performing segmentation model was assessed with and without the classification model. Model validation to compare automated and manual segmentation was performed using Dice score and Hausdorff distance and clinical indices (correlation score and Bland-Altman plots). RESULTS The combined classification (CBAM-integrated 2D-CNN) and segmentation model (2D-UNet with dilated convolution block) demonstrated superior performance, achieving Dice scores of 0.952 for left ventricle (LV), 0.933 for right ventricle (RV), and 0.875 for myocardium, compared to the stand-alone segmentation model (0.949 for LV, 0.925 for RV, and 0.867 for myocardium). Combined classification and segmentation model showed high correlation (0.92-0.99) with manual segmentation for biventricular volumes, ejection fraction, and myocardial mass. The mean absolute difference (2.8-8.3 mL) for clinical parameters between automated and manual segmentation was within the interobserver variability range, indicating comparable performance to manual annotation. CONCLUSION Integrating an initial automated slice range classification step into the segmentation process improves the performance of DL-based cardiac chamber segmentation.
Collapse
Affiliation(s)
- Sarv Priya
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa (S.P.).
| | - Durjoy D Dhruba
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa (D.D.D., M.J.)
| | - Sarah S Perry
- Department of Biostatistics, University of Iowa, Iowa City, Iowa (S.S.P.)
| | - Pritish Y Aher
- Department of Radiology, University of Miami, Miller School of Medicine, Miami, Florida (P.Y.A.)
| | - Amit Gupta
- Department of Radiology, University Hospital Cleveland Medical Center, Cleveland, Ohio (A.G.)
| | - Prashant Nagpal
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin (P.N.)
| | - Mathews Jacob
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa (D.D.D., M.J.)
| |
Collapse
|
6
|
Bourazana A, Xanthopoulos A, Briasoulis A, Magouliotis D, Spiliopoulos K, Athanasiou T, Vassilopoulos G, Skoularigis J, Triposkiadis F. Artificial Intelligence in Heart Failure: Friend or Foe? Life (Basel) 2024; 14:145. [PMID: 38276274 PMCID: PMC10817517 DOI: 10.3390/life14010145] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
In recent times, there have been notable changes in cardiovascular medicine, propelled by the swift advancements in artificial intelligence (AI). The present work provides an overview of the current applications and challenges of AI in the field of heart failure. It emphasizes the "garbage in, garbage out" issue, where AI systems can produce inaccurate results with skewed data. The discussion covers issues in heart failure diagnostic algorithms, particularly discrepancies between existing models. Concerns about the reliance on the left ventricular ejection fraction (LVEF) for classification and treatment are highlighted, showcasing differences in current scientific perceptions. This review also delves into challenges in implementing AI, including variable considerations and biases in training data. It underscores the limitations of current AI models in real-world scenarios and the difficulty in interpreting their predictions, contributing to limited physician trust in AI-based models. The overarching suggestion is that AI can be a valuable tool in clinicians' hands for treating heart failure patients, as far as existing medical inaccuracies have been addressed before integrating AI into these frameworks.
Collapse
Affiliation(s)
- Angeliki Bourazana
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece
| | - Alexandros Briasoulis
- Division of Cardiovascular Medicine, Section of Heart Failure and Transplantation, University of Iowa, Iowa City, IA 52242, USA
| | - Dimitrios Magouliotis
- Department of Cardiothoracic Surgery, University of Thessaly, 41110 Larissa, Greece; (D.M.); (K.S.)
| | - Kyriakos Spiliopoulos
- Department of Cardiothoracic Surgery, University of Thessaly, 41110 Larissa, Greece; (D.M.); (K.S.)
| | - Thanos Athanasiou
- Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital, London W2 1NY, UK
| | - George Vassilopoulos
- Department of Hematology, University Hospital of Larissa, University of Thessaly Medical School, 41110 Larissa, Greece
| | - John Skoularigis
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece
| | | |
Collapse
|
7
|
Wang L, Su H, Liu P. Automatic right ventricular segmentation for cine cardiac magnetic resonance images based on a new deep atlas network. Med Phys 2023; 50:7060-7070. [PMID: 37293874 DOI: 10.1002/mp.16547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/23/2023] [Accepted: 05/20/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND The high morbidity and mortality of heart disease present a significant threat to human health. The development of methods for the quick and accurate diagnosis of heart diseases, enabling their effective treatment, has become a key issue of concern. Right ventricular (RV) segmentation from cine cardiac magnetic resonance (CMR) images plays a significant role in evaluating cardiac function for clinical diagnosis and prognosis. However, due to the complex structure of the RV, traditional segmentation methods are ineffective for RV segmentation. PURPOSE In this paper, we propose a new deep atlas network to improve the learning efficiency and segmentation accuracy of a deep learning network by integrating multi-atlas. METHODS First, a dense multi-scale U-net (DMU-net) is presented to acquire transformation parameters from atlas images to target images. The transformation parameters map the atlas image labels to the target image labels. Second, using a spatial transformation layer, the atlas images are deformed based on these parameters. Finally, the network is optimized by backpropagation with two loss functions where the mean squared error function (MSE) is used to measure the similarity of the input images and transformed images. Further, the Dice metric (DM) is used to quantify the overlap between the predicted contours and the ground truth. In our experiments, 15 datasets are used in testing, and 20 cine CMR images are selected as atlas. RESULTS The mean values and standard deviations for the DM and Hausdorff distance are 0.871 and 4.67 mm, 0.104 and 2.528 mm, respectively. The correlation coefficients of endo-diastolic volume, endo-systolic volume, ejection fraction, and stroke volume are 0.984, 0.926, 0.980, and 0.991, respectively, and the mean differences between all of the mentioned parameters are 3.2, -1.7, 0.02, and 4.9, respectively. Most of these differences are within the allowable range of 95%, indicating that the results are acceptable and show good consistency. The segmentation results obtained in this method are compared with those obtained by other methods that provide satisfactory performance. The other methods provide better segmentation effects at the base, but either no segmentation or the wrong segmentation at the top, which demonstrate that the deep atlas network can improve top-area segmentation accuracy. CONCLUSION Our results indicate that the proposed method can achieve better segmentation results than the previous methods, with both high relevance and consistency, and has the potential for clinical application.
Collapse
Affiliation(s)
- Lijia Wang
- School of Health Science and Engineering USST, Shanghai, China
| | - Hanlu Su
- School of Health Science and Engineering USST, Shanghai, China
| | - Peng Liu
- School of Health Science and Engineering USST, Shanghai, China
| |
Collapse
|
8
|
Tayebi Arasteh S, Romanowicz J, Pace DF, Golland P, Powell AJ, Maier AK, Truhn D, Brosch T, Weese J, Lotfinia M, van der Geest RJ, Moghari MH. Automated segmentation of 3D cine cardiovascular magnetic resonance imaging. Front Cardiovasc Med 2023; 10:1167500. [PMID: 37904806 PMCID: PMC10613522 DOI: 10.3389/fcvm.2023.1167500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023] Open
Abstract
Introduction As the life expectancy of children with congenital heart disease (CHD) is rapidly increasing and the adult population with CHD is growing, there is an unmet need to improve clinical workflow and efficiency of analysis. Cardiovascular magnetic resonance (CMR) is a noninvasive imaging modality for monitoring patients with CHD. CMR exam is based on multiple breath-hold 2-dimensional (2D) cine acquisitions that should be precisely prescribed and is expert and institution dependent. Moreover, 2D cine images have relatively thick slices, which does not allow for isotropic delineation of ventricular structures. Thus, development of an isotropic 3D cine acquisition and automatic segmentation method is worthwhile to make CMR workflow straightforward and efficient, as the present work aims to establish. Methods Ninety-nine patients with many types of CHD were imaged using a non-angulated 3D cine CMR sequence covering the whole-heart and great vessels. Automatic supervised and semi-supervised deep-learning-based methods were developed for whole-heart segmentation of 3D cine images to separately delineate the cardiac structures, including both atria, both ventricles, aorta, pulmonary arteries, and superior and inferior vena cavae. The segmentation results derived from the two methods were compared with the manual segmentation in terms of Dice score, a degree of overlap agreement, and atrial and ventricular volume measurements. Results The semi-supervised method resulted in a better overlap agreement with the manual segmentation than the supervised method for all 8 structures (Dice score 83.23 ± 16.76% vs. 77.98 ± 19.64%; P-value ≤0.001). The mean difference error in atrial and ventricular volumetric measurements between manual segmentation and semi-supervised method was lower (bias ≤ 5.2 ml) than the supervised method (bias ≤ 10.1 ml). Discussion The proposed semi-supervised method is capable of cardiac segmentation and chamber volume quantification in a CHD population with wide anatomical variability. It accurately delineates the heart chambers and great vessels and can be used to accurately calculate ventricular and atrial volumes throughout the cardiac cycle. Such a segmentation method can reduce inter- and intra- observer variability and make CMR exams more standardized and efficient.
Collapse
Affiliation(s)
- Soroosh Tayebi Arasteh
- Department of Cardiology, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Jennifer Romanowicz
- Department of Cardiology, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Department of Cardiology, Children’s Hospital Colorado, and School of Medicine, University of Colorado, Aurora, CO, United States
| | - Danielle F. Pace
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Polina Golland
- Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andrew J. Powell
- Department of Cardiology, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Andreas K. Maier
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Tom Brosch
- Philips Research Laboratories, Hamburg, Germany
| | | | - Mahshad Lotfinia
- Institute of Heat and Mass Transfer, RWTH Aachen University, Aachen, Germany
| | | | - Mehdi H. Moghari
- Department of Radiology, Children’s Hospital Colorado, and School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
9
|
Kalapos A, Szabó L, Dohy Z, Kiss M, Merkely B, Gyires-Tóth B, Vágó H. Automated T1 and T2 mapping segmentation on cardiovascular magnetic resonance imaging using deep learning. Front Cardiovasc Med 2023; 10:1147581. [PMID: 37522085 PMCID: PMC10374405 DOI: 10.3389/fcvm.2023.1147581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Structural and functional heart abnormalities can be examined non-invasively with cardiac magnetic resonance imaging (CMR). Thanks to the development of MR devices, diagnostic scans can capture more and more relevant information about possible heart diseases. T1 and T2 mapping are such novel technology, providing tissue specific information even without the administration of contrast material. Artificial intelligence solutions based on deep learning have demonstrated state-of-the-art results in many application areas, including medical imaging. More specifically, automated tools applied at cine sequences have revolutionized volumetric CMR reporting in the past five years. Applying deep learning models to T1 and T2 mapping images can similarly improve the efficiency of post-processing pipelines and consequently facilitate diagnostic processes. Methods In this paper, we introduce a deep learning model for myocardium segmentation trained on over 7,000 raw CMR images from 262 subjects of heterogeneous disease etiology. The data were labeled by three experts. As part of the evaluation, Dice score and Hausdorff distance among experts is calculated, and the expert consensus is compared with the model's predictions. Results Our deep learning method achieves 86% mean Dice score, while contours provided by three experts on the same data show 90% mean Dice score. The method's accuracy is consistent across epicardial and endocardial contours, and on basal, midventricular slices, with only 5% lower results on apical slices, which are often challenging even for experts. Conclusions We trained and evaluated a deep learning based segmentation model on 262 heterogeneous CMR cases. Applying deep neural networks to T1 and T2 mapping could similarly improve diagnostic practices. Using the fine details of T1 and T2 mapping images and high-quality labels, the objective of this research is to approach human segmentation accuracy with deep learning.
Collapse
Affiliation(s)
- András Kalapos
- Department of Telecommunications and Media Informatics, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Liliána Szabó
- Semmelweis University, Heart and Vascular Centre, Budapest, Hungary
| | - Zsófia Dohy
- Semmelweis University, Heart and Vascular Centre, Budapest, Hungary
| | - Máté Kiss
- Siemens Healthcare, Budapest, Hungary
| | - Béla Merkely
- Semmelweis University, Heart and Vascular Centre, Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary
| | - Bálint Gyires-Tóth
- Department of Telecommunications and Media Informatics, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Hajnalka Vágó
- Semmelweis University, Heart and Vascular Centre, Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Martin-Isla C, Campello VM, Izquierdo C, Kushibar K, Sendra-Balcells C, Gkontra P, Sojoudi A, Fulton MJ, Arega TW, Punithakumar K, Li L, Sun X, Al Khalil Y, Liu D, Jabbar S, Queiros S, Galati F, Mazher M, Gao Z, Beetz M, Tautz L, Galazis C, Varela M, Hullebrand M, Grau V, Zhuang X, Puig D, Zuluaga MA, Mohy-Ud-Din H, Metaxas D, Breeuwer M, van der Geest RJ, Noga M, Bricq S, Rentschler ME, Guala A, Petersen SE, Escalera S, Palomares JFR, Lekadir K. Deep Learning Segmentation of the Right Ventricle in Cardiac MRI: The M&Ms Challenge. IEEE J Biomed Health Inform 2023; 27:3302-3313. [PMID: 37067963 DOI: 10.1109/jbhi.2023.3267857] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
In recent years, several deep learning models have been proposed to accurately quantify and diagnose cardiac pathologies. These automated tools heavily rely on the accurate segmentation of cardiac structures in MRI images. However, segmentation of the right ventricle is challenging due to its highly complex shape and ill-defined borders. Hence, there is a need for new methods to handle such structure's geometrical and textural complexities, notably in the presence of pathologies such as Dilated Right Ventricle, Tricuspid Regurgitation, Arrhythmogenesis, Tetralogy of Fallot, and Inter-atrial Communication. The last MICCAI challenge on right ventricle segmentation was held in 2012 and included only 48 cases from a single clinical center. As part of the 12th Workshop on Statistical Atlases and Computational Models of the Heart (STACOM 2021), the M&Ms-2 challenge was organized to promote the interest of the research community around right ventricle segmentation in multi-disease, multi-view, and multi-center cardiac MRI. Three hundred sixty CMR cases, including short-axis and long-axis 4-chamber views, were collected from three Spanish hospitals using nine different scanners from three different vendors, and included a diverse set of right and left ventricle pathologies. The solutions provided by the participants show that nnU-Net achieved the best results overall. However, multi-view approaches were able to capture additional information, highlighting the need to integrate multiple cardiac diseases, views, scanners, and acquisition protocols to produce reliable automatic cardiac segmentation algorithms.
Collapse
|
11
|
Lin A, Pieszko K, Park C, Ignor K, Williams MC, Slomka P, Dey D. Artificial intelligence in cardiovascular imaging: enhancing image analysis and risk stratification. BJR Open 2023; 5:20220021. [PMID: 37396483 PMCID: PMC10311632 DOI: 10.1259/bjro.20220021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 07/04/2023] Open
Abstract
In this review, we summarize state-of-the-art artificial intelligence applications for non-invasive cardiovascular imaging modalities including CT, MRI, echocardiography, and nuclear myocardial perfusion imaging.
Collapse
Affiliation(s)
| | | | - Caroline Park
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Katarzyna Ignor
- Department of Interventional Cardiology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| | - Michelle C Williams
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Piotr Slomka
- Division of Artificial Intelligence, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
12
|
Jafari M, Shoeibi A, Khodatars M, Ghassemi N, Moridian P, Alizadehsani R, Khosravi A, Ling SH, Delfan N, Zhang YD, Wang SH, Gorriz JM, Alinejad-Rokny H, Acharya UR. Automated diagnosis of cardiovascular diseases from cardiac magnetic resonance imaging using deep learning models: A review. Comput Biol Med 2023; 160:106998. [PMID: 37182422 DOI: 10.1016/j.compbiomed.2023.106998] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023]
Abstract
In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. At early stages, CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such as exhaustion, shortness of breath, ankle swelling, fluid retention, and other symptoms when starting CVD. Coronary artery disease (CAD), arrhythmia, cardiomyopathy, congenital heart defect (CHD), mitral regurgitation, and angina are the most common CVDs. Clinical methods such as blood tests, electrocardiography (ECG) signals, and medical imaging are the most effective methods used for the detection of CVDs. Among the diagnostic methods, cardiac magnetic resonance imaging (CMRI) is increasingly used to diagnose, monitor the disease, plan treatment and predict CVDs. Coupled with all the advantages of CMR data, CVDs diagnosis is challenging for physicians as each scan has many slices of data, and the contrast of it might be low. To address these issues, deep learning (DL) techniques have been employed in the diagnosis of CVDs using CMR data, and much research is currently being conducted in this field. This review provides an overview of the studies performed in CVDs detection using CMR images and DL techniques. The introduction section examined CVDs types, diagnostic methods, and the most important medical imaging techniques. The following presents research to detect CVDs using CMR images and the most significant DL methods. Another section discussed the challenges in diagnosing CVDs from CMRI data. Next, the discussion section discusses the results of this review, and future work in CVDs diagnosis from CMR images and DL techniques are outlined. Finally, the most important findings of this study are presented in the conclusion section.
Collapse
Affiliation(s)
- Mahboobeh Jafari
- Internship in BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Afshin Shoeibi
- Internship in BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia; Data Science and Computational Intelligence Institute, University of Granada, Spain.
| | - Marjane Khodatars
- Data Science and Computational Intelligence Institute, University of Granada, Spain
| | - Navid Ghassemi
- Internship in BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Parisa Moridian
- Data Science and Computational Intelligence Institute, University of Granada, Spain
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Australia
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Australia
| | - Sai Ho Ling
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Australia
| | - Niloufar Delfan
- Faculty of Computer Engineering, Dept. of Artificial Intelligence Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Yu-Dong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, UK
| | - Shui-Hua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, UK
| | - Juan M Gorriz
- Data Science and Computational Intelligence Institute, University of Granada, Spain; Department of Psychiatry, University of Cambridge, UK
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia; UNSW Data Science Hub, The University of New South Wales, Sydney, NSW, 2052, Australia; Health Data Analytics Program, Centre for Applied Artificial Intelligence, Macquarie University, Sydney, 2109, Australia
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia; Dept. of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
13
|
Ammari A, Mahmoudi R, Hmida B, Saouli R, Hedi Bedoui M. Deep-active-learning approach towards accurate right ventricular segmentation using a two-level uncertainty estimation. Comput Med Imaging Graph 2023; 104:102168. [PMID: 36640486 DOI: 10.1016/j.compmedimag.2022.102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
The Right Ventricle (RV) is currently recognised to be a significant and important prognostic factor for various pathologies. Its assessment is made possible using Magnetic Resonance Imaging (CMRI) short-axis slices. Yet, due to the challenging issues of this cavity, radiologists still perform its delineation manually, which is tedious, laborious, and time-consuming. Therefore, to automatically tackle the RV segmentation issues, Deep-Learning (DL) techniques seem to be the axis of the most recent promising approaches. Along with its potential at dealing with shape variations, DL techniques highly requires a large number of labelled images to avoid over-fitting. Subsequently, with the produced large amounts of data in the medical industry, preparing annotated datasets manually is still time-consuming, and requires high skills to be accomplished. To benefit from a significant number of labelled and unlabelled CMRI images, a Deep-Active-Learning (DAL) approach is proposed in this paper to segment the RV. Thus, three main steps are distinguished. First, a personalised labelled dataset is gathered and augmented to allow initial learning. Secondly, a U-Net based architecture is modified towards efficient initial accuracy. Finally, a two-level uncertainty estimation technique is settled to enable the selection of complementary unlabelled data. The proposed pipeline is enhanced with a customised postprocessing step, in which epistemic uncertainty and Dense Conditional Random Fields are used. The proposed approach is tested on 791 images gathered from 32 public patients and 1230 images of 50 custom subjects. The obtained results show an increased dice coefficient from 0.86 to 0.91 with a decreased Hausdorff distance from 7.55 to 7.45.
Collapse
Affiliation(s)
- Asma Ammari
- Medical Imaging Technology Laboratory, Faculty of Medicine, LTIM-LR12ES06, University of Monastir, 5019 Monastir, Tunisia; Laboratory of Intelligent Computing (LINFI), Department of Computer Science, Mohamed Khider University, BP 145 RP, Biskra 07000, Algeria; The National Engineering School ENIS, Sfax, Tunisia.
| | - Ramzi Mahmoudi
- Medical Imaging Technology Laboratory, Faculty of Medicine, LTIM-LR12ES06, University of Monastir, 5019 Monastir, Tunisia; Gaspard-Monge Computer-science Laboratory, Paris-Est University, Mixed Unit CNRS-UMLV-ESIEE UMR8049, BP99, ESIEE Paris City Descartes, 93162 Noisy Le Grand, France
| | - Badii Hmida
- Medical Imaging Technology Laboratory, Faculty of Medicine, LTIM-LR12ES06, University of Monastir, 5019 Monastir, Tunisia; Radiology Service, UR12SP40 CHU Fattouma Bourguiba, 5019 Monastir, Tunisia
| | - Rachida Saouli
- Laboratory of Intelligent Computing (LINFI), Department of Computer Science, Mohamed Khider University, BP 145 RP, Biskra 07000, Algeria
| | - Mohamed Hedi Bedoui
- Medical Imaging Technology Laboratory, Faculty of Medicine, LTIM-LR12ES06, University of Monastir, 5019 Monastir, Tunisia
| |
Collapse
|
14
|
Qiao S, Pang S, Luo G, Sun Y, Yin W, Pan S, Lv Z. DPC-MSGATNet: dual-path chain multi-scale gated axial-transformer network for four-chamber view segmentation in fetal echocardiography. COMPLEX INTELL SYST 2023. [DOI: 10.1007/s40747-023-00968-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AbstractEchocardiography is essential in evaluating fetal cardiac anatomical structures and functions when clinicians conduct early treatment and screening for congenital heart defects, a common and intricate fetal malformation. Nevertheless, the prenatal detection rate of fetal CHD remains low since the peculiarities of fetal cardiac structures and the variousness of fetal CHD. Precisely segmenting four cardiac chambers can assist clinicians in analyzing cardiac morphology and further facilitate CHD diagnosis. Hence, we design a dual-path chain multi-scale gated axial-transformer network (DPC-MSGATNet) that simultaneously models global dependencies and local visual cues for fetal ultrasound (US) four-chamber (FC) views and further accurately segments four chambers. Our DPC-MSGATNet includes a global and a local branch that simultaneously operates on an entire FC view and image patches to learn multi-scale representations. We design a plug-and-play module, Interactive dual-path chain gated axial-transformer (IDPCGAT), to enhance the interactions between global and local branches. In IDPCGAT, the multi-scale representations from the two branches can complement each other, capturing the same region’s salient features and suppressing feature responses to maintain only the activations associated with specific targets. Extensive experiments demonstrate that the DPC-MSGATNet exceeds seven state-of-the-art convolution- and transformer-based methods by a large margin in terms of F1 and IoU scores on our fetal FC view dataset, achieving a F1 score of 96.87$$\%$$
%
and an IoU score of 93.99$$\%$$
%
. The codes and datasets can be available at https://github.comQiaoSiBo/DPC-MSGATNet.
Collapse
|
15
|
Su C, Ma J, Zhou Y, Li P, Tang Z. Res-DUnet: A small-region attentioned model for cardiac MRI-based right ventricular segmentation. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Deep Neural Network for Cardiac Magnetic Resonance Image Segmentation. J Imaging 2022; 8:jimaging8050149. [PMID: 35621913 PMCID: PMC9144248 DOI: 10.3390/jimaging8050149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
The analysis and interpretation of cardiac magnetic resonance (CMR) images are often time-consuming. The automated segmentation of cardiac structures can reduce the time required for image analysis. Spatial similarities between different CMR image types were leveraged to jointly segment multiple sequences using a segmentation model termed a multi-image type UNet (MI-UNet). This model was developed from 72 exams (46% female, mean age 63 ± 11 years) performed on patients with hypertrophic cardiomyopathy. The MI-UNet for steady-state free precession (SSFP) images achieved a superior Dice similarity coefficient (DSC) of 0.92 ± 0.06 compared to 0.87 ± 0.08 for a single-image type UNet (p < 0.001). The MI-UNet for late gadolinium enhancement (LGE) images also had a superior DSC of 0.86 ± 0.11 compared to 0.78 ± 0.11 for a single-image type UNet (p = 0.001). The difference across image types was most evident for the left ventricular myocardium in SSFP images and for both the left ventricular cavity and the left ventricular myocardium in LGE images. For the right ventricle, there were no differences in DCS when comparing the MI-UNet with single-image type UNets. The joint segmentation of multiple image types increases segmentation accuracy for CMR images of the left ventricle compared to single-image models. In clinical practice, the MI-UNet model may expedite the analysis and interpretation of CMR images of multiple types.
Collapse
|
17
|
Wang S, Chauhan D, Patel H, Amir-Khalili A, da Silva IF, Sojoudi A, Friedrich S, Singh A, Landeras L, Miller T, Ameyaw K, Narang A, Kawaji K, Tang Q, Mor-Avi V, Patel AR. Assessment of right ventricular size and function from cardiovascular magnetic resonance images using artificial intelligence. J Cardiovasc Magn Reson 2022; 24:27. [PMID: 35410226 PMCID: PMC8996592 DOI: 10.1186/s12968-022-00861-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/29/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Theoretically, artificial intelligence can provide an accurate automatic solution to measure right ventricular (RV) ejection fraction (RVEF) from cardiovascular magnetic resonance (CMR) images, despite the complex RV geometry. However, in our recent study, commercially available deep learning (DL) algorithms for RVEF quantification performed poorly in some patients. The current study was designed to test the hypothesis that quantification of RV function could be improved in these patients by using more diverse CMR datasets in addition to domain-specific quantitative performance evaluation metrics during the cross-validation phase of DL algorithm development. METHODS We identified 100 patients from our prior study who had the largest differences between manually measured and automated RVEF values. Automated RVEF measurements were performed using the original version of the algorithm (DL1), an updated version (DL2) developed from a dataset that included a wider range of RV pathology and validated using multiple domain-specific quantitative performance evaluation metrics, and conventional methodology performed by a core laboratory (CORE). Each of the DL-RVEF approaches was compared against CORE-RVEF reference values using linear regression and Bland-Altman analyses. Additionally, RVEF values were classified into 3 categories: ≤ 35%, 35-50%, and ≥ 50%. Agreement between RVEF classifications made by the DL approaches and the CORE measurements was tested. RESULTS CORE-RVEF and DL-RVEFs were obtained in all patients (feasibility of 100%). DL2-RVEF correlated with CORE-RVEF better than DL1-RVEF (r = 0.87 vs. r = 0.42), with narrower limits of agreement. As a result, DL2 algorithm also showed increasing accuracy from 0.53 to 0.80 for categorizing RV function. CONCLUSIONS The use of a new DL algorithm cross-validated on a dataset with a wide range of RV pathology using multiple domain-specific metrics resulted in a considerable improvement in the accuracy of automated RVEF measurements. This improvement was demonstrated in patients whose images were the most challenging and resulted in the largest RVEF errors. These findings underscore the critical importance of this strategy in the development of DL approaches for automated CMR measurements.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Medicine, University of Chicago, University of Chicago Medical Center, 5758 S. Maryland Avenue, Chicago, IL, MC906760637, USA
- Peking University Shougang Hospital, Beijing, China
| | - Daksh Chauhan
- Department of Medicine, University of Chicago, University of Chicago Medical Center, 5758 S. Maryland Avenue, Chicago, IL, MC906760637, USA
| | - Hena Patel
- Department of Medicine, University of Chicago, University of Chicago Medical Center, 5758 S. Maryland Avenue, Chicago, IL, MC906760637, USA
| | | | | | | | | | - Amita Singh
- Department of Medicine, University of Chicago, University of Chicago Medical Center, 5758 S. Maryland Avenue, Chicago, IL, MC906760637, USA
| | - Luis Landeras
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Tamari Miller
- Department of Medicine, University of Chicago, University of Chicago Medical Center, 5758 S. Maryland Avenue, Chicago, IL, MC906760637, USA
| | - Keith Ameyaw
- Department of Medicine, University of Chicago, University of Chicago Medical Center, 5758 S. Maryland Avenue, Chicago, IL, MC906760637, USA
| | | | - Keigo Kawaji
- Illinois Institute of Technology, Chicago, IL, USA
| | - Qiang Tang
- Peking University Shougang Hospital, Beijing, China
| | - Victor Mor-Avi
- Department of Medicine, University of Chicago, University of Chicago Medical Center, 5758 S. Maryland Avenue, Chicago, IL, MC906760637, USA
| | - Amit R Patel
- Department of Medicine, University of Chicago, University of Chicago Medical Center, 5758 S. Maryland Avenue, Chicago, IL, MC906760637, USA.
- Department of Radiology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Wang S, Patel H, Miller T, Ameyaw K, Narang A, Chauhan D, Anand S, Anyanwu E, Besser SA, Kawaji K, Liu XP, Lang RM, Mor-Avi V, Patel AR. AI Based CMR Assessment of Biventricular Function: Clinical Significance of Intervendor Variability and Measurement Errors. JACC Cardiovasc Imaging 2022; 15:413-427. [PMID: 34656471 PMCID: PMC8917993 DOI: 10.1016/j.jcmg.2021.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The aim of this study was to determine whether left ventricular ejection fraction (LVEF) and right ventricular ejection fraction (RVEF) and left ventricular mass (LVM) measurements made using 3 fully automated deep learning (DL) algorithms are accurate and interchangeable and can be used to classify ventricular function and risk-stratify patients as accurately as an expert. BACKGROUND Artificial intelligence is increasingly used to assess cardiac function and LVM from cardiac magnetic resonance images. METHODS Two hundred patients were identified from a registry of individuals who underwent vasodilator stress cardiac magnetic resonance. LVEF, LVM, and RVEF were determined using 3 fully automated commercial DL algorithms and by a clinical expert (CLIN) using conventional methodology. Additionally, LVEF values were classified according to clinically important ranges: <35%, 35% to 50%, and ≥50%. Both ejection fraction values and classifications made by the DL ejection fraction approaches were compared against CLIN ejection fraction reference. Receiver-operating characteristic curve analysis was performed to evaluate the ability of CLIN and each of the DL classifications to predict major adverse cardiovascular events. RESULTS Excellent correlations were seen for each DL-LVEF compared with CLIN-LVEF (r = 0.83-0.93). Good correlations were present between DL-LVM and CLIN-LVM (r = 0.75-0.85). Modest correlations were observed between DL-RVEF and CLIN-RVEF (r = 0.59-0.68). A >10% error between CLIN and DL ejection fraction was present in 5% to 18% of cases for the left ventricle and 23% to 43% for the right ventricle. LVEF classification agreed with CLIN-LVEF classification in 86%, 80%, and 85% cases for the 3 DL-LVEF approaches. There were no differences among the 4 approaches in associations with major adverse cardiovascular events for LVEF, LVM, and RVEF. CONCLUSIONS This study revealed good agreement between automated and expert-derived LVEF and similarly strong associations with outcomes, compared with an expert. However, the ability of these automated measurements to accurately classify left ventricular function for treatment decision remains limited. DL-LVM showed good agreement with CLIN-LVM. DL-RVEF approaches need further refinements.
Collapse
Affiliation(s)
- Shuo Wang
- University of Chicago, Chicago, Illinois,Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hena Patel
- University of Chicago, Chicago, Illinois
| | | | | | | | | | | | | | | | - Keigo Kawaji
- University of Chicago, Chicago, Illinois,Illinois Institute of Technology, Chicago, Illinois
| | - Xing-Peng Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
19
|
Li N, Tous C, Dimov IP, Cadoret D, Fei P, Majedi Y, Lessard S, Nosrati Z, Saatchi K, Hafeli UO, Tang A, Kadoury S, Martel S, Soulez G. Quantification and 3D localization of magnetically navigated superparamagnetic particles using MRI in phantom and swine chemoembolization models. IEEE Trans Biomed Eng 2022; 69:2616-2627. [PMID: 35167442 DOI: 10.1109/tbme.2022.3151819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Superparamagnetic nanoparticles (SPIONs) can be combined with tumor chemoembolization agents to form magnetic drug-eluting beads (MDEBs), which are navigated magnetically in the MRI scanner through the vascular system. We aim to develop a method to accurately quantify and localize these particles and to validate the method in phantoms and swine models. METHODS MDEBs were made of Fe3O4 SPIONs. After injected known numbers of MDEBs, susceptibility artifacts in three-dimensional (3D) volumetric interpolated breath-hold examination (VIBE) sequences were acquired in glass and Polyvinyl alcohol (PVA) phantoms, and two living swine. Image processing of VIBE images provided the volume relationship between MDEBs and their artifact at different VIBE acquisitions and post-processing parameters. Simulated hepatic-artery embolization was performed in vivo with an MRI-conditional magnetic-injection system, using the volume relationship to locate and quantify MDEB distribution. RESULTS Individual MDEBs were spatially identified, and their artifacts quantified, showing no correlation with magnetic-field orientation or sequence bandwidth, but exhibiting a relationship with echo time and providing a linear volume relationship. Two MDEB aggregates were magnetically steered into desired liver regions while the other 19 had no steering, and 25 aggregates were injected into another swine without steering. The MDEBs were spatially identified and the volume relationship showed accuracy in assessing the number of the MDEBs, with small errors (8.8%). CONCLUSION AND SIGNIFICANCE MDEBs were able to be steered into desired body regions and then localized using 3D VIBE sequences. The resulting volume relationship was linear, robust, and allowed for quantitative analysis of the MDEB distribution.
Collapse
|
20
|
Assessment of Bi-Ventricular and Bi-Atrial Areas Using Four-Chamber Cine Cardiovascular Magnetic Resonance Imaging: Fully Automated Segmentation with a U-Net Convolutional Neural Network. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031401. [PMID: 35162424 PMCID: PMC8834677 DOI: 10.3390/ijerph19031401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023]
Abstract
Four-chamber (4CH) cine cardiovascular magnetic resonance imaging (CMR) facilitates simultaneous evaluation of cardiac chambers; however, manual segmentation is time-consuming and subjective in practice. We evaluated deep learning based on a U-Net convolutional neural network (CNN) for fully automated segmentation of the four cardiac chambers using 4CH cine CMR. Cine CMR datasets from patients were randomly assigned for training (1400 images from 70 patients), validation (600 images from 30 patients), and testing (1000 images from 50 patients). We validated manual and automated segmentation based on the U-Net CNN using the dice similarity coefficient (DSC) and Spearman’s rank correlation coefficient (ρ); p < 0.05 was statistically significant. The overall median DSC showed high similarity (0.89). Automated segmentation correlated strongly with manual segmentation in all chambers—the left and right ventricles, and the left and right atria (end-diastolic area: ρ = 0.88, 0.76, 0.92, and 0.87; end-systolic area: ρ = 0.81, 0.81, 0.92, and 0.83, respectively; p < 0.01). The area under the curve for the left ventricle, left atrium, right ventricle, and right atrium showed high scores (0.96, 0.99, 0.88, and 0.96, respectively). Fully automated segmentation could facilitate simultaneous evaluation and detection of enlargement of the four cardiac chambers without any time-consuming analysis.
Collapse
|
21
|
Asher C, Puyol-Antón E, Rizvi M, Ruijsink B, Chiribiri A, Razavi R, Carr-White G. The Role of AI in Characterizing the DCM Phenotype. Front Cardiovasc Med 2021; 8:787614. [PMID: 34993240 PMCID: PMC8724536 DOI: 10.3389/fcvm.2021.787614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Dilated Cardiomyopathy is conventionally defined by left ventricular dilatation and dysfunction in the absence of coronary disease. Emerging evidence suggests many patients remain vulnerable to major adverse outcomes despite clear therapeutic success of modern evidence-based heart failure therapy. In this era of personalized medical care, the conventional assessment of left ventricular ejection fraction falls short in fully predicting evolution and risk of outcomes in this heterogenous group of heart muscle disease, as such, a more refined means of phenotyping this disease appears essential. Cardiac MRI (CMR) is well-placed in this respect, not only for its diagnostic utility, but the wealth of information captured in global and regional function assessment with the addition of unique tissue characterization across different disease states and patient cohorts. Advanced tools are needed to leverage these sensitive metrics and integrate with clinical, genetic and biochemical information for personalized, and more clinically useful characterization of the dilated cardiomyopathy phenotype. Recent advances in artificial intelligence offers the unique opportunity to impact clinical decision making through enhanced precision image-analysis tasks, multi-source extraction of relevant features and seamless integration to enhance understanding, improve diagnosis, and subsequently clinical outcomes. Focusing particularly on deep learning, a subfield of artificial intelligence, that has garnered significant interest in the imaging community, this paper reviews the main developments that could offer more robust disease characterization and risk stratification in the Dilated Cardiomyopathy phenotype. Given its promising utility in the non-invasive assessment of cardiac diseases, we firstly highlight the key applications in CMR, set to enable comprehensive quantitative measures of function beyond the standard of care assessment. Concurrently, we revisit the added value of tissue characterization techniques for risk stratification, showcasing the deep learning platforms that overcome limitations in current clinical workflows and discuss how they could be utilized to better differentiate at-risk subgroups of this phenotype. The final section of this paper is dedicated to the allied clinical applications to imaging, that incorporate artificial intelligence and have harnessed the comprehensive abundance of data from genetics and relevant clinical variables to facilitate better classification and enable enhanced risk prediction for relevant outcomes.
Collapse
Affiliation(s)
- Clint Asher
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Esther Puyol-Antón
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Maleeha Rizvi
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Bram Ruijsink
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Amedeo Chiribiri
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Reza Razavi
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Gerry Carr-White
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| |
Collapse
|
22
|
Franco P, Sotelo J, Guala A, Dux-Santoy L, Evangelista A, Rodríguez-Palomares J, Mery D, Salas R, Uribe S. Identification of hemodynamic biomarkers for bicuspid aortic valve induced aortic dilation using machine learning. Comput Biol Med 2021; 141:105147. [PMID: 34929463 DOI: 10.1016/j.compbiomed.2021.105147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 01/06/2023]
Abstract
Recent advances in medical imaging have confirmed the presence of altered hemodynamics in bicuspid aortic valve (BAV) patients. Therefore, there is a need for new hemodynamic biomarkers to refine disease monitoring and improve patient risk stratification. This research aims to analyze and extract multiple correlation patterns of hemodynamic parameters from 4D Flow MRI data and find which parameters allow an accurate classification between healthy volunteers (HV) and BAV patients with dilated and non-dilated ascending aorta using machine learning. Sixteen hemodynamic parameters were calculated in the ascending aorta (AAo) and aortic arch (AArch) at peak systole from 4D Flow MRI. We used sequential forward selection (SFS) and principal component analysis (PCA) as feature selection algorithms. Then, eleven machine-learning classifiers were implemented to separate HV and BAV patients (non- and dilated ascending aorta). Multiple correlation patterns from hemodynamic parameters were extracted using hierarchical clustering. The linear discriminant analysis and random forest are the best performing classifiers, using five hemodynamic parameters selected with SFS (velocity angle, forward velocity, vorticity, and backward velocity in AAo; and helicity density in AArch) a 96.31 ± 1.76% and 96.00 ± 0.83% accuracy, respectively. Hierarchical clustering revealed three groups of correlated features. According to this analysis, we observed that features selected by SFS have a better performance than those selected by PCA because the five selected parameters were distributed according to 3 different clusters. Based on the proposed method, we concluded that the feature selection method found five potentially hemodynamic biomarkers related to this disease.
Collapse
Affiliation(s)
- Pamela Franco
- Biomedical Imaging Center, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Electrical Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Cardio, MR, Chile
| | - Julio Sotelo
- Biomedical Imaging Center, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Cardio, MR, Chile; School of Biomedical Engineering, Universidad de Valparaíso, Valparaíso, Chile
| | - Andrea Guala
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Dux-Santoy
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Arturo Evangelista
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Rodríguez-Palomares
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Domingo Mery
- Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituto Milenio Intelligent Healthcare Engineering, Chile
| | - Rodrigo Salas
- School of Biomedical Engineering, Universidad de Valparaíso, Valparaíso, Chile; Instituto Milenio Intelligent Healthcare Engineering, Chile
| | - Sergio Uribe
- Biomedical Imaging Center, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Cardio, MR, Chile; Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituto Milenio Intelligent Healthcare Engineering, Chile.
| |
Collapse
|
23
|
Carbajal-Degante E, Avendaño S, Ledesma L, Olveres J, Vallejo E, Escalante-Ramirez B. A multiphase texture-based model of active contours assisted by a convolutional neural network for automatic CT and MRI heart ventricle segmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 211:106373. [PMID: 34562717 DOI: 10.1016/j.cmpb.2021.106373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Left and right ventricle automatic segmentation remains one of the more important tasks in computed aided diagnosis. Active contours have shown to be efficient for this task, however they often require user interaction to provide the initial position, which drives the tool substantially dependent on a prior knowledge and a manual process. METHODS We propose to overcome this limitation with a Convolutional Neural Network (CNN) to reach the assumed target locations. This is followed by a novel multiphase active contour method based on texture that enhances whole heart patterns leading to an accurate identification of distinct regions, mainly left (LV) and right ventricle (RV) for the purposes of this work. RESULTS Experiments reveal that the initial location and estimated shape provided by the CNN are of great concern for the subsequent active contour stage. We assessed our method on two short data sets with Dice scores of 93% (LV-CT), 91% (LV-MRI), 0.86% (RV-CT) and 0.85% (RV-MRI). CONCLUSION Our approach overcomes the performance of other techniques by means of a multiregion segmentation assisted by a CNN trained with a limited data set, a typical issue in medical imaging.
Collapse
Affiliation(s)
- Erik Carbajal-Degante
- Posgrado en Ciencia e Ingenieria de la Computación, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico.
| | - Steve Avendaño
- Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Leonardo Ledesma
- Posgrado en Ciencia e Ingenieria de la Computación, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Jimena Olveres
- Departamento de Procesamiento de Señales, Facultad de Ingenieria, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Enrique Vallejo
- Departamento de Cardiologia, Centro Medico ABC, Mexico City, Mexico
| | - Boris Escalante-Ramirez
- Departamento de Procesamiento de Señales, Facultad de Ingenieria, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico.
| |
Collapse
|
24
|
Zhuang B, Sirajuddin A, Zhao S, Lu M. The role of 4D flow MRI for clinical applications in cardiovascular disease: current status and future perspectives. Quant Imaging Med Surg 2021; 11:4193-4210. [PMID: 34476199 DOI: 10.21037/qims-20-1234] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/23/2021] [Indexed: 11/06/2022]
Abstract
Magnetic resonance imaging (MRI) four-dimensional (4D) flow is a type of phase-contrast (PC) MRI that uses blood flow encoded in 3 directions, which is resolved relative to 3 spatial and temporal dimensions of cardiac circulation. It can be used to simultaneously quantify and visualize hemodynamics or morphology disorders. 4D flow MRI is more comprehensive and accurate than two-dimensional (2D) PC MRI and echocardiography. 4D flow MRI provides numerous hemodynamic parameters that are not limited to the basic 2D parameters, including wall shear stress (WSS), pulse wave velocity (PWV), kinetic energy, turbulent kinetic energy (TKE), pressure gradient, and flow component analysis. 4D flow MRI is widely used to image many parts of the body, such as the neck, brain, and liver, and has a wide application spectrum to cardiac diseases and large vessels. This present review aims to summarize the hemodynamic parameters of 4D flow MRI technology and generalize their usefulness in clinical practice in relation to the cardiovascular system. In addition, we note the improvements that have been made to 4D flow MRI with the application of new technologies. The application of new technologies can improve the speed of 4D flow, which would benefit clinical applications.
Collapse
Affiliation(s)
- Baiyan Zhuang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Arlene Sirajuddin
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
25
|
de Perrot M, Gopalan D, Jenkins D, Lang IM, Fadel E, Delcroix M, Benza R, Heresi GA, Kanwar M, Granton JT, McInnis M, Klok FA, Kerr KM, Pepke-Zaba J, Toshner M, Bykova A, Armini AMD, Robbins IM, Madani M, McGiffin D, Wiedenroth CB, Mafeld S, Opitz I, Mercier O, Uber PA, Frantz RP, Auger WR. Evaluation and management of patients with chronic thromboembolic pulmonary hypertension - consensus statement from the ISHLT. J Heart Lung Transplant 2021; 40:1301-1326. [PMID: 34420851 DOI: 10.1016/j.healun.2021.07.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 02/08/2023] Open
Abstract
ISHLT members have recognized the importance of a consensus statement on the evaluation and management of patients with chronic thromboembolic pulmonary hypertension. The creation of this document required multiple steps, including the engagement of the ISHLT councils, approval by the Standards and Guidelines Committee, identification and selection of experts in the field, and the development of 6 working groups. Each working group provided a separate section based on an extensive literature search. These sections were then coalesced into a single document that was circulated to all members of the working groups. Key points were summarized at the end of each section. Due to the limited number of comparative trials in this field, the document was written as a literature review with expert opinion rather than based on level of evidence.
Collapse
Affiliation(s)
- Marc de Perrot
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, Ontario, Canada.
| | - Deepa Gopalan
- Department of Radiology, Imperial College Healthcare NHS Trust, London & Cambridge University Hospital, Cambridge, UK
| | - David Jenkins
- National Pulmonary Endarterectomy Service, Department of Cardiothoracic Surgery, Papworth Hospital, Cambridge, UK
| | - Irene M Lang
- Department of Cardiology, Pulmonary Hypertension Unit, Medical University of Vienna, Vienna, Austria
| | - Elie Fadel
- Department of Thoracic and Vascular Surgery and Heart Lung Transplantation, Marie-Lannelongue Hospital, Paris Saclay University, Le Plessis-Robinson, France
| | - Marion Delcroix
- Clinical Department of Respiratory Diseases, Pulmonary Hypertension Centre, UZ Leuven, Leuven, Belgium; Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU, Leuven, Belgium
| | - Raymond Benza
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio
| | - Gustavo A Heresi
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Manreet Kanwar
- Cardiovascular Institute, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - John T Granton
- Division of Respirology, University Health Network, Toronto, Ontario, Canada
| | - Micheal McInnis
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Frederikus A Klok
- Department of Medicine, Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Kim M Kerr
- University of California San Diego Medical Health, Division of Pulmonary Critical Care and Sleep Medicine, San Diego, California
| | - Joanna Pepke-Zaba
- Pulmonary Vascular Disease Unit, Royal Papworth Hospital NHS foundation Trust, Cambridge, Cambridgeshire, UK
| | - Mark Toshner
- Pulmonary Vascular Disease Unit, Royal Papworth Hospital NHS foundation Trust, Cambridge, Cambridgeshire, UK; Heart Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Anastasia Bykova
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| | - Andrea M D' Armini
- Unit of Cardiac Surgery, Intrathoracic-Trasplantation and Pulmonary Hypertension, University of Pavia, Foundation I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Ivan M Robbins
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael Madani
- Department of Cardiovascular and Thoracic Surgery, University of California San Diego, La Jolla, California
| | - David McGiffin
- Department of Cardiothoracic Surgery, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Christoph B Wiedenroth
- Department of Thoracic Surgery, Campus Kerckhoff of the University of Giessen, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany
| | - Sebastian Mafeld
- Division of Vascular and Interventional Radiology, Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Olaf Mercier
- Department of Thoracic and Vascular Surgery and Heart Lung Transplantation, Marie-Lannelongue Hospital, Paris Saclay University, Le Plessis-Robinson, France
| | - Patricia A Uber
- Pauley Heart Center, Virginia Commonwealth University Health System, Richmond, Virginia
| | - Robert P Frantz
- Department of Cardiovascular Disease, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - William R Auger
- Pulmonary Hypertension and CTEPH Research Program, Temple Heart and Vascular Institute, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Vesal S, Gu M, Maier A, Ravikumar N. Spatio-Temporal Multi-Task Learning for Cardiac MRI Left Ventricle Quantification. IEEE J Biomed Health Inform 2021; 25:2698-2709. [PMID: 33351771 DOI: 10.1109/jbhi.2020.3046449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Quantitative assessment of cardiac left ventricle (LV) morphology is essential to assess cardiac function and improve the diagnosis of different cardiovascular diseases. In current clinical practice, LV quantification depends on the measurement of myocardial shape indices, which is usually achieved by manual contouring of the endo- and epicardial. However, this process subjected to inter and intra-observer variability, and it is a time-consuming and tedious task. In this article, we propose a spatio-temporal multi-task learning approach to obtain a complete set of measurements quantifying cardiac LV morphology, regional-wall thickness (RWT), and additionally detecting the cardiac phase cycle (systole and diastole) for a given 3D Cine-magnetic resonance (MR) image sequence. We first segment cardiac LVs using an encoder-decoder network and then introduce a multitask framework to regress 11 LV indices and classify the cardiac phase, as parallel tasks during model optimization. The proposed deep learning model is based on the 3D spatio-temporal convolutions, which extract spatial and temporal features from MR images. We demonstrate the efficacy of the proposed method using cine-MR sequences of 145 subjects and comparing the performance with other state-of-the-art quantification methods. The proposed method obtained high prediction accuracy, with an average mean absolute error (MAE) of 129 mm 2, 1.23 mm, 1.76 mm, Pearson correlation coefficient (PCC) of 96.4%, 87.2%, and 97.5% for LV and myocardium (Myo) cavity regions, 6 RWTs, 3 LV dimensions, and an error rate of 9.0% for phase classification. The experimental results highlight the robustness of the proposed method, despite varying degrees of cardiac morphology, image appearance, and low contrast in the cardiac MR sequences.
Collapse
|
27
|
Cui H, Yuwen C, Jiang L, Xia Y, Zhang Y. Multiscale attention guided U-Net architecture for cardiac segmentation in short-axis MRI images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 206:106142. [PMID: 34004500 DOI: 10.1016/j.cmpb.2021.106142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Automatic cardiac segmentation plays an utmost role in the diagnosis and quantification of cardiovascular diseases. METHODS This paper proposes a new cardiac segmentation method in short-axis Magnetic Resonance Imaging (MRI) images, called attention U-Net architecture with input image pyramid and deep supervised output layers (AID), which can fully-automatically learn to pay attention to target structures of various sizes and shapes. During each training process, the model continues to learn how to emphasize the desired features and suppress irrelevant areas in the original images, effectively improving the accuracy of cardiac segmentation. At the same time, we introduce the Focal Tversky Loss (FTL), which can effectively solve the problem of high imbalance in the amount of data between the target class and the background class during cardiac image segmentation. In order to obtain a better representation of intermediate features, we add a multi-scale input pyramid to the attention network. RESULTS The proposed cardiac segmentation technique is tested on the public Left Ventricle Segmentation Challenge (LVSC) dataset, which is shown to achieve 0.75, 0.87 and 0.92 for Jaccard Index, Sensitivity and Specificity, respectively. Experimental results demonstrate that the proposed method is able to improve the segmentation accuracy compared with the standard U-Net, and achieves comparable performance to the most advanced fully-automated methods. CONCLUSIONS Given its effectiveness and advantages, the proposed method can facilitate cardiac segmentation in short-axis MRI images in clinical practice.
Collapse
Affiliation(s)
- Hengfei Cui
- National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China; Centre for Multidisciplinary Convergence Computing (CMCC), School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Chang Yuwen
- National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China; Centre for Multidisciplinary Convergence Computing (CMCC), School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Jiang
- National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China; Centre for Multidisciplinary Convergence Computing (CMCC), School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yong Xia
- National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China; Centre for Multidisciplinary Convergence Computing (CMCC), School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanning Zhang
- National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
28
|
Radiomics in Lung Diseases Imaging: State-of-the-Art for Clinicians. J Pers Med 2021; 11:jpm11070602. [PMID: 34202096 PMCID: PMC8306026 DOI: 10.3390/jpm11070602] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Artificial intelligence (AI) has increasingly been serving the field of radiology over the last 50 years. As modern medicine is evolving towards precision medicine, offering personalized patient care and treatment, the requirement for robust imaging biomarkers has gradually increased. Radiomics, a specific method generating high-throughput extraction of a tremendous amount of quantitative imaging data using data-characterization algorithms, has shown great potential in individuating imaging biomarkers. Radiomic analysis can be implemented through the following two methods: hand-crafted radiomic features extraction or deep learning algorithm. Its application in lung diseases can be used in clinical decision support systems, regarding its ability to develop descriptive and predictive models in many respiratory pathologies. The aim of this article is to review the recent literature on the topic, and briefly summarize the interest of radiomics in chest Computed Tomography (CT) and its pertinence in the field of pulmonary diseases, from a clinician's perspective.
Collapse
|
29
|
Rutkowski DR, Roldán-Alzate A, Johnson KM. Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data. Sci Rep 2021; 11:10240. [PMID: 33986368 PMCID: PMC8119419 DOI: 10.1038/s41598-021-89636-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Blood flow metrics obtained with four-dimensional (4D) flow phase contrast (PC) magnetic resonance imaging (MRI) can be of great value in clinical and experimental cerebrovascular analysis. However, limitations in both quantitative and qualitative analyses can result from errors inherent to PC MRI. One method that excels in creating low-error, physics-based, velocity fields is computational fluid dynamics (CFD). Augmentation of cerebral 4D flow MRI data with CFD-informed neural networks may provide a method to produce highly accurate physiological flow fields. In this preliminary study, the potential utility of such a method was demonstrated by using high resolution patient-specific CFD data to train a convolutional neural network, and then using the trained network to enhance MRI-derived velocity fields in cerebral blood vessel data sets. Through testing on simulated images, phantom data, and cerebrovascular 4D flow data from 20 patients, the trained network successfully de-noised flow images, decreased velocity error, and enhanced near-vessel-wall velocity quantification and visualization. Such image enhancement can improve experimental and clinical qualitative and quantitative cerebrovascular PC MRI analysis.
Collapse
Affiliation(s)
- David R Rutkowski
- Mechanical Engineering, University of Wisconsin, Madison, WI, USA
- Radiology, University of Wisconsin, 1111 Highland Ave, Madison, WI, USA
| | - Alejandro Roldán-Alzate
- Mechanical Engineering, University of Wisconsin, Madison, WI, USA
- Radiology, University of Wisconsin, 1111 Highland Ave, Madison, WI, USA
| | - Kevin M Johnson
- Radiology, University of Wisconsin, 1111 Highland Ave, Madison, WI, USA.
- Medical Physics, University of Wisconsin, 1111 Highland Ave, Madison, WI, USA.
| |
Collapse
|
30
|
Forsch N, Govil S, Perry JC, Hegde S, Young AA, Omens JH, McCulloch AD. Computational analysis of cardiac structure and function in congenital heart disease: Translating discoveries to clinical strategies. JOURNAL OF COMPUTATIONAL SCIENCE 2021; 52:101211. [PMID: 34691293 PMCID: PMC8528218 DOI: 10.1016/j.jocs.2020.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Increased availability and access to medical image data has enabled more quantitative approaches to clinical diagnosis, prognosis, and treatment planning for congenital heart disease. Here we present an overview of long-term clinical management of tetralogy of Fallot (TOF) and its intersection with novel computational and data science approaches to discovering biomarkers of functional and prognostic importance. Efforts in translational medicine that seek to address the clinical challenges associated with cardiovascular diseases using personalized and precision-based approaches are then discussed. The considerations and challenges of translational cardiovascular medicine are reviewed, and examples of digital platforms with collaborative, cloud-based, and scalable design are provided.
Collapse
Affiliation(s)
- Nickolas Forsch
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sachin Govil
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - James C Perry
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sanjeet Hegde
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Alistair A Young
- Department of Biomedical Engineering, King’s College London, London, UK
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, NZ
| | - Jeffrey H Omens
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Deparment of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Deparment of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
31
|
Wang Y, Zhang Y, Wen Z, Tian B, Kao E, Liu X, Xuan W, Ordovas K, Saloner D, Liu J. Deep learning based fully automatic segmentation of the left ventricular endocardium and epicardium from cardiac cine MRI. Quant Imaging Med Surg 2021; 11:1600-1612. [PMID: 33816194 DOI: 10.21037/qims-20-169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background The segmentation of cardiac medical images is a crucial step for calculating clinical indices such as wall thickness, ventricular volume, and ejection fraction. Methods In this study, we introduce a method named LsUnet that combines multi-channel, fully convolutional neural network, and annular shape level-set methods for efficiently segmenting cardiac cine magnetic resonance (MR) images. In this method, the multi-channel deep learning algorithm is applied to train the segmentation task to extract the left ventricle (LV) endocardial and epicardial contours. Next, the segmentation contours from the multi-channel deep learning method are incorporated into a level-set formulation, which is dedicated explicitly to detecting annular shapes to assure the segmentation's accuracy and robustness. Results The proposed automatic approach was evaluated on 95 volumes (total 1,076 slices, ~80% as for training datasets, ~20% 2D as for testing datasets). This combined multi-channel deep learning and annular shape level-set segmentation method achieved high accuracy with average Dice values reaching 92.15% and 95.42% for LV endocardium and epicardium delineation, respectively, in comparison to the reference standard (the manual segmentation). Conclusions A novel method for fully automatic segmentation of the LV endocardium and epicardium from different MRI datasets is presented. The proposed workflow is accurate and robust compared to the reference and other state-of-the-art methods.
Collapse
Affiliation(s)
- Yan Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Yue Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA.,Department of Radiology, Veterans Affairs Medical Center, San Francisco, USA
| | - Zhaoying Wen
- Department of Radiology, Anzhen Hospital, Beijing, China
| | - Bing Tian
- Department of Radiology, Changhai Hospital, Shanghai, China
| | - Evan Kao
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Xinke Liu
- Department of Interventional Neuroradiology, Capital Medical University, Beijing Tiantan Hospital, Beijing, China
| | - Wanling Xuan
- Medical College of Georgia at Augusta University, Augusta, USA
| | - Karen Ordovas
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA.,Department of Radiology, Veterans Affairs Medical Center, San Francisco, USA
| | - Jing Liu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| |
Collapse
|
32
|
Luo Y, Xu L, Qi L. A cascaded FC-DenseNet and level set method (FCDL) for fully automatic segmentation of the right ventricle in cardiac MRI. Med Biol Eng Comput 2021; 59:561-574. [PMID: 33559862 DOI: 10.1007/s11517-020-02305-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Accurate segmentation of the right ventricle (RV) from cardiac magnetic resonance imaging (MRI) images is an essential step in estimating clinical indices such as stroke volume and ejection fraction. Recently, image segmentation methods based on fully convolutional neural networks (FCN) have drawn much attention and shown promising results. In this paper, a new fully automatic RV segmentation method combining the FC-DenseNet and the level set method (FCDL) is proposed. The FC-DenseNet is efficiently trained end-to-end, using RV images and ground truth masks to make a per-pixel semantic inference. As a result, probability images are produced, followed by the level set method responsible for smoothing and converging contours to improve accuracy. It is noted that the iteration times of the level set method is only 4 times, which is due to the semantic segmentation of the FC-DenseNet for RV. Finally, multi-object detection algorithm is applied to locate the RV. Experimental results (including 45 cases, 15 cases for training, 30 cases for testing) show that the FCDL method outperforms the U-net + level set (UL) and the level set methods that use the same dataset and the cardiac functional parameters are computed robustly by the FCDL method. The results validate the FCDL method as an efficient and satisfactory approach to RV segmentation.
Collapse
Affiliation(s)
- Yang Luo
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110016, China.,Anshan Normal University, Anshan, 114005, Liaoning, China
| | - Lisheng Xu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110016, China. .,Key Laboratory of Medical Image Computing, Ministry of Education, Shenyang, 110819, China. .,Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang, 110169, China.
| | - Lin Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110016, China
| |
Collapse
|
33
|
Yahia Lahssene Y, Meddeber L, Zouagui T, Jennane R. A topology constrained geometric deformable model for medical image segmentation. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Raza K, Singh NK. A Tour of Unsupervised Deep Learning for Medical Image Analysis. Curr Med Imaging 2021; 17:1059-1077. [PMID: 33504314 DOI: 10.2174/1573405617666210127154257] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/17/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Interpretation of medical images for the diagnosis and treatment of complex diseases from high-dimensional and heterogeneous data remains a key challenge in transforming healthcare. In the last few years, both supervised and unsupervised deep learning achieved promising results in the area of medical image analysis. Several reviews on supervised deep learning are published, but hardly any rigorous review on unsupervised deep learning for medical image analysis is available. OBJECTIVES The objective of this review is to systematically present various unsupervised deep learning models, tools, and benchmark datasets applied to medical image analysis. Some of the discussed models are autoencoders and its other variants, Restricted Boltzmann machines (RBM), Deep belief networks (DBN), Deep Boltzmann machine (DBM), and Generative adversarial network (GAN). Further, future research opportunities and challenges of unsupervised deep learning techniques for medical image analysis are also discussed. CONCLUSION Currently, interpretation of medical images for diagnostic purposes is usually performed by human experts that may be replaced by computer-aided diagnosis due to advancement in machine learning techniques, including deep learning, and the availability of cheap computing infrastructure through cloud computing. Both supervised and unsupervised machine learning approaches are widely applied in medical image analysis, each of them having certain pros and cons. Since human supervisions are not always available or inadequate or biased, therefore, unsupervised learning algorithms give a big hope with lots of advantages for biomedical image analysis.
Collapse
Affiliation(s)
- Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi. India
| | | |
Collapse
|
35
|
Dharwadkar NV, Savvashe AK. Right Ventricle Segmentation of Magnetic Resonance Image Using the Modified Convolutional Neural Network. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05309-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Hadjiiski L, Samala R, Chan HP. Image Processing Analytics: Enhancements and Segmentation. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
37
|
Tandon A, Mohan N, Jensen C, Burkhardt BEU, Gooty V, Castellanos DA, McKenzie PL, Zahr RA, Bhattaru A, Abdulkarim M, Amir-Khalili A, Sojoudi A, Rodriguez SM, Dillenbeck J, Greil GF, Hussain T. Retraining Convolutional Neural Networks for Specialized Cardiovascular Imaging Tasks: Lessons from Tetralogy of Fallot. Pediatr Cardiol 2021; 42:578-589. [PMID: 33394116 PMCID: PMC7990832 DOI: 10.1007/s00246-020-02518-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
Ventricular contouring of cardiac magnetic resonance imaging is the gold standard for volumetric analysis for repaired tetralogy of Fallot (rTOF), but can be time-consuming and subject to variability. A convolutional neural network (CNN) ventricular contouring algorithm was developed to generate contours for mostly structural normal hearts. We aimed to improve this algorithm for use in rTOF and propose a more comprehensive method of evaluating algorithm performance. We evaluated the performance of a ventricular contouring CNN, that was trained on mostly structurally normal hearts, on rTOF patients. We then created an updated CNN by adding rTOF training cases and evaluated the new algorithm's performance generating contours for both the left and right ventricles (LV and RV) on new testing data. Algorithm performance was evaluated with spatial metrics (Dice Similarity Coefficient (DSC), Hausdorff distance, and average Hausdorff distance) and volumetric comparisons (e.g., differences in RV volumes). The original Mostly Structurally Normal (MSN) algorithm was better at contouring the LV than the RV in patients with rTOF. After retraining the algorithm, the new MSN + rTOF algorithm showed improvements for LV epicardial and RV endocardial contours on testing data to which it was naïve (N = 30; e.g., DSC 0.883 vs. 0.905 for LV epicardium at end diastole, p < 0.0001) and improvements in RV end-diastolic volumetrics (median %error 8.1 vs 11.4, p = 0.0022). Even with a small number of cases, CNN-based contouring for rTOF can be improved. This work should be extended to other forms of congenital heart disease with more extreme structural abnormalities. Aspects of this work have already been implemented in clinical practice, representing rapid clinical translation. The combined use of both spatial and volumetric comparisons yielded insights into algorithm errors.
Collapse
Affiliation(s)
- Animesh Tandon
- Department of Pediatrics, UT Southwestern Medical Center, 1935 Medical District Dr, Dallas, TX 75235 USA
- Department of Radiology, UT Southwestern Medical Center, 1935 Medical District Dr, Dallas, TX 75235 USA
- Division of Cardiology, Children’s Health Children’s Medical Center Dallas, Dallas, TX USA
| | - Navina Mohan
- Department of Pediatrics, UT Southwestern Medical Center, 1935 Medical District Dr, Dallas, TX 75235 USA
| | - Cory Jensen
- Circle Cardiovascular Imaging, Calgary, AB Canada
| | - Barbara E. U. Burkhardt
- Department of Pediatrics, UT Southwestern Medical Center, 1935 Medical District Dr, Dallas, TX 75235 USA
- Division of Cardiology, Children’s Health Children’s Medical Center Dallas, Dallas, TX USA
- Pediatric Cardiology, Department of Surgery, Pediatric Heart Center, University Children’s- Hospital Zurich, Zurich, Switzerland
| | - Vasu Gooty
- Department of Pediatrics, LeBonheur Children’s Hospital and University of Tennessee, Memphis, TN USA
| | - Daniel A. Castellanos
- Department of Pediatrics, UT Southwestern Medical Center, 1935 Medical District Dr, Dallas, TX 75235 USA
- Division of Cardiology, Children’s Health Children’s Medical Center Dallas, Dallas, TX USA
| | - Paige L. McKenzie
- Department of Pediatrics, UT Southwestern Medical Center, 1935 Medical District Dr, Dallas, TX 75235 USA
| | - Riad Abou Zahr
- Department of Pediatrics, UT Southwestern Medical Center, 1935 Medical District Dr, Dallas, TX 75235 USA
- Division of Cardiology, Children’s Health Children’s Medical Center Dallas, Dallas, TX USA
- King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Abhijit Bhattaru
- Department of Pediatrics, UT Southwestern Medical Center, 1935 Medical District Dr, Dallas, TX 75235 USA
- Division of Cardiology, Children’s Health Children’s Medical Center Dallas, Dallas, TX USA
| | - Mubeena Abdulkarim
- Department of Pediatrics, UT Southwestern Medical Center, 1935 Medical District Dr, Dallas, TX 75235 USA
- Division of Cardiology, Children’s Health Children’s Medical Center Dallas, Dallas, TX USA
| | | | | | - Stephen M. Rodriguez
- Department of Pediatrics, UT Southwestern Medical Center, 1935 Medical District Dr, Dallas, TX 75235 USA
| | - Jeanne Dillenbeck
- Department of Radiology, UT Southwestern Medical Center, 1935 Medical District Dr, Dallas, TX 75235 USA
| | - Gerald F. Greil
- Department of Pediatrics, UT Southwestern Medical Center, 1935 Medical District Dr, Dallas, TX 75235 USA
- Department of Radiology, UT Southwestern Medical Center, 1935 Medical District Dr, Dallas, TX 75235 USA
- Division of Cardiology, Children’s Health Children’s Medical Center Dallas, Dallas, TX USA
| | - Tarique Hussain
- Department of Pediatrics, UT Southwestern Medical Center, 1935 Medical District Dr, Dallas, TX 75235 USA
- Department of Radiology, UT Southwestern Medical Center, 1935 Medical District Dr, Dallas, TX 75235 USA
- Division of Cardiology, Children’s Health Children’s Medical Center Dallas, Dallas, TX USA
| |
Collapse
|
38
|
Drukker K, Yan P, Sibley A, Wang G. Biomedical imaging and analysis through deep learning. Artif Intell Med 2021. [DOI: 10.1016/b978-0-12-821259-2.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Karimi-Bidhendi S, Arafati A, Cheng AL, Wu Y, Kheradvar A, Jafarkhani H. Fully‑automated deep‑learning segmentation of pediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases. J Cardiovasc Magn Reson 2020; 22:80. [PMID: 33256762 PMCID: PMC7706241 DOI: 10.1186/s12968-020-00678-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/09/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND For the growing patient population with congenital heart disease (CHD), improving clinical workflow, accuracy of diagnosis, and efficiency of analyses are considered unmet clinical needs. Cardiovascular magnetic resonance (CMR) imaging offers non-invasive and non-ionizing assessment of CHD patients. However, although CMR data facilitates reliable analysis of cardiac function and anatomy, clinical workflow mostly relies on manual analysis of CMR images, which is time consuming. Thus, an automated and accurate segmentation platform exclusively dedicated to pediatric CMR images can significantly improve the clinical workflow, as the present work aims to establish. METHODS Training artificial intelligence (AI) algorithms for CMR analysis requires large annotated datasets, which are not readily available for pediatric subjects and particularly in CHD patients. To mitigate this issue, we devised a novel method that uses a generative adversarial network (GAN) to synthetically augment the training dataset via generating synthetic CMR images and their corresponding chamber segmentations. In addition, we trained and validated a deep fully convolutional network (FCN) on a dataset, consisting of [Formula: see text] pediatric subjects with complex CHD, which we made publicly available. Dice metric, Jaccard index and Hausdorff distance as well as clinically-relevant volumetric indices are reported to assess and compare our platform with other algorithms including U-Net and cvi42, which is used in clinics. RESULTS For congenital CMR dataset, our FCN model yields an average Dice metric of [Formula: see text] and [Formula: see text] for LV at end-diastole and end-systole, respectively, and [Formula: see text] and [Formula: see text] for RV at end-diastole and end-systole, respectively. Using the same dataset, the cvi42, resulted in [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] for LV and RV at end-diastole and end-systole, and the U-Net architecture resulted in [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] for LV and RV at end-diastole and end-systole, respectively. CONCLUSIONS The chambers' segmentation results from our fully-automated method showed strong agreement with manual segmentation and no significant statistical difference was found by two independent statistical analyses. Whereas cvi42 and U-Net segmentation results failed to pass the t-test. Relying on these outcomes, it can be inferred that by taking advantage of GANs, our method is clinically relevant and can be used for pediatric and congenital CMR segmentation and analysis.
Collapse
Affiliation(s)
- Saeed Karimi-Bidhendi
- Center for Pervasive Communications and Computing, University of California, Irvine, Irvine, USA
| | - Arghavan Arafati
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, USA
| | - Andrew L Cheng
- The Keck School of Medicine, University of Southern California and Children's Hospital Los Angeles, Los Angeles, USA
| | - Yilei Wu
- Center for Pervasive Communications and Computing, University of California, Irvine, Irvine, USA
| | - Arash Kheradvar
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, USA.
| | - Hamid Jafarkhani
- Center for Pervasive Communications and Computing, University of California, Irvine, Irvine, USA.
| |
Collapse
|
40
|
Gopalan D, Gibbs JSR. From Early Morphometrics to Machine Learning-What Future for Cardiovascular Imaging of the Pulmonary Circulation? Diagnostics (Basel) 2020; 10:diagnostics10121004. [PMID: 33255668 PMCID: PMC7760106 DOI: 10.3390/diagnostics10121004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Imaging plays a cardinal role in the diagnosis and management of diseases of the pulmonary circulation. Behind the picture itself, every digital image contains a wealth of quantitative data, which are hardly analysed in current routine clinical practice and this is now being transformed by radiomics. Mathematical analyses of these data using novel techniques, such as vascular morphometry (including vascular tortuosity and vascular volumes), blood flow imaging (including quantitative lung perfusion and computational flow dynamics), and artificial intelligence, are opening a window on the complex pathophysiology and structure-function relationships of pulmonary vascular diseases. They have the potential to make dramatic alterations to how clinicians investigate the pulmonary circulation, with the consequences of more rapid diagnosis and a reduction in the need for invasive procedures in the future. Applied to multimodality imaging, they can provide new information to improve disease characterization and increase diagnostic accuracy. These new technologies may be used as sophisticated biomarkers for risk prediction modelling of prognosis and for optimising the long-term management of pulmonary circulatory diseases. These innovative techniques will require evaluation in clinical trials and may in themselves serve as successful surrogate end points in trials in the years to come.
Collapse
Affiliation(s)
- Deepa Gopalan
- Imperial College Healthcare NHS Trust, London W12 0HS, UK
- Imperial College London, London SW7 2AZ, UK;
- Cambridge University Hospital, Cambridge CB2 0QQ, UK
- Correspondence: ; Tel.: +44-77-3000-7780
| | - J. Simon R. Gibbs
- Imperial College London, London SW7 2AZ, UK;
- National Heart & Lung Institute, Imperial College London, London SW3 6LY, UK
| |
Collapse
|
41
|
Alabed S, Garg P, Johns CS, Alandejani F, Shahin Y, Dwivedi K, Zafar H, Wild JM, Kiely DG, Swift AJ. Cardiac Magnetic Resonance in Pulmonary Hypertension-an Update. CURRENT CARDIOVASCULAR IMAGING REPORTS 2020; 13:30. [PMID: 33184585 PMCID: PMC7648000 DOI: 10.1007/s12410-020-09550-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW This article reviews advances over the past 3 years in cardiac magnetic resonance (CMR) imaging in pulmonary hypertension (PH). We aim to bring the reader up-to-date with CMR applications in diagnosis, prognosis, 4D flow, strain analysis, T1 mapping, machine learning and ongoing research. RECENT FINDINGS CMR volumetric and functional metrics are now established as valuable prognostic markers in PH. This imaging modality is increasingly used to assess treatment response and improves risk stratification when incorporated into PH risk scores. Emerging techniques such as myocardial T1 mapping may play a role in the follow-up of selected patients. Myocardial strain may be used as an early marker for right and left ventricular dysfunction and a predictor for mortality. Machine learning has offered a glimpse into future possibilities. Ongoing research of new PH therapies is increasingly using CMR as a clinical endpoint. SUMMARY The last 3 years have seen several large studies establishing CMR as a valuable diagnostic and prognostic tool in patients with PH, with CMR increasingly considered as an endpoint in clinical trials of PH therapies. Machine learning approaches to improve automation and accuracy of CMR metrics and identify imaging features of PH is an area of active research interest with promising clinical utility.
Collapse
Affiliation(s)
- Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Pankaj Garg
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
| | - Christopher S. Johns
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Faisal Alandejani
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
| | - Yousef Shahin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Krit Dwivedi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Hamza Zafar
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
| | - James M Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
- INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
- INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
42
|
Al'Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A, Pandey M, Maliakal G, van Rosendael AR, Beecy AN, Berman DS, Leipsic J, Nieman K, Andreini D, Pontone G, Schoepf UJ, Shaw LJ, Chang HJ, Narula J, Bax JJ, Guan Y, Min JK. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J 2020; 40:1975-1986. [PMID: 30060039 DOI: 10.1093/eurheartj/ehy404] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/29/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022] Open
Abstract
Artificial intelligence (AI) has transformed key aspects of human life. Machine learning (ML), which is a subset of AI wherein machines autonomously acquire information by extracting patterns from large databases, has been increasingly used within the medical community, and specifically within the domain of cardiovascular diseases. In this review, we present a brief overview of ML methodologies that are used for the construction of inferential and predictive data-driven models. We highlight several domains of ML application such as echocardiography, electrocardiography, and recently developed non-invasive imaging modalities such as coronary artery calcium scoring and coronary computed tomography angiography. We conclude by reviewing the limitations associated with contemporary application of ML algorithms within the cardiovascular disease field.
Collapse
Affiliation(s)
- Subhi J Al'Aref
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Khalil Anchouche
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Gurpreet Singh
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Piotr J Slomka
- Departments of Imaging and Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kranthi K Kolli
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Amit Kumar
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Mohit Pandey
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Gabriel Maliakal
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Alexander R van Rosendael
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Ashley N Beecy
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Daniel S Berman
- Departments of Imaging and Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonathan Leipsic
- Departments of Medicine and Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Koen Nieman
- Departments of Cardiology and Radiology, Stanford University School of Medicine and Cardiovascular Institute, Stanford, CA, USA
| | | | | | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science and Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Leslee J Shaw
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Hyuk-Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital and Severance Biomedical Science Institute, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Jagat Narula
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeroen J Bax
- Department of Cardiology, Heart Lung Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - James K Min
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
43
|
Kheradvar A, Jafarkhani H, Guy TS, Finn JP. Prospect of artificial intelligence for the assessment of cardiac function and treatment of cardiovascular disease. Future Cardiol 2020; 17:183-187. [PMID: 32933328 DOI: 10.2217/fca-2020-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Arash Kheradvar
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA
| | - Hamid Jafarkhani
- Center for Pervasive Communications & Computing, University of California, Irvine, Irvine, CA 92697, USA
| | - Thomas Sloane Guy
- Division of Cardiac Surgery, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - John Paul Finn
- Department of Radiological Sciences, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
44
|
Jiang B, Guo N, Ge Y, Zhang L, Oudkerk M, Xie X. Development and application of artificial intelligence in cardiac imaging. Br J Radiol 2020; 93:20190812. [PMID: 32017605 PMCID: PMC7465846 DOI: 10.1259/bjr.20190812] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/06/2020] [Accepted: 01/28/2020] [Indexed: 12/27/2022] Open
Abstract
In this review, we describe the technical aspects of artificial intelligence (AI) in cardiac imaging, starting with radiomics, basic algorithms of deep learning and application tasks of algorithms, until recently the availability of the public database. Subsequently, we conducted a systematic literature search for recently published clinically relevant studies on AI in cardiac imaging. As a result, 24 and 14 studies using CT and MRI, respectively, were included and summarized. From these studies, it can be concluded that AI is widely applied in cardiac applications in the clinic, including coronary calcium scoring, coronary CT angiography, fractional flow reserve CT, plaque analysis, left ventricular myocardium analysis, diagnosis of myocardial infarction, prognosis of coronary artery disease, assessment of cardiac function, and diagnosis and prognosis of cardiomyopathy. These advancements show that AI has a promising prospect in cardiac imaging.
Collapse
Affiliation(s)
- Beibei Jiang
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| | - Ning Guo
- Shukun (Beijing) Technology Co, Ltd., Jinhui Bd, Qiyang Rd, Beijing 100102, China
| | - Yinghui Ge
- Radiology Department, Central China Fuwai Hospital, Fuwai Avenue 1, Zhengzhou 450046, China
| | - Lu Zhang
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| | | | - Xueqian Xie
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| |
Collapse
|
45
|
Arafati A, Morisawa D, Avendi MR, Amini MR, Assadi RA, Jafarkhani H, Kheradvar A. Generalizable fully automated multi-label segmentation of four-chamber view echocardiograms based on deep convolutional adversarial networks. J R Soc Interface 2020; 17:20200267. [PMID: 32811299 PMCID: PMC7482559 DOI: 10.1098/rsif.2020.0267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/27/2020] [Indexed: 11/12/2022] Open
Abstract
A major issue in translation of the artificial intelligence platforms for automatic segmentation of echocardiograms to clinics is their generalizability. The present study introduces and verifies a novel generalizable and efficient fully automatic multi-label segmentation method for four-chamber view echocardiograms based on deep fully convolutional networks (FCNs) and adversarial training. For the first time, we used generative adversarial networks for pixel classification training, a novel method in machine learning not currently used for cardiac imaging, to overcome the generalization problem. The method's performance was validated against manual segmentations as the ground-truth. Furthermore, to verify our method's generalizability in comparison with other existing techniques, we compared our method's performance with a state-of-the-art method on our dataset in addition to an independent dataset of 450 patients from the CAMUS (cardiac acquisitions for multi-structure ultrasound segmentation) challenge. On our test dataset, automatic segmentation of all four chambers achieved a dice metric of 92.1%, 86.3%, 89.6% and 91.4% for LV, RV, LA and RA, respectively. LV volumes' correlation between automatic and manual segmentation were 0.94 and 0.93 for end-diastolic volume and end-systolic volume, respectively. Excellent agreement with chambers' reference contours and significant improvement over previous FCN-based methods suggest that generative adversarial networks for pixel classification training can effectively design generalizable fully automatic FCN-based networks for four-chamber segmentation of echocardiograms even with limited number of training data.
Collapse
Affiliation(s)
- Arghavan Arafati
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, 2410 Engineering Hall, Irvine, CA 92697-2730, USA
| | - Daisuke Morisawa
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, 2410 Engineering Hall, Irvine, CA 92697-2730, USA
| | - Michael R. Avendi
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, 2410 Engineering Hall, Irvine, CA 92697-2730, USA
- Center for Pervasive Communications and Computing, University of California, 4217 Engineering Hall, Irvine, CA 92697-2700, USA
| | - M. Reza Amini
- Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Ramin A. Assadi
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Hamid Jafarkhani
- Center for Pervasive Communications and Computing, University of California, 4217 Engineering Hall, Irvine, CA 92697-2700, USA
| | - Arash Kheradvar
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, 2410 Engineering Hall, Irvine, CA 92697-2730, USA
| |
Collapse
|
46
|
Dynamically constructed network with error correction for accurate ventricle volume estimation. Med Image Anal 2020; 64:101723. [DOI: 10.1016/j.media.2020.101723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 11/20/2022]
|
47
|
Retson TA, Masutani EM, Golden D, Hsiao A. Clinical Performance and Role of Expert Supervision of Deep Learning for Cardiac Ventricular Volumetry: A Validation Study. Radiol Artif Intell 2020; 2:e190064. [PMID: 32797119 DOI: 10.1148/ryai.2020190064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 02/21/2020] [Accepted: 03/27/2020] [Indexed: 11/11/2022]
Abstract
Purpose To evaluate the performance of a deep learning (DL) algorithm for clinical measurement of right and left ventricular volume and function across cardiac MR images obtained for a range of clinical indications and pathologies. Materials and Methods A retrospective, Health Insurance Portability and Accountability Act-compliant study was conducted using the first 200 noncongenital clinical cardiac MRI examinations from June 2015 to June 2017 for which volumetry was available. Images were analyzed using commercially available software for automated DL-based and manual contouring of biventricular volumes. Fully automated measurements were compared using Pearson correlations, relative volume errors, and Bland-Altman analyses. Manual, automated, and expert revised contours for 50 MR images were examined by comparing regional Dice coefficients at the base, midventricle, and apex to further analyze the contour quality. Results Fully automated and manual left ventricular volumes were strongly correlated for end-systolic volume (ESV: Pearson r = 0.99, P < .001), end-diastolic volume (EDV: r = 0.97, P < .001), and ejection fraction (EF: r = 0.94, P < .001). Right ventricular measurements were also correlated for ESV (r = 0.93, P < .001), EDV (r = 0.92, P < .001), and EF (r = 0.73, P < .001). Visual inspection of segmentation quality showed most errors (73%) occurred at the cardiac base. Mean Dice coefficients between manual, automated, and expert revised contours ranged from 0.92 to 0.95, with greatest variance at the base and apex. Conclusion Fully automated ventricular segmentation by the tested algorithm provides contours and ventricular volumes that could be used to aid expert segmentation, but can benefit from expert supervision, particularly to resolve errors at the basal and apical slices. Supplemental material is available for this article. © RSNA, 2020.
Collapse
Affiliation(s)
- Tara A Retson
- Department of Radiology, Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Dr, 4th Floor, La Jolla, CA 92037 (T.A.R., A.H.); Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, Calif (E.M.M.); and Arterys, San Francisco, Calif (D.G.)
| | - Evan M Masutani
- Department of Radiology, Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Dr, 4th Floor, La Jolla, CA 92037 (T.A.R., A.H.); Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, Calif (E.M.M.); and Arterys, San Francisco, Calif (D.G.)
| | - Daniel Golden
- Department of Radiology, Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Dr, 4th Floor, La Jolla, CA 92037 (T.A.R., A.H.); Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, Calif (E.M.M.); and Arterys, San Francisco, Calif (D.G.)
| | - Albert Hsiao
- Department of Radiology, Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Dr, 4th Floor, La Jolla, CA 92037 (T.A.R., A.H.); Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, Calif (E.M.M.); and Arterys, San Francisco, Calif (D.G.)
| |
Collapse
|
48
|
Fully Automated 3D Cardiac MRI Localisation and Segmentation Using Deep Neural Networks. J Imaging 2020; 6:jimaging6070065. [PMID: 34460658 PMCID: PMC8321054 DOI: 10.3390/jimaging6070065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiac magnetic resonance (CMR) imaging is used widely for morphological assessment and diagnosis of various cardiovascular diseases. Deep learning approaches based on 3D fully convolutional networks (FCNs), have improved state-of-the-art segmentation performance in CMR images. However, previous methods have employed several pre-processing steps and have focused primarily on segmenting low-resolutions images. A crucial step in any automatic segmentation approach is to first localize the cardiac structure of interest within the MRI volume, to reduce false positives and computational complexity. In this paper, we propose two strategies for localizing and segmenting the heart ventricles and myocardium, termed multi-stage and end-to-end, using a 3D convolutional neural network. Our method consists of an encoder–decoder network that is first trained to predict a coarse localized density map of the target structure at a low resolution. Subsequently, a second similar network employs this coarse density map to crop the image at a higher resolution, and consequently, segment the target structure. For the latter, the same two-stage architecture is trained end-to-end. The 3D U-Net with some architectural changes (referred to as 3D DR-UNet) was used as the base architecture in this framework for both the multi-stage and end-to-end strategies. Moreover, we investigate whether the incorporation of coarse features improves the segmentation. We evaluate the two proposed segmentation strategies on two cardiac MRI datasets, namely, the Automatic Cardiac Segmentation Challenge (ACDC) STACOM 2017, and Left Atrium Segmentation Challenge (LASC) STACOM 2018. Extensive experiments and comparisons with other state-of-the-art methods indicate that the proposed multi-stage framework consistently outperforms the rest in terms of several segmentation metrics. The experimental results highlight the robustness of the proposed approach, and its ability to generate accurate high-resolution segmentations, despite the presence of varying degrees of pathology-induced changes to cardiac morphology and image appearance, low contrast, and noise in the CMR volumes.
Collapse
|
49
|
Artificial Intelligence (AI) and Cardiovascular Diseases: An Unexpected Alliance. Cardiol Res Pract 2020; 2020:4972346. [PMID: 32676206 PMCID: PMC7336209 DOI: 10.1155/2020/4972346] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD), despite the significant advances in the diagnosis and treatments, still represents the leading cause of morbidity and mortality worldwide. In order to improve and optimize CVD outcomes, artificial intelligence techniques have the potential to radically change the way we practice cardiology, especially in imaging, offering us novel tools to interpret data and make clinical decisions. AI techniques such as machine learning and deep learning can also improve medical knowledge due to the increase of the volume and complexity of the data, unlocking clinically relevant information. Likewise, the use of emerging communication and information technologies is becoming pivotal to create a pervasive healthcare service through which elderly and chronic disease patients can receive medical care at their home, reducing hospitalizations and improving quality of life. The aim of this review is to describe the contemporary state of artificial intelligence and digital health applied to cardiovascular medicine as well as to provide physicians with their potential not only in cardiac imaging but most of all in clinical practice.
Collapse
|
50
|
Luo YH, Xi IL, Wang R, Abdallah HO, Wu J, Vance AZ, Chang K, Kohi M, Jones L, Reddy S, Zhang ZS, Bai HX, Shlansky-Goldberg R. Deep Learning Based on MR Imaging for Predicting Outcome of Uterine Fibroid Embolization. J Vasc Interv Radiol 2020; 31:1010-1017.e3. [DOI: 10.1016/j.jvir.2019.11.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 01/09/2023] Open
|