1
|
Chen CH, Lin HW, Huang MF, Chiang CW, Lee KH, Phuong NT, Cai ZY, Chang WC, Lin DY. Sumoylation of SAP130 regulates its interaction with FAF1 as well as its protein stability and transcriptional repressor function. BMC Mol Cell Biol 2024; 25:2. [PMID: 38172660 PMCID: PMC10765799 DOI: 10.1186/s12860-023-00498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Fas-associated factor 1 (FAF1) is a multidomain protein that interacts with diverse partners to affect numerous cellular processes. Previously, we discovered two Small Ubiquitin-like Modifier (SUMO)-interacting motifs (SIMs) within FAF1 that are crucial for transcriptional modulation of mineralocorticoid receptor. Recently, we identified Sin3A-associated protein 130 (SAP130), a putative sumoylated protein, as a candidate FAF1 interaction partner by yeast two-hybrid screening. However, it remained unclear whether SAP130 sumoylation might occur and functionally interact with FAF1. RESULTS In this study, we first show that SAP130 can be modified by SUMO1 at Lys residues 794, 878 and 932 both in vitro and in vivo. Mutation of these three SUMO-accepting Lys residues to Ala had no impact on SAP130 association with Sin3A or its nuclear localization, but the mutations abrogated the association of SAP130 with the FAF1. The mutations also potentiated SAP130 trans-repression activity and attenuated SAP130-mediated promotion of cell growth. Additionally, SUMO1-modified SAP130 was less stable than unmodified SAP130. Transient transfection experiments further revealed that FAF1 mitigated the trans-repression and cell proliferation-promoting functions of SAP130, and promoted SAP130 degradation by enhancing its polyubiquitination in a sumoylation-dependent manner. CONCLUSIONS Together, these results demonstrate that sumoylation of SAP130 regulates its biological functions and that FAF1 plays a crucial role in controlling the SUMO-dependent regulation of transcriptional activity and protein stability of SAP130.
Collapse
Affiliation(s)
- Chang-Han Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 407219, Taiwan, ROC
- Department of Applied Chemistry, and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, 545301, Taiwan, ROC
| | - Hung-Wei Lin
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Meng-Fang Huang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Kuen-Haur Lee
- Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Nguyen Thanh Phuong
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Zong-Yan Cai
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Wen-Chang Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Ding-Yen Lin
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| |
Collapse
|
2
|
Deng Z, Richardson DR. The Myc Family and the Metastasis Suppressor NDRG1: Targeting Key Molecular Interactions with Innovative Therapeutics. Pharmacol Rev 2023; 75:1007-1035. [PMID: 37280098 DOI: 10.1124/pharmrev.122.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the Myc proto-oncogene family, which consists of three members including c-Myc, N-Myc, and L-Myc. As a pertinent example of the role of the Myc family in tumorigenesis, amplification of MYCN in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1α and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCFFBXW7, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3β and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.
Collapse
Affiliation(s)
- Zhao Deng
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| |
Collapse
|
3
|
Morales-Valencia J, Petit C, Calderon A, Saini S, David G. Chromatin-Associated SIN3B Protects Cancer Cells from Genotoxic Stress-Induced Apoptosis and Dictates DNA Damage Repair Pathway Choice. Mol Cancer Res 2023; 21:947-957. [PMID: 37314748 PMCID: PMC10527583 DOI: 10.1158/1541-7786.mcr-22-0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/11/2022] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Abstract
Transcription and DNA damage repair act in a coordinated manner. The scaffolding protein SIN3B serves as a transcriptional co-repressor of hundreds of cell cycle-related genes. However, the contribution of SIN3B during the DNA damage response remains unknown. Here, we show that SIN3B inactivation delays the resolution of DNA double-strand breaks and sensitizes cancer cells to DNA-damaging agents, including the chemotherapeutic drugs cisplatin and doxorubicin. Mechanistically, SIN3B is rapidly recruited to DNA damage sites where it directs the accumulation of Mediator of DNA Damage Checkpoint 1 (MDC1). In addition, we show that SIN3B inactivation favors the engagement of the alternative nonhomologous end joining (NHEJ) repair pathway over the canonical NHEJ. Altogether, our findings impute an unexpected function for the transcriptional co-repressor SIN3B as a gatekeeper of genomic integrity and a determining factor in the DNA repair choice pathway, and point to the inhibition of the SIN3B chromatin-modifying complex as a novel therapeutic vulnerability in cancer cells. IMPLICATIONS Identifying SIN3B as a modulator of DNA damage repair choice provides novel potential therapeutic avenues to sensitize cancer cells to cytotoxic therapies.
Collapse
Affiliation(s)
- Jorge Morales-Valencia
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Langone Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA
| | - Coralie Petit
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Alexander Calderon
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Siddharth Saini
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Langone Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA
- Department of Urology, NYU Langone Medical Center, New York, NY 10016, USA
| |
Collapse
|
4
|
Quan YZ, Wei W, Ergin V, Rameshbabu A, Huang M, Tian C, Saladi S, Indzhykulian A, Chen ZY. Reprogramming by drug-like molecules leads to regeneration of cochlear hair cell-like cells in adult mice. Proc Natl Acad Sci U S A 2023; 120:e2215253120. [PMID: 37068229 PMCID: PMC10151514 DOI: 10.1073/pnas.2215253120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/02/2023] [Indexed: 04/19/2023] Open
Abstract
Strategies to overcome irreversible cochlear hair cell (HC) damage and loss in mammals are of vital importance to hearing recovery in patients with permanent hearing loss. In mature mammalian cochlea, co-activation of Myc and Notch1 reprograms supporting cells (SC) and promotes HC regeneration. Understanding of the underlying mechanisms may aid the development of a clinically relevant approach to achieve HC regeneration in the nontransgenic mature cochlea. By single-cell RNAseq, we show that MYC/NICD "rejuvenates" the adult mouse cochlea by activating multiple pathways including Wnt and cyclase activator of cyclic AMP (cAMP), whose blockade suppresses HC-like cell regeneration despite Myc/Notch activation. We screened and identified a combination (the cocktail) of drug-like molecules composing of small molecules and small interfering RNAs to activate the pathways of Myc, Notch1, Wnt and cAMP. We show that the cocktail effectively replaces Myc and Notch1 transgenes and reprograms fully mature wild-type (WT) SCs for HC-like cells regeneration in vitro. Finally, we demonstrate the cocktail is capable of reprogramming adult cochlea for HC-like cells regeneration in WT mice with HC loss in vivo. Our study identifies a strategy by a clinically relevant approach to reprogram mature inner ear for HC-like cells regeneration, laying the foundation for hearing restoration by HC regeneration.
Collapse
Affiliation(s)
- Yi-Zhou Quan
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Wei Wei
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
- Department of Otolaryngology-Head and Necks, Shengjing Hospital of China Medical University, Shenyang110004, China
| | - Volkan Ergin
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Arun Prabhu Rameshbabu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Mingqian Huang
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Chunjie Tian
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Srinivas Vinod Saladi
- Broad Institute of MIT and Harvard, Cambridge, MA02142
- Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA02114
| | - Artur A. Indzhykulian
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| |
Collapse
|
5
|
Li J, Dong T, Wu Z, Zhu D, Gu H. The effects of MYC on tumor immunity and immunotherapy. Cell Death Discov 2023; 9:103. [PMID: 36966168 PMCID: PMC10039951 DOI: 10.1038/s41420-023-01403-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
The oncogene MYC is dysregulated in a host of human cancers, and as an important point of convergence in multitudinous oncogenic signaling pathways, it plays a crucial role in tumor immune regulation in the tumor immune microenvironment (TIME). Specifically, MYC promotes the expression of immunosuppressive factors and inhibits the expression of immune activation regulators. Undoubtedly, a therapeutic strategy that targets MYC can initiate a new era of cancer treatment. In this review, we summarize the essential role of the MYC signaling pathway in tumor immunity and the development status of MYC-related therapies, including therapeutic strategies targeting MYC and combined MYC-based immunotherapy. These studies have reported extraordinary insights into the translational application of MYC in cancer treatment and are conducive to the emergence of more effective immunotherapies for cancer.
Collapse
Affiliation(s)
- Jiajin Li
- Department of Pediatrics, Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Tingyu Dong
- Department of Pediatrics, Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- Department of Clinical Medicine, First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- Department of Clinical Medicine, First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Perucho L, Icardi L, Di Simone E, Basso V, Agresti A, Vilas Zornoza A, Lozano T, Prosper F, Lasarte JJ, Mondino A. The transcriptional regulator Sin3A balances IL-17A and Foxp3 expression in primary CD4 T cells. EMBO Rep 2023; 24:e55326. [PMID: 36929576 PMCID: PMC10157306 DOI: 10.15252/embr.202255326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
The Sin3 transcriptional regulator homolog A (Sin3A) is the core member of a multiprotein chromatin-modifying complex. Its inactivation at the CD4/CD8 double-negative stage halts further thymocyte development. Among various functions, Sin3A regulates STAT3 transcriptional activity, central to the differentiation of Th17 cells active in inflammatory disorders and opportunistic infections. To further investigate the consequences of conditional Sin3A inactivation in more mature precursors and post-thymic T cell, we have generated CD4-Cre and CD4-CreERT2 Sin3AF/F mice. Sin3A inactivation in vivo hinders both thymocyte development and peripheral T-cell survival. In vitro, in Th17 skewing conditions, Sin3A-deficient cells proliferate and acquire memory markers and yet fail to properly upregulate Il17a, Il23r, and Il22. Instead, IL-2+ and FOXP3+ are mostly enriched for, and their inhibition partially rescues IL-17A+ T cells. Notably, Sin3A deletion also causes an enrichment of genes implicated in the mTORC1 signaling pathway, overt STAT3 activation, and aberrant cytoplasmic RORγt accumulation. Thus, together our data unveil a previously unappreciated role for Sin3A in shaping critical signaling events central to the acquisition of immunoregulatory T-cell phenotypes.
Collapse
Affiliation(s)
- Laura Perucho
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Icardi
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Di Simone
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Basso
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Agresti
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Amaia Vilas Zornoza
- Departamento de Hematología, Clínica Universidad de Navarra and CCUN, IDISNA, Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Teresa Lozano
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), CCUN, IDISNA, University of Navarra, Pamplona, Spain
| | - Felipe Prosper
- Departamento de Hematología, Clínica Universidad de Navarra and CCUN, IDISNA, Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), CCUN, IDISNA, University of Navarra, Pamplona, Spain
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Huang X, Song Q, Guo S, Fei Q. Transcription regulation strategies in methylotrophs: progress and challenges. BIORESOUR BIOPROCESS 2022; 9:126. [PMID: 38647763 PMCID: PMC10992012 DOI: 10.1186/s40643-022-00614-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
As a promising industrial microorganism, methylotroph is capable of using methane or methanol as the sole carbon source natively, which has been utilized in the biosynthesis of various bioproducts. However, the relatively low efficiency of carbon conversion has become a limiting factor throughout the development of methanotrophic cell factories due to the unclear genetic background. To better highlight their advantages in methane or methanol-based biomanufacturing, some metabolic engineering strategies, including upstream transcription regulation projects, are being popularized in methylotrophs. In this review, several strategies of transcription regulations applied in methylotrophs are summarized and their applications are discussed and prospected.
Collapse
Affiliation(s)
- Xiaohan Huang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiaoqiao Song
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
8
|
Scott L, Wigglesworth MJ, Siewers V, Davis AM, David F. Genetically Encoded Whole Cell Biosensor for Drug Discovery of HIF-1 Interaction Inhibitors. ACS Synth Biol 2022; 11:3182-3189. [PMID: 36223492 PMCID: PMC9594322 DOI: 10.1021/acssynbio.2c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The heterodimeric transcription factor, hypoxia inducible factor-1 (HIF-1), is an important anticancer target as it supports the adaptation and response of tumors to hypoxia. Here, we optimized the repressed transactivator yeast two-hybrid system to further develop it as part of a versatile yeast-based drug discovery platform and validated it using HIF-1. We demonstrate both fluorescence-based and auxotrophy-based selections that could detect HIF-1α/HIF-1β dimerization inhibition. The engineered genetic selection is tunable and able to differentiate between strong and weak interactions, shows a large dynamic range, and is stable over different growth phases. Furthermore, we engineered mechanisms to control for cellular activity and off-target drug effects. We thoroughly characterized all parts of the biosensor system and argue this tool will be generally applicable to a wide array of protein-protein interaction targets. We anticipate this biosensor will be useful as part of a drug discovery platform, particularly when screening DNA-encoded new modality drugs.
Collapse
Affiliation(s)
- Louis
H. Scott
- Discovery
Sciences, Biopharmaceuticals R&D, AstraZeneca, SE-41320 Gothenburg, Sweden,Department
of Biology and Biological Engineering, Division of Systems and Synthetic
Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Mark J. Wigglesworth
- Discovery
Sciences, Biopharmaceuticals R&D, AstraZeneca, Alderley Park SK10 2NA, U.K.
| | - Verena Siewers
- Department
of Biology and Biological Engineering, Division of Systems and Synthetic
Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Andrew M. Davis
- Discovery
Sciences, Biopharmaceutical R&D, AstraZeneca, Cambridge, CB2 0AA, U.K.
| | - Florian David
- Department
of Biology and Biological Engineering, Division of Systems and Synthetic
Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden,
| |
Collapse
|
9
|
Jang KH, Heras CR, Lee G. m 6A in the Signal Transduction Network. Mol Cells 2022; 45:435-443. [PMID: 35748227 PMCID: PMC9260138 DOI: 10.14348/molcells.2022.0017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022] Open
Abstract
In response to environmental changes, signaling pathways rewire gene expression programs through transcription factors. Epigenetic modification of the transcribed RNA can be another layer of gene expression regulation. N6-adenosine methylation (m6A) is one of the most common modifications on mRNA. It is a reversible chemical mark catalyzed by the enzymes that deposit and remove methyl groups. m6A recruits effector proteins that determine the fate of mRNAs through changes in splicing, cellular localization, stability, and translation efficiency. Emerging evidence shows that key signal transduction pathways including TGFβ (transforming growth factor-β), ERK (extracellular signal-regulated kinase), and mTORC1 (mechanistic target of rapamycin complex 1) regulate downstream gene expression through m6A processing. Conversely, m6A can modulate the activity of signal transduction networks via m6A modification of signaling pathway genes or by acting as a ligand for receptors. In this review, we discuss the current understanding of the crosstalk between m6A and signaling pathways and its implication for biological systems.
Collapse
Affiliation(s)
- Ki-Hong Jang
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Chloe R. Heras
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA 92617, USA
- School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Gina Lee
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| |
Collapse
|
10
|
Kucherlapati MH. Co-expression patterns explain how a basic transcriptional role for MYC modulates Wnt and MAPK pathways in colon and lung adenocarcinomas. Cell Cycle 2022; 21:1619-1638. [PMID: 35438040 PMCID: PMC9291661 DOI: 10.1080/15384101.2022.2060454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A subset of proliferation genes that are associated with origin licensing, firing, and DNA synthesis has been compared to known drivers of colon (COAD) and lung (LUAD) adenocarcinomas using Spearman's rank correlation coefficients. The frequency with which APC, CTNNB1, KRAS, MYC, Braf, TP53, Rb1, EGFR, and cell cycle components have direct or indirect co-expression with the proliferation factors permits identification of their expression relative to the G1-S phase of the cell cycle. Here, adenomatous polyposis coli (APC), a negative regulator of Wnt signaling known to function through MYC, indirectly co-expresses at the same frequency as proliferation genes in both COAD and LUAD, consistent with M phase expression. However, APC is indirectly co-expressed with MYC and is found mutated only in COAD. MYC is thought to function at the interface of transcription and replication, acting through the SWI/SNF chromatin remodeling complex, and increased or decreased expression of MYC can induce or repress tumorigenesis, respectively. These data suggest that transcription of APC during the M phase with low MYC co-expression contributes by an unknown mechanism to APC mutations and Wnt pathway deregulation in COAD and that upper and lower limits of MYC expression, enforced by the cell cycle, may influence cancer differentially. Other Wnt signaling components co-expressed in the low MYC context in COAD also have significantly higher mutation frequencies, supporting the hypothesis. Additionally, Braf is found here to have direct co-expression with multiple proliferation factors in non-EGFR activated LUAD, and EGFR-activated LUAD are completely deregulated with respect to E2F(s) 4/5/6 expression, potentially explaining the low proliferation rates seen in LUAD.
Collapse
Affiliation(s)
- Melanie Haas Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Stephan OOH. Interactions, structural aspects, and evolutionary perspectives of the yeast 'START'-regulatory network. FEMS Yeast Res 2021; 22:6461095. [PMID: 34905017 DOI: 10.1093/femsyr/foab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/11/2021] [Indexed: 11/12/2022] Open
Abstract
Molecular signal transduction networks which conduct transcription at the G1 to S phase transition of the eukaryotic cell division cycle have been identified in diverse taxa from mammals to baker´s yeast with analogous functional organization. However, regarding some network components, such as the transcriptional regulators STB1 and WHI5, only few orthologs exist which are confined to individual Saccharomycotina species. While Whi5 has been characterized as yeast analog of human Rb protein, in the particular case of Stb1 (Sin three binding protein 1) identification of functional analogs emerges as difficult because to date its exact functionality still remains obscured. By aiming to resolve Stb1´s enigmatic role this Perspectives article especially surveys works covering relations between Cyclin/CDKs, the heteromeric transcription factor complexes SBF (Swi4/Swi6) and MBF (Mbp1/Swi6), as well as additional coregulators (Whi5, Sin3, Rpd3, Nrm1) which are collectively associated with the orderly transcription at 'Start' of the Saccharomyces cerevisiae cell cycle. In this context, interaction capacities of the Sin3-scaffold protein are widely surveyed because its four PAH domains (Paired Amphiphatic Helix) represent a 'recruitment-code' for gene-specific targeting of repressive histone deacetylase activity (Rpd3) via different transcription factors. Here Stb1 plays a role in Sin3´s action on transcription at the G1/S-boundary. Through bioinformatic analyses a potential Sin3-interaction domain (SID) was detected in Stb1, and beyond that, connections within the G1/S-regulatory network are discussed in structural and evolutionary context thereby providing conceptual perspectives.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Bavaria, Germany
| |
Collapse
|
12
|
Liaño-Pons J, Arsenian-Henriksson M, León J. The Multiple Faces of MNT and Its Role as a MYC Modulator. Cancers (Basel) 2021; 13:4682. [PMID: 34572909 PMCID: PMC8465425 DOI: 10.3390/cancers13184682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
MNT is a crucial modulator of MYC, controls several cellular functions, and is activated in most human cancers. It is the largest, most divergent, and most ubiquitously expressed protein of the MXD family. MNT was first described as a MYC antagonist and tumor suppressor. Indeed, 10% of human tumors present deletions of one MNT allele. However, some reports show that MNT functions in cooperation with MYC by maintaining cell proliferation, promoting tumor cell survival, and supporting MYC-driven tumorigenesis in cellular and animal models. Although MAX was originally considered MNT's obligate partner, our recent findings demonstrate that MNT also works independently. MNT forms homodimers and interacts with proteins both outside and inside of the proximal MYC network. These complexes are involved in a wide array of cellular processes, from transcriptional repression via SIN3 to the modulation of metabolism through MLX as well as immunity and apoptosis via REL. In this review, we discuss the present knowledge of MNT with a special focus on its interactome, which sheds light on the complex and essential role of MNT in cell biology.
Collapse
Affiliation(s)
- Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden;
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden;
| | - Javier León
- Departmento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, 39011 Santander, Spain;
| |
Collapse
|
13
|
Ciurkot K, Gorochowski TE, Roubos JA, Verwaal R. Efficient multiplexed gene regulation in Saccharomyces cerevisiae using dCas12a. Nucleic Acids Res 2021; 49:7775-7790. [PMID: 34197613 PMCID: PMC8287914 DOI: 10.1093/nar/gkab529] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022] Open
Abstract
CRISPR Cas12a is an RNA-programmable endonuclease particularly suitable for gene regulation. This is due to its preference for T-rich PAMs that allows it to more easily target AT-rich promoter sequences, and built-in RNase activity which can process a single CRISPR RNA array encoding multiple spacers into individual guide RNAs (gRNAs), thereby simplifying multiplexed gene regulation. Here, we develop a flexible dCas12a-based CRISPRi system for Saccharomyces cerevisiae and systematically evaluate its design features. This includes the role of the NLS position, use of repression domains, and the position of the gRNA target. Our optimal system is comprised of dCas12a E925A with a single C-terminal NLS and a Mxi1 or a MIG1 repression domain, which enables up to 97% downregulation of a reporter gene. We also extend this system to allow for inducible regulation via an RNAP II-controlled promoter, demonstrate position-dependent effects in crRNA arrays, and use multiplexed regulation to stringently control a heterologous β-carotene pathway. Together these findings offer valuable insights into the design constraints of dCas12a-based CRISPRi and enable new avenues for flexible and efficient gene regulation in S. cerevisiae.
Collapse
Affiliation(s)
- Klaudia Ciurkot
- DSM Biotechnology Center, Delft 2613 AX, The Netherlands.,Department of Chemistry, University of Hamburg, Hamburg 20146, Germany
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | | | - René Verwaal
- DSM Biotechnology Center, Delft 2613 AX, The Netherlands
| |
Collapse
|
14
|
Leydon AR, Wang W, Gala HP, Gilmour S, Juarez-Solis S, Zahler ML, Zemke JE, Zheng N, Nemhauser JL. Repression by the Arabidopsis TOPLESS corepressor requires association with the core mediator complex. eLife 2021; 10:66739. [PMID: 34075876 PMCID: PMC8203292 DOI: 10.7554/elife.66739] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
The plant corepressor TOPLESS (TPL) is recruited to a large number of loci that are selectively induced in response to developmental or environmental cues, yet the mechanisms by which it inhibits expression in the absence of these stimuli are poorly understood. Previously, we had used the N-terminus of Arabidopsis thaliana TPL to enable repression of a synthetic auxin response circuit in Saccharomyces cerevisiae (yeast). Here, we leveraged the yeast system to interrogate the relationship between TPL structure and function, specifically scanning for repression domains. We identified a potent repression domain in Helix 8 located within the CRA domain, which directly interacted with the Mediator middle module subunits Med21 and Med10. Interactions between TPL and Mediator were required to fully repress transcription in both yeast and plants. In contrast, we found that multimer formation, a conserved feature of many corepressors, had minimal influence on the repression strength of TPL.
Collapse
Affiliation(s)
| | - Wei Wang
- Department of Pharmacology, Seattle, United States
| | - Hardik P Gala
- Department of Biology, University of Washington, Seattle, United States
| | - Sabrina Gilmour
- Department of Biology, University of Washington, Seattle, United States
| | | | - Mollye L Zahler
- Department of Biology, University of Washington, Seattle, United States
| | - Joseph E Zemke
- Department of Biology, University of Washington, Seattle, United States
| | - Ning Zheng
- Department of Pharmacology, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | | |
Collapse
|
15
|
Cho S, Lee G, Pickering BF, Jang C, Park JH, He L, Mathur L, Kim SS, Jung S, Tang HW, Monette S, Rabinowitz JD, Perrimon N, Jaffrey SR, Blenis J. mTORC1 promotes cell growth via m 6A-dependent mRNA degradation. Mol Cell 2021; 81:2064-2075.e8. [PMID: 33756105 PMCID: PMC8356906 DOI: 10.1016/j.molcel.2021.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/21/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
Dysregulated mTORC1 signaling alters a wide range of cellular processes, contributing to metabolic disorders and cancer. Defining the molecular details of downstream effectors is thus critical for uncovering selective therapeutic targets. We report that mTORC1 and its downstream kinase S6K enhance eIF4A/4B-mediated translation of Wilms' tumor 1-associated protein (WTAP), an adaptor for the N6-methyladenosine (m6A) RNA methyltransferase complex. This regulation is mediated by 5' UTR of WTAP mRNA that is targeted by eIF4A/4B. Single-nucleotide-resolution m6A mapping revealed that MAX dimerization protein 2 (MXD2) mRNA contains m6A, and increased m6A modification enhances its degradation. WTAP induces cMyc-MAX association by suppressing MXD2 expression, which promotes cMyc transcriptional activity and proliferation of mTORC1-activated cancer cells. These results elucidate a mechanism whereby mTORC1 stimulates oncogenic signaling via m6A RNA modification and illuminates the WTAP-MXD2-cMyc axis as a potential therapeutic target for mTORC1-driven cancers.
Collapse
Affiliation(s)
- Sungyun Cho
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gina Lee
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Irvine, CA, USA.
| | - Brian F Pickering
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Cholsoon Jang
- Department of Chemistry, Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Jin H Park
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Long He
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lavina Mathur
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Seung-Soo Kim
- Department of Obstetrics and Gynecology, Irving Medical Center, Columbia University, New York, NY, USA
| | - Sunhee Jung
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Hong-Wen Tang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, NY, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - John Blenis
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
16
|
Zhao D, Zhu X, Zhou H, Sun N, Wang T, Bi C, Zhang X. CRISPR-based metabolic pathway engineering. Metab Eng 2020; 63:148-159. [PMID: 33152516 DOI: 10.1016/j.ymben.2020.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
A highly effective metabolic pathway is the key for an efficient cell factory. However, the engineered homologous or heterologous multi-gene pathway may be unbalanced, inefficient and causing the accumulation of potentially toxic intermediates. Therefore, pathways must be constructed optimally to minimize these negative effects and maximize catalytic efficiency. With the development of CRISPR technology, some of the problems of previous pathway engineering and genome editing techniques were resolved, providing higher efficiency, lower cost, and easily customizable targets. Moreover, CRISPR was demonstrated as robust and effective in various organisms including both prokaryotes and eukaryotes. In recent years, researchers in the field of metabolic engineering and synthetic biology have exploited various CRISPR-based pathway engineering approaches, which are both effective and convenient, as well as valuable from a theoretical standpoint. In this review, we systematically summarize novel pathway engineering techniques and strategies based on CRISPR nucleases system, CRISPR interference (CRISPRi), and CRISPR activation (CRISPRa), including figures and descriptions for easy understanding, with the aim to facilitate their broader application among fellow researchers.
Collapse
Affiliation(s)
- Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Hang Zhou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Naxin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ting Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
17
|
Wouters J, Kalender-Atak Z, Minnoye L, Spanier KI, De Waegeneer M, Bravo González-Blas C, Mauduit D, Davie K, Hulselmans G, Najem A, Dewaele M, Pedri D, Rambow F, Makhzami S, Christiaens V, Ceyssens F, Ghanem G, Marine JC, Poovathingal S, Aerts S. Robust gene expression programs underlie recurrent cell states and phenotype switching in melanoma. Nat Cell Biol 2020; 22:986-998. [PMID: 32753671 DOI: 10.1038/s41556-020-0547-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Melanoma cells can switch between a melanocytic and a mesenchymal-like state. Scattered evidence indicates that additional intermediate state(s) may exist. Here, to search for such states and decipher their underlying gene regulatory network (GRN), we studied 10 melanoma cultures using single-cell RNA sequencing (RNA-seq) as well as 26 additional cultures using bulk RNA-seq. Although each culture exhibited a unique transcriptome, we identified shared GRNs that underlie the extreme melanocytic and mesenchymal states and the intermediate state. This intermediate state is corroborated by a distinct chromatin landscape and is governed by the transcription factors SOX6, NFATC2, EGR3, ELF1 and ETV4. Single-cell migration assays confirmed the intermediate migratory phenotype of this state. Using time-series sampling of single cells after knockdown of SOX10, we unravelled the sequential and recurrent arrangement of GRNs during phenotype switching. Taken together, these analyses indicate that an intermediate state exists and is driven by a distinct and stable 'mixed' GRN rather than being a symbiotic heterogeneous mix of cells.
Collapse
Affiliation(s)
- Jasper Wouters
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Zeynep Kalender-Atak
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Liesbeth Minnoye
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Katina I Spanier
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Maxime De Waegeneer
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Carmen Bravo González-Blas
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - David Mauduit
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Kristofer Davie
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Gert Hulselmans
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Ahmad Najem
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Michael Dewaele
- Center for Cancer Biology, VIB-KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Dennis Pedri
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Center for Cancer Biology, VIB-KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Florian Rambow
- Center for Cancer Biology, VIB-KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Samira Makhzami
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Valerie Christiaens
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Ghanem Ghanem
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Christophe Marine
- Center for Cancer Biology, VIB-KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Stein Aerts
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium. .,Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes (Basel) 2020; 11:genes11050556. [PMID: 32429325 PMCID: PMC7288346 DOI: 10.3390/genes11050556] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) are evolutionary conserved enzymes which operate by removing acetyl groups from histones and other protein regulatory factors, with functional consequences on chromatin remodeling and gene expression profiles. We provide here a review on the recent knowledge accrued on the zinc-dependent HDAC protein family across different species, tissues, and human pathologies, specifically focusing on the role of HDAC inhibitors as anti-cancer agents. We will investigate the chemical specificity of different HDACs and discuss their role in the human interactome as members of chromatin-binding and regulatory complexes.
Collapse
|
19
|
Geller SH, Antwi EB, Di Ventura B, McClean MN. Optogenetic Repressors of Gene Expression in Yeasts Using Light-Controlled Nuclear Localization. Cell Mol Bioeng 2019; 12:511-528. [PMID: 31719930 PMCID: PMC6816687 DOI: 10.1007/s12195-019-00598-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 09/03/2019] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Controlling gene expression is a fundamental goal of basic and synthetic biology because it allows insight into cellular function and control of cellular activity. We explored the possibility of generating an optogenetic repressor of gene expression in the model organism Saccharomyces cerevisiae by using light to control the nuclear localization of nuclease-dead Cas9, dCas9. METHODS The dCas9 protein acts as a repressor for a gene of interest when localized to the nucleus in the presence of an appropriate guide RNA (sgRNA). We engineered dCas9, the mammalian transcriptional repressor Mxi1, and an optogenetic tool to control nuclear localization (LINuS) as parts in an existing yeast optogenetic toolkit. This allowed expression cassettes containing novel dCas9 repressor configurations and guide RNAs to be rapidly constructed and integrated into yeast. RESULTS Our library of repressors displays a range of basal repression without the need for inducers or promoter modification. Populations of cells containing these repressors can be combined to generate a heterogeneous population of yeast with a 100-fold expression range. We find that repression can be dialed modestly in a light dose- and intensity-dependent manner. We used this library to repress expression of the lanosterol 14-alpha-demethylase Erg11, generating yeast with a range of sensitivity to the important antifungal drug fluconazole. CONCLUSIONS This toolkit will be useful for spatiotemporal perturbation of gene expression in Saccharomyces cerevisiae. Additionally, we believe that the simplicity of our scheme will allow these repressors to be easily modified to control gene expression in medically relevant fungi, such as pathogenic yeasts.
Collapse
Affiliation(s)
- Stephanie H. Geller
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI 53706 USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, 1525 Linden Dr., Madison, WI 53706 USA
| | - Enoch B. Antwi
- Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Heidelberg Biosciences International Graduate School (HBIGS), 69120 Heidelberg, Germany
| | - Barbara Di Ventura
- Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Megan N. McClean
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI 53706 USA
| |
Collapse
|
20
|
|
21
|
Zhu F, Zhu Q, Ye D, Zhang Q, Yang Y, Guo X, Liu Z, Jiapaer Z, Wan X, Wang G, Chen W, Zhu S, Jiang C, Shi W, Kang J. Sin3a-Tet1 interaction activates gene transcription and is required for embryonic stem cell pluripotency. Nucleic Acids Res 2019; 46:6026-6040. [PMID: 29733394 PMCID: PMC6158608 DOI: 10.1093/nar/gky347] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/23/2018] [Indexed: 01/06/2023] Open
Abstract
Sin3a is a core component of histone-deacetylation-activity-associated transcriptional repressor complex, playing important roles in early embryo development. Here, we reported that down-regulation of Sin3a led to the loss of embryonic stem cell (ESC) self-renewal and skewed differentiation into mesendoderm lineage. We found that Sin3a functioned as a transcriptional coactivator of the critical Nodal antagonist Lefty1 through interacting with Tet1 to de-methylate the Lefty1 promoter. Further studies showed that two amino acid residues (Phe147, Phe182) in the PAH1 domain of Sin3a are essential for Sin3a–Tet1 interaction and its activity in regulating pluripotency. Furthermore, genome-wide analyses of Sin3a, Tet1 and Pol II ChIP-seq and of 5mC MeDIP-seq revealed that Sin3a acted with Tet1 to facilitate the transcription of a set of their co-target genes. These results link Sin3a to epigenetic DNA modifications in transcriptional activation and have implications for understanding mechanisms underlying versatile functions of Sin3a in mouse ESCs.
Collapse
Affiliation(s)
- Fugui Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qianshu Zhu
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qingquan Zhang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yiwei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China.,Institute of Regenerative Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhenping Liu
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zeyidan Jiapaer
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaoping Wan
- Shanghai First Maternity and Infant Health Hospital, Shanghai 200120, China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Songcheng Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Cizhong Jiang
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Weiyang Shi
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
22
|
Wensing L, Sharma J, Uthayakumar D, Proteau Y, Chavez A, Shapiro RS. A CRISPR Interference Platform for Efficient Genetic Repression in Candida albicans. mSphere 2019; 4:e00002-19. [PMID: 30760609 PMCID: PMC6374589 DOI: 10.1128/msphere.00002-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/18/2019] [Indexed: 12/26/2022] Open
Abstract
Fungal pathogens are emerging as an important cause of human disease, and Candida albicans is among the most common causative agents of fungal infections. Studying this fungal pathogen is of the utmost importance and necessitates the development of molecular technologies to perform comprehensive genetic and functional genomic analysis. Here, we designed and developed a novel clustered regularly interspaced short palindromic repeat interference (CRISPRi) system for targeted genetic repression in C. albicans We engineered a nuclease-dead Cas9 (dCas9) construct that, paired with a guide RNA targeted to the promoter of an endogenous gene, is capable of targeting that gene for transcriptional repression. We further optimized a favorable promoter locus to achieve repression and demonstrated that fusion of dCas9 to an Mxi1 repressor domain was able to further enhance transcriptional repression. Finally, we demonstrated the application of this CRISPRi system through genetic repression of the essential molecular chaperone HSP90 This is the first demonstration of a functional CRISPRi repression system in C. albicans, and this valuable technology will enable many future applications in this critical fungal pathogen.IMPORTANCE Fungal pathogens are an increasingly important cause of human disease and mortality, and Candida albicans is among the most common causes of fungal disease. Studying this important fungal pathogen requires a comprehensive genetic toolkit to establish how different genetic factors play roles in the biology and virulence of this pathogen. Here, we developed a CRISPR-based genetic regulation platform to achieve targeted repression of C. albicans genes. This CRISPR interference (CRISPRi) technology exploits a nuclease-dead Cas9 protein (dCas9) fused to transcriptional repressors. The dCas9 fusion proteins pair with a guide RNA to target genetic promoter regions and to repress expression from these genes. We demonstrated the functionality of this system for repression in C. albicans and show that we can apply this technology to repress essential genes. Taking the results together, this work presents a new technology for efficient genetic repression in C. albicans, with important applications for genetic analysis in this fungal pathogen.
Collapse
Affiliation(s)
- Lauren Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Yannic Proteau
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
23
|
Co-repressor, co-activator and general transcription factor: the many faces of the Sin3 histone deacetylase (HDAC) complex. Biochem J 2018; 475:3921-3932. [PMID: 30552170 PMCID: PMC6295471 DOI: 10.1042/bcj20170314] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022]
Abstract
At face value, the Sin3 histone deacetylase (HDAC) complex appears to be a prototypical co-repressor complex, that is, a multi-protein complex recruited to chromatin by DNA bound repressor proteins to facilitate local histone deacetylation and transcriptional repression. While this is almost certainly part of its role, Sin3 stubbornly refuses to be pigeon-holed in quite this way. Genome-wide mapping studies have found that Sin3 localises predominantly to the promoters of actively transcribed genes. While Sin3 knockout studies in various species result in a combination of both up- and down-regulated genes. Furthermore, genes such as the stem cell factor, Nanog, are dependent on the direct association of Sin3 for active transcription to occur. Sin3 appears to have properties of a co-repressor, co-activator and general transcription factor, and has thus been termed a co-regulator complex. Through a series of unique domains, Sin3 is able to assemble HDAC1/2, chromatin adaptors and transcription factors in a series of functionally and compositionally distinct complexes to modify chromatin at both gene-specific and global levels. Unsurprisingly, therefore, Sin3/HDAC1 have been implicated in the regulation of numerous cellular processes, including mammalian development, maintenance of pluripotency, cell cycle regulation and diseases such as cancer.
Collapse
|
24
|
Jensen MK. Design principles for nuclease-deficient CRISPR-based transcriptional regulators. FEMS Yeast Res 2018; 18:4966988. [PMID: 29726937 PMCID: PMC5932555 DOI: 10.1093/femsyr/foy039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/06/2018] [Indexed: 12/18/2022] Open
Abstract
The engineering of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated proteins continues to expand the toolkit available for genome editing, reprogramming gene regulation, genome visualisation and epigenetic studies of living organisms. In this review, the emerging design principles on the use of nuclease-deficient CRISPR-based reprogramming of gene expression will be presented. The review will focus on the designs implemented in yeast both at the level of CRISPR proteins and guide RNA (gRNA), but will lend due credits to the seminal studies performed in other species where relevant. In addition to design principles, this review also highlights applications benefitting from the use of CRISPR-mediated transcriptional regulation and discusses the future directions to further expand the toolkit for nuclease-deficient reprogramming of genomes. As such, this review should be of general interest for experimentalists to get familiarised with the parameters underlying the power of reprogramming genomic functions by use of nuclease-deficient CRISPR technologies.
Collapse
Affiliation(s)
- Michael K Jensen
- Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
25
|
Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol 2018; 20:597-609. [PMID: 29662176 PMCID: PMC5920728 DOI: 10.1038/s41556-018-0083-6] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 03/08/2018] [Indexed: 12/19/2022]
Abstract
Cancer and other cells residing in the same niche engage various modes of interactions to synchronize and buffer the negative effects of environmental changes. Extracellular microRNAs (miRNAs) have recently been implicated in the intercellular crosstalk. Here we show a mechanistic model involving breast-cancer-secreted, extracellular-vesicle-encapsulated miR-105, which is induced by the oncoprotein MYC in cancer cells and, in turn, activates MYC signalling in cancer-associated fibroblasts (CAFs) to induce a metabolic program. This results in the capacity of CAFs to display different metabolic features in response to changes in the metabolic environment. When nutrients are sufficient, miR-105-reprogrammed CAFs enhance glucose and glutamine metabolism to fuel adjacent cancer cells. When nutrient levels are low and metabolic by-products accumulate, these CAFs detoxify metabolic wastes, including lactic acid and ammonium, by converting them into energy-rich metabolites. Thus, the miR-105-mediated metabolic reprogramming of stromal cells contributes to sustained tumour growth by conditioning the shared metabolic environment.
Collapse
|
26
|
Applications of CRISPR/Cas System to Bacterial Metabolic Engineering. Int J Mol Sci 2018; 19:ijms19041089. [PMID: 29621180 PMCID: PMC5979482 DOI: 10.3390/ijms19041089] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/10/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) adaptive immune system has been extensively used for gene editing, including gene deletion, insertion, and replacement in bacterial and eukaryotic cells owing to its simple, rapid, and efficient activities in unprecedented resolution. Furthermore, the CRISPR interference (CRISPRi) system including deactivated Cas9 (dCas9) with inactivated endonuclease activity has been further investigated for regulation of the target gene transiently or constitutively, avoiding cell death by disruption of genome. This review discusses the applications of CRISPR/Cas for genome editing in various bacterial systems and their applications. In particular, CRISPR technology has been used for the production of metabolites of high industrial significance, including biochemical, biofuel, and pharmaceutical products/precursors in bacteria. Here, we focus on methods to increase the productivity and yield/titer scan by controlling metabolic flux through individual or combinatorial use of CRISPR/Cas and CRISPRi systems with introduction of synthetic pathway in industrially common bacteria including Escherichia coli. Further, we discuss additional useful applications of the CRISPR/Cas system, including its use in functional genomics.
Collapse
|
27
|
Tiana M, Acosta-Iborra B, Puente-Santamaría L, Hernansanz-Agustin P, Worsley-Hunt R, Masson N, García-Rio F, Mole D, Ratcliffe P, Wasserman WW, Jimenez B, del Peso L. The SIN3A histone deacetylase complex is required for a complete transcriptional response to hypoxia. Nucleic Acids Res 2018; 46:120-133. [PMID: 29059365 PMCID: PMC5758878 DOI: 10.1093/nar/gkx951] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 01/02/2023] Open
Abstract
Cells adapt to environmental changes, including fluctuations in oxygen levels, through the induction of specific gene expression programs. To identify genes regulated by hypoxia at the transcriptional level, we pulse-labeled HUVEC cells with 4-thiouridine and sequenced nascent transcripts. Then, we searched genome-wide binding profiles from the ENCODE project for factors that correlated with changes in transcription and identified binding of several components of the Sin3A co-repressor complex, including SIN3A, SAP30 and HDAC1/2, proximal to genes repressed by hypoxia. SIN3A interference revealed that it participates in the downregulation of 75% of the hypoxia-repressed genes in endothelial cells. Unexpectedly, it also blunted the induction of 47% of the upregulated genes, suggesting a role for this corepressor in gene induction. In agreement, ChIP-seq experiments showed that SIN3A preferentially localizes to the promoter region of actively transcribed genes and that SIN3A signal was enriched in hypoxia-repressed genes, prior exposure to the stimulus. Importantly, SINA3 occupancy was not altered by hypoxia in spite of changes in H3K27ac signal. In summary, our results reveal a prominent role for SIN3A in the transcriptional response to hypoxia and suggest a model where modulation of the associated histone deacetylase activity, rather than its recruitment, determines the transcriptional output.
Collapse
Affiliation(s)
- Maria Tiana
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Barbara Acosta-Iborra
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
| | - Laura Puente-Santamaría
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
| | - Pablo Hernansanz-Agustin
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
- Servicio Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria del hospital de La Princesa, 28006 Madrid, Spain
| | - Rebecca Worsley-Hunt
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia Vancouver, British Columbia V5Z 4H4, Canada
| | - Norma Masson
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Francisco García-Rio
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Neumología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del hospital de La Paz, 28029 Madrid, Spain
| | - David Mole
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, UK
| | - Peter Ratcliffe
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia Vancouver, British Columbia V5Z 4H4, Canada
| | - Benilde Jimenez
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis del Peso
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
28
|
Hsu CL, Chang HY, Chang JY, Hsu WM, Huang HC, Juan HF. Unveiling MYCN regulatory networks in neuroblastoma via integrative analysis of heterogeneous genomics data. Oncotarget 2017; 7:36293-36310. [PMID: 27167114 PMCID: PMC5095001 DOI: 10.18632/oncotarget.9202] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022] Open
Abstract
MYCN, an oncogenic transcription factor of the Myc family, is a major driver of neuroblastoma tumorigenesis. Due to the difficulty in drugging MYCN directly, revealing the molecules in MYCN regulatory networks will help to identify effective therapeutic targets for neuroblastoma therapy. Here we perform ChIP-sequencing and small RNA-sequencing of neuroblastoma cells to determine the MYCN-binding sites and MYCN-associated microRNAs, and integrate various types of genomic data to construct MYCN regulatory networks. The overall analysis indicated that MYCN-regulated genes were involved in a wide range of biological processes and could be used as signatures to identify poor-prognosis MYCN-non-amplified patients. Analysis of the MYCN binding sites showed that MYCN principally served as an activator. Using a computational approach, we identified 32 MYCN co-regulators, and some of these findings are supported by previous studies. Moreover, we investigated the interplay between MYCN transcriptional and microRNA post-transcriptional regulations and identified several microRNAs, such as miR-124-3p and miR-93-5p, which may significantly contribute to neuroblastoma pathogenesis. We also found MYCN and its regulated microRNAs acted together to repress the tumor suppressor genes. This work provides a comprehensive view of MYCN regulations for exploring therapeutic targets in neuroblastoma, as well as insights into the mechanism of neuroblastoma tumorigenesis.
Collapse
Affiliation(s)
- Chia-Lang Hsu
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Hsin-Yi Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Jen-Yun Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
29
|
Cheng J, Park DE, Berrios C, White EA, Arora R, Yoon R, Branigan T, Xiao T, Westerling T, Federation A, Zeid R, Strober B, Swanson SK, Florens L, Bradner JE, Brown M, Howley PM, Padi M, Washburn MP, DeCaprio JA. Merkel cell polyomavirus recruits MYCL to the EP400 complex to promote oncogenesis. PLoS Pathog 2017; 13:e1006668. [PMID: 29028833 PMCID: PMC5640240 DOI: 10.1371/journal.ppat.1006668] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/25/2017] [Indexed: 11/19/2022] Open
Abstract
Merkel cell carcinoma (MCC) frequently contains integrated copies of Merkel cell polyomavirus DNA that express a truncated form of Large T antigen (LT) and an intact Small T antigen (ST). While LT binds RB and inactivates its tumor suppressor function, it is less clear how ST contributes to MCC tumorigenesis. Here we show that ST binds specifically to the MYC homolog MYCL (L-MYC) and recruits it to the 15-component EP400 histone acetyltransferase and chromatin remodeling complex. We performed a large-scale immunoprecipitation for ST and identified co-precipitating proteins by mass spectrometry. In addition to protein phosphatase 2A (PP2A) subunits, we identified MYCL and its heterodimeric partner MAX plus the EP400 complex. Immunoprecipitation for MAX and EP400 complex components confirmed their association with ST. We determined that the ST-MYCL-EP400 complex binds together to specific gene promoters and activates their expression by integrating chromatin immunoprecipitation with sequencing (ChIP-seq) and RNA-seq. MYCL and EP400 were required for maintenance of cell viability and cooperated with ST to promote gene expression in MCC cell lines. A genome-wide CRISPR-Cas9 screen confirmed the requirement for MYCL and EP400 in MCPyV-positive MCC cell lines. We demonstrate that ST can activate gene expression in a EP400 and MYCL dependent manner and this activity contributes to cellular transformation and generation of induced pluripotent stem cells.
Collapse
Affiliation(s)
- Jingwei Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Donglim Esther Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Graduate School of Arts and Sciences, Harvard University, Boston, Massachusetts, United States of America
| | - Christian Berrios
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School; Boston, Massachusetts, United States of America
| | - Elizabeth A. White
- Department of Microbiology and Immunobiology, Harvard Medical School; Boston, Massachusetts, United States of America
| | - Reety Arora
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Rosa Yoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Graduate School of Arts and Sciences, Harvard University, Boston, Massachusetts, United States of America
| | - Timothy Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Graduate School of Arts and Sciences, Harvard University, Boston, Massachusetts, United States of America
| | - Tengfei Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Thomas Westerling
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexander Federation
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Graduate School of Arts and Sciences, Harvard University, Boston, Massachusetts, United States of America
| | - Rhamy Zeid
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Graduate School of Arts and Sciences, Harvard University, Boston, Massachusetts, United States of America
| | - Benjamin Strober
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Selene K. Swanson
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - James E. Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Peter M. Howley
- Department of Microbiology and Immunobiology, Harvard Medical School; Boston, Massachusetts, United States of America
| | - Megha Padi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Michael P. Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
30
|
Cantor DJ, David G. The potential of targeting Sin3B and its associated complexes for cancer therapy. Expert Opin Ther Targets 2017; 21:1051-1061. [PMID: 28956957 DOI: 10.1080/14728222.2017.1386655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Sin3B serves as a scaffold for chromatin-modifying complexes that repress gene transcription to regulate distinct biological processes. Sin3B-containing complexes are critical for cell cycle withdrawal, and abrogation of Sin3B-dependent cell cycle exit impacts tumor progression. Areas covered: In this review, we discuss the biochemical characteristics of Sin3B-containing complexes and explore how these complexes regulate gene transcription. We focus on how Sin3B-containing complexes, through the association of the Rb family of proteins, repress the expression of E2F target genes during quiescence, differentiation, and senescence. Finally, we speculate on the potential benefits of the inhibition of Sin3B-containing complexes for the treatment of cancer. Expert opinion: Further identification and characterization of specific Sin3B-containing complexes provide a unique opportunity to prevent the pro-tumorigenic effects of the senescence-associated secretory phenotype, and to abrogate cancer stem cell quiescence and the associated resistance to therapy.
Collapse
Affiliation(s)
- David J Cantor
- a Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| | - Gregory David
- a Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA.,b Department of Urology.,c NYU Cancer Institute , New York University School of Medicine , New York , NY , USA
| |
Collapse
|
31
|
Marchisio MA, Huang Z. CRISPR-Cas type II-based Synthetic Biology applications in eukaryotic cells. RNA Biol 2017; 14:1286-1293. [PMID: 28136159 PMCID: PMC5711462 DOI: 10.1080/15476286.2017.1282024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/30/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
The CRISPR-Cas system has rapidly reached a huge popularity as a new, powerful method for precise DNA editing and genome reengineering. In Synthetic Biology, the CRISPR-Cas type II system has inspired the construction of a novel class of RNA-based transcription factors. In their simplest form, they are made of a CRISPR RNA molecule, which targets a promoter sequence, and a deficient Cas9 (i.e. deprived of any nuclease activity) that has been fused to an activation or a repression domain. Up- and downregulation of single genes in mammalian and yeast cells have been achieved with satisfactory results. Moreover, the construction of CRISPR-based transcription factors is much simpler than the assembly of synthetic proteins such as the Transcription Activator-Like effectors. However, the feasibility of complex synthetic networks fully based on the CRISPR-dCas9 technology has still to be proved and new designs, which take into account different CRISPR types, shall be investigated.
Collapse
Affiliation(s)
- Mario Andrea Marchisio
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, P.R. China
| | - Zhiwei Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, P.R. China
| |
Collapse
|
32
|
Schwartz C, Frogue K, Ramesh A, Misa J, Wheeldon I. CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica. Biotechnol Bioeng 2017; 114:2896-2906. [PMID: 28832943 DOI: 10.1002/bit.26404] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/19/2017] [Accepted: 08/15/2017] [Indexed: 01/06/2023]
Abstract
In many organisms of biotechnological importance precise genome editing is limited by inherently low homologous recombination (HR) efficiencies. A number of strategies exist to increase the effectiveness of this native DNA repair pathway; however, most strategies rely on permanently disabling competing repair pathways, thus reducing an organism's capacity to repair naturally occurring double strand breaks. Here, we describe a CRISPR interference (CRISPRi) system for gene repression in the oleochemical-producing yeast Yarrowia lipolytica. By using a multiplexed sgRNA targeting strategy, we demonstrate efficient repression of eight out of nine targeted genes to enhance HR. Strains with nonhomologous end-joining repressed were shown to have increased rates of HR when transformed with a linear DNA fragment with homology to a genomic locus. With multiplexed targeting of KU70 and KU80, and enhanced repression with Mxi1 fused to deactivated Cas9 (dCas9), rates of HR as high as 90% were achieved. The developed CRISPRi system enables enhanced HR in Y. lipolytica without permanent genetic knockouts and promises to be a potent tool for other metabolic engineering, synthetic biology, and functional genomics studies.
Collapse
Affiliation(s)
- Cory Schwartz
- Chemical and Environmental Engineering, University of California Riverside, Riverside, California
| | - Keith Frogue
- Chemical and Environmental Engineering, University of California Riverside, Riverside, California
| | - Adithya Ramesh
- Chemical and Environmental Engineering, University of California Riverside, Riverside, California
| | - Joshua Misa
- Chemical and Environmental Engineering, University of California Riverside, Riverside, California
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California Riverside, Riverside, California
| |
Collapse
|
33
|
Na I, Meng F, Kurgan L, Uversky VN. Autophagy-related intrinsically disordered proteins in intra-nuclear compartments. MOLECULAR BIOSYSTEMS 2017; 12:2798-817. [PMID: 27377881 DOI: 10.1039/c6mb00069j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent analyses indicated that autophagy can be regulated via some nuclear transcriptional networks and many important players in the autophagy and other forms of programmed cell death are known to be intrinsically disordered. To this end, we analyzed similarities and differences in the intrinsic disorder distribution of nuclear and non-nuclear proteins related to autophagy. We also looked at the peculiarities of the distribution of the intrinsically disordered autophagy-related proteins in various intra-nuclear organelles, such as the nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinucleolar compartment. This analysis revealed that the autophagy-related proteins constitute about 2.5% of the non-nuclear proteins and 3.3% of the nuclear proteins, which corresponds to a substantial enrichment by about 32% in the nucleus. Curiously, although, in general, the autophagy-related proteins share similar characteristics of disorder with a generic set of all non-nuclear proteins, chromatin and nuclear speckles are enriched in the intrinsically disordered autophagy proteins (29 and 37% of these proteins are disordered, respectively) and have high disorder content at 0.24 and 0.27, respectively. Therefore, our data suggest that some of the nuclear disordered proteins may play important roles in autophagy.
Collapse
Affiliation(s)
- Insung Na
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Fanchi Meng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23219, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA. and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Biology Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia and Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
34
|
Gander MW, Vrana JD, Voje WE, Carothers JM, Klavins E. Digital logic circuits in yeast with CRISPR-dCas9 NOR gates. Nat Commun 2017; 8:15459. [PMID: 28541304 PMCID: PMC5458518 DOI: 10.1038/ncomms15459] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
Natural genetic circuits enable cells to make sophisticated digital decisions. Building equally complex synthetic circuits in eukaryotes remains difficult, however, because commonly used components leak transcriptionally, do not arbitrarily interconnect or do not have digital responses. Here, we designed dCas9-Mxi1-based NOR gates in Saccharomyces cerevisiae that allow arbitrary connectivity and large genetic circuits. Because we used the chromatin remodeller Mxi1, our gates showed minimal leak and digital responses. We built a combinatorial library of NOR gates that directly convert guide RNA (gRNA) inputs into gRNA outputs, enabling the gates to be 'wired' together. We constructed logic circuits with up to seven gRNAs, including repression cascades with up to seven layers. Modelling predicted the NOR gates have effectively zero transcriptional leak explaining the limited signal degradation in the circuits. Our approach enabled the largest, eukaryotic gene circuits to date and will form the basis for large, synthetic, cellular decision-making systems.
Collapse
Affiliation(s)
- Miles W. Gander
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Justin D. Vrana
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - William E. Voje
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - James M. Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
- Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, USA
| | - Eric Klavins
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
- Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
35
|
MNT and Emerging Concepts of MNT-MYC Antagonism. Genes (Basel) 2017; 8:genes8020083. [PMID: 28230739 PMCID: PMC5333072 DOI: 10.3390/genes8020083] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/16/2017] [Indexed: 12/25/2022] Open
Abstract
MYC family proteins play fundamental roles in stem and progenitor cell homeostasis, morphogenesis and cancer. As expected for proteins that profoundly affect the fate of cells, the activities of MYC are regulated at a multitude of levels. One mechanism with the potential to broadly affect the activities of MYC is transcriptional antagonism by a group of MYC-related transcriptional repressors. From this group, the protein MNT has emerged as having perhaps the most far-reaching impact on MYC activities. In this review, we discuss the current understanding of MNT, its regulation and how, as a MYC antagonist, it functions both as a tumor suppressor and facilitator of MYC-driven proliferation and oncogenesis.
Collapse
|
36
|
Farhana L, Dawson MI, Fontana JA. Down regulation of miR-202 modulates Mxd1 and Sin3A repressor complexes to induce apoptosis of pancreatic cancer cells. Cancer Biol Ther 2015; 16:115-24. [PMID: 25611699 DOI: 10.4161/15384047.2014.987070] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aberrant regulation of microRNA expression in pancreatic cancers has been shown to play an important role in its inherent poor prognosis and malignant potential. MicroRNAs have also been shown to inhibit translation of genes by targeting the 3'-untranslated region (3-UTR) of mRNAs resulting in the inhibition of translation and often destruction of the mRNA. In the present study we investigated the role of the microRNA miR-202 in the apoptotic pathways of pancreatic cancer cells. The adamantyl-related molecule, 3-Cl-AHPC down-regulated expression of miR-202 and miR-578 resulting in the increased expression of mRNA and protein expression of their target genes, Max dimerization protein 1 (Mxd1/Mad1) and the Sin3A associated protein 18 (SAP18). Overexpression of pre-miR-202 led to diminished levels of Mxd1 and blocked the 3-Cl-AHPC-mediated increase in Mxd1 mRNA expression. The addition of the microRNA inhibitor 2'-O-methylated miR-202 enhanced the 3-Cl-AHPC-mediated increase of Mxd1 mRNA levels as well as 3-CI-AHPC-mediated apoptosis. We found increased Mxd1 bound to the Sin3A repressor protein complex through its increased binding with HDAC-2 and subsequently enhanced transcriptional repression in cells as evidenced by increased HDAC activity. Mxd1 also repressed human telomerase reverse transcriptase (hTERT) mRNA expression through its increased binding to the hTERT promoter site and resulted in decreased telomerase activity in cells. Our results demonstrate that down regulation of miR-202 increased the expression of its target Mxd1, followed by Mxd1 recruitment to the Sin3A repressor complex and through its dimerization with Max, and increased repression of Myc-Max target proteins.
Collapse
Affiliation(s)
- Lulu Farhana
- a John D Dingell VA Medical Center; Department of Oncology ; Detroit , MI USA
| | | | | |
Collapse
|
37
|
Diolaiti D, McFerrin L, Carroll PA, Eisenman RN. Functional interactions among members of the MAX and MLX transcriptional network during oncogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1849:484-500. [PMID: 24857747 PMCID: PMC4241192 DOI: 10.1016/j.bbagrm.2014.05.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/23/2014] [Accepted: 05/14/2014] [Indexed: 01/27/2023]
Abstract
The transcription factor MYC and its related family members MYCN and MYCL have been implicated in the etiology of a wide spectrum of human cancers. Compared to other oncoproteins, such as RAS or SRC, MYC is unique because its protein coding region is rarely mutated. Instead, MYC's oncogenic properties are unleashed by regulatory mutations leading to unconstrained high levels of expression. Under both normal and pathological conditions MYC regulates multiple aspects of cellular physiology including proliferation, differentiation, apoptosis, growth and metabolism by controlling the expression of thousands of genes. How a single transcription factor exerts such broad effects remains a fascinating puzzle. Notably, MYC is part of a network of bHLHLZ proteins centered on the MYC heterodimeric partner MAX and its counterpart, the MAX-like protein MLX. This network includes MXD1-4, MNT, MGA, MONDOA and MONDOB proteins. With some exceptions, MXD proteins have been functionally linked to cell cycle arrest and differentiation, while MONDO proteins control cellular metabolism. Although the temporal expression patterns of many of these proteins can differ markedly they are frequently expressed simultaneously in the same cellular context, and potentially bind to the same, or similar DNA consensus sequence. Here we review the activities and interactions among these proteins and propose that the broad spectrum of phenotypes elicited by MYC deregulation is intimately connected to the functions and regulation of the other network members. Furthermore, we provide a meta-analysis of TCGA data suggesting that the coordinate regulation of the network is important in MYC driven tumorigenesis. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Daniel Diolaiti
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Lisa McFerrin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Patrick A Carroll
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA.
| |
Collapse
|
38
|
Erichsen DA, Armstrong MB, Wechsler DS. Mxi1 and mxi1-0 antagonize N-myc function and independently mediate apoptosis in neuroblastoma. Transl Oncol 2015; 8:65-74. [PMID: 25749179 PMCID: PMC4350643 DOI: 10.1016/j.tranon.2015.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/19/2015] [Indexed: 12/18/2022] Open
Abstract
Neuroblastoma (NB) is the third most common malignancy of childhood, and outcomes for children with advanced disease remain poor; amplification of the MYCN gene portends a particularly poor prognosis. Mxi1 antagonizes N-Myc by competing for binding to Max and E-boxes. Unlike N-Myc, Mxi1 mediates transcriptional repression and suppresses cell proliferation. Mxi1 and Mxi1-0 (an alternatively transcribed Mxi1 isoform) share identical Max and DNA binding domains but differ in amino-terminal sequences. Because of the conservation of these critical binding domains, we hypothesized that Mxi1-0 antagonizes N-Myc activity similar to Mxi1. SHEP NB cells and SHEP cells stably transfected with MYCN (SHEP/MYCN) were transiently transfected with vectors containing full-length Mxi1, full-length Mxi1-0, or the common Mxi domain encoded by exons 2 to 6 (ex2-6). After incubation in low serum, parental SHEP/MYCN cell numbers were reduced compared with SHEP cells. Activated caspase-3 staining and DNA fragmentation ELISA confirmed that SHEP/MYCN cells undergo apoptosis in low serum, while SHEP/MYCN cells transfected with Mxi1 or Mxi1-0 do not. However, SHEP/MYCN cells transfected with Mxi1 or Mxi1-0 and grown in normal serum showed proliferation rates similar to SHEP cells. Mxi ex2-6 did not affect cell number in low or normal serum, suggesting that amino terminal domains of Mxi1 and Mxi1-0 are critical for antagonism. In the absence of N-Myc, Mxi1 and Mxi1-0 induce apoptosis independently through the caspase-8-dependent extrinsic pathway, while N-Myc activates the caspase-9-dependent intrinsic pathway. Together, these data indicate that Mxi1 and Mxi1-0 antagonize N-Myc but also independently impact NB cell survival.
Collapse
Affiliation(s)
- David A Erichsen
- Section of Pediatric Hematology-Oncology, Department of Pediatrics and Communicable Diseases, The University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Michael B Armstrong
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Daniel S Wechsler
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
39
|
Miyamoto T, Koh E, Tsujimura A, Miyagawa Y, Minase G, Ueda Y, Namiki M, Sengoku K. SIN3A mutations are rare in men with azoospermia. Andrologia 2014; 47:1083-5. [PMID: 25395209 DOI: 10.1111/and.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2014] [Indexed: 11/28/2022] Open
Abstract
A loss of function of the murine Sin3A gene resulted in male infertility with Sertoli cell-only syndrome (SCOS) phenotype in mice. Here, we investigated the relevance of this gene to human male infertility with azoospermia caused by SCOS. Mutation analysis of SIN3A in the coding region was performed on 80 Japanese patients. However, no variants could be detected. This study suggests a lack of association of SIN3A gene sequence variants with azoospermia caused by SCOS in humans.
Collapse
Affiliation(s)
- T Miyamoto
- Department of Obstetrics and Gynecology, Asahikawa Medical University, Asahikawa, Japan
| | - E Koh
- Department of Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - A Tsujimura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Y Miyagawa
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - G Minase
- Department of Obstetrics and Gynecology, Asahikawa Medical University, Asahikawa, Japan
| | - Y Ueda
- Department of Obstetrics and Gynecology, Asahikawa Medical University, Asahikawa, Japan
| | - M Namiki
- Department of Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - K Sengoku
- Department of Obstetrics and Gynecology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
40
|
Grifoni D, Bellosta P. Drosophila Myc: A master regulator of cellular performance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:570-81. [PMID: 25010747 DOI: 10.1016/j.bbagrm.2014.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 11/25/2022]
Abstract
The identification of the Drosophila homolog of the human MYC oncogene has fostered a series of studies aimed to address its functions in development and cancer biology. Due to its essential roles in many fundamental biological processes it is hard to imagine a molecular mechanism in which MYC function is not required. For this reason, the easily manipulated Drosophila system has greatly helped in the dissection of the genetic and molecular pathways that regulate and are regulated by MYC function. In this review, we focus on studies of MYC in the fruitfly with particular emphasis on metabolism and cell competition, highlighting the contributions of this model system in the last decade to our understanding of MYC's complex biological nature. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Daniela Grifoni
- Department of "Farmacia e Biotecnologie", University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Paola Bellosta
- Department of "Bioscienze", University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
41
|
Link JM, Hurlin PJ. The activities of MYC, MNT and the MAX-interactome in lymphocyte proliferation and oncogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:554-62. [PMID: 24731854 DOI: 10.1016/j.bbagrm.2014.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 12/29/2022]
Abstract
The MYC family of proteins plays essential roles in embryonic development and in oncogenesis. Efforts over the past 30 years to define the transcriptional activities of MYC and how MYC functions to promote proliferation have produced evolving models of MYC function. One picture that has emerged of MYC and its partner protein MAX is of a transcription factor complex with a seemingly unique ability to stimulate the transcription of genes that are epigenetically poised for transcription and to amplify the transcription of actively transcribed genes. During lymphocyte activation, MYC is upregulated and stimulates a pro-proliferative program in part through the upregulation of a wide variety of metabolic effector genes that facilitate cell growth and cell cycle progression. MYC upregulation simultaneously sensitizes cells to apoptosis and activated lymphocytes and lymphoma cells have pro-survival attributes that allow MYC-driven proliferation to prevail. For example, the MAX-interacting protein MNT is upregulated in activated lymphocytes and was found to protect lymphocytes from MYC-dependent apoptosis. Here we review the activities of MYC, MNT and other MAX interacting proteins in the setting of T and B cell activation and oncogenesis. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Jason M Link
- Shriners Hospitals for Children Portland, 3101 SW Sam Jackson Park Road, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Peter J Hurlin
- Shriners Hospitals for Children Portland, 3101 SW Sam Jackson Park Road, Portland, OR 97239, USA; Department of Cell and Developmental Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
42
|
Skelton MM, Kampira EE, Wonkam AA, Mhandire KK, Kumwenda JJ, Duri KK, Dandara CC. Frequency variation among sub-Saharan populations in virus restriction gene, BST-2 proximal promoter polymorphisms: implications for HIV-1 prevalence differences among African countries. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:461-71. [PMID: 24601767 DOI: 10.1089/omi.2013.0127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The present study reports promoter variants in four sub-Saharan African populations that may affect BST-2 gene regulation. Recently, an in/del within the BST-2 promoter has been associated with HIV-1 disease progression in a Spanish cohort. Hence, we sequenced the proximal promoter region of the BST-2 gene in 581 individuals from South Africa, Zimbabwe, Malawi, and Cameroon. Seven SNPs were identified: rs28413176 (+26i6/Δ6); rs28413175 (-160i1/Δ1), -187A>G (nucleotide position -17516614); rs28413174 (-193G>A); rs73921425 (-199G>A); rs12609479 (-201C>T); and rs112492472 (-225C>T). The -199A and -225T alleles showed interesting trends across the sub-Saharan continent. Using predictive bioinformatics tools, we show that allelic variation at -199 and -201 potentially affect key transcription factor binding sites including bHLH, c-Myb, and E47. Importantly, data available from the ENCODE study gave further credence to our hypothesis of transcriptional regulation of BST-2 by a bHLH TF such as Mxi1. The possible repressive transcriptional effect of Mxi1 combined with the allelic frequency trend seen at -199 between African populations overlays well with current HIV-1 prevalence data, and may be a contributing factor to this phenomenon. The differences in HIV-1 prevalence in African countries could be, in part, due to distribution of genetic variants that affect susceptibility to HIV-1. Our findings therefore have substantive value for the design of future diagnostics for global health oriented diagnostics for HIV-1 susceptibility, and rational therapeutics on the critical path to personalized medicine in the African continent. As HIV-1 epidemiology vastly impacts human populations around the world, the population genomics strategy we have utilized herein can have value for other global regions as well.
Collapse
Affiliation(s)
- Michelle M Skelton
- 1 Division of Human Genetics, Faculty of Health Sciences, University of Cape Town , Observatory, Cape Town, South Africa
| | | | | | | | | | | | | |
Collapse
|
43
|
Conacci-Sorrell M, McFerrin L, Eisenman RN. An overview of MYC and its interactome. Cold Spring Harb Perspect Med 2014; 4:a014357. [PMID: 24384812 DOI: 10.1101/cshperspect.a014357] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review is intended to provide a broad outline of the biological and molecular functions of MYC as well as of the larger protein network within which MYC operates. We present a view of MYC as a sensor that integrates multiple cellular signals to mediate a broad transcriptional response controlling many aspects of cell behavior. We also describe the larger transcriptional network linked to MYC with emphasis on the MXD family of MYC antagonists. Last, we discuss evidence that the network has evolved for millions of years, dating back to the emergence of animals.
Collapse
|
44
|
Zhou J, Wang W, Gao Z, Peng X, Chen X, Chen W, Xu W, Xu H, Lin MC, Jiang S. MicroRNA-155 promotes glioma cell proliferation via the regulation of MXI1. PLoS One 2013; 8:e83055. [PMID: 24376632 PMCID: PMC3871643 DOI: 10.1371/journal.pone.0083055] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/30/2013] [Indexed: 01/06/2023] Open
Abstract
Gliomas are the most common and aggressive primary tumors in the central nervous system. Recently, Max interactor-1 (MXI1), an antagonist of c-Myc that is involved in brain tumor progression, has been reported to be deregulated in a variety of tumors including glioma. However, the mechanism of MXI1 deregulation in gliomas remains unclear. In this study, we show that the relative expression level of MXI1 is markedly down-regulated in glioma cell lines. Using integrated bioinformatic analysis and experimental confirmation, we identified several miRNAs by screening a panel of predicted miRNAs that may regulate the MXI1 3′UTR. The strongest inhibitory miRNA, miR-155, can attenuate the activity of a luciferase reporter gene that is fused with the MXI1 3′UTR and decrease the expression levels of MXI1 mRNA and protein in U87 glioma cells. The potential role of miR-155 in promoting glioma cell proliferation by targeting MXI1 was confirmed in various glioma cell lines by rescue experiments using MTT assays, EdU incorporation assay, and cell counting experiments. In addition, we determined that the level of MXI1 mRNA was inversely correlated with the expression of miR-155 in 18 sets of glioblastoma multiforme specimens. These findings reveal for the first time that the targeting of MXI1 by miR-155 may result in a reduction in MXI1 expression and promote glioma cell proliferation; this result suggests a novel function of miR-155 in targeting MXI1 in glioma-genesis.
Collapse
Affiliation(s)
- Jianwen Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Neurosurgery Department, Epilepsy Centre, Guangzhou General Hospital, Guangzhou Command, PLA, Guangzhou, China
- HuaBo Bio-Pharmaceutic Institute of Guangzhou, Guangzhou, China
| | - Zhenhua Gao
- Department of Radiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xueling Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Shenzhen State High-Tech Industrial Innovation Centre, Shenzhen, China
| | - Xulin Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Gynecology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiyi Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haixiong Xu
- Department of Neurosurgery, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Marie C. Lin
- Biomedical Eng. Res. Center, Kunming Medical University, Kunming, China
| | - Songshan Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
45
|
Kadamb R, Mittal S, Bansal N, Batra H, Saluja D. Sin3: insight into its transcription regulatory functions. Eur J Cell Biol 2013; 92:237-46. [PMID: 24189169 DOI: 10.1016/j.ejcb.2013.09.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/27/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022] Open
Abstract
Sin3, a large acidic protein, shares structural similarity with the helix-loop-helix dimerization domain of proteins of the Myc family of transcription factors. Sin3/HDAC corepressor complex functions in transcriptional regulation of several genes and is therefore implicated in the regulation of key biological processes. Knockdown studies have confirmed the role of Sin3 in cellular proliferation, differentiation, apoptosis and cell cycle regulation, emphasizing Sin3 as an essential regulator of critical cellular events in normal and pathological processes. The present review covers the diverse functions of this master transcriptional regulator as well as illustrates the redundant and distinct functions of its two mammalian isoforms.
Collapse
Affiliation(s)
- Rama Kadamb
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| | | | | | | | | |
Collapse
|
46
|
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013; 154:442-51. [PMID: 23849981 PMCID: PMC3770145 DOI: 10.1016/j.cell.2013.06.044] [Citation(s) in RCA: 2667] [Impact Index Per Article: 222.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/19/2013] [Accepted: 06/27/2013] [Indexed: 12/11/2022]
Abstract
The genetic interrogation and reprogramming of cells requires methods for robust and precise targeting of genes for expression or repression. The CRISPR-associated catalytically inactive dCas9 protein offers a general platform for RNA-guided DNA targeting. Here, we show that fusion of dCas9 to effector domains with distinct regulatory functions enables stable and efficient transcriptional repression or activation in human and yeast cells, with the site of delivery determined solely by a coexpressed short guide (sg)RNA. Coupling of dCas9 to a transcriptional repressor domain can robustly silence expression of multiple endogenous genes. RNA-seq analysis indicates that CRISPR interference (CRISPRi)-mediated transcriptional repression is highly specific. Our results establish that the CRISPR system can be used as a modular and flexible DNA-binding platform for the recruitment of proteins to a target DNA sequence, revealing the potential of CRISPRi as a general tool for the precise regulation of gene expression in eukaryotic cells.
Collapse
Affiliation(s)
- Luke A. Gilbert
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA
- Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matthew H. Larson
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA
- Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Leonardo Morsut
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Gloria A. Brar
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA
- Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sandra E. Torres
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA
- Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Noam Stern-Ginossar
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA
- Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Onn Brandman
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA
- Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Evan H. Whitehead
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- UCSF Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA
| | - Jennifer A. Doudna
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA
- Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Wendell A. Lim
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- UCSF Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA
| | - Jonathan S. Weissman
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- UCSF Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA
- Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lei S. Qi
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- UCSF Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA
| |
Collapse
|
47
|
Torregroza I, Holtzinger A, Mendelson K, Liu TC, Hla T, Evans T. Regulation of a vascular plexus by gata4 is mediated in zebrafish through the chemokine sdf1a. PLoS One 2012; 7:e46844. [PMID: 23056483 PMCID: PMC3463525 DOI: 10.1371/journal.pone.0046844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/10/2012] [Indexed: 01/08/2023] Open
Abstract
Using the zebrafish model we describe a previously unrecognized requirement for the transcription factor gata4 controlling embryonic angiogenesis. The development of a vascular plexus in the embryonic tail, the caudal hematopoietic tissue (CHT), fails in embryos depleted of gata4. Rather than forming a normal vascular plexus, the CHT of gata4 morphants remains fused, and cells in the CHT express high levels of osteogenic markers ssp1 and runx1. Definitive progenitors emerge from the hemogenic aortic endothelium, but fail to colonize the poorly vascularized CHT. We also found abnormal patterns and levels for the chemokine sdf1a in gata4 morphants, which was found to be functionally relevant, since the embryos also show defects in development of the lateral line, a mechano-sensory organ system highly dependent on a gradient of sdf1a levels. Reduction of sdf1a levels was sufficient to rescue lateral line development, circulation, and CHT morphology. The result was surprising since neither gata4 nor sdf1a is obviously expressed in the CHT. Therefore, we generated transgenic fish that conditionally express a dominant-negative gata4 isoform, and determined that gata4 function is required during gastrulation, when it is co-expressed with sdf1a in lateral mesoderm. Our study shows that the gata4 gene regulates sdf1a levels during early embryogenesis, which impacts embryonic patterning and subsequently the development of the caudal vascular plexus.
Collapse
Affiliation(s)
- Ingrid Torregroza
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Audrey Holtzinger
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Karen Mendelson
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ting-Chun Liu
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Timothy Hla
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
48
|
Kopecky B, Fritzsch B. The myc road to hearing restoration. Cells 2012; 1:667-98. [PMID: 24710525 PMCID: PMC3901154 DOI: 10.3390/cells1040667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/12/2012] [Accepted: 09/14/2012] [Indexed: 01/01/2023] Open
Abstract
Current treatments for hearing loss, the most common neurosensory disorder, do not restore perfect hearing. Regeneration of lost organ of Corti hair cells through forced cell cycle re-entry of supporting cells or through manipulation of stem cells, both avenues towards a permanent cure, require a more complete understanding of normal inner ear development, specifically the balance of proliferation and differentiation required to form and to maintain hair cells. Direct successful alterations to the cell cycle result in cell death whereas regulation of upstream genes is insufficient to permanently alter cell cycle dynamics. The Myc gene family is uniquely situated to synergize upstream pathways into downstream cell cycle control. There are three Mycs that are embedded within the Myc/Max/Mad network to regulate proliferation. The function of the two ear expressed Mycs, N-Myc and L-Myc were unknown less than two years ago and their therapeutic potentials remain speculative. In this review, we discuss the roles the Mycs play in the body and what led us to choose them to be our candidate gene for inner ear therapies. We will summarize the recently published work describing the early and late effects of N-Myc and L-Myc on hair cell formation and maintenance. Lastly, we detail the translational significance of our findings and what future work must be performed to make the ultimate hearing aid: the regeneration of the organ of Corti.
Collapse
Affiliation(s)
- Benjamin Kopecky
- Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242, USA.
| | - Bernd Fritzsch
- Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
49
|
Pellegrino J, Castrillon DH, David G. Chromatin associated Sin3A is essential for male germ cell lineage in the mouse. Dev Biol 2012; 369:349-55. [PMID: 22820070 DOI: 10.1016/j.ydbio.2012.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/02/2012] [Accepted: 07/10/2012] [Indexed: 01/15/2023]
Abstract
Spermatogenesis is a complex process that requires coordinated proliferation and differentiation of male germ cells. The molecular events that dictate this process are largely unknown, but are likely to involve highly regulated transcriptional control. In this study, we investigate the contribution of chromatin associated Sin3A in mouse germ cell lineage development. Genetic inactivation of Sin3A in the male germline leads to sterility that results from the early and penetrant apoptotic death observed in Sin3A-deleted germ cells, coincident with the reentry in mitosis. Sin3A-deleted testes exhibit a Sertoli-cell only phenotype, consistent with the absolute requirement for Sin3A in germ cells' development and/or viability. Interestingly, transcripts analysis revealed that the expression program of Sertoli cells is altered upon inactivation of Sin3A in germ cells. These studies identified a central role for the mammalian Sin3-HDAC complex in the germ cell lineage, and point to an exquisite transcriptional crosstalk between germ cells and their niche to support fertility in mammals.
Collapse
Affiliation(s)
- Jessica Pellegrino
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, NY, USA
| | | | | |
Collapse
|
50
|
N-Myc and GCN5 regulate significantly overlapping transcriptional programs in neural stem cells. PLoS One 2012; 7:e39456. [PMID: 22745758 PMCID: PMC3383708 DOI: 10.1371/journal.pone.0039456] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/21/2012] [Indexed: 12/11/2022] Open
Abstract
Here we examine the functions of the Myc cofactor and histone acetyltransferase, GCN5/KAT2A, in neural stem and precursor cells (NSC) using a conditional knockout approach driven by nestin-cre. Mice with GCN5-deficient NSC exhibit a 25% reduction in brain mass with a microcephaly phenotype similar to that observed in nestin-cre driven knockouts of c- or N-myc. In addition, the loss of GCN5 inhibits precursor cell proliferation and reduces their populations in vivo, as does loss of N-myc. Gene expression analysis indicates that about one-sixth of genes whose expression is affected by loss of GCN5 are also affected in the same manner by loss of N-myc. These findings strongly support the notion that GCN5 protein is a key N-Myc transcriptional cofactor in NSC, but are also consistent with recruitment of GCN5 by other transcription factors and the use by N-Myc of other histone acetyltransferases. Putative N-Myc/GCN5 coregulated transcriptional pathways include cell metabolism, cell cycle, chromatin, and neuron projection morphogenesis genes. GCN5 is also required for maintenance of histone acetylation both at its putative specific target genes and at Myc targets. Thus, we have defined an important role for GCN5 in NSC and provided evidence that GCN5 is an important Myc transcriptional cofactor in vivo.
Collapse
|