1
|
Niemczyk-Soczynska B, Sajkiewicz PŁ. Hydrogel-Based Systems as Smart Food Packaging: A Review. Polymers (Basel) 2025; 17:1005. [PMID: 40284270 PMCID: PMC12030136 DOI: 10.3390/polym17081005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
In recent years, non-degradable petroleum-based polymer packaging has generated serious disposal, pollution, and ecological issues. The application of biodegradable food packaging for common purposes could overcome these problems. Bio-based hydrogel films are interesting materials as potential alternatives to non-biodegradable commercial food packaging due to biodegradability, biocompatibility, ease of processability, low cost of production, and the absorption ability of food exudates. The rising need to provide additional functionality for food packaging has led scientists to design approaches extending the shelf life of food products by incorporating antimicrobial and antioxidant agents and sensing the accurate moment of food spoilage. In this review, we thoroughly discuss recent hydrogel-based film applications such as active, intelligent packaging, as well as a combination of these approaches. We highlight their potential as food packaging but also indicate the drawbacks, especially poor barrier and mechanical properties, that need to be improved in the future. We emphasize discussions on the mechanical properties of currently studied hydrogels and compare them with current commercial food packaging. Finally, the future directions of these types of approaches are described.
Collapse
Affiliation(s)
- Beata Niemczyk-Soczynska
- Laboratory of Polymers & Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland
| | - Paweł Łukasz Sajkiewicz
- Laboratory of Polymers & Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland
| |
Collapse
|
2
|
Shahi DK, Awasthi GP, Rajendra Bahadur GC, Panthi KP, Chand AB, Shin M, Kalauni SK, Bhattarai N, Bhatt LR, Yu C, Joshi MK. Rhododendron arboreum Sm. anthocyanin-infused starch, chitosan, and polyvinyl alcohol based composite films: Comparative analysis of physical, UV barrier, antioxidant and intelligent behavior. Int J Biol Macromol 2025; 302:140532. [PMID: 39892533 DOI: 10.1016/j.ijbiomac.2025.140532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/13/2025] [Accepted: 01/30/2025] [Indexed: 02/03/2025]
Abstract
Rhododendron arboreum Sm. is found abundantly in the Himalayan region of Nepal and other Asian countries, and anthocyanins extracted from its flower were utilized to develop intelligent food packaging films. The films were synthesized by blending chitosan (CS) with starch (ST), CS with polyvinyl alcohol (PVA), and ST with PVA, incorporating anthocyanin from R. arboreum. A comparative analysis was conducted to evaluate their potential applications in food packaging. Analytical techniques like FESEM, IR spectroscopy, XRD, and TGA confirmed strong interactions between the polymer matrix and anthocyanins through hydrogen bonding and electrostatic attraction. All samples containing anthocyanins exhibited effective UV light barrier properties, with the PVA/ST/ACNs films showing UV blocking up to 450 nm and exhibiting superior antioxidant properties. The pH sensing ability, antioxidant properties, and ammonia sensitivity depend both on anthocyanin and the composition of the polymer matrix. Ammonia sensitivity was highest for PVA/ST/ACNs (70.1 %), followed by PVA/CS/ACNs (47.8 %) and CS/ST/ACNs (5.6 %). Chicken meat packaged with PVA/ST/ACNs films for 48 h showed TVB-N at 46.39 mg/100 g, pH 8.6, and film color changed from reddish pink to greenish-yellow, signifying spoilage. These findings suggest potential for the film as intelligent packaging to monitor meat freshness, correlating TVB-N, pH, and film color.
Collapse
Affiliation(s)
- Dikpal Kumar Shahi
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Ganesh Prasad Awasthi
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| | - G C Rajendra Bahadur
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Khim Prasad Panthi
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Anand Bahadur Chand
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Miyeon Shin
- Department of Energy Storage/Conversion Engineering of Graduate School, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Surya Kant Kalauni
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| | - Narayan Bhattarai
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Lok Ranjan Bhatt
- Biological Resources Unit, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal.
| | - Changho Yu
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Department of Energy Storage/Conversion Engineering of Graduate School, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| | - Mahesh Kumar Joshi
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal; Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
3
|
Tsegay ZT, Hosseini E, Varzakas T, Smaoui S. The latest research progress on polysaccharides-based biosensors for food packaging: A review. Int J Biol Macromol 2024; 282:136959. [PMID: 39488309 DOI: 10.1016/j.ijbiomac.2024.136959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
In recent years, polysaccharide-based biosensors have emerged as promising technologies for intelligent food packaging, offering innovative solutions to enhance food quality and safety. This review highlights advancements in designing, developing, and applying these biosensors, particularly those utilizing polysaccharides such as chitosan, cellulose and alginate. Engineered with nanomaterials like ZnO, silver, and carbon nano-tubes demonstrated high sensitivity in real-time monitoring of food spoilage indicators, including pH changes, volatile nitrogen compounds and microbial activity. We discuss the electrochemical properties of these biosensors, highlighting how the integration of electrochemical methods significantly improves their detection capabilities within packaging environments, leading to sensor sensitivity enhancement, greater accuracy, and spoilage detection, ultimately extending the shelf life of perishable food products. Additionally, the review addresses the practical challenges of industrial implementation and explores future research directions for optimizing sensor functionality and scalability. The findings underscore the potential of polysaccharide-based intelligent packaging as a sustainable and effective alternative to conventional methods, paving the way for broader commercial adoption.
Collapse
Affiliation(s)
- Zenebe Tadesse Tsegay
- Department of Food Science and Post-Harvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, P.O. Box 231, Ethiopia
| | - Elahesadat Hosseini
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Chemical Engineering, Payame Noor University, Tehran, Iran
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Enzymatic Engineering (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia.
| |
Collapse
|
4
|
Ekrem Parlak M, Irmak Sahin O, Neslihan Dundar A, Türker Saricaoglu F, Smaoui S, Goksen G, Koirala P, Al-Asmari F, Prakash Nirmal N. Natural colorant incorporated biopolymers-based pH-sensing films for indicating the food product quality and safety. Food Chem 2024; 439:138160. [PMID: 38086233 DOI: 10.1016/j.foodchem.2023.138160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
The current synthetic plastic-based packaging creates environmental hazards that impact climate change. Hence, the topic of the current research in food packaging is biodegradable packaging and its development. In addition, new smart packaging solutions are being developed to monitor the quality of packaged foods, with dual functions as food preservation and quality indicators. In the creation of intelligent and active food packaging, many natural colorants have been employed effectively as pH indicators and active substances, respectively. This review provides an overview of biodegradable polymers and natural colorants that are being extensively studied for pH-indicating packaging. A comprehensive discussion has been provided on the current status of the development of intelligent packaging systems for food, different incorporation techniques, and technical challenges in the development of such green packaging. Finally, the food industry and environmental protection might be revolutionized by pH-sensing biodegradable packaging enabling real-time detection of food product quality and safety.
Collapse
Affiliation(s)
- Mahmud Ekrem Parlak
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Oya Irmak Sahin
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, 76200 Yalova, Turkey
| | - Ayse Neslihan Dundar
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Furkan Türker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa, 31982 Al-Hofuf, Saudi Arabia
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
5
|
Yu K, Yang L, Zhang S, Zhang N, Xie M, Yu M. Stretchable, antifatigue, and intelligent nanocellulose hydrogel colorimetric film for real-time visual detection of beef freshness. Int J Biol Macromol 2024; 268:131602. [PMID: 38626836 DOI: 10.1016/j.ijbiomac.2024.131602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The use of biopolymers as matrices and anthocyanins as pH-sensing indicators has generated increasing interest in freshness detection. Nevertheless, the weak mechanical properties and color stability of biopolymer-based smart packaging systems restrict their practicality. In this study, a nanocellulose hydrogel colorimetric film with enhanced stretchability, antifatigue properties, and color stability was prepared using soy hull nanocellulose (SHNC), polyvinyl alcohol (PVA), sodium alginate (SA), and anthocyanin (Anth) as raw materials. This hydrogel colorimetric film was used to detect beef freshness. The structure and properties (e.g., mechanical, thermal stability and hydrophobicity) of these hydrogel colorimetric films were characterized using different techniques. Fourier-transform infrared spectroscopy revealed the presence of hydrogen and ester bonds in the hydrogel colorimetric films, whereas scanning electron microscopy revealed the fish scale-like and honeycomb network structure of the hydrogel colorimetric films. Mechanical testing demonstrated that the SHNC/PVA/SA/Anth-2 hydrogel colorimetric film exhibited excellent tensile properties (elongation = 261 %), viscoelasticity (storage modulus of 11.25 kPa), and mechanical strength (tensile strength = 154 kPa), and the hydrogel colorimetric film exhibited excellent mechanical properties after repeated tensile tests. Moreover, the hydrogel colorimetric film had high transparency, excellent anti-UV linearity, thermal stability and hydrophobicity, and had displayed visually discernible color response to pH buffer solution and volatile NH3 by naked eyes, which was highly correlated with the TVB-N and pH values. Notably, the release of anthocyanin in distilled water decreased from 81.23 % to 19.87 %. The designed SHNC/PVA/SA/Anth hydrogel colorimetric films exhibited potential application as smart packaging film or gas-sensing labels in monitoring the freshness of meat products.
Collapse
Affiliation(s)
- Kejin Yu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Siyu Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ning Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Mengxi Xie
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Miao Yu
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| |
Collapse
|
6
|
Shruti A, Bage N, Kar P. Nanomaterials based sensors for analysis of food safety. Food Chem 2024; 433:137284. [PMID: 37703589 DOI: 10.1016/j.foodchem.2023.137284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
The freshnessof the food is a major issue because spoiled food lacks critical nutrients for growth and could be harmful to human health if consumed directly. Nanomaterials are captivating due to their unique properties like large surface area, high selectivity, small dimension, great biocompatibility and conductivity, real-time onsite analysis, etc. which give them an advantage over conventional evaluation techniques. Despite these advantages of nanomaterials used in food safety and their preservation, food products can still get affected by various environmental factors (like pH, temperature, etc.), making the use of time-temperature indicators more condescending. This review is a comprehensive study on food safety, its causes, the responsible analytes, their remedies by various nanomaterials, the development of various nanosensors, and the various challenges faced in maintaining food safety standards to reduce the risk of contaminants.
Collapse
Affiliation(s)
- Asparshika Shruti
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Nirgaman Bage
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Pradip Kar
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
7
|
Lv S, Zhang S, Zuo J, Liang S, Yang J, Wang J, Wei D. Progress in preparation and properties of chitosan-based hydrogels. Int J Biol Macromol 2023; 242:124915. [PMID: 37211080 DOI: 10.1016/j.ijbiomac.2023.124915] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Chitosan is a kind of natural polysaccharide biomass with the second highest content in nature after cellulose, which has good biological properties such as biocompatibility, biodegradability, hemostasis, mucosal adsorption, non-toxicity, and antibacterial properties. Therefore, hydrogels prepared from chitosan have the advantages of good hydrophilicity, unique three-dimensional network structure, and good biocompatibility, so they have received extensive attention and research in environmental testing, adsorption, medical materials, and catalytic supports. Compared with traditional polymer hydrogels, biomass chitosan-based hydrogels have advantages such as low toxicity, excellent biocompatibility, outstanding processability, and low cost. This paper reviews the preparation of various chitosan-based hydrogels using chitosan as raw material and their applications in the fields of medical materials, environmental detection, catalytic carriers, and adsorption. Some views and prospects are put forward for the future research and development of chitosan-based hydrogels, and it is believed that chitosan-based hydrogels will be able to obtain more valuable applications.
Collapse
Affiliation(s)
- Shenghua Lv
- College of Light Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Shanshan Zhang
- College of Light Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jingjing Zuo
- College of Light Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Shan Liang
- College of Light Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Juhui Yang
- College of Light Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jialin Wang
- College of Light Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Dequan Wei
- College of Light Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
8
|
Liu Y, Kim E, Lei M, Wu S, Yan K, Shen J, Bentley WE, Shi X, Qu X, Payne GF. Electro-Biofabrication. Coupling Electrochemical and Biomolecular Methods to Create Functional Bio-Based Hydrogels. Biomacromolecules 2023. [PMID: 37155361 DOI: 10.1021/acs.biomac.3c00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Twenty years ago, this journal published a review entitled "Biofabrication with Chitosan" based on the observations that (i) chitosan could be electrodeposited using low voltage electrical inputs (typically less than 5 V) and (ii) the enzyme tyrosinase could be used to graft proteins (via accessible tyrosine residues) to chitosan. Here, we provide a progress report on the coupling of electronic inputs with advanced biological methods for the fabrication of biopolymer-based hydrogel films. In many cases, the initial observations of chitosan's electrodeposition have been extended and generalized: mechanisms have been established for the electrodeposition of various other biological polymers (proteins and polysaccharides), and electrodeposition has been shown to allow the precise control of the hydrogel's emergent microstructure. In addition, the use of biotechnological methods to confer function has been extended from tyrosinase conjugation to the use of protein engineering to create genetically fused assembly tags (short sequences of accessible amino acid residues) that facilitate the attachment of function-conferring proteins to electrodeposited films using alternative enzymes (e.g., transglutaminase), metal chelation, and electrochemically induced oxidative mechanisms. Over these 20 years, the contributions from numerous groups have also identified exciting opportunities. First, electrochemistry provides unique capabilities to impose chemical and electrical cues that can induce assembly while controlling the emergent microstructure. Second, it is clear that the detailed mechanisms of biopolymer self-assembly (i.e., chitosan gel formation) are far more complex than anticipated, and this provides a rich opportunity both for fundamental inquiry and for the creation of high performance and sustainable material systems. Third, the mild conditions used for electrodeposition allow cells to be co-deposited for the fabrication of living materials. Finally, the applications have been expanded from biosensing and lab-on-a-chip systems to bioelectronic and medical materials. We suggest that electro-biofabrication is poised to emerge as an enabling additive manufacturing method especially suited for life science applications and to bridge communication between our biological and technological worlds.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Si Wu
- College of Resources and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
9
|
Tian B, Liu J, Yang W, Wan JB. Biopolymer Food Packaging Films Incorporated with Essential Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1325-1347. [PMID: 36628408 DOI: 10.1021/acs.jafc.2c07409] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Petroleum-based packaging materials are typically nonbiodegradable, which leads to significant adverse environmental and health issues. Therefore, developing novel efficient, biodegradable, and nontoxic food packaging film materials has attracted increasing attention from researchers. Due to significant research and advanced technology, synthetic additives in packaging materials are progressively replaced with natural substances such as essential oils (EOs). EOs demonstrate favorable antioxidant and antibacterial properties, which would be an economical and effective alternative to synthetic additives. This review summarized the possible antioxidant and antimicrobial mechanisms of various EOs. We analyzed the properties and performance of food packaging films based on various biopolymers incorporated with EOs. The progress in intelligent packaging materials has been discussed as a prospect of food packaging materials. Finally, the current challenges regarding the practical application of EOs-containing biopolymer films in food packaging and areas of future research have been summarized.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| | - Wanzhexi Yang
- Department of Physiology, Pharmacology and Neuroscience, University College London, London WC1E 6BT, United Kingdom
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| |
Collapse
|
10
|
de Aguiar ALL, Araújo MLH, Benevides NMB, Mattos ALA, da Silva Araújo IM, da Silva EMC. Sequential extraction process and physicochemical characterization of R-phycoerythrin and agar from red macroalgae Gracilaria birdiae. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Biodegradable active, intelligent, and smart packaging materials for food applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Comparison of the physical and functional properties of food packaging films containing starch and polyphenols from different varieties of wolfberry. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Smart films fabricated from natural pigments for measurement of total volatile basic nitrogen (TVB-N) content of meat for freshness evaluation: A systematic review. Food Chem 2022; 396:133674. [PMID: 35905557 DOI: 10.1016/j.foodchem.2022.133674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 12/31/2022]
Abstract
Major databases were searched from January 2012 to August 2021 and 54 eligible studies were included in the meta-analysis to estimate the overall mean of total volatile basic nitrogen (TVB-N) in meat. The mean of TVB-N was 24.96 mg/100 g (95 % CI:23.10-26.82). The pooled estimate of naphthoquinone, curcumin, anthocyanins, alizarin and betalains were 25.98 mg/100 g (95 %CI:19.63-32.33), 30.03 mg/100 g (95 %CI: 24.15-35.91), 24.92 mg/100 g (95 %CI: 22.55-27.30), 23.37 mg/100 g (95 %CI:19.42-27.33) and 19.50 mg/100 g (95 %CI:17.87-21.12), respectively. Meanwhile, subgroups based on meat types showed that smart film was most used in aquatic products at 27.19 mg/100 g (95 %CI:24.97-29.42), followed by red meat at 19.69 mg/100 g (95 %CI:17.44-21.94). Furthermore, 4 °C was the most storage temperature used for testing the performance of smart films at 25.48 mg/100 g (95 %CI:23.05-27.90), followed by storage at 25 °C of 25.65 mg/100 g (95 %CI:22.17-29.13). Substantial heterogeneity was found across the eligible studies (I2 = 99 %, p = 0.00). The results of the trim-and-fill method demonstrated publication bias was well controlled.
Collapse
|
14
|
Zhang J, Jian Y, Tong J, Deng H, Du Y, Shi X. Hollow chitosan hydrogel tube with controllable wrinkled pattern via film-to-tube fabrication. Carbohydr Polym 2022; 287:119333. [DOI: 10.1016/j.carbpol.2022.119333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/22/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
|
15
|
Almasi H, Forghani S, Moradi M. Recent advances on intelligent food freshness indicators; an update on natural colorants and methods of preparation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Jian Y, Yang C, Zhang J, Qi L, Shi X, Deng H, Du Y. One-step electrodeposition of Janus chitosan coating for metallic implants with anti-corrosion properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Lin J, Jiao G, Kermanshahi-pour A. Algal Polysaccharides-Based Hydrogels: Extraction, Synthesis, Characterization, and Applications. Mar Drugs 2022; 20:306. [PMID: 35621958 PMCID: PMC9146341 DOI: 10.3390/md20050306] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogels are three-dimensional crosslinked hydrophilic polymer networks with great potential in drug delivery, tissue engineering, wound dressing, agrochemicals application, food packaging, and cosmetics. However, conventional synthetic polymer hydrogels may be hazardous and have poor biocompatibility and biodegradability. Algal polysaccharides are abundant natural products with biocompatible and biodegradable properties. Polysaccharides and their derivatives also possess unique features such as physicochemical properties, hydrophilicity, mechanical strength, and tunable functionality. As such, algal polysaccharides have been widely exploited as building blocks in the fabrication of polysaccharide-based hydrogels through physical and/or chemical crosslinking. In this review, we discuss the extraction and characterization of polysaccharides derived from algae. This review focuses on recent advances in synthesis and applications of algal polysaccharides-based hydrogels. Additionally, we discuss the techno-economic analyses of chitosan and acrylic acid-based hydrogels, drawing attention to the importance of such analyses for hydrogels. Finally, the future prospects of algal polysaccharides-based hydrogels are outlined.
Collapse
Affiliation(s)
- Jianan Lin
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., Halifax, NS B3J 1Z1, Canada;
| | - Guangling Jiao
- AKSO Marine Biotech Inc., Suite 3, 1697 Brunswick St., Halifax, NS B3J 2G3, Canada;
| | - Azadeh Kermanshahi-pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., Halifax, NS B3J 1Z1, Canada;
| |
Collapse
|
18
|
Properties and Applications of Intelligent Packaging Indicators for Food Spoilage. MEMBRANES 2022; 12:membranes12050477. [PMID: 35629803 PMCID: PMC9145781 DOI: 10.3390/membranes12050477] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023]
Abstract
Food packaging plays a vital role in the food supply chain by acting as an additional layer to protect against food contamination, but the main function of traditional conventional packaging is only to isolate food from the outside environment, and cannot provide related information about food spoilage. Intelligent packaging can feel, inspect, and record external or internal changes in food products to provide further information about food quality. Importantly, intelligent packaging indicators will account for a significant proportion of the food industry’s production, with promising application potential. In this review, we mainly summarize and review the upcoming progress in the classification, preparation, and application of food packaging indicators. Equally, the feasibility of 3D printing in the preparation of intelligent food packaging indicators is also discussed in detail, as well as the limitations and future directions of smart food packaging. Taken together, the information supported in this paper provides new insights into monitoring food spoilage and food quality.
Collapse
|
19
|
Zhu X, Yang C, Jian Y, Deng H, Du Y, Shi X. Ion-responsive chitosan hydrogel actuator inspired by carrotwood seed pod. Carbohydr Polym 2022; 276:118759. [PMID: 34823783 DOI: 10.1016/j.carbpol.2021.118759] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022]
Abstract
Inspired by the gradient hygroscopic structure of carrotwood seed pod, patterned anisotropic structure was created in polysaccharide hydrogel by an anodic electrical writing process. Locally released Fe2+ was oxidized to Fe3+ and chelated with chitosan chains in the written area, resulting in a gradient structure in the hydrogel. The asymmetrical stress generated by the different swelling of the gradient structure enables the hydrogel to bend autonomously. The hydrogel shows opposite bending in deionized water and NaCl solution. The physicochemical properties of the hydrogel are characterized by tensile test, SEM, EDS, XRD, TGA, DTG and FT-IR. SEM and EDS show that the written hydrogel has a structural gradient and a concentration gradient of Fe3+ vertically. Moreover, anodic electrical writing increases the flexibility of chitosan hydrogel due to decreased crystallinity. This controllable electrical writing technique is convenient to create patterned anisotropic structure and provide a novel design concept for natural hydrogel actuators.
Collapse
Affiliation(s)
- Xinyi Zhu
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Chen Yang
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Yinghao Jian
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Yumin Du
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
20
|
Siddiqui J, Taheri M, Alam AU, Deen MJ. Nanomaterials in Smart Packaging Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101171. [PMID: 34514693 DOI: 10.1002/smll.202101171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/01/2021] [Indexed: 05/22/2023]
Abstract
Food wastage is a critical and world-wide issue resulting from an excess of food supply, poor food storage, poor marketing, and unstable markets. Since food quality depends on consumer standards, it becomes necessary to monitor the quality to ensure it meets those standards. Embedding sensors with active nanomaterials in food packaging enables customers to monitor the quality of their food in real-time. Though there are many different sensors that can monitor food quality and safety, pH sensors and time-temperature indicators (TTIs) are the most critical metrics in indicating quality. This review showcases some of the recent progress, their importance, preconditions, and the various future needs of pH sensors and TTIs in food packaging for smart sensors in food packaging applications. In discussing these topics, this review includes the materials used to make these sensors, which vary from polymers, metals, metal-oxides, carbon-based materials; and their modes of fabrication, ranging from thin or thick film deposition methods, solution-based chemistry, and electrodeposition. By discussing the use of these materials, novel fabrication process, and problems for the two sensors, this review offers solutions to a brighter future for the use of nanomaterials for pH indicator and TTIs in food packaging applications.
Collapse
Affiliation(s)
- Junaid Siddiqui
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| | - Mahtab Taheri
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| | - Arif Ul Alam
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| | - M Jamal Deen
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
21
|
Yang W, Tu A, Ma Y, Li Z, Xu J, Lin M, Zhang K, Jing L, Fu C, Jiao Y, Huang L. Chitosan and Whey Protein Bio-Inks for 3D and 4D Printing Applications with Particular Focus on Food Industry. Molecules 2021; 27:173. [PMID: 35011406 PMCID: PMC8746959 DOI: 10.3390/molecules27010173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
The application of chitosan (CS) and whey protein (WP) alone or in combination in 3D/4D printing has been well considered in previous studies. Although several excellent reviews on additive manufacturing discussed the properties and biomedical applications of CS and WP, there is a lack of a systemic review about CS and WP bio-inks for 3D/4D printing applications. Easily modified bio-ink with optimal printability is a key for additive manufacturing. CS, WP, and WP-CS complex hydrogel possess great potential in making bio-ink that can be broadly used for future 3D/4D printing, because CS is a functional polysaccharide with good biodegradability, biocompatibility, non-immunogenicity, and non-carcinogenicity, while CS-WP complex hydrogel has better printability and drug-delivery effectivity than WP hydrogel. The review summarizes the current advances of bio-ink preparation employing CS and/or WP to satisfy the requirements of 3D/4D printing and post-treatment of materials. The applications of CS/WP bio-ink mainly focus on 3D food printing with a few applications in cosmetics. The review also highlights the trends of CS/WP bio-inks as potential candidates in 4D printing. Some promising strategies for developing novel bio-inks based on CS and/or WP are introduced, aiming to provide new insights into the value-added development and commercial CS and WP utilization.
Collapse
Affiliation(s)
- Wei Yang
- Quality and Technology Center, Hainan Xiangtai Fishery Co., Ltd., Chengmai 571924, China;
- Fujian Key Laboratory of Inspection and Quarantine Technology Research, Fuzhou 350309, China
| | - Anqianyi Tu
- Food Science and Technology Department, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China; (A.T.); (Y.M.); (Z.L.); (J.X.); (L.J.); (C.F.)
- Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yuchen Ma
- Food Science and Technology Department, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China; (A.T.); (Y.M.); (Z.L.); (J.X.); (L.J.); (C.F.)
| | - Zhanming Li
- Food Science and Technology Department, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China; (A.T.); (Y.M.); (Z.L.); (J.X.); (L.J.); (C.F.)
| | - Jie Xu
- Food Science and Technology Department, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China; (A.T.); (Y.M.); (Z.L.); (J.X.); (L.J.); (C.F.)
| | - Min Lin
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China;
| | - Kailong Zhang
- The Marketing Department, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100071, China;
| | - Linzhi Jing
- Food Science and Technology Department, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China; (A.T.); (Y.M.); (Z.L.); (J.X.); (L.J.); (C.F.)
| | - Caili Fu
- Food Science and Technology Department, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China; (A.T.); (Y.M.); (Z.L.); (J.X.); (L.J.); (C.F.)
| | - Yang Jiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lingyi Huang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China;
| |
Collapse
|
22
|
Preparation and physicochemical assessment of bioactive films based on chitosan and starchy powder of white turmeric rhizomes (Curcuma Zedoaria) for green packaging applications. Int J Biol Macromol 2021; 193:2192-2201. [PMID: 34785196 DOI: 10.1016/j.ijbiomac.2021.11.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 02/08/2023]
Abstract
In the current study, the bioactive films of chitosan/white turmeric (CH/WT) were prepared by employing solvent casting technique and analyzed their physicochemical and biological properties for active packaging applications. The successful inclusion of white turmeric into the chitosan matrix is confirmed by Fourier Transform Infrared Spectroscopy. Due to the presence of hydrogen bonding interaction, the active films exhibited good tensile properties, smooth surface morphology, miscibility, water resistance and UV barrier properties. The incorporation of white turmeric reduced the water vapour transmission rate and oxygen permeability (p < 0.05) in contrast with pristine film. The prepared blend films revealed soil degradation rate more than 60% within 15 days. Furthermore, the blend films exhibited lesser water solubility, moisture content and swelling index after addition of white turmeric to chitosan (p < 0.05). The prepared films revealed extensive antimicrobial activity against gram positive and gram negative bacteria. The antioxidant activity and total phenolic content were improved upon the incorporation of white turmeric. Moreover, the oil absorption rate of the blend films was decreased by 46% in comparison with pristine film. Overall, white turmeric incorporated chitosan films were employed as a green packaging material to extend the shelf life of the foodstuff.
Collapse
|
23
|
Self-assembled all-polysaccharide hydrogel film for versatile paper-based food packaging. Carbohydr Polym 2021; 271:118425. [PMID: 34364566 DOI: 10.1016/j.carbpol.2021.118425] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
Paper-based packaging generally has poor performances in the gas/oil barriers. This work reports a paper-based packaging material prepared via the modification of conventional papers with TEMPO-oxidized cellulose nanofibers (TOCN)/cationic guar gum (CGG) hydrogel film. Specifically, the hydrogel film modification was realized through a layer-by-layer deposition on paper. The hydrogel film modification significantly improved the mechanical and barrier properties of the paper. Specifically, the 4-layer hydrogel film modified paper showed a tensile strength of 34.03 MPa and a burst strength of 510 kPa, respectively. In contrast, the unmodified paper exhibited a tensile strength of 26.78 MPa and a bursting strength of 388 kPa. The packaging performance of this TOCN/CGG hydrogel film modified paper was demonstrated via the fresh mooncake packaging test. Such hydrogel film not only provided the oil resistance, but also maintained the mooncake's freshness. This material can serve as a green and sustainable food packaging.
Collapse
|
24
|
Ma Q, Lu X, Wang W, Hubbe MA, Liu Y, Mu J, Wang J, Sun J, Rojas OJ. Recent developments in colorimetric and optical indicators stimulated by volatile base nitrogen to monitor seafood freshness. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100634] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Yang J, Shen M, Luo Y, Wu T, Chen X, Wang Y, Xie J. Advanced applications of chitosan-based hydrogels: From biosensors to intelligent food packaging system. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Devarayan K, Motcham VV, Kathavarayan M, Anjappan H. Real-Time Detection of Packaged Seer Fish Spoilage Using Halochromic Optical Nose. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1897049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Kesavan Devarayan
- College of Fisheries Engineering, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Nagapattinam, India
| | - Vinothini Vaz Motcham
- College of Fisheries Engineering, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Nagapattinam, India
| | - Madhan Kathavarayan
- College of Fisheries Engineering, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Nagapattinam, India
| | - Hema Anjappan
- College of Fisheries Engineering, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Nagapattinam, India
| |
Collapse
|
27
|
Li P, He L, Liu X, Fan S, Yuan Y, Zhang J, Wang H, Li S. Electro-deposition synthesis of tube-like collagen-chitosan hydrogels and their biological performance. Biomed Mater 2021; 16:035019. [PMID: 33657015 DOI: 10.1088/1748-605x/abd995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electro-deposition is a smart, safe and efficient method for biomaterial manufacturing. Collagen, a functional protein with excellent biocompatibility and biosafety, is a promising candidate for tissue engineering and biomedical applications. However, there are few reports on electro-deposition of biomaterials using collagen without electrically or magnetically active nanoparticles. In this study, electro-deposition was employed to swiftly fabricate tube-like collagen-chitosan hydrogels in a mild environment. Fourier transform infrared spectroscopy was employed to analyze the ingredients of the tube-like hydrogels. The result showed that the hydrogels contained both collagen and chitosan. The distribution and content of collagen in the hydrogels was further measured by hematoxylin-eosin staining and hydroxyproline titration. Collagen was distributed homogeneously and its content was related to the initial collagen:chitosan ratio. The tension resistance of the composite gels and the thermal stability of collagen in the composites were obviously enhanced by the chitosan doping. Meanwhile, the tube-like hydrogels retained a good ability to promote cell proliferation of collagen. This method offers a convenient approach to the design and fabrication of collagen-based materials, which could effectively retain the bioactivity and biosafety of collagen and furnish a new way to enhance the stability of collagen and the tensile strength of collagen-based materials.
Collapse
Affiliation(s)
- Ping Li
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei Province 430023, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang J, Huang X, Zou X, Shi J, Zhai X, Liu L, Li Z, Holmes M, Gong Y, Povey M, Xiao J. A visual indicator based on curcumin with high stability for monitoring the freshness of freshwater shrimp, Macrobrachium rosenbergii. J FOOD ENG 2021; 292:110290. [DOI: 10.1016/j.jfoodeng.2020.110290] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Active and intelligent gellan gum-based packaging films for controlling anthocyanins release and monitoring food freshness. Carbohydr Polym 2021; 254:117410. [DOI: 10.1016/j.carbpol.2020.117410] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/08/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
|
30
|
Yang Z, Zhai X, Zou X, Shi J, Huang X, Li Z, Gong Y, Holmes M, Povey M, Xiao J. Bilayer pH-sensitive colorimetric films with light-blocking ability and electrochemical writing property: Application in monitoring crucian spoilage in smart packaging. Food Chem 2021; 336:127634. [PMID: 32777654 DOI: 10.1016/j.foodchem.2020.127634] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 06/29/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
Abstract
Bilayer colorimetric films were developed for monitoring fish spoilage by using gelatin (GN) incorporated with ZnO nanoparticles as the upper layer (GN-ZnO), and gellan gum (GG) incorporated with mulberry anthocyanins (MBA) as the lower layer (GG-MBA). The color stability of the bilayer colorimetric films under visible and ultraviolet light was improved with the increase of ZnO nanoparticles content. Meanwhile, the bilayer films had good NH3 sensitivity. The limit of detection of the GG-MBA/GN-2.0% ZnO film to NH3 was 0.01 mM. The electrochemical writing ability of the bilayer films was also identified, indicating the feasibility of inks-free printing on biopolymer films. Finally, the GG-MBA/GN-2.0% ZnO film with an electrochemical writing pattern was used to monitor crucian spoilage. The GG-MBA/GN-2.0% ZnO film with electrochemical writing pattern showed visible color changes with the crucian spoilage. In conclusion, the bilayer colorimetric film was expected to be a good fish spoilage indicator in smart packaging.
Collapse
Affiliation(s)
- Zhikun Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China.
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Megan Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau, China
| |
Collapse
|
31
|
Zhou N, Wang L, You P, Wang L, Mu R, Pang J. Preparation of pH-sensitive food packaging film based on konjac glucomannan and hydroxypropyl methyl cellulose incorporated with mulberry extract. Int J Biol Macromol 2021; 172:515-523. [PMID: 33476614 DOI: 10.1016/j.ijbiomac.2021.01.047] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
A pH-sensitive food packaging film was prepared based on konjac glucomannan (KGM) and hydroxypropyl methyl cellulose (HPMC) incorporated with mulberry extracts2 (MBE). FT-IR and XRD analysis revealed that there are good molecular interactions among the three components. The incorporation of MBE into KGM and HPMC (KH) films can significantly improve the mechanical properties and UV resistance. Notably, the KH-MBE-20% film almost completely blocked UV light in the range of 200-600 nm. The best antioxidant and antibacterial properties were obtained when the addition of MBE in the composite film was 20%. In addition, KH-MBE film has good responsiveness to buffers with pH range from 2 to 12. In visual monitoring experiments using the film on fresh fish, the color of the KH-MBE film changed from purple to gray to yellow as the freshness of the fish decreased, and the KH-MBE-20% film had the best color stability. Therefore, intelligent packaging of KH-MBE film has potential applications in real-time monitoring of fish freshness.
Collapse
Affiliation(s)
- Ning Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.; State Key Laboratory of Food Safety Technology for Meat Products, Xiamen, Fujian 361100, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.; State Key Laboratory of Food Safety Technology for Meat Products, Xiamen, Fujian 361100, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Peiqiong You
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.; State Key Laboratory of Food Safety Technology for Meat Products, Xiamen, Fujian 361100, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liangyu Wang
- Fuqing Branch of Fujian Normal University, Fuqing, Fujian 350300, China
| | - RuoJun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.; State Key Laboratory of Food Safety Technology for Meat Products, Xiamen, Fujian 361100, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.; State Key Laboratory of Food Safety Technology for Meat Products, Xiamen, Fujian 361100, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
32
|
Lu P, Yang Y, Liu R, Liu X, Ma J, Wu M, Wang S. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Carbohydr Polym 2020; 249:116831. [DOI: 10.1016/j.carbpol.2020.116831] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
|
33
|
Yong H, Liu J. Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100550] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Wang L, Lin L, Guo Y, Long J, Mu RJ, Pang J. Enhanced functional properties of nanocomposite film incorporated with EGCG-loaded dialdehyde glucomannan/gelatin matrix for food packaging. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105863] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Alizadeh-Sani M, Mohammadian E, Rhim JW, Jafari SM. pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Electrospun triaxial nanofibers with middle blank cellulose acetate layers for accurate dual-stage drug release. Carbohydr Polym 2020; 243:116477. [DOI: 10.1016/j.carbpol.2020.116477] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/04/2020] [Accepted: 05/15/2020] [Indexed: 11/22/2022]
|
37
|
Yan K, Xu F, Wang C, Li Y, Chen Y, Li X, Lu Z, Wang D. A multifunctional metal-biopolymer coordinated double network hydrogel combined with multi-stimulus responsiveness, self-healing, shape memory and antibacterial properties. Biomater Sci 2020; 8:3193-3201. [PMID: 32373851 DOI: 10.1039/d0bm00425a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Outfitted with abundant hydrogen bonding and coordination active groups, carboxymethyl chitosan (CMC) possesses a class of naturally occurring ligands for coordination with metal ions, establishing its excellent potential for various fields. Herein, by incorporating the naturally derived CMC into a thermally reconfigurable agarose (Agar) gel medium, a novel type of metal-biopolymer coordinated double network hydrogel (DN gel) was successfully fabricated via the strong coordination interactions. The interpenetrated CMC was confirmed to retain its excellent chelating abilities within the bulk gel matrix, which resulted in a series of metal-coordinated DN gels through spontaneous self-associative complexation with metal ions such as Cu2+, Zn2+, Ni2+, Co2+, Fe3+, and Cr3+. Moreover, these two types of physical cross-links are functionally independent and reversible, which enables the programming of the hydrogel with multi-functionality, including pH-regulated shape memory behavior, multi-staged self-healing properties and durable antibacterial activities. Thus, we believe that the successful preparation of such a coordination-driven DN gel will lead to the development of biopolymer-based multifunctional hydrogels, as well as provide new insight into nanocomponent assembly and soft electronic biosensing systems for biomedical applications.
Collapse
Affiliation(s)
- Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wu D, Zhang M, Chen H, Bhandari B. Freshness monitoring technology of fish products in intelligent packaging. Crit Rev Food Sci Nutr 2020; 61:1279-1292. [PMID: 32342714 DOI: 10.1080/10408398.2020.1757615] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fish products are one of the preferred products in modern healthy diets, because they contain unqualified proteins, polyunsaturated fatty acids and a variety of vitamins and minerals. However, because of their vulnerability to deterioration, methods to maintain their freshness have attracted wide attention. Intelligent packaging can effectively monitor the quality and safety of fish products, provide warning, and has a great market and development potential. Therefore, this paper reviews the research progress of intelligent packaging technology used to monitor the freshness of fish products. The quality attributes of freshness of fish products are summarized. The classification, principle and latest application progress of three advanced technologies, indicator, sensor and radio frequency identification (RFID), are summarized. In addition, the advantages and disadvantages of the intelligent packaging technology for monitoring the freshness of products are discussed, and the current research results are summarized and prospected.
Collapse
Affiliation(s)
- Dan Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi,, China
| | - Huizhi Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Yechun Food Production and Distribution Co., Ltd, Yangzhou, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
39
|
Wu S, Yan K, Li J, Huynh RN, Raub CB, Shen J, Shi X, Payne GF. Electrical cuing of chitosan's mesoscale organization. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Zhai X, Zou X, Shi J, Huang X, Sun Z, Li Z, Sun Y, Li Y, Wang X, Holmes M, Gong Y, Povey M, Xiao J. Amine-responsive bilayer films with improved illumination stability and electrochemical writing property for visual monitoring of meat spoilage. SENSORS AND ACTUATORS B: CHEMICAL 2020; 302:127130. [DOI: 10.1016/j.snb.2019.127130] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
41
|
Nešić A, Cabrera-Barjas G, Dimitrijević-Branković S, Davidović S, Radovanović N, Delattre C. Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules 2019; 25:E135. [PMID: 31905753 PMCID: PMC6983128 DOI: 10.3390/molecules25010135] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 11/16/2022] Open
Abstract
The use of polysaccharide-based materials presents an eco-friendly technological solution, by reducing dependence on fossil resources while reducing a product's carbon footprint, when compared to conventional plastic packaging materials. This review discusses the potential of polysaccharides as a raw material to produce multifunctional materials for food packaging applications. The covered areas include the recent innovations and properties of the polysaccharide-based materials. Emphasis is given to hemicelluloses, marine polysaccharides, and bacterial exopolysaccharides and their potential application in the latest trends of food packaging materials, including edible coatings, intelligent films, and thermo-insulated aerogel packaging.
Collapse
Affiliation(s)
- Aleksandra Nešić
- Vinca Institute for Nuclear Sciences, University of Belgrade, Mike Petrovica-Alasa 12-14, 11000 Belgrade, Serbia;
- Unidad de Desarrollo Tecnológico, Universidad de Concepcion, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4190000, Chile;
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico, Universidad de Concepcion, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4190000, Chile;
| | | | - Sladjana Davidović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Neda Radovanović
- Inovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Cédric Delattre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
- Institute Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
42
|
Jamróz E, Kulawik P, Guzik P, Duda I. The verification of intelligent properties of furcellaran films with plant extracts on the stored fresh Atlantic mackerel during storage at 2 °C. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105211] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Liu J, Yong H, Liu Y, Qin Y, Kan J, Liu J. Preparation and characterization of active and intelligent films based on fish gelatin and haskap berries (Lonicera caerulea L.) extract. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100417] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Qin Y, Liu Y, Yong H, Liu J, Zhang X, Liu J. Preparation and characterization of active and intelligent packaging films based on cassava starch and anthocyanins from Lycium ruthenicum Murr. Int J Biol Macromol 2019; 134:80-90. [DOI: 10.1016/j.ijbiomac.2019.05.029] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022]
|
45
|
Bi F, Zhang X, Bai R, Liu Y, Liu J, Liu J. Preparation and characterization of antioxidant and antimicrobial packaging films based on chitosan and proanthocyanidins. Int J Biol Macromol 2019; 134:11-19. [DOI: 10.1016/j.ijbiomac.2019.05.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/23/2019] [Accepted: 05/06/2019] [Indexed: 11/30/2022]
|
46
|
Wang B, Xiao X, Zhang Y, Liao L. High strength dual-crosslinked hydrogels with photo-switchable color changing behavior. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Li J, Wu S, Kim E, Yan K, Liu H, Liu C, Dong H, Qu X, Shi X, Shen J, Bentley WE, Payne GF. Electrobiofabrication: electrically based fabrication with biologically derived materials. Biofabrication 2019; 11:032002. [PMID: 30759423 PMCID: PMC7025432 DOI: 10.1088/1758-5090/ab06ea] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While conventional material fabrication methods focus on form and strength to achieve function, the fabrication of material systems for emerging life science applications will need to satisfy a more subtle set of requirements. A common goal for biofabrication is to recapitulate complex biological contexts (e.g. tissue) for applications that range from animal-on-a-chip to regenerative medicine. In these cases, the material systems will need to: (i) present appropriate surface functionalities over a hierarchy of length scales (e.g. molecular features that enable cell adhesion and topographical features that guide differentiation); (ii) provide a suite of mechanobiological cues that promote the emergence of native-like tissue form and function; and (iii) organize structure to control cellular ingress and molecular transport, to enable the development of an interconnected cellular community that is engaged in cell signaling. And these requirements are not likely to be static but will vary over time and space, which will require capabilities of the material systems to dynamically respond, adapt, heal and reconfigure. Here, we review recent advances in the use of electrically based fabrication methods to build material systems from biological macromolecules (e.g. chitosan, alginate, collagen and silk). Electrical signals are especially convenient for fabrication because they can be controllably imposed to promote the electrophoresis, alignment, self-assembly and functionalization of macromolecules to generate hierarchically organized material systems. Importantly, this electrically based fabrication with biologically derived materials (i.e. electrobiofabrication) is complementary to existing methods (photolithographic and printing), and enables access to the biotechnology toolbox (e.g. enzymatic-assembly and protein engineering, and gene expression) to offer exquisite control of structure and function. We envision that electrobiofabrication will emerge as an important platform technology for organizing soft matter into dynamic material systems that mimic biology's complexity of structure and versatility of function.
Collapse
Affiliation(s)
- Jinyang Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu Y, Wang S, Lan W, Qin W. Development of ultrasound treated polyvinyl alcohol/tea polyphenol composite films and their physicochemical properties. ULTRASONICS SONOCHEMISTRY 2019; 51:386-394. [PMID: 30122467 DOI: 10.1016/j.ultsonch.2018.07.043] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 05/16/2023]
Abstract
In this study, polyvinyl alcohol (PVA) was used as a film-forming substrate, added to extracted tea polyphenols (TPs) in various ratios and processed with ultrasonication to form films using the tape-casting method. The effects of ultrasonic processing duration on the properties of PVA/TP antibacterial active materials were explored via material property testing. The results showed that, overall, ultrasonic processing degraded the tensile strength and elongation at break of the composite films. When PVA/TP composite films with a PVA-to-TP mass ratio of 8:2 were processed with ultrasonication for 30 min, the swelling capacity was (740.19 ± 64.67)% and solubility was (5.26 ± 1.31)%. Ultrasonication also improved the degradability and barrier properties of composite films. Moreover, 8/2 composite films with the PVA/TP ratio of 8:2 exhibited excellent bacteriostatic properties; after ultrasonication processing, the films had a bacteriostatic rate of (95.5 ± 4.2)% and (91.8 ± 3.7)% against Staphylococcus aureus and Escherichia coli, respectively, making them suitable for use as antibacterial active materials in food packaging.
Collapse
Affiliation(s)
- Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shuyao Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Weijie Lan
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, Domaine Saint Paul, 228 route de l'Aérodrome, CS 40509, F-84000 Avignon, France
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| |
Collapse
|
49
|
Li J, Maniar D, Qu X, Liu H, Tsao CY, Kim E, Bentley WE, Liu C, Payne GF. Coupling Self-Assembly Mechanisms to Fabricate Molecularly and Electrically Responsive Films. Biomacromolecules 2019; 20:969-978. [PMID: 30616349 DOI: 10.1021/acs.biomac.8b01592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biomacromolecules often possess information to self-assemble through low energy competing interactions which can make self-assembly responsive to environmental cues and can also confer dynamic properties. Here, we coupled self-assembling systems to create biofunctional multilayer films that can be cued to disassemble through either molecular or electrical signals. To create functional multilayers, we: (i) electrodeposited the pH-responsive self-assembling aminopolysaccharide chitosan, (ii) allowed the lectin Concanavalin A (ConA) to bind to the chitosan-coated electrode (presumably through electrostatic interactions), (iii) performed layer-by-layer self-assembly by sequential contacting with glycogen and ConA, and (iv) conferred biological (i.e., enzymatic) function by assembling glycoprotein (i.e., enzymes) to the ConA-terminated multilayer. Because the ConA tetramer dissociates at low pH, this multilayer can be triggered to disassemble by acidification. We demonstrate two approaches to induce acidification: (i) glucose oxidase can induce multilayer disassembly in response to molecular cues, and (ii) anodic reactions can induce multilayer disassembly in response to electrical cues.
Collapse
Affiliation(s)
- Jinyang Li
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States.,Fischell Department of Bioengineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Drishti Maniar
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States.,Fischell Department of Bioengineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , 200237 , China
| | - Huan Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , 200237 , China
| | - Chen-Yu Tsao
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States.,Fischell Department of Bioengineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States.,Fischell Department of Bioengineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , 200237 , China
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
50
|
Yun D, Cai H, Liu Y, Xiao L, Song J, Liu J. Development of active and intelligent films based on cassava starch and Chinese bayberry (Myrica rubra Sieb. et Zucc.) anthocyanins. RSC Adv 2019; 9:30905-30916. [PMID: 35529351 PMCID: PMC9072304 DOI: 10.1039/c9ra06628d] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/24/2019] [Indexed: 11/21/2022] Open
Abstract
Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruit is a functional food rich in anthocyanins. In this study, anthocyanin-rich bayberry extract (BBE) was added into cassava starch to develop food packaging films with antioxidant and pH-sensitive properties. Results showed the main anthocyanin in BBE was cyanidin-3-O-glucoside (95.6%). The addition of 1 wt% of BBE into the film matrix resulted in a dense and compact internal microstructure, which greatly improved the water vapor permeability and tensile strength of the film. However, the addition of 2, 3 and 4 wt% of BBE into film matrix produced heterogeneous inner microstructures due to the formation of agglomerated BBE. The intermolecular interactions between BBE and the starch film matrix were through hydrogen binding. As compared with the starch film, starch–BBE films exhibited higher thicknesses, tensile strength, UV-vis light barrier and antioxidant properties. Moreover, starch–BBE films presented significant color changes when exposed to hydrogen chloride and ammonia gases. The pH-sensitive starch–BBE films were able to monitor the freshness of pork. Our results suggested that starch–BBE films could be used as smart and active packaging materials in the food industry. In this study, anthocyanin-rich Chinese bayberry extract (BBE) was added into cassava starch to develop food packaging films with antioxidant and pH-sensitive properties.![]()
Collapse
Affiliation(s)
- Dawei Yun
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- PR China
| | - Huahao Cai
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- PR China
| | - Yunpeng Liu
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- PR China
| | - Lixia Xiao
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- PR China
| | - Jiangfeng Song
- Institute of Farm Product Processing
- Jiangsu Academy of Agricultural Sciences
- Nanjing 210014
- PR China
| | - Jun Liu
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- PR China
| |
Collapse
|