1
|
Xing Y, Jiang H, Cai L. Engineered nanotransporters for efficient RNAi delivery in plant protection applications. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1223-1245. [PMID: 40080402 DOI: 10.1111/jipb.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 02/16/2025] [Accepted: 02/16/2025] [Indexed: 03/15/2025]
Abstract
RNA interference (RNAi) is increasingly used for plant protection against pathogens and pests. However, the traditional delivery method causes plant tissue damage, is affected by environmental factors, and faces difficulties in penetrating the barriers of cell walls and the limitations of plant species, ultimately leading to low delivery efficiency. With advances in nanotechnology, nanomaterials (NMs) have been identified as effective carriers for nucleic acid delivery because of their ability to operate independently of external mechanical forces, prevent degradation by bioenzymes, exhibit good biocompatibility, and offer high loading capacity. This review summarizes the application of NM-mediated RNAi against plant pathogens and pests, focusing on how different NMs break through the cell barriers of plants, pathogens, and pests according to their size, morphology, and charge characteristics. Furthermore, we discuss the advantages and improvement strategies of NMs as nucleic acid delivery carriers, alongside assessing their potential application for the management of plant pathogens and pests.
Collapse
Affiliation(s)
- Yue Xing
- College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality, Guiyang, 550025, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hao Jiang
- College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality, Guiyang, 550025, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Lin Cai
- College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality, Guiyang, 550025, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
2
|
Ybarra DE, Quezada C, Guarín YA, Cabello GA, Montanari J, Alvira FC, Valle Alonso SD, Meléndrez MF, Barraza LF. Self-assembled PAMAM-G4 dendrimer nanoparticles with Phloxine B as photosensitizer for antimicrobial photodynamic therapy. Int J Pharm 2025; 675:125534. [PMID: 40164413 DOI: 10.1016/j.ijpharm.2025.125534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Antimicrobial resistance (AMR) represents a critical global health challenge, driving the need for innovative therapeutic strategies. This study introduces self-assembled nanoparticles based on fourth-generation polyamidoamine (PAMAM-G4) dendrimers and Phloxine B (PhB), forming G4-PhB nanoparticles as an advanced platform for antimicrobial photodynamic therapy (aPDT). The optimal dendrimer:dye molar ratio was determined through dynamic light scattering (DLS) titration experiments, yielding a 1:15 G4:PhB ratio. The resulting G4-PhB nanoparticles were spherical, with a hydrodynamic diameter of 260 ± 15 nm, a narrow polydispersity index (PDI) of 0.264 ± 0.085, and a positive zeta potential of 8.71 ± 2.88 mV, indicating monodispersity and colloidal stability. These features were corroborated by morphological analyses using TEM and AFM. Cytotoxicity assays conducted on murine fibroblasts (3 T3 cell line), using MTT, neutral red uptake, and crystal violet staining revealed that G4-PhB nanoparticles are intrinsically non-toxic, contrasting with the EDTA-PhB complex, which exhibited significant cytotoxic effects. Antibacterial activity was evaluated against Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA). While free PhB demonstrated bactericidal effects exclusively against SA, the G4-PhB nanoparticles exhibited enhanced activity against both bacterial strains, notably overcoming the limitations of free PhB against PA. These findings highlight the versatility and effectiveness of G4-PhB nanoparticles as a biocompatible and non-invasive system for localized aPDT, with potential applications in wound healing for immunocompromised patients. This work provides a robust foundation for future research into dendrimer-based photosensitizers as innovative solutions to pressing biomedical challenges.
Collapse
Affiliation(s)
- David E Ybarra
- Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires C.P.1876, Argentina; Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires C.P.1906, Argentina.
| | - Camila Quezada
- Interdisciplinary Group of Applied Nanotechnology (GINA), Hybrid Materials Laboratory (HML), Department of Materials Engineering (DIMAT), Faculty of Engineering, University of Concepcion, Edmundo Larenas 270, Box 160-C, Concepción 4070409, Chile.
| | - Yuly A Guarín
- Laboratorio de Nano y macromateriales, Universidad del Bío-Bío, Avda Collao 1202, Concepción, Chile.
| | - Gerardo A Cabello
- Facultad de Ciencias, Departamento de Biología y Química, Universidad del Bío-Bío, Chillán, Chile.
| | - Jorge Montanari
- Universidad Nacional de Hurlingham (UNAHUR), Laboratorio de Nanosistemas de Aplicación Biotecnológica (LANSAB), Av. Vergara 2222, Villa Tesei, Buenos Aires 1688, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata 1900, Argentina.
| | - Fernando C Alvira
- Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires C.P.1876, Argentina; Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires C.P.1906, Argentina.
| | - Silvia Del Valle Alonso
- Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires C.P.1876, Argentina; Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires C.P.1906, Argentina.
| | - Manuel F Meléndrez
- Facultad de Ciencias para el cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, Concepción 4060000, Chile.
| | - Luis F Barraza
- Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad San Sebastián, General Lagos 1163, Valdivia 5090000, Chile; Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile.
| |
Collapse
|
3
|
Moreira L, Guimarães NM, Santos RS, Loureiro JA, Pereira MDC, Azevedo NF. Oligonucleotide probes for imaging and diagnosis of bacterial infections. Crit Rev Biotechnol 2025; 45:128-147. [PMID: 38830823 DOI: 10.1080/07388551.2024.2344574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/17/2023] [Indexed: 06/05/2024]
Abstract
The rise of infectious diseases as a public health concern has necessitated the development of rapid and precise diagnostic methods. Imaging techniques like nuclear and optical imaging provide the ability to diagnose infectious diseases within the body, eliminating delays caused by sampling and pre-enrichments of clinical samples and offering spatial information that can aid in a more informed diagnosis. Traditional molecular probes are typically created to image infected tissue without accurately identifying the pathogen. In contrast, oligonucleotides can be tailored to target specific RNA sequences, allowing for the identification of pathogens, and even generating antibiotic susceptibility profiles by focusing on drug resistance genes. Despite the benefits that nucleic acid mimics (NAMs) have provided in terms of stabilizing oligonucleotides, the inadequate delivery of these relatively large molecules into the cytoplasm of bacteria remains a challenge for widespread use of this technology. This review summarizes the key advancements in the field of oligonucleotide probes for in vivo imaging, highlighting the most promising delivery systems described in the literature for developing optical imaging through in vivo hybridization.
Collapse
Affiliation(s)
- Luís Moreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno Miguel Guimarães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Rita Sobral Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno Filipe Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Gaur M, Marathe AS, Kakatkar AS, Barooah N, Chatterjee S, Bhasikuttan AC, Mohanty J. Enhanced Antibacterial Activity of Levofloxacin with Cucurbit[7]uril-Functionalized Gold Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:6958-6969. [PMID: 39331049 DOI: 10.1021/acsabm.4c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Bacterial infection is one of the major concerns of the growing society, and over the years, different permutations and combinations of various drugs and adjuvants have been attempted, which led to considerable improvements in the efficacy of the antibacterial drugs. In this regard, macrocyclic receptors such as cyclodextrin, cucurbiturils, calixarene, etc., have played a major role by modulating the drug properties that supplement the antibacterial efficacy. In this study, we have developed cucurbit[7]uril (CB7)-functionalized Au nanoparticles (CB7AuNPs) to modulate the activity of an antibiotic, levofloxacin (LOFL). From the spectroscopic and thermodynamic changes in the LOFL, it has been established that two of the prototropic forms, LOFLH and LOFLH2+, form strong 1:1 host/guest complexes with CB7/CB7AuNP. Both these interactions led to significant upward shifts in the pKa values as well as photostability of LOFL, thereby enhancing the availability of the active form for the antibacterial activity, at the physiological pH. Further, the LOFL uptake has also been established on CB7AuNP, which retained the CB7-LOFL activity at very low concentration of the CB7 host, functionalized on AuNP. Detailed antibacterial studies of LOFL, both as complexed with CB7 and CB7AuNP, were carried out using four food-borne pathogens (Escherichia coli, S. Typhimurium, Bacillus cereus, and Staphylococcus aureus), which revealed a creditable enhancement in the antibacterial property, irrespective of the bacterium strain. These results are quite promising at this stage for the development of drugs customized for multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Monika Gaur
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Anviksha S Marathe
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Aarti S Kakatkar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Nilotpal Barooah
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Suchandra Chatterjee
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Achikanath C Bhasikuttan
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Jyotirmayee Mohanty
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
5
|
Muthukrishnan S, Gunasangkaran G, Ravi AK, Amirthalakshmi SR, Gandhi D, Arumugam VA, Shanmugam V, Sakthivel KM, Pushpam MA, kaliyaperumal A, Packiaraj G, Muthukrishnan A. Molecular Mechanism of Novel PAMAM Dendrimer Decorated Tectona grandis and Lactobacillus plantarum Nanoparticles on Autophagy-Induced Apoptosis in TNBC Cells. BIONANOSCIENCE 2024; 14:2940-2963. [DOI: 10.1007/s12668-024-01532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 05/04/2025]
|
6
|
Chand A, Kumar S, Kapoor S, Singh D, Gaur B. Lysine and citric acid based pegylated polymeric dendritic nano drug delivery carrier and their bioactivity evaluation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1892-1921. [PMID: 38910561 DOI: 10.1080/09205063.2024.2362023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/31/2024] [Indexed: 06/25/2024]
Abstract
The main objective of this work is to synthesize multifunctional nanodendritic structural molecules that can effectively encapsulate hydrophilic as well as hydrophobic therapeutic agents. Four different types of fourth-generation lysine-citric acid based dendrimer have been synthesized in this work: PE-MC-Lys-CA-PEG, TMP-MC-Lys-CA-PEG, PE-MS-Lys-CA-PEG, and TMP-MS-Lys-CA-PEG. The antibacterial drug cefotaxime (CFTX) was further conjugated to these dendrimers. The dendrimer and drug-dendrimer conjugate structures were characterized with the help of FTIR,1H-NMR, and 13C-NMR spectroscopy. Zeta sizer, AFM, and HR-TEM techniques were used to investigate the particle size, surface topography, and structural characteristics of drug-dendrimer conjugates. In vitro drug release was then investigated using dialysis method. Various kinetic drug release models were examined to evaluate the type of kinetic drug release mechanism of the formulations. Cytotoxicity study revealed that the dendrimers encapsulated with CFTX exhibited 2-3% toxicity against healthy epithelial cells, indicating their safe use. Plain dendrimers show 10-15% hemolytic toxicity against red blood cells (RBC), and the toxicity was reduced to 2-3% when CFTX was conjugated to the same dendrimers. The 3rd and 4th generation synthesized drug-dendrimer conjugates exhibit a significantly effective zone of inhibition (ZOI) against both Gram-positive and Gram-negative bacteria. For Gram-positive bacteria, the lower concentration of 0.1 mg/mL showed more than 98% inhibition of drug-dendrimer conjugate samples against B. subtilis and more than 50% inhibition against S. aureus using 0.2 mg/mL, respectively. Moreover, samples with concentrations of 0.5 and 1.0 mg/mL exhibited more than 50% inhibition against S. typhimurium and E. coli, respectively.
Collapse
Affiliation(s)
- Avtar Chand
- Chemistry Department, National Institute of Technology, Hamirpur,Himachal Pradesh, India
| | - Subhash Kumar
- Biotechnology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Palampur, Himachal Pradesh, India
| | - Smita Kapoor
- Pharmacology and Toxicology Lab, Dietetics and Nutrition Technology Division, CSIR- Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
| | - Dharam Singh
- Biotechnology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Palampur, Himachal Pradesh, India
| | - Bharti Gaur
- Chemistry Department, National Institute of Technology, Hamirpur,Himachal Pradesh, India
| |
Collapse
|
7
|
Liu L, Li Z, Yang B, Jia X, Wang S. Recent Research Progress on Polyamidoamine-Engineered Hydrogels for Biomedical Applications. Biomolecules 2024; 14:620. [PMID: 38927024 PMCID: PMC11201556 DOI: 10.3390/biom14060620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Hydrogels are three-dimensional crosslinked functional materials with water-absorbing and swelling properties. Many hydrogels can store a variety of small functional molecules to structurally and functionally mimic the natural extracellular matrix; hence, they have been extensively studied for biomedical applications. Polyamidoamine (PAMAM) dendrimers have an ethylenediamine core and a large number of peripheral amino groups, which can be used to engineer various polymer hydrogels. In this review, an update on the progress of using PAMAM dendrimers for multifunctional hydrogel design was given. The synthesis of these hydrogels, which includes click chemistry reactions, aza-Michael addition, Schiff base reactions, amidation reactions, enzymatic reactions, and radical polymerization, together with research progress in terms of their application in the fields of drug delivery, tissue engineering, drug-free tumor therapy, and other related fields, was discussed in detail. Furthermore, the biomedical applications of PAMAM-engineered nano-hydrogels, which combine the advantages of dendrimers, hydrogels, and nanoparticles, were also summarized. This review will help researchers to design and develop more functional hydrogel materials based on PAMAM dendrimers.
Collapse
Affiliation(s)
- Li Liu
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Zhiling Li
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Baiyan Yang
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Xiaoqing Jia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
8
|
Vakili-Azghandi M, Mollazadeh S, Ghaemi A, Ramezani M, Alibolandi M. Dendrimer-based nanomedicines for cancer immunotherapy. NANOMEDICINE IN CANCER IMMUNOTHERAPY 2024:317-347. [DOI: 10.1016/b978-0-443-18770-4.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Shakya AK, Al-Sulaibi M, Naik RR, Nsairat H, Suboh S, Abulaila A. Review on PLGA Polymer Based Nanoparticles with Antimicrobial Properties and Their Application in Various Medical Conditions or Infections. Polymers (Basel) 2023; 15:3597. [PMID: 37688223 PMCID: PMC10490122 DOI: 10.3390/polym15173597] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The rise in the resistance to antibiotics is due to their inappropriate use and the use of a broad spectrum of antibiotics. This has also contributed to the development of multidrug-resistant microorganisms, and due to the unavailability of suitable new drugs for treatments, it is difficult to control. Hence, there is a need for the development of new novel, target-specific antimicrobials. Nanotechnology, involving the synthesis of nanoparticles, may be one of the best options, as it can be manipulated by using physicochemical properties to develop intelligent NPs with desired properties. NPs, because of their unique properties, can deliver drugs to specific targets and release them in a sustained fashion. The chance of developing resistance is very low. Polymeric nanoparticles are solid colloids synthesized using either natural or synthetic polymers. These polymers are used as carriers of drugs to deliver them to the targets. NPs, synthesized using poly-lactic acid (PLA) or the copolymer of lactic and glycolic acid (PLGA), are used in the delivery of controlled drug release, as they are biodegradable, biocompatible and have been approved by the USFDA. In this article, we will be reviewing the synthesis of PLGA-based nanoparticles encapsulated or loaded with antibiotics, natural products, or metal ions and their antibacterial potential in various medical applications.
Collapse
Affiliation(s)
- Ashok K Shakya
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Mazen Al-Sulaibi
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Rajashri R Naik
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Hamdi Nsairat
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Sara Suboh
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | | |
Collapse
|
10
|
Kang N, Thuy LT, Dongquoc V, Choi JS. Conjugation of Short Oligopeptides to a Second-Generation Polyamidoamine Dendrimer Shows Antibacterial Activity. Pharmaceutics 2023; 15:pharmaceutics15031005. [PMID: 36986864 PMCID: PMC10053621 DOI: 10.3390/pharmaceutics15031005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The growing evolution of bacterial resistance to antibiotics represents a global issue that not only impacts healthcare systems but also political and economic processes. This necessitates the development of novel antibacterial agents. Antimicrobial peptides have shown promise in this regard. Thus, in this study, a new functional polymer was synthesized by joining a short oligopeptide sequence (Phe-Lys-Phe-Leu, FKFL) to the surface of a second-generation polyamidoamine (G2 PAMAM) dendrimer as an antibacterial component. This method of synthesis proved simple and resulted in a high conjugation yield of the product FKFL-G2. To determine its antibacterial potential, FKFL-G2 was subsequently analyzed via mass spectrometry, a cytotoxicity assay, bacterial growth assay, colony-forming unit assay, membrane permeabilization assay, transmission electron microscopy, and biofilm formation assay. FKFL-G2 was found to exhibit low toxicity to noncancerous NIH3T3 cells. Additionally, FKFL-G2 had an antibacterial effect on Escherichia coli and Staphylococcus aureus strains by interacting with and disrupting the bacterial cell membrane. Based on these findings, FKFL-G2 shows promise as a potential antibacterial agent.
Collapse
Affiliation(s)
- Namyoung Kang
- Department of Biochemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Le Thi Thuy
- Department of Biochemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Viet Dongquoc
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
11
|
Investigation of the Binding Behavior of PAMAMs-NH2 Dendrimers with Ofloxacin via NMR Studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
p-Coumaric acid in poly(amidoamine) G4 dendrimer: Characterization and toxicity evaluation on zebrafish model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Hutchins M, Bovill RA, Stephens PJ, Brazier JA, Osborn HMI. Glycosides of Nadifloxacin-Synthesis and Antibacterial Activities against Methicillin-Resistant Staphylococcus aureus. Molecules 2022; 27:1504. [PMID: 35268604 PMCID: PMC8912027 DOI: 10.3390/molecules27051504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
The increase in the number of bacteria that are resistant to multiple antibiotics poses a serious clinical problem that threatens the health of humans worldwide. Nadifloxacin (1) is a highly potent antibacterial agent with broad-spectrum activity. However, its poor aqueous solubility has limited its use to topical applications. To increase its solubility, it was glycosylated herein to form a range of trans-linked (3a-e) and cis-linked (7a,b) glycosides, each of which was prepared and purified to afford single anomers. The seven glycoside derivatives (3a-e, 7a,b) were examined for potency against eight strains of S. aureus, four of which were methicillin-resistant. Although less potent than free nadifloxacin (1), the α-L-arabinofuransoside (3a) was effective against all strains that were tested (minimum inhibitory concentrations of 1-8 μg/mL compared to 0.1-0.25 μg/mL for nadifloxacin), demonstrating the potential of this glycoside as an antibacterial agent. Estimation of Log P as well as observations made during preparation of these compounds reveal that the solubilities of the glycosides were greatly improved compared with nadifloxacin (1), raising the prospect of its use in oral applications.
Collapse
Affiliation(s)
- Mark Hutchins
- ThermoFisher Scientific, Wade Road, Basingstoke RG24 8PW, Hampshire, UK
| | - Richard A. Bovill
- ThermoFisher Scientific, Wade Road, Basingstoke RG24 8PW, Hampshire, UK
| | - Peter J. Stephens
- ThermoFisher Scientific, Wade Road, Basingstoke RG24 8PW, Hampshire, UK
| | - John A. Brazier
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, Berkshire, UK
| | - Helen M. I. Osborn
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, Berkshire, UK
| |
Collapse
|
14
|
Acharya Y, Bhattacharyya S, Dhanda G, Haldar J. Emerging Roles of Glycopeptide Antibiotics: Moving beyond Gram-Positive Bacteria. ACS Infect Dis 2022; 8:1-28. [PMID: 34878254 DOI: 10.1021/acsinfecdis.1c00367] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycopeptides, a class of cell wall biosynthesis inhibitors, have been the antibiotics of choice against drug-resistant Gram-positive bacterial infections. Their unique mechanism of action involving binding to the substrate of cell wall biosynthesis and substantial longevity in clinics makes this class of antibiotics an attractive choice for drug repurposing and reprofiling. However, resistance to glycopeptides has been observed due to alterations in the substrate, cell wall thickening, or both. The emergence of glycopeptide resistance has resulted in the development of synthetic and semisynthetic glycopeptide analogues to target acquired resistance. Recent findings demonstrate that these derivatives, along with some of the FDA approved glycopeptides have been shown to have antimicrobial activity against Gram-negative bacteria, Mycobacteria, and viruses thus expanding their spectrum of activity across the microbial kingdom. Additional mechanisms of action and identification of novel targets have proven to be critical in broadening the spectrum of activity of glycopeptides. This review focuses on the applications of glycopeptides beyond their traditional target group of Gram-positive bacteria. This will aid in making the scientific community aware about the nontraditional activity profiles of glycopeptides, identify the existing loopholes, and further explore this antibiotic class as a potential broad-spectrum antimicrobial agent.
Collapse
Affiliation(s)
- Yash Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Shaown Bhattacharyya
- Biochemistry and Molecular Biology Program, Departments of Chemistry and Biology, College of Arts and Science, Boston University, Boston, Massachusetts 02215, United States
| | - Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
15
|
Singh RB, Das S, Chodosh J, Sharma N, Zegans ME, Kowalski RP, Jhanji V. Paradox of complex diversity: Challenges in the diagnosis and management of bacterial keratitis. Prog Retin Eye Res 2021; 88:101028. [PMID: 34813978 DOI: 10.1016/j.preteyeres.2021.101028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Bacterial keratitis continues to be one of the leading causes of corneal blindness in the developed as well as the developing world, despite swift progress since the dawn of the "anti-biotic era". Although, we are expeditiously developing our understanding about the different causative organisms and associated pathology leading to keratitis, extensive gaps in knowledge continue to dampen the efforts for early and accurate diagnosis, and management in these patients, resulting in poor clinical outcomes. The ability of the causative bacteria to subdue the therapeutic challenge stems from their large genome encoding complex regulatory networks, variety of unique virulence factors, and rapid secretion of tissue damaging proteases and toxins. In this review article, we have provided an overview of the established classical diagnostic techniques and therapeutics for keratitis caused by various bacteria. We have extensively reported our recent in-roads through novel tools for accurate diagnosis of mono- and poly-bacterial corneal infections. Furthermore, we outlined the recent progress by our group and others in understanding the sub-cellular genomic changes that lead to antibiotic resistance in these organisms. Finally, we discussed in detail, the novel therapies and drug delivery systems in development for the efficacious management of bacterial keratitis.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Leiden University Medical Center, 2333, ZA Leiden, the Netherlands
| | - Sujata Das
- Cornea and Anterior Segment Services, LV Prasad Eye Institute, Bhubaneshwar, India
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Michael E Zegans
- Department of Ophthalmology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Regis P Kowalski
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Charles T Campbell Ophthalmic Microbiology Laboratory, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Charles T Campbell Ophthalmic Microbiology Laboratory, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Sheikh A, Md S, Kesharwani P. RGD engineered dendrimer nanotherapeutic as an emerging targeted approach in cancer therapy. J Control Release 2021; 340:221-242. [PMID: 34757195 DOI: 10.1016/j.jconrel.2021.10.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
A bird's eye view is now demanded in the area of cancer research to suppress the suffering of cancer patient and mediate the lack of treatment related to chemotherapy. Chemotherapy is always preferred over surgery or radiation therapy, but they never met the patient's demand of safe medication. Targeted therapy has now been in research that could hinder the unnecessary effect of drug on normal cells but could affect the tumor cells in much efficient manner. Angiogenesis is process involved in development of new blood vessel that nourishes tumor growth. Integrin receptors are over expressed on cancer cells that play vital role in angiogenesis for growth and metastasis of tumor cell. A delivery of RGD based peptide to integrin targeted site could help in its successful binding and liberation of drug in tumor vasculature. Dendrimers, in addition to its excellent pharmacokinetic properties also helps to carry targeting ligand to site of tumor by successfully conjugating with them. The aim of this review is to bring light upon the role of integrin in cancer progression, interaction of RGD to integrin receptor and more importantly the RGD-dendrimer based targeted therapy for the treatment of various cancers.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
17
|
Kaur H, Kesharwani P. Advanced nanomedicine approaches applied for treatment of skin carcinoma. J Control Release 2021; 337:589-611. [PMID: 34364919 DOI: 10.1016/j.jconrel.2021.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Skin-cancer is the commonest malignancy affecting huge proportion of the population, reaching heights in terms of morbidity. The treatment strategies are presently focusing on surgery, radiation and chemotherapy, which eventually cause destruction to unaffected cells. To overcome this limitation, wide range of nanoscaled materials have been recognized as potential carriers for delivering selective response to cancerous cells and neoplasms. Nanotechnological approach has been tremendously exploited in several areas, owing to their functional nanometric dimensions. The alarming incidence of skin cancer engenders burdensome effects worldwide, which is further awakening innovational medicinal approaches, accompanying target specific drug delivery tools for coveted benefits to provide reduced toxicity and tackle proliferative episodes of skin cancer. The developed nanosystems for anti-cancer agents include liposomes, ethosomes, nanofibers, solid lipid nanoparticles and metallic nanoparticles, which exhibit pronounced outcomes for skin carcinoma. In this review, skin cancer with its sub-types is explained in nutshell, followed by compendium of specific nanotechnological tools presented, in addition to therapeutic applications of drug-loaded nano systems for skin cancer.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
18
|
Liu N, Wu Q, Liu Y, Li J, Ji P, Fu G. Application of Nanomaterials in the Treatment and Diagnosis of Ophthalmology Diseases. Curr Stem Cell Res Ther 2021; 16:95-103. [PMID: 32039688 DOI: 10.2174/1574888x15666200210104449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 11/22/2022]
Abstract
Eye diseases often lead to impaired vision and seriously affect the daily life of patients. Local administration of ophthalmic drugs is one of the most important approaches for the treatment of ophthalmic diseases. However, due to the special biochemical environment of the ocular tissue and the existence of many barriers, the bioavailability of conventional ophthalmic preparations in the eye is very low. Nanomaterials can be utilized as carriers of drugs, which can improve the absorption, distribution, metabolism and bioavailability of drugs in eyes. Nanomaterials have also the advantages of small size, simple preparation, good degradability, strong targeting, and little stimulation to biological tissues, providing an innovative and practical method for the drug delivery of ophthalmic diseases. In addition, nanomaterials can be used as an auxiliary means for early diagnosis of ophthalmic diseases by improving the specificity and accuracy of detection methods. Nanomaterials help clinicians and researchers delve deeper into the physiology and pathology of the eye at the nanoscale. We summarize the application of nanomaterials in the diagnosis and treatment of ophthalmic diseases in this review.
Collapse
Affiliation(s)
- Nanxin Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Qingqing Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Yunfei Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Jiao Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Gang Fu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| |
Collapse
|
19
|
Filik H, Avan AA. Electrochemical and Electrochemiluminescence Dendrimer-based Nanostructured Immunosensors for Tumor Marker Detection: A Review. Curr Med Chem 2021; 28:3490-3513. [PMID: 33076797 DOI: 10.2174/0929867327666201019143647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 01/27/2023]
Abstract
The usage of dendrimers or cascade molecules in the biomedical area has recently attracted much attention worldwide. Furthermore, dendrimers are interesting in clinical and pre-clinical applications due to their unique characteristics. Cancer is one of the most widespread challenges and important diseases, which has the highest mortality rate. In this review, the recent advances and developments (from 2009 up to 2019) in the field of electrochemical and electroluminescence immunosensors for detection of the cancer markers are presented. Moreover, this review covers the basic fabrication principles and types of electrochemical and electrochemiluminescence dendrimer-based immunosensors. In this review, we have categorized the current dendrimer based-electrochemical/ electroluminescence immunosensors into five groups: dendrimer/ magnetic particles, dendrimer/ferrocene, dendrimer/metal nanoparticles, thiol-containing dendrimer, and dendrimer/quantum dots based-immunosensors.
Collapse
Affiliation(s)
- Hayati Filik
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, 34320 Avcilar, Istanbul, Turkey
| | - Asiye Aslıhan Avan
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, 34320 Avcilar, Istanbul, Turkey
| |
Collapse
|
20
|
Rana MM. Polymer-based nano-therapies to combat COVID-19 related respiratory injury: progress, prospects, and challenges. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2021; 32:1219-1249. [PMID: 33787467 PMCID: PMC8054481 DOI: 10.1080/09205063.2021.1909412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The recent coronavirus disease-2019 (COVID-19) outbreak has increased at an alarming rate, representing a substantial cause of mortality worldwide. Respiratory injuries are major COVID-19 related complications, leading to poor lung circulation, tissue scarring, and airway obstruction. Despite an in-depth investigation of respiratory injury's molecular pathogenesis, effective treatments have yet to be developed. Moreover, early detection of viral infection is required to halt the disease-related long-term complications, including respiratory injuries. The currently employed detection technique (quantitative real-time polymerase chain reaction or qRT-PCR) failed to meet this need at some point because it is costly, time-consuming, and requires higher expertise and technical skills. Polymer-based nanobiosensing techniques can be employed to overcome these limitations. Polymeric nanomaterials have the potential for clinical applications due to their versatile features like low cytotoxicity, biodegradability, bioavailability, biocompatibility, and specific delivery at the targeted site of action. In recent years, innovative polymeric nanomedicine approaches have been developed to deliver therapeutic agents and support tissue growth for the inflamed organs, including the lung. This review highlights the most recent advances of polymer-based nanomedicine approaches in infectious disease diagnosis and treatments. This paper also focuses on the potential of novel nanomedicine techniques that may prove to be therapeutically efficient in fighting against COVID-19 related respiratory injuries.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Delyanee M, Akbari S, Solouk A. Amine-terminated dendritic polymers as promising nanoplatform for diagnostic and therapeutic agents' modification: A review. Eur J Med Chem 2021; 221:113572. [PMID: 34087497 DOI: 10.1016/j.ejmech.2021.113572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022]
Abstract
It is often challenging to design diagnostic and therapeutic agents that fulfill all functional requirements. So, bulk and surface modifications as a common approach for biomedical applications have been suggested. There have been considerable research interests in using nanomaterials to the prementioned methods. Among all nanomaterials, dendritic materials with three-dimensional structures, host-guest properties, and nano-polymeric dimensions have received considerable attention. Amine-terminated dendritic structures including, polyamidoamine (PAMAM), polypropyleneimine (PPI), and polyethyleneimine (PEI), have been enormously utilized in bio-modification. This review briefly described the structure of these three common dendritic polymers and their use to modify diagnostic and therapeutic agents in six major applications, including drug delivery, gene delivery, biosensor, bioimaging, tissue engineering, and antimicrobial activity. The current review covers amine-terminated dendritic polymers toxicity challenging and improvement strategies as well.
Collapse
Affiliation(s)
- Mahsa Delyanee
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Somaye Akbari
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
22
|
Mastering the Gram-negative bacterial barrier - Chemical approaches to increase bacterial bioavailability of antibiotics. Adv Drug Deliv Rev 2021; 172:339-360. [PMID: 33705882 DOI: 10.1016/j.addr.2021.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
To win the battle against resistant, pathogenic bacteria, novel classes of anti-infectives and targets are urgently needed. Bacterial uptake, distribution, metabolic and efflux pathways of antibiotics in Gram-negative bacteria determine what we here refer to as bacterial bioavailability. Understanding these mechanisms from a chemical perspective is essential for anti-infective activity and hence, drug discovery as well as drug delivery. A systematic and critical discussion of in bacterio, in vitro and in silico assays reveals that a sufficiently accurate holistic approach is still missing. We expect new findings based on Gram-negative bacterial bioavailability to guide future anti-infective research.
Collapse
|
23
|
Namivandi-Zangeneh R, Wong EHH, Boyer C. Synthetic Antimicrobial Polymers in Combination Therapy: Tackling Antibiotic Resistance. ACS Infect Dis 2021; 7:215-253. [PMID: 33433995 DOI: 10.1021/acsinfecdis.0c00635] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antibiotic resistance is a critical global healthcare issue that urgently needs new effective solutions. While small molecule antibiotics have been safeguarding us for nearly a century since the discovery of penicillin by Alexander Fleming, the emergence of a new class of antimicrobials in the form of synthetic antimicrobial polymers, which was driven by the advances in controlled polymerization techniques and the desire to mimic naturally occurring antimicrobial peptides, could play a key role in fighting multidrug resistant bacteria in the near future. By harnessing the ability to control chemical and structural properties of polymers almost at will, synthetic antimicrobial polymers can be strategically utilized in combination therapy with various antimicrobial coagents in different formats to yield more potent (synergistic) outcomes. In this review, we present a short summary of the different combination therapies involving synthetic antimicrobial polymers, focusing on their combinations with nitric oxide, antibiotics, essential oils, and metal- and carbon-based inorganics.
Collapse
Affiliation(s)
- Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Edgar H. H. Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| |
Collapse
|
24
|
Falanga A, Del Genio V, Galdiero S. Peptides and Dendrimers: How to Combat Viral and Bacterial Infections. Pharmaceutics 2021; 13:101. [PMID: 33466852 PMCID: PMC7830367 DOI: 10.3390/pharmaceutics13010101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
The alarming growth of antimicrobial resistance and recent viral pandemic events have enhanced the need for novel approaches through innovative agents that are mainly able to attach to the external layers of bacteria and viruses, causing permanent damage. Antimicrobial molecules are potent broad-spectrum agents with a high potential as novel therapeutics. In this context, antimicrobial peptides, cell penetrating peptides, and antiviral peptides play a major role, and have been suggested as promising solutions. Furthermore, dendrimers are to be considered as suitable macromolecules for the development of advanced nanosystems that are able to complement the typical properties of dendrimers with those of peptides. This review focuses on the description of nanoplatforms constructed with peptides and dendrimers, and their applications.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Agricultural Science, University of Naples “Federico II”, Via dell’Università 100, 80100 Portici, Italy
| | - Valentina Del Genio
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy;
| |
Collapse
|
25
|
Mela I, Kaminski CF. Nano-vehicles give new lease of life to existing antimicrobials. Emerg Top Life Sci 2020; 4:555-566. [PMID: 33258900 PMCID: PMC7752037 DOI: 10.1042/etls20200153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/04/2023]
Abstract
Antibiotic resistance has become one of the greatest challenges for modern medicine, and new approaches for the treatment of bacterial infections are urgently needed to avoid widespread vulnerability again to infections that have so far been easily treatable with existing drugs. Among the many approaches investigated to overcome this challenge is the use of engineered nanostructures for the precise and targeted delivery of existing antimicrobial agents in a fashion that will potentiate their effect. This idea leans on lessons learned from pioneering research in cancer, where the targeted delivery of anti-cancer drugs to mammalian cells has been a topic for some time. In particular, new research has demonstrated that nanomaterials can be functionalised with active antimicrobials and, in some cases, with targeting molecules that potentiate the efficiency of the antimicrobials. In this mini-review, we summarise results that demonstrate the potential for nanoparticles, dendrimers and DNA nanostructures for use in antimicrobial delivery. We consider material aspects of the delivery vehicles and ways in which they can be functionalised with antibiotics and antimicrobial peptides, and we review evidence for their efficacy to kill bacteria both in vitro and in vivo. We also discuss the advantages and limitations of these materials and highlight the benefits of DNA nanostructures specifically for their versatile potential in the present context.
Collapse
Affiliation(s)
- Ioanna Mela
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
26
|
Alfei S, Schito AM. From Nanobiotechnology, Positively Charged Biomimetic Dendrimers as Novel Antibacterial Agents: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2022. [PMID: 33066468 PMCID: PMC7602242 DOI: 10.3390/nano10102022] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/27/2023]
Abstract
The alarming increase in antimicrobial resistance, based on the built-in abilities of bacteria to nullify the activity of current antibiotics, leaves a growing number of bacterial infections untreatable. An appealing approach, advanced in recent decades, concerns the development of novel agents able to interact with the external layers of bacteria, causing irreparable damage. Regarding this, some natural cationic antimicrobial peptides (CAMPs) have been reconsidered, and synthetic cationic polymers, mimicking CAMPs and able to kill bacteria by non-specific detrimental interaction with the negative bacterial membranes, have been proposed as promising solutions. Lately, also dendrimers were considered suitable macromolecules for the preparation of more advanced cationic biomimetic nanoparticles, able to harmonize the typical properties of dendrimers, including nanosize, mono-dispersion, long-term stability, high functionality, and the non-specific mechanism of action of CAMPs. Although cationic dendrimers are extensively applied in nanomedicine for drug or gene delivery, their application as antimicrobial agents is still in its infancy. The state of the art of their potential applications in this important field has therefore been reviewed here, with particular attention to the innovative case studies in the literature including also amino acid-modified polyester-based dendrimers, practically unexplored as membrane-active antimicrobials and able to kill bacteria on contact.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148 Genova, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, I-16132 Genova, Italy;
| |
Collapse
|
27
|
Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica-Tincu AL, Cormos G, Muntean AC, Muresan ML, Gligor FG, Frum A. Applications and Limitations of Dendrimers in Biomedicine. Molecules 2020; 25:E3982. [PMID: 32882920 PMCID: PMC7504821 DOI: 10.3390/molecules25173982] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Biomedicine represents one of the main study areas for dendrimers, which have proven to be valuable both in diagnostics and therapy, due to their capacity for improving solubility, absorption, bioavailability and targeted distribution. Molecular cytotoxicity constitutes a limiting characteristic, especially for cationic and higher-generation dendrimers. Antineoplastic research of dendrimers has been widely developed, and several types of poly(amidoamine) and poly(propylene imine) dendrimer complexes with doxorubicin, paclitaxel, imatinib, sunitinib, cisplatin, melphalan and methotrexate have shown an improvement in comparison with the drug molecule alone. The anti-inflammatory therapy focused on dendrimer complexes of ibuprofen, indomethacin, piroxicam, ketoprofen and diflunisal. In the context of the development of antibiotic-resistant bacterial strains, dendrimer complexes of fluoroquinolones, macrolides, beta-lactamines and aminoglycosides have shown promising effects. Regarding antiviral therapy, studies have been performed to develop dendrimer conjugates with tenofovir, maraviroc, zidovudine, oseltamivir and acyclovir, among others. Furthermore, cardiovascular therapy has strongly addressed dendrimers. Employed in imaging diagnostics, dendrimers reduce the dosage required to obtain images, thus improving the efficiency of radioisotopes. Dendrimers are macromolecular structures with multiple advantages that can suffer modifications depending on the chemical nature of the drug that has to be transported. The results obtained so far encourage the pursuit of new studies.
Collapse
Affiliation(s)
| | - Carmen Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga St., 550169 Sibiu, Romania; (A.A.C.); (A.M.A.); (L.L.R.); (A.B.); (A.M.J.); (M.T.); (A.L.V.-T.); (G.C.); (A.C.M.); (M.L.M.); (F.G.G.); (A.F.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga St., 550169 Sibiu, Romania; (A.A.C.); (A.M.A.); (L.L.R.); (A.B.); (A.M.J.); (M.T.); (A.L.V.-T.); (G.C.); (A.C.M.); (M.L.M.); (F.G.G.); (A.F.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Salas-Ambrosio P, Tronnet A, Verhaeghe P, Bonduelle C. Synthetic Polypeptide Polymers as Simplified Analogues of Antimicrobial Peptides. Biomacromolecules 2020; 22:57-75. [PMID: 32786537 DOI: 10.1021/acs.biomac.0c00797] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial peptides (AMPs) are naturally occurring macromolecules made of amino acids that are potent broad-spectrum antibiotics with potential as novel therapeutic agents. This review aims to summarize the fundamental principles concerning the structure and mechanism of action of these AMPs, in order to guide the design of polymeric analogues that organic chemistry can generate. Among those simplified analogues, this review particularly focuses on those made of amino acids called polypeptide polymers: they are showing great potential by providing one of the best biomimetic and bioactive structures for further biomaterials science applications.
Collapse
Affiliation(s)
| | - Antoine Tronnet
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| | - Pierre Verhaeghe
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| | - Colin Bonduelle
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| |
Collapse
|
29
|
Skwarecki AS, Nowak MG, Milewska MJ. Synthetic strategies in construction of organic macromolecular carrier-drug conjugates. Org Biomol Chem 2020; 18:5764-5783. [PMID: 32677650 DOI: 10.1039/d0ob01101k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many metabolic inhibitors, considered potential antimicrobial or anticancer drug candidates, exhibit very limited ability to cross the biological membranes of target cells. The restricted cellular penetration of those molecules is often due to their highhydrophilicity. One of the possible solutions to this problem is a conjugation of an inhibitor with a molecular organic nanocarrier. The conjugate thus formed should be able to penetrate the membrane(s) by direct translocation, endocytosis or active transport mechanisms and once internalized, the active component could reach its intracellular target, either after release from the conjugate or in an intact form. Several such nanocarriers have been proposed so far, including macromolecular systems, carbon nanotubes and dendrimers. Herein, we present a comprehensive review of the current status of rational design and synthesis of macromolecular organic nanocarrier-drug conjugates, with special attention focused on the mode of coupling of a nanocarrier moiety with a "cargo" molecule through linking fragments of non-cleavable or cleavable type.
Collapse
Affiliation(s)
- Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Michał G Nowak
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| |
Collapse
|
30
|
Kharwade R, More S, Warokar A, Agrawal P, Mahajan N. Starburst pamam dendrimers: Synthetic approaches, surface modifications, and biomedical applications. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
31
|
The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties. Biomolecules 2020; 10:biom10040642. [PMID: 32326311 PMCID: PMC7226492 DOI: 10.3390/biom10040642] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/27/2020] [Accepted: 03/21/2020] [Indexed: 12/23/2022] Open
Abstract
This article reviews progress over the past three decades related to the role of dendrimer-based, branch cell symmetry in the development of advanced drug delivery systems, aqueous based compatibilizers/solubilizers/excipients and nano-metal cluster catalysts. Historically, it begins with early unreported work by the Tomalia Group (i.e., The Dow Chemical Co.) revealing that all known dendrimer family types may be divided into two major symmetry categories; namely: Category I: symmetrical branch cell dendrimers (e.g., Tomalia, Vögtle, Newkome-type dendrimers) possessing interior hollowness/porosity and Category II: asymmetrical branch cell dendrimers (e.g., Denkewalter-type) possessing no interior void space. These two branch cell symmetry features were shown to be pivotal in directing internal packing modes; thereby, differentiating key dendrimer properties such as densities, refractive indices and interior porosities. Furthermore, this discovery provided an explanation for unimolecular micelle encapsulation (UME) behavior observed exclusively for Category I, but not for Category II. This account surveys early experiments confirming the inextricable influence of dendrimer branch cell symmetry on interior packing properties, first examples of Category (I) based UME behavior, nuclear magnetic resonance (NMR) protocols for systematic encapsulation characterization, application of these principles to the solubilization of active approved drugs, engineering dendrimer critical nanoscale design parameters (CNDPs) for optimized properties and concluding with high optimism for the anticipated role of dendrimer-based solubilization principles in emerging new life science, drug delivery and nanomedical applications.
Collapse
|
32
|
Liu X, Wang Z, Feng X, Bai E, Xiong Y, Zhu X, Shen B, Duan Y, Huang Y. Platensimycin-Encapsulated Poly(lactic-co-glycolic acid) and Poly(amidoamine) Dendrimers Nanoparticles with Enhanced Anti-Staphylococcal Activity in Vivo. Bioconjug Chem 2020; 31:1425-1437. [DOI: 10.1021/acs.bioconjchem.0c00121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xingyun Liu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Zhe Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Xueqiong Feng
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Enhe Bai
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yi Xiong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan 410011, China
| | | | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan 410011, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China
| |
Collapse
|
33
|
Svenningsen SW, Frederiksen RF, Counil C, Ficker M, Leisner JJ, Christensen JB. Synthesis and Antimicrobial Properties of a Ciprofloxacin and PAMAM-dendrimer Conjugate. Molecules 2020; 25:molecules25061389. [PMID: 32197523 PMCID: PMC7146445 DOI: 10.3390/molecules25061389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/01/2023] Open
Abstract
Infections caused by bacteria resistant to antibiotics are an increasing problem. Multivalent antibiotics could be a solution. In the present study, a covalent conjugate between Ciprofloxacin and a G0-PAMAM dendrimer has been synthesized and tested against clinically relevant Gram-positive and Gram-negative bacteria. The conjugate has antimicrobial activity and there is a positive dendritic effect compared to Ciprofloxacin itself.
Collapse
Affiliation(s)
- Søren Wedel Svenningsen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (S.W.S.); (C.C.); (M.F.)
| | - Rikki Franklin Frederiksen
- Department of Veterinary and Animal Sciences, Food Safety and Zoonoses, University of Copenhagen, Grønnegårdsvej 15, DK-1870 Frederiksberg C, Denmark; (R.F.F.); (J.J.L.)
| | - Claire Counil
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (S.W.S.); (C.C.); (M.F.)
| | - Mario Ficker
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (S.W.S.); (C.C.); (M.F.)
| | - Jørgen J. Leisner
- Department of Veterinary and Animal Sciences, Food Safety and Zoonoses, University of Copenhagen, Grønnegårdsvej 15, DK-1870 Frederiksberg C, Denmark; (R.F.F.); (J.J.L.)
| | - Jørn Bolstad Christensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (S.W.S.); (C.C.); (M.F.)
- Correspondence: ; Tel.: +45-3533-2452
| |
Collapse
|
34
|
Rajak BL, Kumar R, Gogoi M, Patra S. Antimicrobial Activity of Nanomaterials. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2020. [DOI: 10.1007/978-3-030-29207-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
35
|
Garg P, Venuganti VVK, Roy A, Roy G. Novel drug delivery methods for the treatment of keratitis: moving away from surgical intervention. Expert Opin Drug Deliv 2019; 16:1381-1391. [PMID: 31701781 DOI: 10.1080/17425247.2019.1690451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Introduction: Corneal ulceration is one of the leading causes of blindness especially in low- and mid-income countries (LMICs). Surgical treatment of microbial keratitis is associated with multiple challenges that include non-availability of donor corneal tissues, lack of trained corneal surgeons, and poor compliance to follow up care. As a result, the surgery fails in 70-90% cases. Therefore, improving outcome of medical treatment and thereby avoiding the need for the surgery is an unmet need in the care of corneal ulcer cases.Areas covered: In this review article, the authors have tried to compile information on the novel drug-delivery systems that have potential to enhance success of medical management. We have discussed the following systems: cyclodextrins, gel formulations, colloidal system, nanoformulations, drug-eluting contact lens, microneedle patch, and ocular inserts.Expert opinion: The goals of corneal ulcer treatment are as follows: rapid eradication of causative microorganisms, control of damage from induced inflammation and microbial toxins, and facilitation of repair. The ocular surface anatomy poses several challenges for drug delivery using standard topical therapy. The novel drug-delivery systems mentioned above aim to enhanced tear solubility; superior stability; improved bio-availability; reduced toxicity; besides facilitating targeted drug delivery and convenience of administration.
Collapse
Affiliation(s)
- Prashant Garg
- Tej Kohli Cornea Institute, KAR campus, L. V. Prasad Eye Institute, Hyderabad, India
| | | | - Aravind Roy
- Tej Kohli Cornea Institute, KVC campus, L. V. Prasad Eye Institute, Vijayawada, India
| | - Girdhari Roy
- Department of Pharmacology, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad, India
| |
Collapse
|
36
|
Synergistic Effects of Anionic/Cationic Dendrimers and Levofloxacin on Antibacterial Activities. Molecules 2019; 24:molecules24162894. [PMID: 31395831 PMCID: PMC6719981 DOI: 10.3390/molecules24162894] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 11/17/2022] Open
Abstract
Despite the numerous studies on dendrimers for biomedical applications, the antibacterial activity of anionic phosphorus dendrimers has not been explored. In our research, we evaluated the antibacterial activity of modified polycationic and polyanionic dendrimers in combination with levofloxacin (LVFX) against Gram-negative (Escherichia coli ATCC 25922, Proteus hauseri ATCC 15442) and Gram-positive (Staphylococcus aureus ATCC 6538) bacteria. In the case of Gram-negative bacteria, we concluded that a combination of dendrimers and antibiotic gave satisfactory results due to a synergistic effect. The use of fluoroquinolone antibiotics, such as LVFX, not only caused resistance in disease-causing microorganisms but also increased environmental pollution. Therefore, reduction of drug dosage is of general interest.
Collapse
|
37
|
Ren X, Qian H, Tang P, Tang Y, Liu Y, Pu H, Zhang M, Zhao L, Li H. Preparation, Characterization, and Properties of Inclusion Complexes of Balofloxacin with Cyclodextrins. AAPS PharmSciTech 2019; 20:278. [PMID: 31396732 DOI: 10.1208/s12249-019-1425-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
The study mainly aimed to improve the aqueous solubility of Balofloxacin (BLFX) by preparing the inclusion complexes (ICs) of BLFX with cyclodextrins (CDs). In this study, ICs in solid state were obtained by using beta-CD (β-CD), 2-hydroxypropyl-β-CD (HP-β-CD), 2, 6-dimethyl-β-CD (DM-β-CD) through a freeze-drying technique. The formation of ICs was confirmed through Fourier-transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, nuclear magnetic resonance, and scanning electron microscopy. Results demonstrated that the water solubility and dissolution rates of three ICs were distinctly improved than that of parent BLFX. Bacteriostatic experiment manifested that the antibacterial effect of BLFX was not inhibited after encapsulation in CDs. The damage of BLFX to kidney and liver cells was reduced. Consequently, successful preparation of the ICs of BLFX with CDs provided possibility for devising new dosage form of BLFX, which held great promise for further applications in clinical fields.
Collapse
|
38
|
Singh S, Hussain A, Shakeel F, Ahsan MJ, Alshehri S, Webster TJ, Lal UR. Recent insights on nanomedicine for augmented infection control. Int J Nanomedicine 2019; 14:2301-2325. [PMID: 31114188 PMCID: PMC6497429 DOI: 10.2147/ijn.s170280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial agents have been widely investigated for protecting against microbial infections in modern health. Drug-related limitations, poor bioavailability, toxicity to mammalian cells, and frequent bacteria drug resistance are major challenges faced when exploited in nanomedicine forms. Specific attention has been paid to control nanomaterial-based infection against numerous challenging pathogens in addition to improved drug delivery, targeting, and pharmacokinetic (PK) profiles, and thus, efficient antimicrobials have been fabricated using diverse components (metals, metal oxides, synthetic and semisynthetic polymers, natural or biodegradable polymers, etc). The present review covers several nanocarriers delivered through various routes of administration, highlighting major findings to control microbial infection as compared to using the free drug. Results over the past decade support the consistent development of various nanomedicines capable of improving biological significance and therapeutic benefits against an array of microbial strains. Depending on the intended application of nanomedicine, infection control will be challenged by various factors such as weighing the risk-benefits in healthcare settings, nanomaterial-induced (eco)toxicological hazards, frequent development of antibiotic resistance, scarcity of in vivo toxicity data, and a poor understanding of microbial interactions with nanomedicine at the molecular level. This review summarizes well-established informative data for nanomaterials used for infection control and safety concerns of nanomedicines to healthcare sectors followed by the significance of a unique "safe-by-design" approach.
Collapse
Affiliation(s)
- Sima Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi 835215, Jharkhand, India
| | - Afzal Hussain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi 835215, Jharkhand, India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan, 302023, India
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA,
| | - Uma Ranjan Lal
- School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himacahal Pradesh, India
| |
Collapse
|
39
|
Song Z, Liang X, Wang Y, Han H, Yang J, Fang X, Li Q. Phenylboronic acid-functionalized polyamidoamine-mediated miR-34a delivery for the treatment of gastric cancer. Biomater Sci 2019; 7:1632-1642. [DOI: 10.1039/c8bm01385c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the present research, a tumor-targeted gene carrier, PPP, was constructed through the modification of phenylboronic acid onto the surface of a polyamidoamine dendrimer, and then miR-34a delivery was employed as a model to evaluate its anti-tumor efficacy.
Collapse
Affiliation(s)
- Zheyu Song
- Department of Gastrointestinal Colorectal and Anal Surgery
- China-Japan Union Hospital
- Jilin University
- Changchun 130033
- China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Yudi Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery
- China-Japan Union Hospital
- Jilin University
- Changchun 130033
- China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
40
|
Mulas K, Stefanowicz Z, Oledzka E, Sobczak M. Current state of the polymeric delivery systems of fluoroquinolones – A review. J Control Release 2019; 294:195-215. [DOI: 10.1016/j.jconrel.2018.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 01/29/2023]
|
41
|
Gupta N, Rai DB, Jangid AK, Kulhari H. Use of nanotechnology in antimicrobial therapy. METHODS IN MICROBIOLOGY 2019. [DOI: 10.1016/bs.mim.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
42
|
Yang J, Zhang J, Liu Y, Shi Z, Han H, Li Q. Phenylboronic acid-modified polyamidoamine-mediated delivery of short GC rich DNA for hepatocarcinoma gene therapy. Biomater Sci 2019; 7:3348-3358. [DOI: 10.1039/c9bm00394k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phenylboronic acid was introduced on the surface of polyamidoamine to construct a derivative PP, which was further used as a tumor-targeting carrier for realizing the delivery of short GC rich DNA (GCD).
Collapse
Affiliation(s)
- Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiayuan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Yong Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Zhiyuan Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
43
|
Santos RS, Figueiredo C, Azevedo NF, Braeckmans K, De Smedt SC. Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics. Adv Drug Deliv Rev 2018; 136-137:28-48. [PMID: 29248479 DOI: 10.1016/j.addr.2017.12.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023]
Abstract
With the dramatic consequences of bacterial resistance to antibiotics, nanomaterials and molecular transporters have started to be investigated as alternative antibacterials or anti-infective carrier systems to improve the internalization of bactericidal drugs. However, the capability of nanomaterials/molecular transporters to overcome the bacterial cell envelope is poorly understood. It is critical to consider the sophisticated architecture of bacterial envelopes and reflect how nanomaterials/molecular transporters can interact with these envelopes, being the major aim of this review. The first part of this manuscript overviews the permeability of bacterial envelopes and how it limits the internalization of common antibiotic and novel oligonucleotide drugs. Subsequently we critically discuss the mechanisms that allow nanomaterials/molecular transporters to overcome the bacterial envelopes, focusing on the most promising ones to this end - siderophores, cyclodextrins, metal nanoparticles, antimicrobial/cell-penetrating peptides and fusogenic liposomes. This review may stimulate drug delivery and microbiology scientists in designing effective nanomaterials/molecular transporters against bacterial infections.
Collapse
|
44
|
Lu J, Li N, Gao Y, Li N, Guo Y, Liu H, Chen X, Zhu C, Dong Z, Yamamoto A. The Effect of Absorption-Enhancement and the Mechanism of the PAMAM Dendrimer on Poorly Absorbable Drugs. Molecules 2018; 23:molecules23082001. [PMID: 30103462 PMCID: PMC6222674 DOI: 10.3390/molecules23082001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 01/23/2023] Open
Abstract
The polyamidoamine (PAMAM) dendrimer is a highly efficient absorption promoter. In the present study, we studied the absorption-enhancing effects and the mechanism of PAMAM dendrimers with generation 0 to generation 3 (G0–G3) and concentrations (0.1–1.0%) on the pulmonary absorption of macromolecules. The absorption-enhancing mechanisms were elucidated by microarray, western blotting analysis, and PCR. Fluorescein isothiocyanate-labeled dextrans (FDs) with various molecular weights were used as model drugs of poorly absorbable drugs. The absorption-enhancing effects of PAMAM dendrimers on the pulmonary absorption of FDs were in a generation- and concentration-dependent manner. The G3 PAMAM dendrimer with high effectiveness was considered to the best absorption enhancer for improving the pulmonary absorption of FDs. G3 PAMAM dendrimers at three different concentrations were non-toxic to Calu-3 cells. Based on the consideration between efficacy and cost, the 0.1% G3 PAMAM dendrimer was selected for subsequent studies. The results showed that treatment with a 0.1% G3 PAMAM dendrimer could increase the secretion of organic cation transporters (OCTs), OCT1, OCT2, and OCT3, which might be related to the absorption-enhancing mechanisms of the pulmonary absorption of FDs. These findings suggested that PAMAM dendrimers might be potentially safe absorption enhancers for improving absorption of FDs by increasing the secretion of OCT1, OCT2, and OCT3.
Collapse
Affiliation(s)
- Juan Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Nannan Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, China.
| | - Yaochun Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Nan Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Haitao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Chunyan Zhu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
45
|
Mi G, Shi D, Wang M, Webster TJ. Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces. Adv Healthc Mater 2018; 7:e1800103. [PMID: 29790304 DOI: 10.1002/adhm.201800103] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/29/2018] [Indexed: 02/02/2023]
Abstract
With the rapid spreading of resistance among common bacterial pathogens, bacterial infections, especially antibiotic-resistant bacterial infections, have drawn much attention worldwide. In light of this, nanoparticles, including metal and metal oxide nanoparticles, liposomes, polymersomes, and solid lipid nanoparticles, have been increasingly exploited as both efficient antimicrobials themselves or as delivery platforms to enhance the effectiveness of existing antibiotics. In addition to the emergence of widespread antibiotic resistance, of equal concern are implantable device-associated infections, which result from bacterial adhesion and subsequent biofilm formation at the site of implantation. The ineffectiveness of conventional antibiotics against these biofilms often leads to revision surgery, which is both debilitating to the patient and expensive. Toward this end, micro- and nanotopographies, especially those that resemble natural surfaces, and nonfouling chemistries represent a promising combination for long-term antibacterial activity. Collectively, the use of nanoparticles and nanostructured surfaces to combat bacterial growth and infections is a promising solution to the growing problem of antibiotic resistance and biofilm-related device infections.
Collapse
Affiliation(s)
- Gujie Mi
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| | - Di Shi
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| | - Mian Wang
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| | - Thomas J. Webster
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| |
Collapse
|
46
|
Yamashita S, Katsumi H, Sakane T, Yamamoto A. Bone-targeting dendrimer for the delivery of methotrexate and treatment of bone metastasis. J Drug Target 2018; 26:818-828. [DOI: 10.1080/1061186x.2018.1434659] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shugo Yamashita
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
| | - Toshiyasu Sakane
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
| |
Collapse
|
47
|
Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev 2017; 122:31-64. [PMID: 28392306 PMCID: PMC6057481 DOI: 10.1016/j.addr.2017.04.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023]
Abstract
Commercially available ocular drug delivery systems are effective but less efficacious to manage diseases/disorders of the anterior segment of the eye. Recent advances in nanotechnology and molecular biology offer a great opportunity for efficacious ocular drug delivery for the treatments of anterior segment diseases/disorders. Nanoparticles have been designed for preparing eye drops or injectable solutions to surmount ocular obstacles faced after administration. Better drug pharmacokinetics, pharmacodynamics, non-specific toxicity, immunogenicity, and biorecognition can be achieved to improve drug efficacy when drugs are loaded in the nanoparticles. Despite the fact that a number of review articles have been published at various points in the past regarding nanoparticles for drug delivery, there is not a review yet focusing on the development of nanoparticles for ocular drug delivery to the anterior segment of the eye. This review fills in the gap and summarizes the development of nanoparticles as drug carriers for improving the penetration and bioavailability of drugs to the anterior segment of the eye.
Collapse
Affiliation(s)
- Dileep R Janagam
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Linfeng Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
48
|
Function Oriented Molecular Design: Dendrimers as Novel Antimicrobials. Molecules 2017; 22:molecules22101581. [PMID: 28934169 PMCID: PMC6151464 DOI: 10.3390/molecules22101581] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/03/2022] Open
Abstract
In recent years innovative nanostructures are attracting increasing interest and, among them, dendrimers have shown several fields of application. Dendrimers can be designed and modified in plentiful ways giving rise to hundreds of different molecules with specific characteristics and functionalities. Biomedicine is probably the field where these molecules find extraordinary applicability, and this is probably due to their multi-valency and to the fact that several other chemicals can be coupled to them to obtain desired compounds. In this review we will describe the different production strategies and the tools and technologies for the study of their characteristics. Finally, we provide a panoramic overview of their applications to meet biomedical needs, especially their use as novel antimicrobials.
Collapse
|
49
|
|
50
|
Amariei G, Boltes K, Letón P, Iriepa I, Moraleda I, Rosal R. Poly(amidoamine) dendrimers grafted on electrospun poly(acrylic acid)/poly(vinyl alcohol) membranes for host-guest encapsulation of antioxidant thymol. J Mater Chem B 2017; 5:6776-6785. [PMID: 32264327 DOI: 10.1039/c7tb01498h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Amino-terminated fifth generation poly(amidoamine) (PAMAM G5-NH2) dendrimers were grafted onto the surface of poly(acrylic acid)/poly(vinyl alcohol) (PAA/PVA) electrospun fibres with the purpose of creating a host-guest architecture for the controlled delivery of a natural antioxidant, thymol. The nanofibers were stabilized by esterification crosslinking to produce a water insoluble non-woven membrane. The functionalization with PAMAM G5-NH2 led to dendrimer loadings in the 7.4 × 10-7-2.25 × 10-6 mol dendrimer per g membrane range. The resulting materials were characterized using SEM, ATR-FTIR and surface ζ-potential measurements. The loading capacity for thymol reached 2.5 × 10-4 mol thymol per g membrane. The membranes were tested for thymol release in different aqueous and non-aqueous food simulants. Computational modelling was used to get a further insight into the host-guest association of thymol and PAMAM G5-NH2 molecules through docking studies. For this purpose, we examined the molecular level details of the dendrimer-guest complex, calculated the number of included or attached molecules, the exact location of thymol in host-guest complexes and the local environment around the thymol molecules. Docking studies showed that PAMAM-G5-NH2 dendrimers can encapsulate thymol molecules through hydrophobic interactions and hydrogen bonding. The maximum amount of thymol molecules theoretically encapsulated was 16, while another 25 could be hosted at the dendrimer surface through interaction with the outer part or the dendritic branches. The experimental value was 37 ± 5, in agreement with theoretical predictions.
Collapse
Affiliation(s)
- Georgiana Amariei
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|