1
|
Ansari A, Khandelwal N, Gupta J, Rai P, Jaiswal AK, Singh A, Katiyar S, Kushawaha AK, Kushwaha V, Vishwakarma A, Singh D, Biswas A, Kumar R, Bhatta RS, Gaikwad AN, Sashidhara KV. Design, synthesis, and biological evaluation of isoxazole-dihydropyrimidinone hybrids as potential modulators of adipogenesis and dyslipidemia. Eur J Med Chem 2025; 294:117746. [PMID: 40382840 DOI: 10.1016/j.ejmech.2025.117746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/29/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
The prevalence of obesity and its accompanying metabolic disorders necessitates innovative strategies to modulate adipocyte energy homeostasis. Adipose tissue, vital in energy metabolism, influences various physiological processes. Excessive energy storage leading to obesity exacerbates conditions like insulin resistance, dyslipidemia, and type-2 diabetes. Targeting adipogenic processes becomes crucial in mitigating obesity associated health risks. In this study, a series of 35 compounds integrating isoxazole and dihydropyrimidinone pharmacophores were synthesized and evaluated for their anti-adipogenic potential. Further refinement using structure-activity relationship led to the design of additional compounds, revealing promising anti-adipogenic properties. Among these, compound 10g demonstrated notable efficacy and was studied for further mechanistic investigation. Compound 10g targets the early stage of adipogenesis, including mitotic clonal expansion to inhibit the differentiation. It activates the AMPK pathway to exert anti-adipogenic potential and improve mitochondrial function and fatty acid oxidation in mature adipocytes. Treatment of compound 10g in HFD-fed hamsters results in reduced adipose mass and body weight without altering the calorie intake. Compound 10g ameliorated dyslipidemia by activating the reverse cholesterol transport machinery in hamsters. These results highlight isoxazole-dihydropyrimidinone hybrids, as a potential pharmacophore for developing drugs for obesity and dyslipidemia.
Collapse
Affiliation(s)
- Alisha Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Nilesh Khandelwal
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Jay Gupta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Prashant Rai
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Arvind Kumar Jaiswal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Astha Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Sarita Katiyar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ajay Kishor Kushawaha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Vinita Kushwaha
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Anuradha Vishwakarma
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Divyanshi Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Arpon Biswas
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ravi Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Rabi Sankar Bhatta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Anil Nilkanth Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, 226031, U.P., India.
| |
Collapse
|
2
|
Mishra G, Jaiswal AK, Kushawaha AK, Kumar A, Bhatt H, Ansari A, Bisen AC, Hansda R, Agrawal S, Acharjee P, Guha R, Bhatta RS, Purkait B, Sashidhara KV. Exploring indole-dihydropyrimidinone derivatives: Design, synthesis, biological assessment, SAR analysis, and evaluation of mode of action in experimental visceral leishmaniasis. Eur J Med Chem 2025; 293:117667. [PMID: 40344736 DOI: 10.1016/j.ejmech.2025.117667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 05/11/2025]
Abstract
The emergence of drug resistance and the non-availability of vaccines encouraged us to identify novel chemical scaffolds as new anti-leishmanial agents. In doing so, a series of thirty-four indole-dihydropyrimidinone hybrid compounds were synthesized using the Biginelli multicomponent reaction. These synthesized compounds were tested against L. donovani in vitro and in vivo in experimental golden hamster model of visceral leishmaniasis. Compounds 4f and 4m were found to have promising anti-leishmanial properties against intracellular amastigotes (IC504.54 & 5.05 μM, respectively) with minimal cytotoxicity against J774.1 macrophage. 4f and 4m were tested in vivo, and only 4f effectively cleared the parasite burden (>65 %) in infected golden hamsters. Mode of action studies discloses that 4f induces oxidative stress-mediated mitochondrial dysfunction and impairment of ATP production and triggers apoptosis. SAR and PK studies revealed that compound 4f (indole-dihydropyrimidinone hybrid) may be used as a lead for developing future chemotherapeutic options for VL.
Collapse
Affiliation(s)
- Garvita Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Arvind Kumar Jaiswal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Ajay Kishor Kushawaha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Abhishek Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Hemlata Bhatt
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Alisha Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Amol Chhatrapati Bisen
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Pharmaceutics and Pharmacokinetics Division, CSIR- Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rupa Hansda
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Sristi Agrawal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Pharmaceutics and Pharmacokinetics Division, CSIR- Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Payel Acharjee
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Rajdeep Guha
- Laboratory Animal Facility Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Pharmaceutics and Pharmacokinetics Division, CSIR- Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Bidyut Purkait
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
3
|
Lv S, Ma R, Tang Q, Wang X, Wang C, Zhang K, Li H, Ye W, Zhou W. Discovery of 3,4-dihydropyrimidine derivatives as novel Anti-PEDV agents targeting viral internalization through a unique calcium homeostasis disruption mechanism. Eur J Med Chem 2025; 291:117637. [PMID: 40262295 DOI: 10.1016/j.ejmech.2025.117637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) poses critical challenges to global swine production, with current vaccines showing limited efficacy against emerging strains. To address this gap, we designed 41 novel 3,4-dihydropyrimidine derivatives via systematic structure-activity relationship (SAR) optimization. Compound D39, incorporating a C-4 2'-substituted biphenyl, C-2 thione, C-6 phenyl, and C-5 isopropanol substituents, emerged as the most potent anti-PEDV agent (EC50 = 0.09 μM, SI = 358.9), outperforming remdesivir (EC50 = 3.14 μM, SI > 40.8) by 35-fold. D39 exhibited broad-spectrum anti-coronavirus activity (FIPV, IDV) at micromolar levels and demonstrated acceptable metabolic stability (T1/2 = 78.75 min, Clint = 8.8 μL/min/mg) in porcine liver microsomes. Mechanistic studies revealed the antiviral actions was achieved by blocking PEDV early internalization via intracellular Ca2+ homeostasis modulation. These findings highlight D39 as a first-in-class anti-PEDV candidate with a unique dihydropyrimidine scaffold and a calcium-targeting mechanism, offering a promising therapeutic strategy against coronaviral infections.
Collapse
Affiliation(s)
- Sai Lv
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Rumeng Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
4
|
Mandal A, Ghosh P, Das S. Synthesis of dihydropyrimidinones via urea-based multicomponent reactions. Org Biomol Chem 2025; 23:5064-5080. [PMID: 40327393 DOI: 10.1039/d5ob00180c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Multicomponent reactions (MCRs) have emerged as powerful tools in organic chemistry, enabling the rapid and efficient assembly of complex molecular architectures. Urea-based multicomponent reactions have gained significant attention due to their versatility and broad applicability. In this review, we highlight recent developments in this area, with a focus on dihydropyrimidinones, and provide an in-depth analysis of the diverse synthetic pathways and applications of urea-based MCRs, shedding light on their fundamental mechanisms, reaction conditions, and potential for green and sustainable synthesis.
Collapse
Affiliation(s)
- Anirban Mandal
- Department of Chemistry, University of North Bengal, Darjeeling - 734013, India. rs_anirban.nbu.ac.in
| | - Prasanjit Ghosh
- Department of Chemistry, University of North Bengal, Darjeeling - 734013, India. rs_anirban.nbu.ac.in
| | - Sajal Das
- Department of Chemistry, University of North Bengal, Darjeeling - 734013, India. rs_anirban.nbu.ac.in
| |
Collapse
|
5
|
Wang XZ, Hu XD, Liu WB. Access to Polysubstituted Pyrimidin-2-ones by Pd-Catalyzed [2 + 2 + 2] Cycloaddition of Alkyne-Tethered Malononitriles and Isocyanates. Org Lett 2025; 27:5020-5026. [PMID: 40323292 DOI: 10.1021/acs.orglett.5c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Transition-metal-catalyzed [2 + 2 + 2] cycloaddition reactions of alkynes, nitriles, and other π partners have been recognized as economic strategies to assemble aza-six-membered rings, but access to pyrimidin-2-ones is not disclosed. Herein, we report a palladium-catalyzed [2 + 2 + 2] cycloaddition of 1,3-diyne-substituted malononitriles and isocyanates for the construction of polysubstituted pyrimidin-2-ones. This reaction features a broad substrate scope and moderate to high yields. Conjugated pyrimidin-2-one acting as a fluorophore showcased potential as a fluorescent chemosensor for Fe(III) detection.
Collapse
Affiliation(s)
- Xing-Zhen Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xu-Dong Hu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Bo Liu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Dunscomb RJ, Frye CW, Murray X, Tonks IA. 1,2-Dihydropyrimidine synthesis via titanium-mediated multicomponent coupling of alkynes, nitriles, and aldehydes. Chem Commun (Camb) 2025. [PMID: 40377374 DOI: 10.1039/d5cc01979f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
While dihydropyrimidine cores are found in a number of bioactive molecules, 1,2-dihydropyrimidine regioisomers remain relatively underexplored due to a scarcity of simple synthetic routes to access them. Here, a modular, multicomponent synthesis to 1,2-dihydropyrimidines from alkynes, nitriles, aldehydes, and Ti imido complexes is reported, proceeding through a key diazatitanacycle intermediate that was previously exploited for pyrazole and α-diimine synthesis. The 1,2-dihydropyrimidines are formed through [2+2]-cycloaddition of an aldehyde with the diazatitanacycle synthetic intermediate, followed by cycloreversion to a 1,5-diazatriene that undergoes facile electrocyclization to the 1,2-dihydropyrimidine.
Collapse
Affiliation(s)
- Rachel J Dunscomb
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA.
| | - Connor W Frye
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA.
| | - Xavier Murray
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA.
| | - Ian A Tonks
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
7
|
Jaiswal AK, Kushawaha AK, Pawan Kumar, Ansari A, Chhikara N, Hemlata Bhatt, Katiyar S, Ahmad I, Choudhury AD, Bhatta RS, Tamrakar AK, Sashidhara KV. Design, synthesis, and biological evaluation of quinazolinone-dihydropyrimidinone as a potential anti-diabetic agent via GLUT4 translocation stimulation. Eur J Med Chem 2025; 288:117366. [PMID: 39954347 DOI: 10.1016/j.ejmech.2025.117366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
A library of 30 novel quinazolinone-dihydropyrimidinone derivatives was synthesized employing a diversity-oriented approach for the identification of potential anti-diabetic therapeutic lead. In vitro evaluation revealed that seven compounds (5d, 5e, 5i, 5j, 5l, 5m and 5s) significantly enhanced the rate of GLUT4 translocation to the cell surface in L6-GLUT4myc myotubes. Out of these, compound, 5m exhibited promising potency to stimulate GLUT4 translocation in skeletal muscle cells via activating AMPK-dependent pathway, but independent to PI-3-K/AKT signaling. Under in vivo conditions, treatment with 5m demonstrated a marked 39.5 % (p < 0.001) reduction in blood glucose levels in a streptozotocin-induced diabetic rat model after 5 h of treatment. Pharmacokinetic analysis indicated compound 5m shows favourable pharmacokinetic properties. Overall, the compound 5m emerged as a promising lead compound for subsequent structural modification and optimization to develop a novel and potent anti-hyperglycemic agent.
Collapse
Affiliation(s)
- Arvind Kumar Jaiswal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Ajay Kishor Kushawaha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Pawan Kumar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Alisha Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Nikita Chhikara
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Hemlata Bhatt
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Sarita Katiyar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Ishbal Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetics Division, CSIR- Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Rabi Sankar Bhatta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Pharmaceutics and Pharmacokinetics Division, CSIR- Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.
| |
Collapse
|
8
|
Wang H, Ma X, Sun L, Bi T, Yang W. Applications of innovative synthetic strategies in anticancer drug discovery: The driving force of new chemical reactions. Bioorg Med Chem Lett 2025; 119:130096. [PMID: 39798856 DOI: 10.1016/j.bmcl.2025.130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The discovery of novel anticancer agents remains a critical goal in medicinal chemistry, with innovative synthetic methodologies playing a pivotal role in advancing this field. Recent breakthroughs in CH activation reactions, cyclization reactions, multicomponent reactions, cross-coupling reactions, and photo- and electro-catalytic reactions have enabled the efficient synthesis of new molecular scaffolds exhibiting potent biological activities, including anticancer properties. These methodologies have facilitated the functionalization of natural products, the modification of bioactive molecules, and the generation of entirely new compounds, many of which demonstrate strong antitumor activity. This review summarizes the latest synthetic strategies employed over the past five years for discovering anticancer agents, focusing on their influence on drug design. Additionally, the role of new chemical reactions in expanding chemical space and overcoming challenges, such as drug resistance and selectivity, is highlighted, further emphasizing the importance of discovering novel reactions as a key trend in future drug development.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longkang Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tongyu Bi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
9
|
Kumar G, Seboletswe P, Mishra S, Manhas N, Ghumran S, Kerru N, Roquet-Banères F, Foubert M, Kremer L, Bhargava G, Singh P. Isoniazid-Dihydropyrimidinone Molecular Hybrids: Design, Synthesis, Antitubercular Activity, and Cytotoxicity Investigations with Computational Validation. ChemMedChem 2025:e2400949. [PMID: 40067058 DOI: 10.1002/cmdc.202400949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025]
Abstract
A new series of isoniazid-dihydropyrimidinone molecular hybrids (8a-8n) were designed, synthesized and structurally characterized using different spectroscopic techniques viz., Fourier transform infrared spectroscopy, nuclear magnetic resonance (NMR), and high-resolution mass spectrometry followed by their antitubercular evaluation including their precursors (4a-4n), and a standard antitubercular drug (isoniazid; INH). The molecular hybrids particularly 8g (minimum inhibitory concentration (MIC) = 6.25 μg mL-1), 8h (MIC = 1.56 μg mL-1), 8k (MIC = 0.78 μg mL-1), 8l (MIC = 6.25 μg mL-1), and 8n (MIC = 0.39 μg mL-1) demonstrated the most potent inhibitory activity against wild-type M. tuberculosis mc26230, disclosing 8n as the most potent compound in the series. However, the potent compounds lost their activity against three INH-resistant M. tuberculosis strains mutated in katG. The more efficient compounds (8h, 8k, and 8n) were subsequently evaluated for their cytotoxicity against the THP-1 human monocytic cell line. Furthermore, the stability studies of the most potent compound carried out using 1H NMR, UV-visible, and liquid chromatography-mass spectrometry revealed their structural integrity. Finally, in silico molecular docking simulations were conducted to explore the binding orientations of the potent compounds in the active site of the target protein InhA while ADME/T (absorption, distribution, metabolism, excretion, and toxicity) and global reactivity parameters were explored to determine their drug-likeness and stability profiles, respectively.
Collapse
Affiliation(s)
- Gobind Kumar
- School of Chemistry and Physics, University of KwaZulu Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - Pule Seboletswe
- School of Chemistry and Physics, University of KwaZulu Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - Sahil Mishra
- School of Chemistry and Physics, University of KwaZulu Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - Neha Manhas
- School of Chemistry and Physics, University of KwaZulu Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - Safiyah Ghumran
- School of Chemistry and Physics, University of KwaZulu Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - Françoise Roquet-Banères
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
| | - Maëlle Foubert
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
- INSERM, IRIM, 34293, Montpellier, France
| | - Gaurav Bhargava
- Department of Chemical Sciences, I. K. Gujral Punjab Technical University, Kapurthala, Punjab, 144603, India
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| |
Collapse
|
10
|
Saeed A, Tahir A, Shah M, Hussain F, Sadiq A, Rashid U. Dihydropyrimidine-2-thione derivatives as SARS-CoV-2 main protease inhibitors: synthesis, SAR and in vitro profiling. RSC Adv 2025; 15:6424-6440. [PMID: 40013067 PMCID: PMC11864037 DOI: 10.1039/d4ra08449g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
Despite the passage of approximately five years since the outbreak, an efficacious remedy for SARS-CoV-2 remains elusive, highlighting the urgent imperative for developing SARS-CoV-2 potent inhibitors. In our current study, we have unmasked the hitherto unrealized potential of dihydropyrimidine-2-thiones against the Main Protease (Mpro) of SARS-CoV-2. Employing a predictive docking tool, we identified promising lead compounds and optimized them via comprehensive Structural Activity Relationship (SAR) studies. Key design elements included proton donor/acceptor groups, six-membered rings, and fluorinated moieties to enhance interactions. These leads underwent in vitro inhibition assays to enhance their interaction with key Mpro amino acid residues. Our findings indicated that all synthesized compounds exhibited significant inhibition of the Mpro. Compounds 12j (IC50 = 0.063 μM), and 12l (IC50 = 0.054 μM) displayed exceptional in vitro binding affinities. In addition to their string inhibitory activity, CC50 values were assessed, confirming acceptable cytotoxicity profiles for potent compounds. Molecular dynamic simulation substantiated the binding mechanism revealing that compound 12l maintains robust stability with the target protein. Furthermore, compounds predicted to have minimal oral toxicity and high intestinal absorption make them promising candidates for drug development. These findings paved the way for the potent clinical application of these dihydropyrimidine-2-thiones as efficient SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Anees Saeed
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus-22060 Pakistan
| | - Ayesha Tahir
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus-22060 Pakistan
| | - Muhammad Shah
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus-22060 Pakistan
| | - Fahad Hussain
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus-22060 Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand Chakdara 18000 Dir (L) KP Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus-22060 Pakistan
| |
Collapse
|
11
|
Peng R, Zhu C. Mild [3 + 3] Annulation of (Trifluoromethyl)alkenes with Thioureas Enabled by Chemoselective Defluorinative Amination: Synthesis of 6-Fluoro-3,4-dihydropyrimidine-2(1 H)-thiones. J Org Chem 2025; 90:1538-1548. [PMID: 39835734 DOI: 10.1021/acs.joc.4c02479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The chemoselective defluorinative [3 + 3] annulation of (trifluoromethyl)alkenes with thioureas is reported. This protocol affords various attractive 6-fluoro-3,4-dihydropyrimidine-2(1H)-thiones in high yields, features transition-metal free, mild conditions, efficient, is operationally simple and gram-scalable, tolerates diverse useful functional groups.
Collapse
Affiliation(s)
- Rongbin Peng
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Chuanle Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
12
|
Kanwal M, Nadeem H, Malik S, Maqsood S. Synthesis, characterization and biological profile of some new dihydropyrimidinone derivaties. Heliyon 2025; 11:e41152. [PMID: 39811294 PMCID: PMC11730207 DOI: 10.1016/j.heliyon.2024.e41152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Objective The rise of drug-resistant bacteria, viruses, and fungi has prompted the search for new drugs without cross-resistance to current treatments. As a result, the aim of this research was to synthesize various types of dihydropyrimidinones heterocyclic compounds and screened them for their antibiotic properties. Methodology Newly synthesized dihydropyrimidinone derivatives were characterized spectroscopically using proton NMR (1HNMR), and FT-IR. These substances were then subjected to molecular docking studies via Auto dock Vina software to determine their affinity for binding to proteins from different bacterial strains including (Staphylococcus epidermidis (S. epidermidis), Staphylococcus aureus (S. aureus), Mycobacterium luteus (M. luteus), Salmonella typhi (S.typhi), Bacillus subtilis (B. subtilis), and Escherichia coli (E. coli) and fungal (Candida glabrata (C. glabrata), Candida albicans (C. albicans), and Saccharomyces cerevisiae (S. cerevisiae) strains. Also in-vitro anti-fungal, anti-bacterial and anti-oxidant activity was performed by using ager well diffusion method and DPPH assay respectively. Moreover, the In-vivo biological evaluation of these derivatives was conducted by using carrageenan-induced hind paw model. The cytotoxicity profile of the synthesized derivatives was done via in-vitro MTT assay. Results All newly synthesized derivatives were confirmed via the multiple spectroscopic analysis techniques. All derivatives showed good binding affinities against the multiple targeted protein with. Compound 4c exhibited hightest potential with -10 kcal/mol against bacterial strains. 4b showed best antifungal potential with -10.8 kcal/mol binding affinities. For Bacillus subtilis compound 4b and 4c performed best with 17 mm ± 2.21. for anti-fungal activity against Candida glabrata, amongst the five newly formed compounds, 4a showed best activity with 19 mm ± 1.22 The analogue 4b exhibited best anti-oxidant potential with 63.85 ± 1.39. Compound 4a and 4b showed highest anti-inflammatory potential with 1.011 mm ± 0.247 mg/kg and 1.447 ± 0.212 mg/kg in countering inflammation by targeting toll-like receptor activation and reduce the inflammation in hind paw edema. The selected derivatives exhibited no toxicity profile with 99 % and 98 % cell survival rate using compound 4a and 4b. Conclusion Research has been done on the multiple biological activities of dihydropyrimidinones derivatives but the innovation on MDR is still pending. New dihydropyrimidinone derivatives were developed as agents to combat drug resistance. The results of these studies showed that newly synthesized dihydropyrimidinone derivatives are remarkably effective not only as anti-biotic agents but also counter inflammation caused by carrageenan resulting from the activation of the Toll-like receptors (TLRs) signaling pathway along with the non-toxic effect. So it is concluded that the recently synthesized new dihyropyrimidinone derivatives are highly effective antimicrobial derivatives with non-toxic effects on human cell lines.
Collapse
Affiliation(s)
- Madiha Kanwal
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan, 44000
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan, 44000
| | - Sumra Malik
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan, 44000
| | - Saima Maqsood
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan, 44000
| |
Collapse
|
13
|
Slly AM, Ewes WA, Bayoumi WA, Selim KB. Unveiling the potential anticancer activity of new dihydropyrimidines through dual inhibition of EGFR and TrkA: Design, synthesis, and in silico study. Bioorg Chem 2025; 154:107962. [PMID: 39591690 DOI: 10.1016/j.bioorg.2024.107962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
A series of designed scaffold of dihydropyrimidine was synthesized as dual tyrosine kinase targets inhibitors using a multicomponent Biginelli reaction which provided a high atom economy in a single pot reaction. Several 1,4-DHPM hybrids were obtained via alkylation with different chloroacetylamine derivatives. All the synthesized derivatives were screened for their antiproliferative efficacy towards various cancer cell lines (HCT-116, PC-3, and MCF-7) and normal cell line WI-38 using MTT assay. The results indicated that compounds 8h and 8i have the most significant inhibitory effect on all evaluated cancer cell lines, displaying IC50 of 3.94-15.78 µM. Also, they demonstrated favorable selectivity towards normal cell lines. Moreover, the most active hybrids 8h and 8i were evaluated for their EGFR and TrkA inhibitory activity. The findings indicated that compound 8h had superior inhibitory activity compared to compound 8i on the targeted kinases, effectively stopping the G1 phase of the MCF-7 cell cycle and encouraging apoptosis. Additionally, the molecular docking studies declared that the most active compounds exhibited a notable binding interaction with the binding site of the target proteins. Furthermore, their physicochemical properties, ADMET profiles, and bioavailability radar plots were predicted and analyzed.
Collapse
Affiliation(s)
- Aya M Slly
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Wafaa A Ewes
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Waleed A Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Khalid B Selim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
14
|
Milović E, Matić IZ, Petrović N, Pašić I, Stanojković T, Petrović MR, Bogdanović GA, Ari F, Janković N. Chlorine containing tetrahydropyrimidines: Synthesis, characterization, anticancer activity and mechanism of action. Bioorg Chem 2024; 153:107907. [PMID: 39490136 DOI: 10.1016/j.bioorg.2024.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The aim of the presented research was to explore anticancer potential of eleven newly synthesized tetrahydropyrimidine derivatives. The compounds were synthesized via Biginelli multicomponent one-pot reaction using different derivatives of vanillin, ethyl 4-chloroacetoacetate and (N-methyl)urea. The cytotoxic effects of the compounds were examined on three human malignant cell lines (HeLa, K562, and MCF7), and normal lung fibroblasts MRC-5. The mechanisms of anticancer activity were examined for two compounds 4a and 4b which showed the strongest and selective cytotoxicity against chronic myelogenous leukaemia K562 cells (IC50 = 1.76 ± 0.09, and 1.66 ± 0.05, respectively). The changes of matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), and vascular endothelial growth factor A (VEGFA) were investigated in the K562 cell line, as well as oncomiRNA miR-10b, miR-23a described to have both features, depending on a specific type of malignancy, and miR-34a with mostly described as a tumour suppressor.
Collapse
Affiliation(s)
- Emilija Milović
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac 34000, Serbia
| | - Ivana Z Matić
- Institute for Oncology and Radiology of Serbia, Belgrade 11 000, Serbia
| | - Nina Petrović
- Institute for Oncology and Radiology of Serbia, Belgrade 11 000, Serbia; "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Ivana Pašić
- Institute for Oncology and Radiology of Serbia, Belgrade 11 000, Serbia
| | | | - Miloš R Petrović
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade 11 000, Serbia
| | - Goran A Bogdanović
- "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Ferda Ari
- Department of Biology, Faculty of Science and Art, Bursa Uludag University, Bursa 16059, Turkey
| | - Nenad Janković
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac 34000, Serbia.
| |
Collapse
|
15
|
Milović E, Matić SL, Katanić Stanković JS, Srećković N, Filipović I, Bradić J, Petrović A, Jakovljević V, Vazquez NB, Janković N. DNA interaction of selected tetrahydropyrimidine and its effects against CCl 4-induced hepatotoxicity in vivo: Part II. Arch Pharm (Weinheim) 2024; 357:e2400409. [PMID: 39188175 DOI: 10.1002/ardp.202400409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Tetrahydropyrimidine (compound A = methyl 4-[4'-(heptyloxy)-3'-methoxyphenyl]-1,6-dimethyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate) was chosen for in vivo studies after exhibiting noteworthy in vitro activity against the K562 and MDA-MB-231 cell lines, with IC50 values of 9.20 ± 0.14 µM and 12.76 ± 1.93 µM, respectively. According to experimental (fluorescence titration, viscosity, and differential scanning calorimetry) results, A interacts with DNA via the minor groove. In vivo, acute oral toxicity studies in Wistar albino rats proved no noticeable symptoms of either toxicity or death during the follow-up period. Genotoxic and antigenotoxic studies at three different concentrations of A (5, 10, and 20 mg/kg of body weight) in Wistar albino rats showed that the dose of 5 mg/kg body weight did not cause DNA damage and had a remarkable DNA protective activity against CCl4-induced DNA damage, with a percentage reduction of 78.7%. It is also important to note that, under the investigated concentrations of A, liver damage is not observed. Considering all experimental outcomes realized under various in vivo investigations (acute oral toxicity, genotoxicity, antigenotoxicity, and biochemical tests), compound A could be a promising candidate for further clinical testing.
Collapse
Affiliation(s)
- Emilija Milović
- Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Sanja Lj Matić
- Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Jelena S Katanić Stanković
- Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Nikola Srećković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Ignjat Filipović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Jovana Bradić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Anica Petrović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Vladimir Jakovljević
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Human Pathology, University IM Sechenov, First Moscow State Medical University, Moscow, Russia
| | - Natalia Busto Vazquez
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, Burgos, Spain
| | - Nenad Janković
- Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
16
|
Milović E, Ristovski JT, Stefanović S, Petronijević J, Joksimović N, Matić IZ, Đurić A, Ilić B, Klisurić O, Radan M, Nikolić K, Janković N. Synthesis, in vitro anticancer activity, and pharmacokinetic profiling of the new tetrahydropyrimidines: Part I. Arch Pharm (Weinheim) 2024; 357:e2400403. [PMID: 39101844 DOI: 10.1002/ardp.202400403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
Different vanillin-based aldehydes were used to synthesize novel tetrahydropyrimidines (THPMs) via conventional Biginelli reaction. The THPMs were tested against human normal cells (MRC-5) and cancer cell lines (HeLa, K562, and MDA-MB-231). With IC50 values of 10.65, 10.70, and 12.76 µM, compounds 4g, 4h, and 4i exerted the strongest cytotoxic effects against K562 cells. The best activity was achieved for 4g on MDA-MB-231 cells (IC50 = 9.20 ± 0.14 µM). The effects of compounds 4g, 4h, and 4i on the cell-cycle phase distribution of K562 cells were analyzed. Principal component analysis was carried out for the chemometrics analysis to comprehend the relationship between the anticancer activity of the THPMs, pharmacokinetic properties, and partition coefficients, as well as the relationship between the chromatographic behavior and retention parameters. The highest retention rates are found for molecules 4g, 4h, and 4i, which have the longest carbon chains, indicating that the length of the alkyl chain positively affects the molecule's anticancer activity but only if the number of carbon atoms is not higher than seven. Additionally, molecular docking analysis was performed to determine the preferred binding modes of the investigated ligands (4g, 4h, and 4i) with a DNA dodecamer and bovine serum albumin.
Collapse
Affiliation(s)
- Emilija Milović
- Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | | | | | - Jelena Petronijević
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Nenad Joksimović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Ivana Z Matić
- Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ana Đurić
- Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Bojana Ilić
- Department for Neuroendocrine Tumors and Hereditary Cancer Syndromes, Diabetes and Metabolic Diseases, Medical School, Clinic for Endocrinology, University of Belgrade, Belgrade, Serbia
| | - Olivera Klisurić
- Department of Physics, Faculty of Science, University of Novi Sad, Novi Sad, Serbia
| | - Milica Radan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Institute for Medicinal Plants Research "Dr. Josif Pancic", Belgrade, Serbia
| | - Katarina Nikolić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Nenad Janković
- Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
17
|
Venu prasad K, Kallauraya B, Bhat RS, Bhat SI, Kamat V, Akki M, Kumar A, Jyothi K, Bharat B. Synthesis, characterization, and evaluation of pyrimidinone-linked thiazoles: DFT analysis, molecular docking, corrosion inhibition, and bioactivity studies. Heliyon 2024; 10:e39421. [PMID: 39498036 PMCID: PMC11533589 DOI: 10.1016/j.heliyon.2024.e39421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
The paper describes the construction of a new series of pyrimidinone-linked thiazole derivatives through bromination of the initial Biginelli reaction product followed by the Hantzsch thiazole synthesis route. Various analytical techniques, including FT-IR, 1H NMR, 13C NMR, and LCMS analysis, were employed to confirm the formation of the products. The synthesized compounds were primarily evaluated for their antibacterial activity, with a specific focus on their IC50 values. Compound 4c demonstrated the most potent efficacy, displaying MIC and MBC values that varied from 0.23 to 0.71 mg/mL and 0.46-0.95 mg/mL, respectively. The anti-inflammatory potential was also observed in analogs 4a and 4c with marked activity in the 33.2-82.9 μM concentration range. Moreover, compounds 4a, and 4c demonstrated strong antioxidant effects, as reflected by their excellent IC50 values of 38.6-43.5 μM respectively. DFT investigation showed that B. cereus was more susceptible, and E. coli was more resistant, with chloro-substituted compounds exhibiting potential reactivity. Some molecules with chloro-substituents showed promising results in density functional theory when compared to other substituents. In addition, the molecules underwent a corrosion study and demonstrated a high level of inhibition efficiency (4c) in comparison to other molecules. Further in silico studies of the synthesized thiazoles confirmed the good interactions with the target.
Collapse
Affiliation(s)
- K.D. Venu prasad
- Department of Studies in Chemistry. Mangalore University, Mangalagangotri, 574 199, Karnataka, India
| | - Balakrishna Kallauraya
- Department of Studies in Chemistry. Mangalore University, Mangalagangotri, 574 199, Karnataka, India
| | - Ramesh S. Bhat
- Department of Chemistry, NMAM Institute of Technology, NITTE (Deemed to be University), Nitte, 574110, India
| | - Subrahmanya I. Bhat
- Department of Chemistry, NMAM Institute of Technology, NITTE (Deemed to be University), Nitte, 574110, India
| | - Vinuta Kamat
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Mahesh Akki
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - K. Jyothi
- Department of Chemistry, St. Joseph Engineering College, Mangalore, 575028, India
| | - B.R. Bharat
- Jai Research Foundation, Valvada, Vapi, Gujarat, 396105, India
| |
Collapse
|
18
|
Gastalho CM, Sena AM, López Ó, Fernández-Bolaños JG, García-Sosa AT, Pereira F, Antunes CM, Costa AR, Burke AJ, Carreiro EP. Assessing the Potential of 1,2,3-Triazole-Dihydropyrimidinone Hybrids Against Cholinesterases: In Silico, In Vitro, and In Vivo Studies. Int J Mol Sci 2024; 25:11153. [PMID: 39456935 PMCID: PMC11508620 DOI: 10.3390/ijms252011153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Combining the pharmacological properties of the 1,2,3-triazole and dihydropyrimidinone classes of compounds, two small families of mono- and di(1,2,3-triazole)-dihydropyrimidinone hybrids, A and B, were previously synthesized. The main objective of this work was to investigate the potential anti-Alzheimer effects of these hybrids. The inhibitory activities of cholinesterases (AChE and BuChE), antioxidant activity, and the inhibitory mechanism through in silico (molecular docking) and in solution (STD-NMR) experiments were evaluated. The 1,2,3-triazole-dihydropyrimidinone hybrids (A and B) showed moderate in vitro inhibitory activity on eqBuChE (IC50 values between 1 and 58.4 μM). The best inhibitor was the hybrid B4, featuring two 1,2,3-triazole cores, which exhibited stronger inhibition than galantamine, with an IC50 of 1 ± 0.1 μM for eqBuChE, through a mixed inhibition mechanism. Among the hybrids A, the most promising inhibitor was A1, exhibiting an IC50 of 12 ± 2 µM, similar to that of galantamine. Molecular docking and STD-NMR experiments revealed the key binding interactions of these promising inhibitors with BuChE. Hybrids A and B did not display Artemia salina toxicity below 100 μM.
Collapse
Affiliation(s)
- Carlos M. Gastalho
- LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; (C.M.G.); (A.J.B.)
- Institute of Earth Sciences, Institute of Research and Advanced Training, University of Évora, 7000-671 Évora, Portugal; (C.M.A.); (A.R.C.)
- Academic Clinical Center of Alentejo, C-TRAIL, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Ana M. Sena
- Department of Chemistry and Biochemistry, School of Sciences and Technologies, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal;
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (Ó.L.); (J.G.F.-B.)
| | - José G. Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (Ó.L.); (J.G.F.-B.)
| | | | - Florbela Pereira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Célia M. Antunes
- Institute of Earth Sciences, Institute of Research and Advanced Training, University of Évora, 7000-671 Évora, Portugal; (C.M.A.); (A.R.C.)
- Academic Clinical Center of Alentejo, C-TRAIL, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
- Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Ana R. Costa
- Institute of Earth Sciences, Institute of Research and Advanced Training, University of Évora, 7000-671 Évora, Portugal; (C.M.A.); (A.R.C.)
- Academic Clinical Center of Alentejo, C-TRAIL, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
- Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Anthony J. Burke
- LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; (C.M.G.); (A.J.B.)
- Faculty Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Departamento de Química, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Center for Neurosciences and Cellular Biology (CNC), Polo I, Universidade de Coimbra Rua Larga Faculdade de Medicina, Polo I, 1ºandar, 3004-504 Coimbra, Portugal
| | - Elisabete P. Carreiro
- LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; (C.M.G.); (A.J.B.)
| |
Collapse
|
19
|
Shahi A, Manhas R, Bhattacharya S, Rathore A, Kumar P, Samanta J, Sharma MK, Mahapa A, Gupta P, Anal JMH. Synthesis and antibacterial potential of novel thymol derivatives against methicillin-resistant Staphylococcus aureus and P. aeruginosa pathogenic bacteria. Front Chem 2024; 12:1482852. [PMID: 39478990 PMCID: PMC11523063 DOI: 10.3389/fchem.2024.1482852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
The increasing threat of antibiotic resistance has created an urgent need for new antibacterial agents, particularly plant-based natural compounds and their derivatives. Thymol, a natural monoterpenoid phenolic compound derived from Monarda citriodora, is known for its aromatic and therapeutic properties, including antibacterial activity. This study focuses on synthesizing dihydropyrimidinone and dihydropyridine derivatives of thymol and exploring their antibacterial properties. The synthesized compounds were tested for their in vitro antibacterial potential against pathogenic microorganisms, specifically Pseudomonas aeruginosa (Gram-negative) and methicillin-resistant Staphylococcus aureus (MRSA) (Gram-positive). Among the synthesized derivatives, compound 3i (ethyl 4-(4-hydroxy-5-isopropyl-2-methylphenyl)-2-imino-6-methyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate) exhibited the most promising antibacterial activity, with minimum inhibitory concentration (MIC) values of 12.5 µM against P. aeruginosa and 50.0 µM against MRSA. Additionally, compound 3i demonstrated a synergistic effect when combined with vancomycin, enhancing its antibacterial efficacy. The optimum fractional inhibitory concentration index (FICI) observed was 0.10 and 0.5 for MRSA and P. aeruginosa, respectively, in combination with vancomycin. In silico analysis of the physiochemical properties of 3i indicated compliance with all drug-likeness rules. Furthermore, molecular docking studies revealed that compound 3i has a stronger binding affinity to the target protein than thymol, providing valuable insights into its potential mechanism of action.
Collapse
Affiliation(s)
- Ashutosh Shahi
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, (IIIM), Jammu, India
| | | | - Srija Bhattacharya
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, (IIIM), Jammu, India
| | - Arti Rathore
- Infectious Diseases Division, CSIR–IIIM, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Puneet Kumar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, (IIIM), Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jayanta Samanta
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Manish Kumar Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, (IIIM), Jammu, India
| | - Avisek Mahapa
- Infectious Diseases Division, CSIR–IIIM, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prasoon Gupta
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, (IIIM), Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jasha Momo H. Anal
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, (IIIM), Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
20
|
Liu N, Zheng J, Liu T, Yan H, Ji M, Liu GN, Li Y, Dou J, Yang F, Wang S. Two Thiophene-Functionalized Co-MOFs as Green Heterogeneous Catalysts for the Biginelli Reaction. Inorg Chem 2024; 63:19117-19129. [PMID: 39356130 DOI: 10.1021/acs.inorgchem.4c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Two Co(II) metal-organic frameworks (Co-MOFs), namely, [Co(DMTDC)(bimb)]n (Co-MOF-1) and {[Co(DPTDC)(bimb)(H2O)]·2DMF}n (Co-MOF-2) (H2DMTDC = 3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid, H2DPTDC = 3,4-diphenylthieno[2,3-b]thiophene-2,5-dicarboxylic acid, bimb = 1,4-bis((1H-imidazol-1-yl)methyl)benzene), were obtained by the reaction of flexible N-containing ligand bimb and two structurally related thiophene-containing ligands H2DMTDC and H2DPTDC, respectively. These Co-MOFs displayed a 3D framework and porous structure, respectively. Co-MOF-1 and the activated sample Co-MOF-2' could act as green heterogeneous catalysts for the one-pot multicomponent Biginelli reaction, specifically the dehydration condensation process involving aldehydes, acetoacetates, and urea to yield dihydropyrimidin-2(1H)-ones. The reaction has advantages such as solvent-free conditions, water as only byproduct, readily accessible starting materials, excellent functional group compatibility, and simple operation. Both catalysts exhibited a wide substrate scope and maintained significant catalytic activity over five cycles. The special catalytic performance may be ascribed to functional groups within the ligand.
Collapse
Affiliation(s)
- Nana Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Jun Zheng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Tingting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Hui Yan
- School of Pharmacy, Liaocheng University, Liaocheng 252059, P. R. China
| | - Mengna Ji
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Guang-Ning Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Fei Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Suna Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
21
|
Harmandar K, Kaya EN, Tollu G, Sengul IF, Özdemir S, Atilla D. Synthesis, photo-physicochemical and biological properties of novel tetrahydropyrimidone-substituted metallo-phthalocyanines. Dalton Trans 2024; 53:16005-16017. [PMID: 39289954 DOI: 10.1039/d4dt02115k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this study, new peripherally substituted symmetric zinc and magnesium phthalocyanines (4 and 5) were successfully prepared by cyclotetramerization of the tetrahydropyrimidone (THPM)-linked phthalonitrile 3. The identity of the compounds were confirmed primarily through spectroscopic analysis including NMR, FT-IR, UV-Vis and MALDI-TOF mass spectroscopy. The photophysical and photochemical properties of the synthesized phthalocyanines (Pcs) were examined using UV-Vis absorption and fluorescence emission spectroscopy techniques. The quantum yields of singlet oxygen were found to be 0.50 and 0.33 for compounds 4 and 5 in DMSO, respectively. In addition to photo-physicochemical properties, the enhanced biological activities of compounds 4 and 5 were investigated using a range of biological assays, namely, antibiofilm, microbial cell viability, antioxidant, DNA cleavage, antimicrobial and photodynamic antimicrobial assays. The maximum DPPH inhibition of 4 and 5 was detected as 40.46% and 25.76% at 100 mg L-1, respectively. Fragmentation of the DNA molecule was observed at concentrations of 25 mg L-1, 50 mg L-1 and 100 mg L-1 for 4 and 5. Additionally, effective inhibition of microbial cell viability was observed with the targeted Pcs. The antibiofilm properties of these compounds were found to be concentration-dependent. The biofilm inhibition activities of 4 and 5 were found to be 96.01% and 92.04% for S. aureus, while they were 95.42% and 91.27%, for P. aeruginosa, respectively. The antimicrobial activities of 4 and 5 on different microorganisms were evaluated using the microdilution assay. In the case of photodynamic antimicrobial treatment, the newly synthesized Pcs showed more effective antimicrobial inhibition compared to the control. These findings suggest that compounds 4 and 5 can be used as promising photodynamic antimicrobial agents for the treatment of many diseases, particularly infectious diseases.
Collapse
Affiliation(s)
- Kevser Harmandar
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey.
| | - Esra Nur Kaya
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey.
| | - Gülşah Tollu
- Laboratory and Veterinary Health, Technical Science Vocational School, Mersin University, TR-33343 Mersin, Turkey
| | - Ibrahim F Sengul
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey.
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey
| | - Devrim Atilla
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
22
|
Dil KV, Palchykov VA. O,S,Se-containing Biginelli products based on cyclic β-ketosulfone and their postfunctionalization. Beilstein J Org Chem 2024; 20:2143-2151. [PMID: 39224228 PMCID: PMC11368051 DOI: 10.3762/bjoc.20.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
A one-pot three-component Biginelli synthesis of dihydropyrimidinones/thiones/selenones via acetic acid or solvent-free Yb(OTf)3-catalyzed tandem reaction of β-ketosulfone (dihydro-2H-thiopyran-3(4H)-one-1,1-dioxide), an appropriate urea, and arylaldehyde has been developed. The reaction proceeds with high chemo- and regioselectivity to give diverse DHPMs in reasonable yields up to 95%. Moreover, an SO2-containing analogue of anticancer drug-candidate enastron (SO2 vs C=O) was obtained by using the here reported method in gram scale. We also demonstrate the reactivity of the Biginelli product in various directions - synthesis of condensed thiazoles and tetrazoles. In silico assessment of ADMET parameters shows that most compounds meet the lead-likeness requirements. The biological profiles of new compounds demonstrate high probability levels of activity against the following pathogens/diseases: Candida albicans, Alphis gossypii, Tripomastigote Chagas, Tcruzi amastigota, Tcruzi epimastigota, Leishmania amazonensis, and Dengue larvicida.
Collapse
Affiliation(s)
- Kateryna V Dil
- Research Institute of Chemistry and Geology, Oles Honchar Dnipro National University, Nauky Av. 72, Dnipro, 49045, Ukraine
- Enamine Ltd. (www.enamine.net), Winston Churchill Str. 78, Kyiv, 02094, Ukraine
| | - Vitalii A Palchykov
- Research Institute of Chemistry and Geology, Oles Honchar Dnipro National University, Nauky Av. 72, Dnipro, 49045, Ukraine
| |
Collapse
|
23
|
Grami M, Rafiee Z. Fabrication of magnetic carbohydrate-modified iron oxide nanoparticles (Fe 3O 4/pectin) decorated with bimetallic Co/Cu-MOF as an effective and recoverable catalyst for the Biginelli reaction. RSC Adv 2024; 14:24175-24184. [PMID: 39101064 PMCID: PMC11295140 DOI: 10.1039/d4ra03182b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Due to their biocompatibility, facile recoverability, mechanical and thermal stability, high surface area, and active catalytic sites, magnetic nanocomposites, containing natural polymers and magnetic nanoparticles, have been used to produce supports for catalysts or biocatalysts. Pectin, an important polycarbohydrate, has abundant functional groups with excellent ability to coat the surface of the nanoparticles to fabricate composite and hybrid materials. A novel bimetallic cobalt(ii) and copper(ii)-based metal-organic framework (Co/Cu-MOF) immobilized pectin-modified Fe3O4 magnetic nanocomposite was designed and fabricated. Fe3O4 nanoparticles were modified in situ by pectin and, subsequently, used as a support for growing Co/Cu-MOF [Fe3O4/pectin/(Co/Cu)MOF]. The properties of the nanocomposite were investigated by FT-IR, XRD, SEM, EDS, VSM, STA, and BET. The nanocomposite exhibited both magnetic characteristics and a high surface area, making it a suitable candidate for catalytic applications. Then, the Fe3O4/pectin/(Co/Cu)MOF nanocomposite was utilized in the Biginelli reaction for the production of biologically active dihydropyrimidinones. Due to paramagnetism, Fe3O4/pectin/(Co/Cu)MOF was easily recovered and reused in six cycles without significant loss in reactivity. This green method comprises several benefits, such as mild reaction conditions, free-solvent media, high yields, easy workup, short reaction times and reusability of the prepared catalyst.
Collapse
Affiliation(s)
- Majid Grami
- Department of Chemistry, Yasouj University Yasouj 75918-74831 Iran +98-741-222-3048 +98-741-222-3048
| | - Zahra Rafiee
- Department of Chemistry, Yasouj University Yasouj 75918-74831 Iran +98-741-222-3048 +98-741-222-3048
| |
Collapse
|
24
|
Rios EAM, Dea CM, Dos Santos ERFB, D'Oca MGM, Rampon DS, Nachtigall FM, Santos LS, Guzman L, Moore-Carrasco R, Rebolledo-Mira D, D'Oca CRM. Synthesis of novel fatty acid 3,4-dihydropyrimidin-2-(1 H)-one and antitumoral activity against breast and gastric cancer cells. RSC Adv 2024; 14:22981-22987. [PMID: 39040706 PMCID: PMC11261338 DOI: 10.1039/d4ra03292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/13/2024] [Indexed: 07/24/2024] Open
Abstract
Monastrol is the best-known small compound from the dihydropyrimidinones/thiones (DHPMs) heterocycle family, a cell-permeable molecule recognized as an inhibitor of mitotic kinesin Eg5, that is over-expressed in tumor cells and is a very promising target for the development of new drugs for cancer. The lipophilic properties of the DHPMs have been demonstrated to be of pivotal importance in the design of new molecules. This work describes the synthesis and antitumoral activity of novel C5-substituted fatty-DHPMs against breast and gastric cancer cell lines. The compounds were synthesized via Biginelli multicomponent reaction from oleyl β-ketoester in good yields (40-72%) using a simple approach catalyzed by nontoxic and free-metal sulfamic acid. Among the compounds tested, the compound 10c, derived from 3-hydroxybenzaldehyde and urea, exhibited 77% cellular viability to normal cells (C2C12) and was selected to be evaluated against tumoral breast (MCF-7) and gastric (AGS) cell lines. The results obtained afforded an IC50 of breast cancer cells of 2.3 μM, qualifying the molecule as the most potent, and making it a promising compound for future experiments in vivo.
Collapse
Affiliation(s)
- E A M Rios
- Laboratory of Polymers and Catalysis (LAPOCA), Department of Chemistry, Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - C M Dea
- Laboratory of Polymers and Catalysis (LAPOCA), Department of Chemistry, Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - E R F B Dos Santos
- Laboratory of Polymers and Catalysis (LAPOCA), Department of Chemistry, Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - M G M D'Oca
- Kolbe's Laboratory of Organic Synthesis, Department of Chemistry, Federal University of Paraná - UFPR P. O. Box 19032 Curitiba PR 81531-990 Brazil
| | - D S Rampon
- Laboratory of Polymers and Catalysis (LAPOCA), Department of Chemistry, Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - F M Nachtigall
- Instituto de Ciencias Aplicadas - Universidad Autónoma de Chile Talca 3467987 Chile
| | - L S Santos
- Laboratory of Asymmetric Synthesis, Chemistry Institute of Natural Resources, Universidad de Talca Talca 3460000 Chile
| | - L Guzman
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - R Moore-Carrasco
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - D Rebolledo-Mira
- Center for Medical Research, School of Medicine, University of Talca Talca 3460000 Chile
| | - C R M D'Oca
- Laboratory of Polymers and Catalysis (LAPOCA), Department of Chemistry, Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| |
Collapse
|
25
|
Lu K, Shen X, Shi Y, He Z, Zhang D, Zhou M. Biodegradable polyester copolymers: synthesis based on the Biginelli reaction, characterization, and evaluation of their application properties. RSC Adv 2024; 14:17440-17447. [PMID: 38813120 PMCID: PMC11135155 DOI: 10.1039/d4ra02002b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024] Open
Abstract
The Biginelli reaction, a three-component cyclocondensation reaction, is an important member of the multicomponent reaction (MCR) family. In this study, we conducted end-group modifications on a variety of biodegradable polyesters, including poly(1,4-butylene adipate) (PBA), poly(ε-caprolactone) (PCL), polylactic acid (PLA), and poly(p-dioxanone) (PPDO), based on the precursor polyethylene glycol (PEG). By combining two polymers through the Biginelli multi-component reaction, four new biodegradable polyester copolymers, namely DHPM-PBA, DHPM-PCL, DHPM-PLA, and DHPM-PPDO, were formed. These Biginelli reactions demonstrated exceptional completeness, validating the efficiency of the synthesis strategy. Although the introduction of various polyesters lead to different properties, such as crystallinity and cytotoxicity, the newly synthesized 3,4-dihydro-2(H)-pyrimidinone compounds (DHPMs) exhibit enhanced hydrophilicity and can self-assemble in water and N,N-dimethylformamide (DMF) solution to form micelles with a controllable size. Furthermore, DHPM-PPDO promotes cellular growth and has potential applications in wound healing and tissue engineering. In conclusion, this method demonstrates great universality and methodological significance and offers insights into the medical applications of polyethylene glycol.
Collapse
Affiliation(s)
- Kai Lu
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Xinyi Shen
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Yunhai Shi
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Zejian He
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou Zhejiang 311215 China
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital Hangzhou Zhejiang 310014 China
| | - Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| |
Collapse
|
26
|
Kuznetsova EA, Rysaeva RR, Smolobochkin AV, Gazizov AS, Gerasimova TP, Gerasimova DP, Lodochnikova OA, Morozov VI, Vatsadze SZ, Burilov AR, Pudovik MA. Hypervalent Sulfur Derivatives as Sulfenylating Reagents: Visible-Light-Mediated Direct Thiolation of Activated C(sp 2)-H Bonds with Dihalosulfuranes. Org Lett 2024; 26:4323-4328. [PMID: 38723192 DOI: 10.1021/acs.orglett.4c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In contrast to hypervalent iodine compounds, the chemistry of their sulfur analogues has been considerably less explored. Herein, we report the direct C-H bond thiolation of electron-rich heterocycles, arenes, and 1,3-dicarbonyls by dichlorosulfuranes under mild conditions. Mechanistic studies and density functional theory calculations suggest the radical chain mechanism of the disclosed transformation. The key to success is attributed to a strikingly low S-Cl bond dissociation energy, which enables the generation of radical species upon exposure to daylight.
Collapse
Affiliation(s)
- Elizaveta A Kuznetsova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
- Kazan National Research Technological University, Karla Marksa Street 68, Kazan 420015, Russian Federation
| | - Regina R Rysaeva
- Organic Chemistry Department, Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Andrey V Smolobochkin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
| | - Almir S Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
| | - Tatyana P Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
| | - Daria P Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
| | - Olga A Lodochnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
| | - Vladimir I Morozov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
| | - Sergey Z Vatsadze
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russian Federation
| | - Alexander R Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
| | - Michail A Pudovik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
| |
Collapse
|
27
|
Sadeghi M. The untold story of starch as a catalyst for organic reactions. RSC Adv 2024; 14:12676-12702. [PMID: 38645516 PMCID: PMC11027044 DOI: 10.1039/d4ra00775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Starch is one of the members of the polysaccharide family. This biopolymer has shown many potential applications in different fields such as catalytic reactions, water treatment, packaging, and food industries. In recent years, using starch as a catalyst has attracted much attention. From a catalytic point of view, starch can be used in organic chemistry reactions as a catalyst or catalyst support. Reports show that as a catalyst, simple starch can promote many heterocyclic compound reactions. On the other hand, functionalized starch is not only capable of advancing the synthesis of heterocycles but also is a good candidate catalyst for other reactions including oxidation and coupling reactions. This review tries to provide a fair survey of published organic reactions which include using starch as a catalyst or a part of the main catalyst. Therefore, the other types of starch applications are not the subject of this review.
Collapse
Affiliation(s)
- Masoud Sadeghi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box: 87317-51167 Kashan Iran
| |
Collapse
|
28
|
Li W, Yang X, Ahmad N, Zhang SL, Zhou CH. Novel aminothiazoximone-corbelled ethoxycarbonylpyrimidones with antibiofilm activity to conquer Gram-negative bacteria through potential multitargeting effects. Eur J Med Chem 2024; 268:116219. [PMID: 38368710 DOI: 10.1016/j.ejmech.2024.116219] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/20/2024]
Abstract
The emergence of drug-resistant microorganisms threatens human health, and it is usually exacerbated by the formation of biofilm, which forces the development of new antibacterial agents with antibiofilm activity. In this work, a novel category of aminothiazoximone-corbelled ethoxycarbonylpyrimidones (ACEs) was designed and synthesized, and some of the prepared ACEs showed potent bioactivity against the tested bacteria. In particular, imidazolyl ACE 6c showed better inhibitory activity towards Acinetobacter baumannii and Escherichia coli with MIC values both of 0.0066 mmol/L than norfloxacin. It was also revealed that imidazolyl ACE 6c not only possessed inconspicuous hemolytic rate and cytotoxicity, low drug resistance and no risk of penetrating the blood-brain barrier, but also exhibited obvious biofilm inhibition and eradication activities. The preliminary mechanism research suggested that imidazolyl ACE 6c could induce metabolic dysfunction by deactivating lactate dehydrogenase and promote the accumulation of reactive oxygen species to decrease the reduced glutathione and ultimately cause oxidative damage in bacteria. Furthermore, ACE 6c was also found that could insert into DNA to form the supramolecular complex of 6c-DNA and trigger cell death. The multidimensional effect might promote bacterial cell rupture, leading to the leakage of intracellular content. These findings manifested that novel imidazolyl ACE 6c as a potential multitargeting antibacterial agent with potent antibiofilm activity could provide new possibility for the treatment of refractory biofilm-intensified bacterial infections.
Collapse
Affiliation(s)
- Wei Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xi Yang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Nisar Ahmad
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
29
|
Rady GS, El Deeb MA, Sarg MTM, Taher AT, Helwa AA. Design, synthesis and biological evaluation of novel morpholinopyrimidine-5-carbonitrile derivatives as dual PI3K/mTOR inhibitors. RSC Med Chem 2024; 15:733-752. [PMID: 38389871 PMCID: PMC10880895 DOI: 10.1039/d3md00693j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 02/24/2024] Open
Abstract
In this study, novel morpholinopyrimidine-5-carbonitriles were designed and synthesized as dual PI3K/mTOR inhibitors and apoptosis inducers. The integration of a heterocycle at position 2, with or without spacers, of the new key intermediate 2-hydrazinyl-6-morpholinopyrimidine-5-carbonitrile (5) yielded compounds 6-10, 11a-c and 12a-h. The National Cancer Institute (USA) tested all compounds for antiproliferative activity. Schiff bases, 12a-h analogs, were the most active ones. The most promising compounds 12b and 12d exhibited excellent antitumor activity against the leukemia SR cell line, which is the most sensitive cell line, with IC50 0.10 ± 0.01 and 0.09 ± 0.01 μM, respectively, along with significant effects on PI3Kα/PI3Kβ/PI3Kδ with IC50 values of 0.17 ± 0.01, 0.13 ± 0.01 and 0.76 ± 0.04 μM, respectively, for 12b and 1.27 ± 0.07, 3.20 ± 0.16 and 1.98 ± 0.11, respectively, for 12d compared to LY294002. Compared to Afinitor, these compounds inhibited mTOR with IC50 values of 0.83 ± 0.05 and 2.85 ± 0.17 μM, respectively. Annexin-V and propidium iodide (PI) double labeling showed that compounds 12b and 12d promote cytotoxic leukemia SR apoptosis. Compounds 12b and 12d also caused a G2/M cell cycle arrest in the leukaemia SR cell line. The findings of this study indicate that the highest effect was observed for 12b, which was supported by western blot and docking analysis.
Collapse
Affiliation(s)
- Ghada S Rady
- Directorate of Health Affairs in Giza, Ministry of Health Egypt
| | - Moshira A El Deeb
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo Egypt
| | - Marwa T M Sarg
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo Egypt
| | - Azza T Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U) 6th of October city Giza 12585 Egypt
| | - Amira A Helwa
- Department of Pharmaceutical Organic Chemistry, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) Al-Motamayez District, P.O. Box: 77, 6th of October city Giza Egypt
| |
Collapse
|
30
|
Kamat V, Barretto DA, Poojary B, Kumar A, Patil VB, Hamzad S. In vitro α-amylase and α-glucosidase inhibition study of dihydropyrimidinones synthesized via one-pot Biginelli reaction in the presence of a green catalyst. Bioorg Chem 2024; 143:107085. [PMID: 38183681 DOI: 10.1016/j.bioorg.2023.107085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
A green catalyst WELPSA-catalyzed three-component condensation (Biginelli) process involving an aldehyde, barbituric/thiobarbituric/1,3-dimethylbarbituric acid, and urea/thiourea/guanidine hydrochloride in a single pot in presence of a green solvent for the production of DHPM have been presented. The catalyst is reusable and this methodology is scalable. By using the in vitro experiments, the antidiabetic potentiality of synthesized compounds that inhibit α-amylase along with α-glucosidase efficiencies was assessed. All the synthesized compounds except for 4a and 4e, showed the most significant inhibition for α-amylase and α-glucosidase activities. Among the synthesized DHPM compounds, 4c and 4b exhibited significant inhibition profiles compared to the standard antidiabetic drug acarbose. Furthermore, synthesized substances' energy-minimized structures, 3D structures, and DFT calculations were performed using Gaussian 09 software, hybrid models, and MM2 force approaches. Strong hydrogen bonds with amino acid residues Arg-672, Arg-600, Trp-613, Asp-404, Asp-282, and Asp-616 indicate that an α-glucosidase-inhibitory peptide may have hypoglycemic efficacy confirmed by the molecular docking study of the synthesized DHPM.
Collapse
Affiliation(s)
- Vinuta Kamat
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India.
| | - Delicia A Barretto
- School of Chemical Sciences, Goa University, Taleigao Plateau-403206, Panaji, Goa, India
| | - Boja Poojary
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri-574199, Dakshina Kannada, Karnataka, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India.
| | - Veerabhadragouda B Patil
- Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Czech Republic
| | - Shanavaz Hamzad
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Kanakapura Road, Ramanagara (D) 562112, Karnataka, India
| |
Collapse
|
31
|
Kandhavelu J, Subramanian K, Naidoo V, Sebastianelli G, Doan P, Konda Mani S, Yapislar H, Haciosmanoglu E, Arslan L, Ozer S, Thiyagarajan R, Candeias NR, Penny C, Kandhavelu M, Murugesan A. A novel EGFR inhibitor, HNPMI, regulates apoptosis and oncogenesis by modulating BCL-2/BAX and p53 in colon cancer. Br J Pharmacol 2024; 181:107-124. [PMID: 37183661 PMCID: PMC10952184 DOI: 10.1111/bph.16141] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Colorectal cancer (CRC) is the second most lethal disease, with high mortality due to its heterogeneity and chemo-resistance. Here, we have focused on the epidermal growth factor receptor (EGFR) as an effective therapeutic target in CRC and studied the effects of polyphenols known to modulate several key signalling mechanisms including EGFR signalling, associated with anti-proliferative and anti-metastatic properties. EXPERIMENTAL APPROACH Using ligand- and structure-based cheminformatics, we developed three potent, selective alkylaminophenols, 2-[(3,4-dihydroquinolin-1(2H)-yl)(p-tolyl)methyl]phenol (THTMP), 2-[(1,2,3,4-tetrahydroquinolin-1-yl)(4-methoxyphenyl)methyl]phenol (THMPP) and N-[2-hydroxy-5-nitrophenyl(4'-methylphenyl)methyl]indoline (HNPMI). These alkylaminophenols were assessed for EGFR interaction, EGFR-pathway modulation, cytotoxic and apoptosis induction, caspase activation and transcriptional and translational regulation. The lead compound HNPMI was evaluated in mice bearing xenografts of CRC cells. KEY RESULTS Of the three alkylaminophenols tested, HNPMI exhibited the lowest IC50 in CRC cells and potential cytotoxic effects on other tumour cells. Modulation of EGFR pathway down-regulated protein levels of osteopontin, survivin and cathepsin S, leading to apoptosis. Cell cycle analysis revealed that HNPMI induced G0/G1 phase arrest in CRC cells. HNPMI altered the mRNA for and protein levels of several apoptosis-related proteins including caspase 3, BCL-2 and p53. HNPMI down-regulated the proteins crucial to oncogenesis in CRC cells. Assays in mice bearing CRC xenografts showed that HNPMI reduced the relative tumour volume. CONCLUSIONS AND IMPLICATIONS HNPMI is a promising EGFR inhibitor for clinical translation. HNPMI regulated apoptosis and oncogenesis by modulating BCL-2/BAX and p53 in CRC cell lines, showing potential as a therapeutic agent in the treatment of CRC.
Collapse
Affiliation(s)
- Jeyalakshmi Kandhavelu
- Division of Oncology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Kumar Subramanian
- Division of Oncology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Vivash Naidoo
- Division of Oncology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Giulia Sebastianelli
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, BioMediTechTampere University and Tays Cancer CentreTampereFinland
| | - Phuong Doan
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, BioMediTechTampere University and Tays Cancer CentreTampereFinland
- BioMediTech Institute and Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Science CenterTampere University HospitalTampereFinland
| | - Saravanan Konda Mani
- Research and Publication WingBharath Institute of Higher Education and ResearchChennaiTamil NaduIndia
| | - Hande Yapislar
- Department of PhysiologyAcibadem University School of MedicineAtasehir, IstanbulTurkey
| | - Ebru Haciosmanoglu
- Department of BiophysicsBezmialem Vakıf University School of MedicineFatih, IstanbulTurkey
| | - Leman Arslan
- Department of PhysiologyBezmialem Vakıf University School of MedicineFatih, IstanbulTurkey
| | - Samed Ozer
- Department of PhysiologyAcibadem University School of MedicineAtasehir, IstanbulTurkey
| | - Ramesh Thiyagarajan
- Department of Basic Medical Sciences, College of MedicinePrince Sattam Bin Abdulaziz UniversityAl‐KharjKingdom of Saudi Arabia
| | - Nuno R. Candeias
- LAQV‐REQUIMTE, Department of ChemistryUniversity of AveiroAveiroPortugal
- Faculty of Engineering and Natural SciencesTampere UniversityTampereFinland
| | - Clement Penny
- Division of Oncology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Meenakshisundaram Kandhavelu
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, BioMediTechTampere University and Tays Cancer CentreTampereFinland
- BioMediTech Institute and Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Science CenterTampere University HospitalTampereFinland
| | - Akshaya Murugesan
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, BioMediTechTampere University and Tays Cancer CentreTampereFinland
- Department of BiotechnologyLady Doak CollegeThallakulam, MaduraiIndia
| |
Collapse
|
32
|
Ghanbari N, Ghafuri H. Pyromellitic acid grafted to cross-linked LDH by dendritic units: An efficient and recyclable heterogeneous catalyst for green synthesis of 2,3-dihydro quinazoline and dihydropyrimidinones derivatives. Heliyon 2023; 9:e20978. [PMID: 37928013 PMCID: PMC10623181 DOI: 10.1016/j.heliyon.2023.e20978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/05/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
In this work, using layered double hydroxide (LDH) inorganic substrate, melamine as binding agent and dendrimer G1 and also pyromellitic acid (PMA) organic catalytic agent a heterogeneous acid catalyst was designed and prepared. After that, the prepared organic-inorganic catalyst was evaluated by various identification techniques such as FTIR, EDX, XRD, TGA, FESEM, and BET, and the results showed that the desired structure was successfully prepared. Also, in order to investigate the efficiency of the LDH@Me-PMA nanocatalyst as an efficient and heterogeneous catalyst, it was used for green and one-pot synthesis of 2,3-dihydro quinazoline and 3,4-dihydropyrimidinone-2-(1H)-ones derivatives. The use of LDH@Me-PMA catalyst led to the synthesis of the desired derivatives with higher efficiency and shorter reaction time than previously reported works. In addition, the prepared LDH@Me-PMA acid catalyst has the ability to be recycled and reused for 5 consecutive periods and has high stability, which is well consistent with the principles of green chemistry.
Collapse
Affiliation(s)
- Nastaran Ghanbari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
33
|
Tabor W, Katsogiannou A, Karta D, Andrianopoulou E, Berlicki Ł, Vassiliou S, Grabowiecka A. Exploration of Thiourea-Based Scaffolds for the Construction of Bacterial Ureases Inhibitors. ACS OMEGA 2023; 8:28783-28796. [PMID: 37576686 PMCID: PMC10413841 DOI: 10.1021/acsomega.3c03702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
A series of 32 thiourea-based urease inhibitors were synthesized and evaluated against native bacterial enzyme and whole cells of Sporosarcina pasteurii and Proteus mirabilis strains. The proposed inhibitors represented structurally diverse thiosemicarbazones and thiocarbohydrazones, benzyl-substituted thiazolyl thioureas, 1H-pyrazole-1-carbothioamides, and dihydropirimidine-2(1H)-thiones. Kinetic characteristics with purified S. pasteurii enzyme determined low micromolar inhibitors within each structural group. (E)-2-(1-Phenylethylidene)hydrazine-1-carbothioamide 19 (Ki = 0.39 ± 0.01 μM), (E)-2-(4-methylbenzylidene)hydrazine-1-carbothioamide 16 (Ki = 0.99 ± 0.04 μM), and N'-((1E,2E)-1,3-diphenylallylidene)hydrazinecarbothiohydrazide 29 (Ki = 2.23 ± 0.19 μM) were used in modeling studies that revealed sulfur ion coordination of the active site nickel ion and hydrogen bonds between the amide group and the side chain of Asp363 and Ala366 carbonyl moiety. Whole-cell studies proved the activity of compounds in Gram-positive and Gram-negative microorganisms. Ureolysis control observed in P. mirabilis PCM 543 (e.g., IC50 = 304 ± 14 μM for 1-benzyl-3-(4-(4-hydroxyphenyl)thiazol-2-yl)thiourea 52) is a valuable achievement, as urease is recognized as a major virulence factor of this urinary tract pathogen.
Collapse
Affiliation(s)
- Wojciech Tabor
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Aikaterini Katsogiannou
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Danai Karta
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Evgenia Andrianopoulou
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Stamatia Vassiliou
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Agnieszka Grabowiecka
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| |
Collapse
|
34
|
Prasad T, Mahapatra A, Sharma T, Sahoo CR, Padhy RN. Dihydropyrimidinones as potent anticancer agents: Insight into the structure-activity relationship. Arch Pharm (Weinheim) 2023:e2200664. [PMID: 36942985 DOI: 10.1002/ardp.202200664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Cancer is a serious disease that has been around for a long time but currently has no sustainable solution. Several medications currently available offer an opportunity for the manifestation of cancer treatment; however, the "search for better" has led to the development and study of a variety of new scaffolds. Dihydropyrimidinones (DHPMs) are a privileged scaffold, prominent for their versatile range of biological activities. In recent years, the anticancer potential of these unsaturated pyrimidine ring systems has been traversed, along with their synthesis methods and the interlinked mechanisms leading to the anticancer activity. This review summarizes the structure-activity relationship of DHPMs as potential anticancer agents. This study is a short review of their synthesis, mechanism of action, and structure-activity relationships (SARs) that are answerable for the anticancer activity of DHPMs and have been thoroughly researched and assessed.
Collapse
Affiliation(s)
- Tanya Prasad
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Aastha Mahapatra
- College of Professional Studies, Northeastern University, Boston, Massachusetts, USA
| | - Tripti Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Chita R Sahoo
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
35
|
Buzmakova NA, Zamaraeva TM, Rudakova IP, Dmitriev MV. Structural Features and Anti-Inflammatory Activity of 13-(N-Arylaminocarbonyl)-9-Methyl-11-Thioxo-8-Oxa-10,12-Diazatricyclo-[7.3.1.02,7]Trideca-2,4,6-Trienes and Their 10-N-Phenyl-Substituted Derivatives. Pharm Chem J 2023. [DOI: 10.1007/s11094-023-02835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
36
|
Mondal S, Panda R, Das S, Sultana F, Dutta S, Mondal MA. Synthesis and ct-DNA Binding Study of a Donor–π-Acceptor Dihydropyrimidinone Fluorophore. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
37
|
Applications of Hantzsch Esters in Organocatalytic Enantioselective Synthesis. Catalysts 2023. [DOI: 10.3390/catal13020419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Hantzsch esters (1,4-dihydropyridine dicarboxylates) have become, in this century, very versatile reagents for enantioselective organic transformations. They can act as hydride transfer agents to reduce, regioselectively, a variety of multiple bonds, e.g., C=C and C=N, under mild reaction conditions. They are excellent reagents for the dearomatization of heteroaromatic substances, and participate readily in cascade processes. In the last few years, they have also become useful reagents for photoredox reactions. They can participate as sacrificial electron and hydrogen donors and when 4-alkyl or 4-acyl-substituted, they can act as alkyl or acyl radical transfer agents. These last reactions may take place in the presence or absence of a photocatalyst. This review surveys the literature published in this area in the last five years.
Collapse
|
38
|
Catalyzed Methods to Synthesize Pyrimidine and Related Heterocyclic Compounds. Catalysts 2023. [DOI: 10.3390/catal13010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This review covers articles published in the period from 2010 to mid-2022 on synthetic advances in the formation of pyrimidine and related heterocyclic compounds. Special emphasis has been given to the different types of cycloadditions, taking into account the number of their components and leading to the formation of the pyrimidine ring. Due to the large number of publications on the Biginelli reaction and related reactions, this will be dealt with in a separate review in the near future.
Collapse
|
39
|
Synthesis of Dihydropyrimidines: Isosteres of Nifedipine and Evaluation of Their Calcium Channel Blocking Efficiency. Molecules 2023; 28:molecules28020784. [PMID: 36677842 PMCID: PMC9867414 DOI: 10.3390/molecules28020784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Hypertension and cardiovascular diseases related to it remain the leading medical challenges globally. Several drugs have been synthesized and commercialized to manage hypertension. Some of these drugs have a dihydropyrimidine skeleton structure, act as efficient calcium channel blockers, and affect the calcium ions' intake in vascular smooth muscle, hence managing hypertension. The synthesis of such moieties is crucial, and documenting their structure-activity relationship, their evolved and advanced synthetic procedures, and future opportunities in this area is currently a priority. Tremendous efforts have been made after the discovery of the Biginelli condensation reaction in the synthesis of dihydropyrimidines. From the specific selection of Biginelli adducts to the variation in the formed intermediates to achieve target compounds containing heterocylic rings, aldehydes, a variety of ketones, halogens, and many other desired functionalities, extensive studies have been carried out. Several substitutions at the C3, C4, and C5 positions of dihydropyrimidines have been explored, aiming to produce feasible derivatives with acceptable yields as well as antihypertensive activity. The current review aims to cover this requirement in detail.
Collapse
|
40
|
Rawal R, Gupta PK, Kumar B, Bhatia R. Design, Synthesis, and Biological Evaluation of Novel Dihydropyrimidinone Derivatives as Potential Anticancer Agents and Tubulin Polymerization Inhibitors. Assay Drug Dev Technol 2023; 21:17-28. [PMID: 36594970 DOI: 10.1089/adt.2022.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The severity and prevalence of cancer in modern time are a huge global health burden. Continuous efforts are being made toward the development of newer therapeutic candidates to treat and manage this ailment. The dihydropyrimidinone scaffold is one of the key nuclei that have been highly explored and investigated against cancer. It has the potential to combat the consequences of cancer by interacting with several biological targets. Tubulin polymerization inhibition is one such strategy to prevent the progression of cancer. In the presented work, we have synthesized a series of sixteen dihydropyrimidinone derivatives by following a rational drug design. The synthesized compounds have been characterized by 1H NMR and 13C NMR and were further evaluated for cytotoxic activity against breast cancer cell lines (MCF-7 and MDA-MB-231), lung cancer cell lines (A549), and colon cancer cell lines (HCT-116). Compounds 5D and 5P were found most potent and revealed a better cytotoxic activity compared with the standard drug colchicine. Furthermore, the tubulin polymerization inhibition assay revealed that compound 5D showed better inhibition than colchicines, whereas compound 5P revealed an almost equal inhibition to that of colchicine. Furthermore, to investigate the possible mode of action and binding patterns, compounds 5P and 5D were subjected to molecular docking against tubulin (Protein Data Bank ID: ISA0). The results showed that compounds revealed significant interactions and were well occupied inside the cavity of tubulin. The compounds 5D and 5P may serve as new leads in drug development against cancer.
Collapse
Affiliation(s)
- Ramkaran Rawal
- Natural Product Chemistry Group, Chemical Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Praveen K Gupta
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.,Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar, Garhwal, Uttarakhand, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
41
|
Sahoo BM, Banik BK, Kumar BVVR, Panda KC, Tiwari A, Tiwari V, Singh S, Kumar M. Microwave Induced Green Synthesis: Sustainable Technology for Efficient Development of Bioactive Pyrimidine Scaffolds. Curr Med Chem 2023; 30:1029-1059. [PMID: 35733315 DOI: 10.2174/0929867329666220622150013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
Microwave radiation is used as a heating source during the synthesis of heterocyclic compounds. The heating mechanisms involved in microwave-induced synthesis include dipolar polarization and ionic conduction. This heating technology follows the green protocol as it involves the use of recyclable organic solvents during synthesis. The microwave heating approach offers a faster rate of reaction, easier work-up procedure, and higher product yield with purity and also reduces environmental pollution. So, microwave heating is applied as a sustainable technology for the efficient production of pyrimidine compounds as one of the heterocyclic moieties. Pyrimidine is a six-membered nitrogenous heterocyclic compound that plays a significant role due to several therapeutic applications. This moiety acts as an essential building block for generating drug candidates with diverse biological activities, including anti-cancer (capecitabine), anti-thyroid (propylthiouracil), antihistaminic (pemirolast), antimalarial (pyrimethamine), antidiabetic (alloxan), antihypertensive (minoxidil), anti-inflammatory (octotiamine), antifungal (cyprodinil), antibacterial (sulfamethazine), etc. This review is focused on the synthesis of pyrimidine analogs under microwave irradiation technique and the study of their therapeutic potentials.
Collapse
Affiliation(s)
- Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences (Biju Patnaik University of Technology Nodal Centre of Research), Berhampur 760010, Odisha, India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar, Kingdom of Saudi Arabia
| | - Bera Venkata Varaha Ravi Kumar
- Roland Institute of Pharmaceutical Sciences (Biju Patnaik University of Technology Nodal Centre of Research), Berhampur 760010, Odisha, India
| | - Krishna Chandra Panda
- Roland Institute of Pharmaceutical Sciences (Biju Patnaik University of Technology Nodal Centre of Research), Berhampur 760010, Odisha, India
| | - Abhishek Tiwari
- Faculty of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur Rajput, Moradabad 244102, Uttar Pradesh, India
| | - Varsha Tiwari
- Faculty of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur Rajput, Moradabad 244102, Uttar Pradesh, India
| | - Sunil Singh
- 4Department of Pharmaceutical Chemistry, Shri Sai College of Pharmacy, Handia, Prayagraj 221503, Uttar Pradesh, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| |
Collapse
|
42
|
Pawar S, Kumawat MK, Kundu M, Kumar K. Synthetic and medicinal perspective of antileishmanial agents: An overview. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.133977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Cortes Vazquez J, Alharbi WS, Davis J, Moore A, Nesterov VN, Cundari TR, Wang H, Luo W. Three Component Cascade Reaction of Cyclohexanones, Aryl Amines, and Benzoylmethylene Malonates: Cooperative Enamine-Brønsted Acid Approach to Tetrahydroindoles. ACS OMEGA 2022; 7:45341-45346. [PMID: 36530259 PMCID: PMC9753174 DOI: 10.1021/acsomega.2c05909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
A three-component cascade reaction comprising cyclic ketones, arylamines, and benzoylmethylene malonates has been developed to access 4,5,6,7-tetrahydro-1H-indoles. The reaction was achieved through cooperative enamine-Brønsted catalysis in high yields with wide substrate scopes. Mechanistic studies identified the role of the Brønsted acid catalyst and revealed the formation of an imine intermediate, which was confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Jose Cortes Vazquez
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Waad S. Alharbi
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Jacqkis Davis
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Alexia Moore
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Vladimir N. Nesterov
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Thomas R. Cundari
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Hong Wang
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Weiwei Luo
- School
of Chemistry and Chemical Engineering, Changsha
University of Science and Technology, Changsha 410114, China
| |
Collapse
|
44
|
Hasselbrink CL, Shirah JB, Sylvain SR, DeBoef B. Development and Application of a Supramolecular Brønsted Acid Catalyst Based on the Noria Macrocycle. J Org Chem 2022; 87:16074-16078. [PMID: 36383122 DOI: 10.1021/acs.joc.2c00825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The synthesis of derivatives of the Noria macrocycle and the structurally similar macrocycle, R3, each containing 12 sulfonic acid groups, is reported. Herein, we demonstrate their utility as reusable Brønsted acid catalysts for the Biginelli synthesis of dihydropyrimidinones and the Pechmann synthesis of coumarins. We also demonstrate that the supramolecular structure directs the reagents to interact with the sulfonic acid catalytic sites, thus increasing the catalyst's efficiency compared to other monomeric, macrocyclic, and polymeric sulfonic acid catalysts.
Collapse
Affiliation(s)
- Carson Lawrence Hasselbrink
- University of Rhode Island, Department of Chemistry, University of Rhode Island, 140 Flagg Rd, Kingston, Rhode Island 02881, United States
| | - Josephine Bridget Shirah
- University of Rhode Island, Department of Chemistry, University of Rhode Island, 140 Flagg Rd, Kingston, Rhode Island 02881, United States
| | - Samantha Renee Sylvain
- University of Rhode Island, Department of Chemistry, University of Rhode Island, 140 Flagg Rd, Kingston, Rhode Island 02881, United States
| | - Brenton DeBoef
- University of Rhode Island, Department of Chemistry, University of Rhode Island, 140 Flagg Rd, Kingston, Rhode Island 02881, United States
| |
Collapse
|
45
|
Nikam D, Jain A. Advances in the discovery of DHPMs as Eg5 inhibitors for the management of breast cancer and glioblastoma: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
46
|
Stepping Further from Coupling Tools: Development of Functional Polymers via the Biginelli Reaction. Molecules 2022; 27:molecules27227886. [PMID: 36431987 PMCID: PMC9698737 DOI: 10.3390/molecules27227886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Multicomponent reactions (MCRs) have been used to prepare polymers with appealing functions. The Biginelli reaction, one of the oldest and most famous MCRs, has sparked new scientific discoveries in polymer chemistry since 2013. Recent years have seen the Biginelli reaction stepping further from simple coupling tools; for example, the functions of the Biginelli product 3,4-dihydropyrimidin-2(1H)-(thi)ones (DHPM(T)) have been gradually exploited to develop new functional polymers. In this mini-review, we mainly summarize the recent progress of using the Biginelli reaction to identify polymers for biomedical applications. These polymers have been documented as antioxidants, anticancer agents, and bio-imaging probes. Moreover, we also provide a brief introduction to some emerging applications of the Biginelli reaction in materials and polymer science. Finally, we present our perspectives for the further development of the Biginelli reaction in polymer chemistry.
Collapse
|
47
|
El Bakri Y, Musrat Kurbanova M, Ali Siddique S, Ahmad S, Goumri-Said S. One-pot synthesis, X-ray crystal structure, and identification of potential molecules against COVID-19 main protease through structure-guided modeling and simulation approach. ARAB J CHEM 2022; 15:104230. [PMID: 36124333 PMCID: PMC9476335 DOI: 10.1016/j.arabjc.2022.104230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/31/2022] [Indexed: 12/25/2022] Open
Abstract
Although antimicrobial resistance before the Covid-19 pandemic is a top priority for global public health, research is already ongoing on novel organic compounds with antimicrobial and antiviral properties in changing medical environments in connection with Covid 19. Thanks to the Biginelli reaction, which allows the synthesis of pyrimidine compounds, blockers of calcium channels, antibodies, antiviral, antimicrobial, anti-inflammatory, or antioxidant therapeutic compounds were investigated. In this paper, we aim to present Biginelli's synthesis, its therapeutic properties, and the structural-functional relationship in the test compounds that allows the synthesis of antimicrobial compounds. Both the DFT and TD-DFT computations of spectral data, molecular orbitals (HOMO, LUMO) analysis, and electrostatic potential (MEP) surfaces are carried out as an add-on to synthetic research. Hirshfeld surface analysis was also used to segregate the different intermolecular hydrogen bonds involved in the molecular packing strength. Natural Bond Orbital (NBO) investigation endorses the existence of intermolecular interactions mediated by lone pair, bonding, and anti-bonding orbitals. The dipole moment, linear polarizability, and first hyperpolarizabilities have been explored as molecular parameters. All findings based on DFT exhibit the best consistency with experimental findings, implying that synthesized molecules are highly stable. To better understand the binding mechanism of the SARS-CoV-2 Mpro, we performed molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations.
Collapse
Affiliation(s)
- Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Lenin prospect 76, Chelyabinsk 454080, Russian Federation
| | | | - Sabir Ali Siddique
- Center for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Souraya Goumri-Said
- College of Science, Physics department, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
48
|
Synthesis, crystal structure and molecular docking study of new monastrol analogues as inhibitors of epidermal growth factor receptor tyrosine kinase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Saeed A, Ejaz SA, Khalid A, Channar PA, Aziz M, Abbas Q, Wani TA, Alsaif NA, Alanazi MM, Al-Hossaini AM, Altwaijry N, Zargar S, Elhadi M, Hökelek T. Acetophenone-Based 3,4-Dihydropyrimidine-2(1H)-Thione as Potential Inhibitor of Tyrosinase and Ribonucleotide Reductase: Facile Synthesis, Crystal Structure, In-Vitro and In-Silico Investigations. Int J Mol Sci 2022; 23:13164. [PMID: 36361953 PMCID: PMC9658835 DOI: 10.3390/ijms232113164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 08/09/2023] Open
Abstract
The acetophenone-based 3,4-dihydropyrimidine-2(1H)-thione was synthesized by the reaction of 4-methylpent-3-en-2-one (1), 4-acetyl aniline (2) and potassium thiocyanate. The spectroscopic analysis including: FTIR, 1H-NMR, and single crystal analysis proved the structure of synthesized compound (4), with the six-membered nonplanar ring in envelope conformation. In crystal structure, the intermolecular N-H ⋯ S and C-H ⋯ O hydrogen bonds link the molecule in a two-dimensional manner which is parallel to (010) the plane enclosing R22 (8) and R22 (10) ring motifs. After that, the Hirshfeld surfaces and their related two-dimensional fingerprint plots were used for thorough investigation of intermolecular interactions. According to Hirshfeld surface analysis, the most substantial contributions to the crystal packing are from H ⋯ H (59.5%), H ⋯ S/S ⋯ H (16.1%), and H ⋯ C/C ⋯ H (13.1%) interactions. The electronic properties and stability of the compound were investigated through density functional theory (DFT) studies using B3LYP functional and 6-31G* as a basis set. The compound 4 displayed the high chemical reactivity with chemical softness of 2.48. In comparison to the already reported known tyrosinase inhibitor, the newly synthesized derivatives exhibited almost seven-fold better inhibition of tyrosinase (IC50 = 1.97 μM), which was further supported by molecular docking studies. The compound 4 inside the active pocket of ribonucleotide reductase (RNR) exhibited a binding energy of -19.68 kJ/mol, and with mammalian deoxy ribonucleic acid (DNA) it acts as an effective DNA groove binder with a binding energy of -21.32 kJ/mol. The results suggested further exploration of this compound at molecular level to synthesize more potential leads for the treatment of cancer.
Collapse
Affiliation(s)
- Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Aqsa Khalid
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Pervaiz Ali Channar
- Department of Basic Sciences and Humanities, Faculty of of Information Science and Humanities, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Qamar Abbas
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq 32038, Bahrain
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro, Gongju 314-701, Chungnam, Korea
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Al-Hossaini
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Muawya Elhadi
- Department of Physics, Faculty of Science and Humanities, Ed Dawadmi, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Tuncer Hökelek
- Department of Physics, Faculty of Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| |
Collapse
|
50
|
El-Emam AA, Al-Wahaibi LH, Blacque O, Tiekink ERT. Crystal structure of 4-ethyl-2-{[(4-nitrophenyl)methyl]sulfanyl}-6-oxo-1,6-dihydropyrimidine-5-carbonitrile, C 14H 12N 4O 3S. Z KRIST-NEW CRYST ST 2022; 237:811-814. [DOI: 10.1515/ncrs-2022-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C14H12N4O3S, monoclinic, P21/n (no. 14), a = 12.2777(3) Å, b = 9.4312(2) Å, c = 12.9412(2) Å, β = 107.945(2)°, V = 1425.61(5) Å3, Z = 4, R
gt
(F) = 0.0305, wR
ref
(F
2) = 0.0837, T = 160 K.
Collapse
Affiliation(s)
- Ali A. El-Emam
- Department of Medicinal Chemistry , Faculty of Pharmacy, Mansoura University , Mansoura 35516 , Egypt
| | - Lamya H. Al-Wahaibi
- Department of Chemistry , College of Sciences, Princess Nourah bint Abdulrahman University , Riyadh 11671 , Saudi Arabia
| | - Olivier Blacque
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190, 8057 Zurich , Switzerland
| | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University , 47500 Bandar Sunway , Selangor Darul Ehsan , Malaysia
| |
Collapse
|