1
|
Martínez-Saldarriaga J, Henao-Rojas JC, Flórez-Martínez DH, Cadena-Chamorro EM, Yepes-Betancur DP. Methodological framework for supporting phytochemical bioprospecting re-search: A case study on carrot ( Daucus carota L.) crop by-products. Heliyon 2025; 11:e41822. [PMID: 39916821 PMCID: PMC11799957 DOI: 10.1016/j.heliyon.2025.e41822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/02/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025] Open
Abstract
Carrots are among the most crucial and globally preferred vegetables, widely recognized for their importance as a source of phytonutrients, including phenolic compounds, carotenoids, polyacetylenes, and ascorbic acid. However, its production phase incurs substantial losses, estimated at 30 %; these discarded carrots typically find application in animal feed, composting material or organic waste. Therefore, this study aims to develop a methodological framework focusing on the application of a phytochemical bioprospecting process based on scientific surveillance; using carrot crop by-products as a foundational example. Advanced methodologies, such as bibliometric, scientometric, and patent analyses, supported by technological tools such as VOSviewer and Patent Inspiration, were employed. This involved the creation of scientific landscapes, trend maps and co-occurrence networks, intending to explore the potential of carrot crop by-products, their applicability in generating new knowledge, and their utilization in the industry. This approach facilitated the identification of emerging trends in scientific research, providing a comprehensive view of commercial and industrial areas of interest, with a focus on circular economic principles. Furthermore, the study emphasized the importance of bioprospecting, supported by these methodologies and technological tools, as a key factor in the research process on the potential uses of carrot crop by-products, which could extend to other matrices.
Collapse
Affiliation(s)
- Jaison Martínez-Saldarriaga
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Centro de Investigación La Selva, Kilómetro 7, vía Rionegro - Las Palmas, Sector Llanogrande, Rionegro, Colombia
- Facultad de Ciencias Agrarias, Departamento de Ingeniería Agrícola y Alimentos, Universidad Nacional de Colombia, Sede Medellín, Calle 59A N°63– 20, Medellín, Colombia
| | - Juan Camilo Henao-Rojas
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Centro de Investigación La Selva, Kilómetro 7, vía Rionegro - Las Palmas, Sector Llanogrande, Rionegro, Colombia
| | - Diego Hernando Flórez-Martínez
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Sede Central, Kilómetro 14 vía Mosquera-Bogotá, Mosquera, Colombia
| | - Edith Marley Cadena-Chamorro
- Facultad de Ciencias Agrarias, Departamento de Ingeniería Agrícola y Alimentos, Universidad Nacional de Colombia, Sede Medellín, Calle 59A N°63– 20, Medellín, Colombia
| | - Diana Paola Yepes-Betancur
- Servicio Nacional de Aprendizaje (SENA), Centro de la Innovación, la Agroindustria y la Aviación, Cra48 N°49-62, Rionegro, Colombia
| |
Collapse
|
2
|
Paul B, Xie L, Yahia ZO, Rashwan AK, Mo J, Chen W. Enhancing milk-based drinks with lyophilized guar gum-coated cyanidin-3-O-glucoside-loaded nano-nutriosomes: Physicochemical and antioxidant characterizations. Int J Biol Macromol 2025; 288:138426. [PMID: 39672394 DOI: 10.1016/j.ijbiomac.2024.138426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Cyanidin-3-O-glucoside (C3G) is a flavonoid compound recognized for its diverse biological properties. It is considered one of the most promising flavonoids due to its potential health benefits. Still, its use in functional foods, particularly beverages, is limited due to degradation and instability under various environmental conditions. Recent advancements involving novel freeze-dried guar gum-coated nano-nutriosome (FD-GG-NS) carriers have demonstrated effective strategies to address these challenges. The purpose of this work was to develop and evaluate a novel freeze-dried guar gum-coated nano-nutriosomes that would improve the physicochemical stability and antioxidant activity of C3G in milk-based beverages. The results exhibited that C3G was successfully encapsulated in freeze-dried NS and GG-C3G-NS, with good encapsulation efficacy (>91.02 %) and particle sizes varied from 175.27 to 186.60 nm within a respectable range of PDI (<0.3). Firstly, to investigate the optimum concentration 0.4 % was shown to be the best concentration due to improved stability and dietary fiber content. The FD-GG-C3G-NS in milk drinks improved the color, turbidity, ζ-potential, and sensory assessment while declining apparent viscosity and acidity with improved antioxidant activity during storage for 15th days at 4 °C. Thus, integrating C3G into functional dairy drinks using guar gum-coated nano-nutriosomes has broad prospects in the food industry.
Collapse
Affiliation(s)
- Bolai Paul
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Zineb Ould Yahia
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
3
|
Ren W, Wu M, Wang B, Xu H, Wei W, Sun D. Constant temperature and humidity combined with vacuum-steam pulsed steaming of Polygonatum cyrtonema rhizome: Quality attribute and browning mechanism. Food Chem 2025; 463:141472. [PMID: 39369607 DOI: 10.1016/j.foodchem.2024.141472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
The quality of Polygonatum cyrtonema rhizome is considerably influenced by steaming, a post-harvest procedure; however, the mechanisms behind this quality formation are not well understood. This study explored two innovative streaming methods for Polygonatum cyrtonema rhizome: constant temperature and humidity steaming and drying (CTHSD) and constant temperature and humidity combined with vacuum-steam pulsed steaming and drying (CTH + VSPSD). Traditional atmospheric steaming, simmering, and drying (ASD) were also used. We evaluated the microstructure, colour and polysaccharide, reducing sugar, 5-hydroxymethylfurfural, amino acid, phenolics and diosgenin contents as well as its antioxidant capacity. Results indicated that all methods enhanced antioxidant activity, released phenolic compounds and disrupted the microscopic pore wall structure. The processed samples exhibited increased browning values owing to non-enzymatic browning reactions between amino acids and reducing sugars. Notably, the CTH + VSPSD method yielded the highest antioxidant capacity, better preservation of polysaccharides and lower levels of 5-hydroxymethylfurfural compared to other methods. Additionally, CTH + VSPSD reduced production time by 66.7 % while achieving a comparable colour profile to that of conventional ASD technology. Therefore, the CTH + VSPSD method shows great promise for producing high-quality Polygonatum cyrtonema rhizome products.
Collapse
Affiliation(s)
- Weike Ren
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Bo Wang
- School of Behavioural and Health Science, Australian Catholic University, Sydney, NSW 2060, Australia.
| | - Huihuang Xu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Wenguang Wei
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Dongyu Sun
- College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
Wang B, Jia Y, Li Y, Jiao X, He Y, Wen L, Wang Z. Comprehensive impact of pre-treatment methods on white radish quality, water migration, and microstructure. Food Chem X 2024; 24:101991. [PMID: 39634521 PMCID: PMC11615932 DOI: 10.1016/j.fochx.2024.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
The preprocessing stage is crucial in vegetable processing, significantly influencing the final product's quality. This study investigates the effects of various pre-pre-treatment methods, including cutting, blanching, osmotic, and ultrasound-assisted osmotic treatment, on the quality characteristics, water migration, and microstructure of white radish. The results showed that osmosis and ultrasound-assisted osmosis has the least effect on the total color difference (ΔE) and the greatest water loss (WL) (p < 0.05); blanching has the least effect on the hardness and eutectic points (p < 0.05); and the blanching-ultrasound-assisted osmosis has the greatest solid gain (p < 0.05). The increase of WL led to a decrease in hardness (-0.82). By analyzing the quality characteristics of different pre-treatment methods, contributing to the development of suitable pre-treatment methods for different products and optimization pre-treatments according to requirements. The mechanism of quality characteristics of pre-treatments on products is the future research direction.
Collapse
Affiliation(s)
- Bixiang Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yuanlong Jia
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yue Li
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xuan Jiao
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yang He
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Liankui Wen
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Zhitong Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Liang S, Yu S, Qin Y, Yu H, Zhao Z, Xu Y, Zhang G, Li C, Liu L, Du P, Huo J. Blue honeysuckle fermentation with Lacticaseibacillus rhamnosus L08 improves its biological activity, sensory and flavor characteristics, and storage stability. Food Chem X 2024; 23:101659. [PMID: 39157659 PMCID: PMC11328023 DOI: 10.1016/j.fochx.2024.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
The objective of this study was to investigate the potential of Lacticaseibacillus rhamnosus L08 (L. rhamnosus L08) to enhance the functionality, improve the taste, and explore efficient storage methods of blue honeysuckle juice (BHJ). The fermentation process resulted in an increase in the levels of polyphenols, flavonoids, and anthocyanins in blue honeysuckle juice, which was attributed to the action of β-glucosidase on specific phenolic compounds, namely Cyanidin-3-Glucoside and Quinic acid. The increase in phenolic content resulted in an enhancement of the antioxidant capacity of BHJ. The fermentation processed, utilizing L. rhamnosus L08, not only enhanced the flavor and taste of BHJ, but also mitigated its bitter aftertaste while minimizing the loss of bioactive components during storage. In conclusion, this study demonstrated a potential avenue for enhancing the commercial value and dietary significance of this lesser-known superfruit, with fermented BHJ emerging as a promising innovation in the field of functional foods.
Collapse
Affiliation(s)
- Shengnan Liang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Siyang Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yishu Qin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Honglin Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zifu Zhao
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Yunhui Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Guofang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chun Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Libo Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Peng Du
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Huo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Xu H, Sutar PP, Ren W, Wu M. Revealing the mechanism of post-harvest processing on rose quality based on dynamic changes in water content, enzyme activity, volatile and non-volatile metabolites. Food Chem 2024; 448:139202. [PMID: 38579556 DOI: 10.1016/j.foodchem.2024.139202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Existing studies on post-harvest processing of edible roses have mainly focused on processing techniques and physicochemical properties of the final dried products, with limited studies on how changes in metabolites during processing affect the quality of these products. This study investigated changes in water content and status, enzyme activity, phenolic compounds, and volatile and non-volatile compounds during processing and revealed the mechanisms by which post-harvest processing (drying without blanching (WBD) and drying with blanching (BD)) affects the quality of dried roses by establishing their correlations. Results showed that the blanching reduced the relative content of free water and water activity, thus reducing the subsequent drying time and enzyme activity. The BD method caused higher levels of phenolic compounds than the WBD method in terms of gallic acid, ellagic acid, epicatechin, and quercetin. The OPLS-DA analysis identified 6 differential volatiles out of 72 detected volatiles, contributing to the unique aroma of dried roses by activating olfactory receptors through hydrogen bonding and hydrophobic interactions. 58 differential metabolites were screened from 964 non-volatile metabolites. KEGG pathway analysis revealed that the changes in volatile and non-volatile metabolites induced by different processing methods were due to the effect of blanching on glutathione and fatty acid metabolism. These findings provide a comprehensive understanding of how post-harvest processing affects the quality of dried roses.
Collapse
Affiliation(s)
- Huihuang Xu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Weike Ren
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
7
|
Bao G, Tian Y, Wang K, Chang Z, Jiang Y, Wang J. Mechanistic understanding of the improved drying characteristics and quality attributes of lily (Lilium lancifolium Thunb.) by modified microstructure after pulsed electric field (PEF) pretreatment. Food Res Int 2024; 190:114660. [PMID: 38945591 DOI: 10.1016/j.foodres.2024.114660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/15/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
The effects of the non-thermal (pulsed electric field, PEF) and thermal pretreatment (vacuum steam pulsed blanching, VSPB) on the drying kinetics, quality attributes, and multi-dimensional microstructure of lily scales were investigated. The results indicate that both PEF and VSPB pretreatments improved the drying rate compared to untreated lily scales. Specifically, PEF pretreatment reduced the drying time by 29.58 % - 43.60 %, while VSPB achieved a 46.91 % reduction in drying time. PEF treatment facilitated the enhanced leaching of phenols and flavonoids compared to VSPB treated samples, thereby increasing antioxidant activity. The rehydration ratio of the dried lilies was improved with PEF and VSPB treatment, which closely related to the microstructure. Weibull distribution and Page model demonstrated excellent fit for the drying and rehydration kinetics of lily scales, respectively (R2 > 0.993). The analysis of multi-dimensional microstructure and ultrastructure confirmed the variations in moisture migration and phytochemical contents among different treatments. Consequently, this study offers insights into the technological support for the potential of non-thermal pretreatment in fruits and vegetables.
Collapse
Affiliation(s)
- Gangcheng Bao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ye Tian
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kunhua Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhengshi Chang
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yonglei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Bei X, Yu X, Zhou C, Yagoub AEA. Improvement of the drying quality of blueberries by catalytic infrared blanching combined with ultrasound pretreatment. Food Chem 2024; 447:138983. [PMID: 38493685 DOI: 10.1016/j.foodchem.2024.138983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
This paper investigated the effect of catalytic infrared blanching combined with ultrasound pretreatment on quality and waxy structure of blueberries. Different blueberry samples were prepared, including control (untreated) and samples treated by hot water blanching (HB), catalytic infrared blanching (CIB), ultrasound-catalytic infrared blanching (US-CIB), and catalytic infrared blanching-ultrasound (CIB-US). The effect of different pretreatments on the microstructure of blueberry epidermis was studied. The drying time of blueberries after HB, US-CIB, and CIB-US was decreased by 11.61%, 17.54%, and 17.27%, respectively, compared with control (33.75 h), and drying efficiency was significantly improved. Blueberries after pretreatments had higher content of polyphenol and anthocyanin, with an increase of 29.51-44.21% in phenol and 8.81-20.80% in anthocyanin, the antioxidant capacity of blueberries was also better than control and CIB enhanced the antioxidant capacity of blueberries. CIB-US can be used as an efficient pretreatment method for blueberry drying.
Collapse
Affiliation(s)
- Xingrui Bei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Mowafy S, Liu Y. High-humidity hot-air impingement blanching conditions for the inhibition of potato-browning enzymes and for quality retention. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2679-2691. [PMID: 37994162 DOI: 10.1002/jsfa.13153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/18/2023] [Accepted: 11/23/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Potato is an important non-cereal crop. It provides carbohydrates, a major source of energy in the human diet. Blanching during the processing of fresh fruits and vegetables is essential for their preservation. High-humidity hot-air impingement blanching (HHAIB) is a promising emerging technology for pretreating different food materials. This research aimed to identify the optimum HHAIB conditions for the inhibition of potato-browning enzymes, maintaining their nutritional and physical quality, and to compare this with conventional hot-water blanching (HWB). RESULTS Polyphenol oxidase (PPO) inactivation, total phenol content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, color, textural attributes, thermal properties, microstructure, and particles crystallinity were evaluated. The relative humidity (RH), temperature, and duration of HHAIB required for PPO inactivation (2.59%) were 50%, 105 °C, and 4 min, respectively, which resulted in a complete gelatigination of potato starches, based on the thermal properties and the microstrcture of the blanched potatoes. These conditions led to improvements in TPC to 312.54 μg GAE.g-1 FP, DPPH scavenging to 1.99 μmol TE.g-1 FP, as well as enhancements in color and crystallinity. When HHAIB was conducted at lower temperatures (85 and 95 °C) there were negative effects on the blanched potatoes' color and crystallinity, along with a non-safe level of PPO activity. CONCLUSION High-humidity hot-air impingement blanching was superior to HWB, inhibiting PPO, maintaining nutrients, and preserving physical properties, especially under the optimum conditions revealed by the principal component analysis. It provides an excellent technique for blanching and pretreating potatoes, preserving them, and maintaining their quality. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Samir Mowafy
- College of Engineering, China Agricultural University, Beijing, China
- Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Yanhong Liu
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Zhao S, Chen J, Cao S, Wang H, Chen H, Wei Y, Chen Y, Shao X, Xu F. The regulation of Cytochrome f by mannose treatment in broccoli and its relationship with programmed cell death in tobacco BY-2 cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108480. [PMID: 38437751 DOI: 10.1016/j.plaphy.2024.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
It is well established that programmed cell death (PCD) occurred in broccoli during postharvest senescence, but no studies have been conducted on the regulation of broccoli cytochrome f by mannose treatment and its relationship with PCD. In this study, we treated broccoli buds with mannose to investigate the changes in color, total chlorophyll content, gene expression related to chlorophyll metabolism, chloroplast structure, and cytochrome f determination during postharvest storage. In addition, to investigate the effect of cytochrome f on PCD, we extracted cytochrome f from broccoli and treated Nicotiana tabacum L. cv Bright Yellow 2 (BY-2) cells with extracted cytochrome f from broccoli at various concentrations. The results showed that cytochrome f can induce PCD in tobacco BY-2 cells, as evidenced by altered cell morphology, nuclear chromatin disintegration, DNA degradation, decreased cell viability, and increased caspase-3-like protease production. Taken together, our study indicated that mannose could effectively delay senescence of postharvest broccoli by inhibiting the expression of gene encoding cytochrome f which could induce PCD.
Collapse
Affiliation(s)
- Shiyi Zhao
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Jiahui Chen
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Hongfei Wang
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Hangjun Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou, 310021, China
| | - Yingying Wei
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Yi Chen
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Xingfeng Shao
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Feng Xu
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China.
| |
Collapse
|
11
|
Zhang AA, Ha BE, Chen C, Xu MQ, Wang QH, Xie L, Zheng ZA, Zhang JS, Lv WQ, Xiao HW. Vacuum-steam pulsed blanching: An emerging method to enhance texture softening, drying behavior and physicochemical properties of Cornus officinalis. J Food Sci 2024; 89:202-216. [PMID: 38078765 DOI: 10.1111/1750-3841.16868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 01/15/2024]
Abstract
Vacuum steam pulsed blanching (VSPB) was employed as a novel blanching technology on Cornus officinalis to soften the tissue for subsequent coring and dehydration. The current work aims to explore its effect on mass transfer behavior, PPO inactivation, drying characteristics, physicochemical properties, antioxidant capacity, and microstructure of C. officinalis. Results showed that VSPB increased water loss, decreased solid gain, and increased weight reduction with increased blanching cycles. Besides, VSPB significantly changed physical properties and extensively reduced drying time which was attributed to the cell wall components dissolving and cell turgor pressure decreasing, also verified by observing microstructure alteration. PPO was completely denatured after blanching in 6 cycles, but phenolic compounds were still diffused or degraded. Notably, the content of flavonoids and antioxidant capacity significantly increased compared to fresh samples probably due to increased extractability caused by the disrupting cell structure. Besides, the carotenoids and ascorbic acid could be well preserved.
Collapse
Affiliation(s)
- An-An Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - Bu-Er Ha
- College of Engineering, China Agricultural University, Beijing, China
| | - Chang Chen
- Department of Food Science, Cornell University, Geneva, New York, USA
| | - Ming-Qiang Xu
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Qing-Hui Wang
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Long Xie
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhi-An Zheng
- College of Engineering, China Agricultural University, Beijing, China
| | - Jing-Shou Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - Wei-Qiao Lv
- College of Engineering, China Agricultural University, Beijing, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Sun X, Tang Z, Song Z, Duan J, Wang C. Effects of different drying methods on the contents of active ingredients of Saposhnikovia divaricata (Turcz.) Schischk and optimization of the drying process by response surface methodology. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:17-27. [PMID: 37501406 DOI: 10.1002/pca.3269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Saposhnikovia divaricata (Turcz.) Schischk is one of the most widely used Chinese herbs worldwide. It has anti-inflammatory and analgesic properties and hence has a high clinical value. As the moisture level in S. divaricata is high after harvest, it requires drying. OBJECTIVE We aimed to find a scientific drying method and optimize the drying conditions of the best drying method of S. divaricata using response surface methodology (RSM). METHODOLOGY The effects of 4 different drying methods on the contents of prim-O-glucosylcimifugin, cimifugin, 5-O-methylvisamminol, and sec-O-glucosylhamaudol were determined using high-performance liquid chromatography. Chroma, the rehydration ratio, and active component content were used as indices, and slice thickness, drying temperature, and drying time were used as independent variables to optimize the drying conditions of the optimal drying method of S. divaricata using RSM combined with the Box-Behnken design. RESULTS The results showed that the optimal drying conditions were as follows: slice thickness, 4.00 mm; drying temperature, 60°C; and drying time, 15 h. CONCLUSION Under optimal drying conditions, the measured values were extremely close to the predicted values. The results of variance analysis showed that the model had a high degree of fit and the drying conditions of S. divaricata were optimized successfully.
Collapse
Affiliation(s)
- Xiaoxu Sun
- Shaanxi University of Chinese Medicine/Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/Shaanxi Innovative Drug Research Center, Xianyang, China
| | - Zhishu Tang
- Shaanxi University of Chinese Medicine/Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/Shaanxi Innovative Drug Research Center, Xianyang, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongxing Song
- Shaanxi University of Chinese Medicine/Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/Shaanxi Innovative Drug Research Center, Xianyang, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Changli Wang
- Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
13
|
Wang B, Jia Y, Li Y, Wang Z, Wen L, He Y, Xu X. Dehydration-rehydration vegetables: Evaluation and future challenges. Food Chem X 2023; 20:100935. [PMID: 38144748 PMCID: PMC10739932 DOI: 10.1016/j.fochx.2023.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/19/2023] [Accepted: 10/08/2023] [Indexed: 12/26/2023] Open
Abstract
In this review, the rehydration kinetics model, the quality factors affecting of vegetables during rehydration process, the future challenges and development direction of rehydration process were comprehensively analyzed. Based on the fitting equation for the change in moisture content during rehydration, a suitable rehydration model can be selected to describe the rehydration process of vegetables. Optimal pre-treatment, drying and rehydration methods were selected by considering quality, energy consumption and environmental aspects, and new technologies were developed to improve the quality characteristics of rehydrated vegetables. It is necessary to classify vegetables according to their shape and type to establish the criteria of rehydration processing through mathematical modeling. Industrial production from pre-treatment to product packaging will be precisely adjusted through process parameters. Furthermore, improvements the quality of rehydrated vegetables can be considered in terms of the structural and compositional aspects of the cell wall and cell membrane.
Collapse
Affiliation(s)
- Bixiang Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yuanlong Jia
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yue Li
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Zhitong Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Liankui Wen
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yang He
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xiuying Xu
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
14
|
Xu H, Guan Y, Shan C, Xiao W, Wu M. Development of thermoultrasound assisted blanching to improve enzyme inactivation efficiency, drying characteristics, energy consumption, and physiochemical properties of sweet potatoes. ULTRASONICS SONOCHEMISTRY 2023; 101:106670. [PMID: 37922719 PMCID: PMC10643530 DOI: 10.1016/j.ultsonch.2023.106670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Thermoultrasound (USB) as a promising alternative to traditional hot water (HWB) blanching was employed to blanch sweet potatoes and its influence on enzyme activity, drying behavior, energy consumption and physiochemical properties of sweet potatoes were investigated. Results showed that successive increases in blanching temperature and time resulted in significant (p < 0.05) decreases in PPO and POD activities. Compared to HWB, USB led to more effective drying by promoting texture softening, moisture diffusion, microstructure alterations, and microchannels formation, which significantly reduced energy consumption and improved the overall quality of the dried sample. Specifically, USB at 65 °C for 15 min improved water holding capacity and ABTS, while USB at 65 °C for 30 min improved color (more red and yellow), total phenolic content, total carotenoid content, and DPPH. Unfortunately, blanching process showed detrimental effects on the amino acid composition of dried samples. Overall, the development of thermoultrasound assisted blanching for sweet potatoes has the potential to revolutionize the processing and production of high-quality sweet potato products, while also improving the sustainability of food processing operations.
Collapse
Affiliation(s)
- Huihuang Xu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yaru Guan
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chun Shan
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Wanru Xiao
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
15
|
Bei X, Yu X, Li D, Sun Q, Yu Y, Wang Y, Okonkwo CE, Zhou C. Heat source replacement strategy using catalytic infrared: A future for energy saving drying of fruits and vegetables. J Food Sci 2023; 88:4827-4839. [PMID: 37961009 DOI: 10.1111/1750-3841.16834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Drying is an important process for fruits and vegetables, which requires a lot of heat and the heat sources are mainly coal, electricity, natural gas, and solar energy. Most of the heat is usually wasted due to the long drying process and poor transfer efficiency. The use of coal also pollutes the environment. The national electricity curtailment policy regulates the drying industry. Therefore, the fruits and vegetables drying industry is facing new challenges due to its own development needs and external factors. Catalytic infrared drying (CIR) technology brings solutions to these problems. Compared with other drying technologies, CIR has a high drying efficiency and can effectively reduce the use of electric energy, avoid waste, and minimize pollution of water. However, improper processing conditions still cause quality deficits such as severe browning, and the drying is difficult due to weak infrared penetration. Although CIR has shortcomings, it is still expected to establish an energy-saving and efficient fruit and vegetable drying system.
Collapse
Affiliation(s)
- Xingrui Bei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Daqing Li
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Nanjing, P. R. China
| | - Qiaolan Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yanhua Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yuqing Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
16
|
Wang Y, Ding C. Effect of Electrohydrodynamic Drying on Drying Characteristics and Physicochemical Properties of Carrot. Foods 2023; 12:4228. [PMID: 38231695 DOI: 10.3390/foods12234228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
This study investigates the effects of electrohydrodynamic (EHD) drying technology on the drying kinetics, microstructure, quality, and nutritional components of carrots, along with conducting experiments on EHD drying under different voltage gradients. The experimental results showed that EHD drying technology could significantly increase the drying rate and the effective moisture diffusion coefficient. Within a certain range, the drying rate was directly proportional to the voltage. When the range was exceeded, the increase in voltage had a minimal effect on the drying rate. In terms of quality, the EHD drying group's color, shrinkage rate, and rehydration performance were superior to the control group, and different voltages had no significant effect on the shrinkage rate and rehydration performance. The retention of carotenoids in the EHD drying group was 1.58 to 2 times that of the control group. EHD drying had a negative impact on the total phenolic content and vitamin A content of dried carrot slices. Based on the results of infrared spectroscopy and scanning electron microscopy (SEM), the dehydrated carrot slices showed wrinkling due to water loss, with numerous pores, a generally intact structure, and retained functional groups. EHD drying had a significant impact on the secondary structure of proteins, where an increase in voltage led to an increase in disordered structure, with a smaller proportion of disordered structure in the lower voltage group compared to the control group, and a similar proportion of disordered structure between the higher voltage group and the control group. Results from low-field nuclear magnetic resonance (NMR) showed that EHD drying could retain more bound water compared to the control group, with the best retention of cellular bound water at a voltage of 26 kV and the best retention of cellular immobilized water at a voltage of 38 kV, indicating the superiority of EHD drying in preserving cellular structure. This study provided a theoretical basis and experimental foundation for the application of electrohydrodynamic drying technology to carrot drying, and promoted the practical application of EHD drying technology.
Collapse
Affiliation(s)
- Yanghong Wang
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Changjiang Ding
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| |
Collapse
|
17
|
Ignaczak A, Salamon A, Kowalska J, Marzec A, Kowalska H. Influence of Pre-Treatment and Drying Methods on the Quality of Dried Carrot Properties as Snacks. Molecules 2023; 28:6407. [PMID: 37687236 PMCID: PMC10490186 DOI: 10.3390/molecules28176407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of the current research was to evaluate the effect of pre-treatment and drying methods on the properties of dried carrots. Carrots were blanched (B) (1 or 3 min) or osmotic dehydrated (OD) (15 or 30 min) and dried by either convection (CD), microwave-convection (MW-CD), microwave-vacuum (MVD), or freeze-drying (FD). FD carrots showed the highest dry matter content (93.6-95.8%) and the lowest water activity (0.24-0.38). MVD carrots had lower dry matter content (79.5-95.8%) and two times more water activity (0.447-0.637) than FD. The highest color difference (∆E) in relation to raw material was noted in MVD samples (22-35) and the smallest in CD and FD (7-18), mainly due to the increase in brightness of the dried carrot. In general dried MCD carrot samples were characterized by the highest max force (hardness) (21.6-42.5 N; on average 34.7 N) in the breaking test and the lowest hardness was observed in the CD (10.8 N) ones. Pre-treatment and drying caused a significant decrease in the content of carotenoids (2.0-2.7 times) and chlorophyll (2.7-4.5 times) compared to the fresh carrot but a retention or increase in the total content of phenolics and antioxidant activity, especially in microwave-vacuum-dried carrots with an increase of even 2.7-2.9 times compared to raw material. High phenolic content (195.6-277.4 mg GA/100 g d.m.) was found in pre-osmotic dehydrated samples, and lower phenolic content was found in blanched samples (110.7-189.6 mg GA/100 g d.m.). Significantly, the highest average antioxidant activity was found in microwave-vacuum-dried samples (228.9 µmol Trolox/100 g d.m.). The results of this study indicate that microwave-vacuum-drying as an alternative to freeze-drying, including in combination with thermal or osmotic treatment, is very promising for the production of dried carrot snacks.
Collapse
Affiliation(s)
- Anna Ignaczak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (J.K.); (A.M.)
| | - Agnieszka Salamon
- Institute of Agriculture and Food Biotechnology—State Research Institute, 36 Rakowiecka, St., 02-532 Warsaw, Poland;
| | - Jolanta Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (J.K.); (A.M.)
| | - Agata Marzec
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (J.K.); (A.M.)
| | - Hanna Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (J.K.); (A.M.)
| |
Collapse
|
18
|
Liu W, Ji R, Aimaier A, Sun J, Pu X, Shi X, Cheng W, Wang B. Adjustment of impact phenolic compounds, antioxidant activity and aroma profile in Cabernet Sauvignon wine by mixed fermentation of Pichia kudriavzevii and Saccharomyces cerevisiae. Food Chem X 2023; 18:100685. [PMID: 37131849 PMCID: PMC10149247 DOI: 10.1016/j.fochx.2023.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Mixed fermentation using saccharomyces cerevisiae and non-saccharomyces cerevisiae has become one of the main research strategies to improve wine aroma. Hence, this study applied the mixed fermentation technique using Pichia kudriavzevii and Saccharomyces cerevisiae to brew Cabernet Sauvignon wine and to investigate the effects of inoculation timing and inoculation ratio on the polyphenolics, antioxidant activity and aroma of the resulting wine. The results showed that mixed fermentation significantly improved the amounts of flavan-3-ols. In particular, S1:5 had the highest amounts of (-)-catechin and procyanidin B1 (73.23 mg/L and 46.59 mg/L), while S1:10 had the highest (-)-epicatechin content (57.95 mg/L). Meanwhile, S1:10 showed the strongest FRAP, CUPRAC and ABTS + activities (31.46 %, 25.38 % and 13.87 % higher than that of CK, respectively). In addition, mixed fermentation also increased the amounts of phenylethanol, isoamyl alcohol and ethyl esters, which enhanced the rose-like and fruity flavor of wine. This work used a friendly non-saccharomyces cerevisiae alongside appropriate inoculation strategies to provide an alternative approach for improved wine aroma and phenolic profile.
Collapse
|
19
|
Chandel R, Kumar V, Kaur R, Kumar S, Gill MS, Sharma R, Wagh RV, Kumar D. Functionality enhancement of osmo-dried sand pear cubes using different sweeteners: quality, bioactive, textural, molecular, and structural characterization. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
20
|
Comparative Study on the Influence of Various Drying Techniques on Drying Characteristics and Physicochemical Quality of Garlic Slices. Foods 2023; 12:foods12061314. [PMID: 36981240 PMCID: PMC10047973 DOI: 10.3390/foods12061314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/22/2023] Open
Abstract
Effects of vacuum freeze drying (VFD), air impingement drying (AID), hot air drying based on temperature and humidity control (TH-HAD), pulsed vacuum drying (PVD), and medium- and short-wave infrared radiation drying (MSIRD) on the drying characteristics and physicochemical properties of garlic slices were investigated in the current work. Based on the experimental results, the Weibull model fitted the experimental results better (R2 > 0.99) than the Wang and Singh model. Samples dried with PVD showed the smallest color difference (ΔE*), better rehydration capacity and desirable reducing sugar content. In response to thermal effects and pressure pulsations, the cell walls gradually degraded, and the cell and organelle membranes ruptured. The allicin and soluble pectin contents of garlic slices treated with PVD were higher by 8.0–252.3% and 49.5–92.2%, respectively, compared to those of the samples dried by other techniques. VFD maintained a complete garlic slice structure with the minimum shrinkage and the best appearance. The MSIRD process produced the densest structure, and caused an additional loss of color and phytochemical contents. The findings in current work implied that PVD could be a promising drying technique for garlic slices.
Collapse
|
21
|
Feng Z, Zheng X, Ying Z, Feng Y, Wang B, Dou B. Drying of Chinese medicine residues (CMR) by hot air for potential utilization as renewable fuels: drying behaviors, effective moisture diffusivity, and pollutant emissions. BIOMASS CONVERSION AND BIOREFINERY 2023; 14:1-18. [PMID: 36627933 PMCID: PMC9815893 DOI: 10.1007/s13399-022-03722-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
High moisture in Chinese medicine residues (CMR) can decrease the energy efficiency of thermochemical conversion, which necessitates the pre-drying. Owing to the complex constituents and decoction, CMR may possess distinct drying characteristics. It is necessary to understand its drying behaviors, effective moisture diffusivity, and pollutant emissions for future design and optimization of an industrial-level dryer. In this study, the drying of four types of typical CMR in hot nitrogen was performed. Their condensate and exhaust gas were collected and characterized. The results indicated that their drying process was dominated by internal moisture transport mechanism with a long falling rate stage. Drying temperature influenced their drying process more greatly than N2 velocity did. Residual sum of squares, root mean square error, and coefficient of determination indicated that Weibull model demonstrated their drying process best. Their effective moisture diffusivity was in the range of 1.224 × 10-8 to 4.868 × 10-8 m2/s, while their drying activation energy ranged from 16.93 to 30.39 kJ/mol. The acidic condensate had high chemical oxygen demand and total nitrogen concentration and yet low total phosphorus concentration. The concentration of total volatile organic compounds, non-methane hydrocarbons, H2S, and NH3 in the exhaust gas met the national emission limitation, while the deodorization of exhaust gas was required to remove odor smell. Supplementary information The online version contains supplementary material available at 10.1007/s13399-022-03722-4.
Collapse
Affiliation(s)
- Zhenyang Feng
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Xiaoyuan Zheng
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Zhi Ying
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Yuheng Feng
- Thermal and Environment Engineering Institute, School of Mechanical Engineering, Tongji University, Shanghai, 200092 China
| | - Bo Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Binlin Dou
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
| |
Collapse
|
22
|
Effects of hot-air microwave rolling blanching pretreatment on the drying of turmeric (Curcuma longa L.): Physiochemical properties and microstructure evaluation. Food Chem 2023; 398:133925. [DOI: 10.1016/j.foodchem.2022.133925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022]
|
23
|
Ai Z, Xie Y, Li X, Lei D, Ambrose K, Liu Y. Revealing color change and drying mechanisms of pulsed vacuum steamed Cistanche deserticola through bioactive components, microstructural and starch gelatinization properties. Food Res Int 2022; 162:112079. [PMID: 36461329 DOI: 10.1016/j.foodres.2022.112079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022]
Abstract
Cistanche deserticola is a famous herbal medicine and has been used worldwide for its kidney-tonifying and anti-aging values. This study investigated the effects of pulsed vacuum steaming (PVS) on bioactive phenylethanoid glycosides (PhGs), total soluble sugars, polysaccharides, color, drying characteristics, microstructure, and starch gelatinization properties of Cistanche deserticola. PVS pretreatment significantly increased PhGs and soluble sugar content while reduced the polysaccharides content. And increasing the material core temperature to 75 °C at the largest diameter was proposed as the optimal steaming condition and the PhGs content was increased by 1.11 times compared with that by atmospheric steaming. The color of steamed samples changed to oily black due to Maillard reaction. PhGs content was significantly (P < 0.05) positively correlated with total color difference (ΔE). Steaming until the ΔE value of 15.95 could achieve the maximum accumulation of PhGs, corresponding to the highest increasing ratio of echinacoside and acteoside. Starch was completely gelatinized and formed a barrier layer adhering to the cell surface when the material core temperature reached 75 °C at the largest diameter, explaining why after steaming the Cistanche deserticola drying time was prolonged by 85.71 %. The study can provide an innovative steaming technology and optimal process parameters for obtaining high-quality Cistanche deserticola decoction pieces, as well as propose a non-destructive testing method to quickly predict PhGs content based on color parameters during the steaming process.
Collapse
Affiliation(s)
- Ziping Ai
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| | - Yongkang Xie
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China; Agricultural Products Processing Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Xingyi Li
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China; Agricultural Products Processing Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Dengwen Lei
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| | - Kingsly Ambrose
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2093, USA.
| | - Yanhong Liu
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
24
|
Turan Büyükdinç D, Kantoğlu KY, Kuşvuran Ş, İpek A, Karataş A, Ellialtıoğlu ŞŞ. Selection of salt tolerant lines at cell level using gamma ray with callus and suspension culture techniques in black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.). Appl Radiat Isot 2022; 190:110523. [DOI: 10.1016/j.apradiso.2022.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/26/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022]
|
25
|
Effect of extrusion on phenolics from Jizi439 black wheat bran: The profile, structure, and bioactivities. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Wang S, Bi Y, Zhou Z, Peng W, Tian W, Wang H, Fang X. Effects of pulsed vacuum drying temperature on drying kinetics, physicochemical properties and microstructure of bee pollen. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
27
|
Geng Z, Torki M, Kaveh M, Beigi M, Yang X. Characteristics and multi-objective optimization of carrot dehydration in a hybrid infrared /hot air dryer. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Liao W, Shen J, Manickam S, Li S, Tao Y, Li D, Liu D, Han Y. Investigation of blueberry juice fermentation by mixed probiotic strains: regression modeling, machine learning optimization and comparison with fermentation by single strain in the phenolic and volatile profiles. Food Chem 2022; 405:134982. [DOI: 10.1016/j.foodchem.2022.134982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/23/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
29
|
Effects of different pretreatment methods on drying kinetics, three-dimensional deformation, quality characteristics and microstructure of dried apple slices. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Hot-Air Flow Rolling Dry-Blanching Pretreatment Improves the Drying Quality of Acanthopanax sessiliflorus by Increasing the Drying Rate and Inactivating Enzymes. Foods 2022. [PMCID: PMC9601497 DOI: 10.3390/foods11203186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The processing of Acanthopanax sessiliflorus has attracted interest due to its health benefits. In this work, an emerging blanching technology, called hot-air flow rolling dry-blanching (HMRDB), was employed to treat A. sessiliflorus before drying. The effects of varied blanching times (2–8 min) on enzyme inactivation, drying characteristics, bioactive compound retention, and microstructure were examined. The results demonstrated that blanching for 8 min rendered polyphenol oxidase and peroxidase nearly inactive. The blanching process reduced the drying time of samples by up to 57.89% compared to an unblanched sample. The Logarithmic model showed good fitting performance for the drying curves. The total phenolic and flavonoid content of the dried product increased as blanching time increased. The total anthocyanin content of the samples blanched for 6 min was 3.9 times higher than that of the unblanched samples, and 8 min of blanching produced the greatest DPPH• and ABTS• scavenging capabilities. The retention of active compounds in a dried product is a result of the inactivation of enzymes and a reduced drying period. Changes in the porous structure of the blanched samples would be responsible for the accelerated drying rate, according to microstructural analysis. These results indicate that HMRDB enhances the drying process and improves drying quality when applied to A. sessiliflorus before drying.
Collapse
|
31
|
Pulsed Vacuum Drying of Persimmon Slices: Drying Kinetics, Physicochemical Properties, Microstructure and Antioxidant Capacity. PLANTS 2022; 11:plants11192500. [PMID: 36235366 PMCID: PMC9571454 DOI: 10.3390/plants11192500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
In order to explore an alternative drying method to enhance the drying process and quality of persimmon slices, pulsed vacuum drying (PVD) was employed and the effects of different drying temperatures (60, 65, 70, and 75 °C) on drying kinetics, color, rehydration ratio (RR), microstructure, bioactive compounds, and the antioxidant capacity of sliced persimmons were investigated in the current work. Results showed that the rehydration ratio (RR) of the samples under PVD was significantly higher than that of the traditional hot air-dried ones. Compared to the fresh samples, the dried persimmon slices indicated a decrease in the bioactive compounds and antioxidant capacity. The total phenolic content (TPC) of PVD samples at 70 °C was 87.96% higher than that of the hot air-dried persimmon slices at 65 °C. Interestingly, at 70 °C, the soluble tannin content and TPC of the PVD samples reached the maximum values of 6.09 and 6.97 mg GAE/g, respectively. The findings in the current work indicate that PVD is a promising drying method for persimmon slices as it not only enhances the drying process but also the quality attributes.
Collapse
|
32
|
Lin T, Zhou Z, Xing C, Zhou J, Fan G, Xie C. Effect of color protection treatment on the browning and enzyme activity of Lentinus edodes during processing. Food Sci Nutr 2022; 10:2989-2998. [PMID: 36171772 PMCID: PMC9469847 DOI: 10.1002/fsn3.2895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Fresh Lentinus edodes (L. edodes) are prone to browning (including enzymatic and nonenzymatic browning), which affects their quality and leads to economic losses during later processing. This study explored various effective color protection methods (color protection reagent and/or blanching) for inhibiting the browning of L. edodes. First, a single-factor experiment and a response surface method were used to optimize the concentration of the color retention reagent. The compound color retention reagent (comprising 0.1% phytic acid, 0.8% sodium citrate, and 0.5% d-sodium erythorbate) had the smallest total color difference (ΔE) value, suggesting that the compound color reagent had a better inhibiting effect than the single agent. Following this, the blanching conditions were studied; the polyphenol oxidase (PPO) activity was the lowest when the blanching temperature was 90°C and blanching time 180 s, indicating that browning is likely to be minimal. Finally, comparing the oxidase activity and total color difference (ΔE) revealed that combining the two color protection methods inhibits browning better than using a single method (color protection reagent or blanching). In addition, the polysaccharide and vitamin C (VC) contents of L. edodes under optimal color protection conditions were determined, which were 0.96 and 2.54 g/100 g fresh weight (FW), respectively. The results demonstrated that this color protection method effectively inhibits browning, reduces the nutritional loss, and improves the quality of L. edodes.
Collapse
Affiliation(s)
- Tong Lin
- College of Life ScienceLangfang Normal UniversityLangfangChina
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei ProvinceLangfangChina
- Edible and Medicinal Fungi Research and Development Center of Hebei UniversitiesLangfangChina
| | - Zhiguo Zhou
- College of Life ScienceLangfang Normal UniversityLangfangChina
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei ProvinceLangfangChina
- Edible and Medicinal Fungi Research and Development Center of Hebei UniversitiesLangfangChina
| | - Chunmiao Xing
- College of Life ScienceLangfang Normal UniversityLangfangChina
| | - Jiahui Zhou
- College of Life ScienceLangfang Normal UniversityLangfangChina
| | - Gongjian Fan
- College of Light Industry and Food EngineeringNanjing Forestry UniversityNanjingChina
| | - Chunyan Xie
- College of Life ScienceLangfang Normal UniversityLangfangChina
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei ProvinceLangfangChina
- Edible and Medicinal Fungi Research and Development Center of Hebei UniversitiesLangfangChina
| |
Collapse
|
33
|
Simulation of Fluid Flow during Egg Pickling under Different Inlet and Outlet Conditions in a Pulsed Pressure Tank with Liquid Circulation. Foods 2022; 11:foods11172630. [PMID: 36076816 PMCID: PMC9455922 DOI: 10.3390/foods11172630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Pulsed pressure pickling is an emerging highly efficient osmotic dehydration technique. However, the immobility of the pickling liquid and the material, the formation of layers, and the uneven pickling efficiency in different sections make it difficult to use industrially. This work aims at improving and optimizing the conditions of fluid flow in the pickling tank with a liquid-cycle system to reduce the unevenness in the production process. Fluid flow around the eggs was numerically investigated by solving three-dimensional Reynolds-averaged Navier–Stokes equations within the flow regime, adopting different angles and positions at the inlet and outlet. The simulation results show that the inlet with a radial deflection of 35° and the outlet with axial direction were characterized by the best flow efficiency. Under these conditions, the average flow velocity and the global uniformity index were 0.153 m/s and 0.407, respectively. Furthermore, the experiments were carried out using an equivalent scale model of the pulsed pressure equipment with liquid circulation. The experimental results showed that, under optimal conditions, the salt content in all four layers of the egg white was about 2.8% after 48 h. This study provides a solution to ensure the constant salinity of different layers of pickled eggs and to improve pickling efficiency, especially in industrial-scale production.
Collapse
|
34
|
Effect of Combined Infrared and Hot Air Drying Strategies on the Quality of Chrysanthemum (Chrysanthemum morifolium Ramat.) Cakes: Drying Behavior, Aroma Profiles and Phenolic Compounds. Foods 2022; 11:foods11152240. [PMID: 35954006 PMCID: PMC9367946 DOI: 10.3390/foods11152240] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat.) is a seasonal plant with high medicinal and aesthetic value, and drying is an effective practice to enhance its storability after harvesting. The effects of hot air drying (HAD), combined infrared and hot air drying (IR-HAD), and sequential IR-HAD and HAD (IR-HAD + HAD) on the drying behavior, color, shrinkage, aroma profiles, phenolic compounds, and microstructure of chrysanthemum cakes were studied. Results showed that the increasing temperature resulted in a decrease in drying time and an increase in drying rate and moisture diffusivity. The Logarithmic and Page models exhibited superior fit in describing the dehydration process. Among the three drying strategies, IR-HAD was more effective in reducing energy consumption, improving shrinkage, water holding capacity, water binding capacity and cellular microstructure, while IR-HAD + HAD showed better inhibitory effect on color deterioration. Furthermore, gas chromatography–mass spectrometry (GC-MS) analysis revealed that different drying strategies dramatically influenced the aroma profiles in samples, and IR-HAD obtained the highest concentration of volatiles. The results of ultra-performance liquid chromatography (UPLC) indicated that the introduction of infrared radiation contributed to increasing the contents of chlorogenic acid, luteolin, total phenolic and flavonoid. These suggested that IR-HAD was a promising technique for drying medicinal chrysanthemum.
Collapse
|
35
|
Shen J, Zhang M, Mujumdar AS, Chen J. Effects of High Voltage Electrostatic Field and Gelatin-Gum Arabic Composite Film on Color Protection of Freeze-dried Grapefruit Slices. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02839-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Infrared and Microwave as a dry blanching tool for Irish potato: Product quality, cell integrity, and artificial neural networks (ANNs) modeling of enzyme inactivation kinetic. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Zhou YH, Pei YP, Sutar PP, Liu DH, Deng LZ, Duan X, Liu ZL, Xiao HW. Pulsed vacuum drying of banana: Effects of ripeness on drying kinetics and physicochemical properties and related mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Fang J, Liu C, Law CL, Mujumdar AS, Xiao HW, Zhang C. Superheated steam processing: An emerging technology to improve food quality and safety. Crit Rev Food Sci Nutr 2022; 63:8720-8736. [PMID: 35389273 DOI: 10.1080/10408398.2022.2059440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heat processing is one of the most efficient strategies used in food industry to improve quality and prolong shelf life. However, conventional processing methods such as microwave heating, burning charcoal treatment, boiling, and frying are energy-inefficient and often lead to inferior product quality. Superheated steam (SHS) is an innovative technology that offers many potential benefits to industry and is increasingly used in food industry. Compared to conventional processing methods, SHS holds higher heat transfer coefficients, which can reduce microorganisms on surface of foodstuffs efficiently. Additionally, SHS generates a low oxygen environment, which prevents lipid oxidation and harmful compounds generation. Furthermore, SHS can facilitate development of desired product quality, such as protein denaturation with functional characteristics, proper starch gelatinization, and can also reduce nutrient loss, and improve the physicochemical properties of foodstuffs. The current work provides a comprehensive review of the impact of SHS on the nutritional, physicochemical, and safety properties of various foodstuffs including meat, fruits, and vegetables, cereals, etc. Additionally, it also provides food manufacturers and researchers with basic knowledge and practical techniques for SHS processing of foodstuffs, which may improve the current scope of SHS and transfer current food systems to a healthy and sustainable one.
Collapse
Affiliation(s)
- Jiajia Fang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China)
| | - Chongxin Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China)
| | - Chung-Lim Law
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Arun S Mujumdar
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| | - Chunjiang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China)
| |
Collapse
|
39
|
Dynamic analysis of moisture, dielectric property and microstructure of ginger slices during microwave hot-air flow rolling drying. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Tepe TK, Kadakal Ç. Determination of Drying Characteristics, Rehydration Properties and Shrinkage Ratio of Convective Dried Melon Slice with Some Pretreatments. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tolga Kağan Tepe
- Department of Food Technology, Şebinkarahisar Vocational School of Technical Science Giresun University Giresun Turkey
| | - Çetin Kadakal
- Department of Food Engineering, Faculty of Engineering Pamukkale University Denizli Turkey
| |
Collapse
|
41
|
Sharma K, Kumar V, Kumar S, Pinakin DJ, Babbar N, Kaur J, Sharma BR. Process optimization for drying of
Bauhinia variegata
flowers: Effect of different pre‐treatments on quality attributes. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kartik Sharma
- Food Technology and Nutrition School of Agriculture Lovely Professional University Phagwara India
| | - Vikas Kumar
- Department of Food Science and Technology Punjab Agricultural University Ludhiana India
| | - Satish Kumar
- College of Horticulture and Forestry, Thunag, Mandi Dr. YS Parmar University of Horticulture and Forestry Solan India
| | - Dave Jaydeep Pinakin
- Food Technology and Nutrition School of Agriculture Lovely Professional University Phagwara India
| | - Neha Babbar
- Department of Food Science and Technology Punjab Agricultural University Ludhiana India
| | - Jaspreet Kaur
- Food Technology and Nutrition School of Agriculture Lovely Professional University Phagwara India
| | - Basista Rabina Sharma
- School of Biotechnology and Biosciences Lovely Professional University Phagwara India
| |
Collapse
|
42
|
Lyu Y, Bi J, Chen Q, Wu X, Gou M, Yang X. Color enhancement mechanisms analysis of freeze-dried carrots treated by ultrasound-assisted osmosis (ascorbic acid-CaCl 2) dehydration. Food Chem 2022; 381:132255. [PMID: 35114628 DOI: 10.1016/j.foodchem.2022.132255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/29/2023]
Abstract
Color enhancement mechanisms of freeze-dried carrot sample (FDS) treated by ultrasound-assisted osmotic (ascorbic acid-CaCl2) dehydration (UAA) were comprehensively investigated from physical microstructures and color-related carotenoid compounds. Results of scanning electron microscope and confocal laser scanning microscopy showed that cells in samples treated by UAA were intact, had less porosity and showed stronger carotenoid autofluorescence. As for color-related compounds, UAA not only increased the retention ratios of total carotenoid content (36.38%) and β-carotene (51.73%) of FDS, but also preserved the high raman intensity of CC in-plane expansion (9986 A.U) and induced the formation of coloring-carotenoid-derivatives. Additionally, correlation and PCA-X model analysis showed that fresh carrot had higher extractable color value (78.46), which was positively linearly related to 2-n-pentylfuran (p < 0.01), whereas FDS mainly affected the surface color that was dominated by β-carotene. This work provided the practical analysis and theoretical basis of color enhancement of freeze-dried carrot foods.
Collapse
Affiliation(s)
- Ying Lyu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Department of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Department of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Qinqin Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Min Gou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xinrui Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
43
|
Tabtiang S, Yodrux A, Nimmol C, Prachayawarakorn S, Soponronnarit S. Effects of variety and ripening level on chemical composition, microstructure change, and qualities of crisp bananas. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Surapit Tabtiang
- Department of Social and Applied Science College of Industrial Technology, King Mongkut’s University of Technology North Bangkok Bangkok Thailand
| | - Aswin Yodrux
- Department of Material Handling and Logistic Engineering, Faculty of Engineering King Mongkut’s University of Technology North Bangkok Bangkok Thailand
| | - Chatchai Nimmol
- Department of Material Handling and Logistic Engineering, Faculty of Engineering King Mongkut’s University of Technology North Bangkok Bangkok Thailand
| | | | - Somchart Soponronnarit
- Energy Technology Division, School of Energy Environment and Materials, King Mongkut’s University of Technology Thonburi Bangkok Thailand
| |
Collapse
|
44
|
Lavelli V, Sereikaitė J. Kinetic Study of Encapsulated β-Carotene Degradation in Aqueous Environments: A Review. Foods 2022; 11:317. [PMID: 35159470 PMCID: PMC8834023 DOI: 10.3390/foods11030317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 01/29/2023] Open
Abstract
The provitamin A activity of β-carotene is of primary interest to address one of the world's major malnutrition concerns. β carotene is a fat-soluble compound and its bioavailability from natural sources is very poor. Hence, studies have been focused on the development of specific core/shell micro- or nano-structures that encapsulate β-carotene in order to allow its dispersion in liquid systems and improve its bioavailability. One key objective when developing these structures is also to accomplish β-carotene stability. The aim of this review is to collect kinetic data (rate constants, activation energy) on the degradation of encapsulated β-carotene in order to derive knowledge on the possibility for these systems to be scaled-up to the industrial production of functional foods. Results showed that most of the nano- and micro-structures designed for β-carotene encapsulation and dispersion in the water phase provide better protection with respect to a natural matrix, such as carrot juice, increasing the β-carotene half-life from about 30 d to more than 100 d at room temperature. One promising approach to increase β-carotene stability was found to be the use of wall material, surfactants, or co-encapsulated compounds with antioxidant activity. Moreover, a successful approach was the design of structures, where the core is partially or fully solidified; alternatively, either the core or the interface or the outer phase are gelled. The data collected could serve as a basis for the rational design of structures for β-carotene encapsulation, where new ingredients, especially the extraordinary natural array of hydrocolloids, are applied.
Collapse
Affiliation(s)
- Vera Lavelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| | - Jolanta Sereikaitė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| |
Collapse
|
45
|
Wang H, Meng JS, Raghavan G, Orsat V, Yu XL, Liu ZL, Zheng ZA, Wang SY, Xiao HW. Vacuum-steam pulsed blanching (VSPB) enhances drying quality, shortens the drying time of gingers by inactivating enzymes, altering texture, microstructure and ultrastructure. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Vacuum-steam pulsed blanching (VSPB) softens texture and enhances drying rate of carrot by altering cellular structure, pectin polysaccharides and water state. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Tabtiang S, Umroong P, Soponronnarit S. Comparative study of the effects of thermal blanching pretreatments and puffing temperature levels on the microstructure and qualities of crisp banana slices. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Surapit Tabtiang
- Department of Social and Applied Science, College of Industrial Technology King Mongkut's University of Technology North Bangkok Bangkok Thailand
| | - Patcharee Umroong
- Scientific Equipment and Research Division, Kasetsart University Research and Development Institute Kasetsart University Bangkok Thailand
| | - Somchart Soponronnarit
- Energy Technology Division, School of Energy Environment and Materials King Mongkut's University of Technology Thonburi Bangkok Thailand
| |
Collapse
|
48
|
Kim S, Kim S, Shim I, Hong E, Kim S. Drying Operation Effects on the Pigments and Phytochemical Properties of Rose Cultivars. J AOAC Int 2021; 104:1148-1154. [PMID: 33905503 DOI: 10.1093/jaoacint/qsab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/01/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Roses are flowers which contain various phytochemicals and have been used for food and medicinal purposes in many countries. Materials, including flowers, are available for limited periods when plants can be cultivated. OBJECTIVE To evaluate the quality of rose petals on the basis of cultivars and drying methods, chromaticity, phytochemical contents, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. METHOD Petals of three rose cultivars were dried by hot air drying (HD) and freeze drying (FD). Subsequently, the chromaticity and the contents of pigment, total flavonoids, and ascorbic acid, and DPPH radical scavenging activity were analyzed. RESULTS The total color difference (△E)values of rose red (RR, Calypso) and rose orange (RO, Lambada) were low in FD. In contrast, in rose yellow (RY, Ileos), there was no significant difference in chromaticity regulation regardless of the drying methods. The pigment contents were generally increased by drying. The carotenoid content in the RR and anthocyanin and carotenoid contents in RO were higher in FD than in HD. The drying operations increased the flavonoid and ascorbic acid content and antioxidant activity in roses, but the difference between the drying methods was not significant. Correlation coefficient analysis revealed ascorbic acid and anthocyanin to have a high positive correlation (r = 0.843), followed by flavonoid and DPPH radical scavenging activity. CONCLUSIONS This study showed that the drying operations increased the flavonoid and ascorbic acid contents, and the chromaticity and pigment content of some cultivars was higher in FD. HIGHLIGHTS Comparison of the color change, phytochemical content, and antioxidant activity by the drying methods (FD and HD treatment) in the three rose cultivars with red, orange, and yellow petals showed the increased phytochemical contents and antioxidant activity after drying, and chromaticity and pigment content were more stable and higher in FD.
Collapse
Affiliation(s)
- Sujung Kim
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Korea.,Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Korea
| | - Seongmin Kim
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Korea
| | - Iesung Shim
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Korea
| | - Eunhye Hong
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Korea
| | - Sunhyung Kim
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
49
|
Zhou C, Okonkwo CE, Inyinbor AA, Yagoub AEA, Olaniran AF. Ultrasound, infrared and its assisted technology, a promising tool in physical food processing: A review of recent developments. Crit Rev Food Sci Nutr 2021; 63:1587-1611. [PMID: 34404303 DOI: 10.1080/10408398.2021.1966379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Traditional food processing techniques can no longer meet the ever increasing demand for high quality food across the globe due to its low process efficiency, high energy consumption and low product yield. This review article is focused on the mechanism and application of Infrared (IR) and ultrasound (US) technologies in physical processing of food. We herein present the individual use of IR and US (both mono-frequency and multi-frequency levels) as well as IR and US supported with other thermal and non-thermal technologies to improve their food processing performance. IR and US are recent thermal and non-thermal technologies which have now been successfully used in food industries to solve the demerits of conventional processing technologies. These environmentally-friendly technologies are characterized by low energy consumption, reduced processing time, high mass-transfer rates, better nutrient retention, better product quality, less mechanical damage and improved shelf life. This work could be, with no doubt, useful to the scientific world and food industries by providing insights on recent advances in the use of US and IR technology, which can be applied to improve food processing technologies for better quality and safer products.
Collapse
Affiliation(s)
- Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Clinton E Okonkwo
- Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, Omu-Aran, Kwara state, Nigeria
| | - Adejumoke A Inyinbor
- Department of Physical Sciences, Industrial Chemistry Programme, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abiola F Olaniran
- Department of Food Science and Nutrition, College of Agricultural Sciences, Landmark University, Omu-Aran, Kwara state, Nigeria
| |
Collapse
|
50
|
Fombang EN, Nobossé P, Mbofung CMF, Singh D. Impact of post harvest treatment on antioxidant activity and phenolic profile of Moringa oleifera lam leaves. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00067-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Moringa oleifera leaves are an important source of dietary phytochemicals, such as flavonoids with high antioxidant activity (AOA). These components are however influenced by the post-harvest treatments applied as well as the processing conditions. Hence, it is crucial to determine the most appropriate post-harvest treatment that preserves or enhances AOA. To this effect the influence of steam blanching, fermentation / oxidation, oven drying and roasting of fresh Moringa leaves on their AOA was investigated. Processing conditions of time and temperature for each treatment were optimised using response surface methodology. The effect of the different treatments at optimal conditions on phenolic profile and AOA were compared. Roasting achieved the most significant (p < 0.05) improvement in phenolics (43%) and AOA (22–31%), which was accompanied by the formation of 2 new compounds, quercetin-3-O-acetylglucoside and Quercetine-3-O-rhamnoside. Steam blanching had the most deleterious effect on phenolics (− 31%) and AOA. Post-harvest treatments qualitatively and quantitatively affect phytochemical profile of Moringa leaves.
Graphical abstract
Collapse
|