1
|
Lanna A. Unexpected links between cancer and telomere state. Semin Cancer Biol 2025; 110:46-55. [PMID: 39952372 DOI: 10.1016/j.semcancer.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/05/2025] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
Eukaryotes possess chromosome ends known as telomeres. As telomeres shorten, organisms age, a process defined as senescence. Although uncontrolled telomere lengthening has been naturally connected with cancer developments and immortalized state, many cancers are instead characterized by extremely short, genomically unstable telomeres that may hide cancer cells from immune attack. By contrast, other malignancies feature extremely long telomeres due to absence of 'shelterin' end cap protecting factors. The reason for rampant telomere extension in these cancers had remained elusive. Hence, while telomerase supports tumor progression and escape in cancers with very short telomeres, it is possible that different - transfer based or alternative - lengthening pathways be involved in the early stage of tumorigenesis, when telomere length is intact. In this Review, I hereby discuss recent discoveries in the field of telomeres and highlight unexpected links connecting cancer and telomere state. We hope these parallelisms may inform new therapies to eradicate cancers.
Collapse
Affiliation(s)
- Alessio Lanna
- Sentcell UK laboratories, Tuscany Life Sciences, GSK Vaccine Campus, Siena, Italy; University College London, Division of Medicine, London, United Kingdom; Monte-Carlo, Principality of Monaco, France.
| |
Collapse
|
2
|
Liu Y, Ma Q, Khan MZ, Wang M, Xiang F, Zhang X, Kou X, Li S, Wang C, Li Y. Proteomic Profiling of Donkey Milk Exosomes Highlights Bioactive Proteins with Immune-Related Functions. Int J Mol Sci 2025; 26:2892. [PMID: 40243471 PMCID: PMC11988413 DOI: 10.3390/ijms26072892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The growing recognition of the role of milk-derived exosomes in metabolic and immunological processes has brought attention to the potential utility of donkey milk. However, the efficacy and bioactive components of donkey milk are underexplored. This study aimed to elucidate the proteomic profiles of exosomes isolated from donkey colostrum and mature milk using advanced four-dimensional (4D) label-free quantitative proteomics. A comprehensive analysis identified and quantified a total of 2293 exosomal proteins from donkey milk, including 276 differentially expressed exosomal proteins (DEEPs). The results revealed marked proteomic differences between colostrum and mature milk exosomes, particularly in proteins associated with immune responses and metabolic pathways. Exosomal proteins derived from colostrum were found to be enriched in immune-modulatory factors and glycan-related pathways, which may contribute to the enhancement in neonatal immune system development. In contrast, exosomal proteins from mature milk were predominantly associated with metabolic processes and cellular senescence. Protein-protein interaction (PPI) analysis further suggested that specific exosomal proteins highly expressed in colostrum could serve as nutraceutical components with potential health benefits for humans. In conclusion, this study underscores the distinct proteomic features and potential physiological roles of exosomes from donkey colostrum versus mature milk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Changfa Wang
- College of Agriculture and Biology, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng 252000, China; (Y.L.); (Q.M.); (M.Z.K.); (M.W.); (F.X.); (X.Z.); (X.K.); (S.L.)
| | - Yan Li
- College of Agriculture and Biology, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng 252000, China; (Y.L.); (Q.M.); (M.Z.K.); (M.W.); (F.X.); (X.Z.); (X.K.); (S.L.)
| |
Collapse
|
3
|
Santos-Sousa DC, da Rosa S, Filippi-Chiela E. Molecular signatures of cellular senescence in cancer: a critical review of prognostic implications and therapeutic opportunities. Mech Ageing Dev 2025; 225:112052. [PMID: 40120861 DOI: 10.1016/j.mad.2025.112052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/01/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Cellular senescence is a state of permanent loss of proliferative capacity. Therefore, cells that reach a senescent state prevent tumor initiation, acting as an anti-tumor mechanism. However, despite not being proliferative, senescent cells have high secretory activity, constituting the Senescence-Associated Secretory Phenotype (SASP). SASP includes thousands of soluble molecules and extracellular vesicles, through which senescent cells can affect other cells and the extracellular matrix. In advanced tumors, the enrichment of senescent cells can have anti- or pro-tumor effects depending on features like SASP composition, tumor microenvironment (TME) composition, the anatomic site, histopathologic characteristics of malignancy, and tumor molecular background. We reviewed the studies assessing the impact of the senescence status, measured by mRNA or lncRNA molecular signatures, in the prognosis and other clinically relevant information in cancer, including anti-tumor immunity and response to therapy. We discussed the pros and cons of different strategies to define those molecular signatures and the main limitations of the studies. Finally, we also raised clinical challenges regarding the crossroad between cellular senescence and cancer prognosis, including some therapeutic opportunities in the field.
Collapse
Affiliation(s)
- Débora C Santos-Sousa
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil.
| | - Solon da Rosa
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil.
| | - Eduardo Filippi-Chiela
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil; Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.
| |
Collapse
|
4
|
Sun H, Xia T, Ma S, Lv T, Li Y. Intercellular communication is crucial in the regulation of healthy aging via exosomes. Pharmacol Res 2025; 212:107591. [PMID: 39800177 DOI: 10.1016/j.phrs.2025.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The hallmarks of aging encompass a variety of molecular categories (genomic, telomeric, and epigenetic), organelles (proteostasis, autophagy, and mitochondria), cellular components (including stem cells), systems (such as intercellular communication and chronic inflammation), and environmental factors (dysbiosis and nutrient sensing). These hallmarks play a crucial role in the aging process. Despite their intricate interconnections, the relationships among the hallmarks of aging remain unclear. Although the boundaries between these hallmarks may be indistinct, they exhibit interdependence, with the influence of one hallmark extending to others. Building on this foundation, we investigated the interrelations among the various hallmarks of aging and provided a systematic overview of their logical relationships, proposing that cellular communication plays a crucial role in the aging process. Exosomes function as a primary mode of cellular communication and significantly impact the aging process. Therefore, we propose utilizing exosomes as valuable tools for understanding the mechanisms of aging and addressing age-related concerns. Exosomes may represent a novel approach for the treatment and diagnosis of aging-related conditions in animals. Furthermore, our research reveals that exocytosis in young nematodes slows the aging process, while exocytosis in aged nematodes has the opposite effect, accelerating aging. In conclusion, exosomes act as intercellular messengers that influence the maintenance of a healthy aging process and link the hallmarks of aging with indicators of well-being.
Collapse
Affiliation(s)
- Huifang Sun
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Tengyuan Xia
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Shuting Ma
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Tao Lv
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China.
| | - Yuhong Li
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China.
| |
Collapse
|
5
|
Pangrazzi L, Meryk A. Molecular and Cellular Mechanisms of Immunosenescence: Modulation Through Interventions and Lifestyle Changes. BIOLOGY 2024; 14:17. [PMID: 39857248 PMCID: PMC11760833 DOI: 10.3390/biology14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
Immunosenescence, the age-related decline in immune function, is a complex biological process with profound implications for health and longevity. This phenomenon, characterized by alterations in both innate and adaptive immunity, increases susceptibility to infections, reduces vaccine efficacy, and contributes to the development of age-related diseases. At the cellular level, immunosenescence manifests as decreased production of naive T and B cells, accumulation of memory and senescent cells, thymic involution, and dysregulated cytokine production. Recent advances in molecular biology have shed light on the underlying mechanisms of immunosenescence, including telomere attrition, epigenetic alterations, mitochondrial dysfunction, and changes in key signaling pathways such as NF-κB and mTOR. These molecular changes lead to functional impairments in various immune cell types, altering their proliferative capacity, differentiation, and effector functions. Emerging research suggests that lifestyle factors may modulate the rate and extent of immunosenescence at both cellular and molecular levels. Physical activity, nutrition, stress management, and sleep patterns have been shown to influence immune cell function, inflammatory markers, and oxidative stress in older adults. This review provides a comprehensive analysis of the molecular and cellular mechanisms underlying immunosenescence and explores how lifestyle interventions may impact these processes. We will examine the current understanding of immunosenescence at the genomic, epigenomic, and proteomic levels, and discuss how various lifestyle factors can potentially mitigate or partially reverse aspects of immune aging. By integrating recent findings from immunology, gerontology, and molecular biology, we aim to elucidate the intricate interplay between lifestyle and immune aging at the molecular level, potentially informing future strategies for maintaining immune competence in aging populations.
Collapse
Affiliation(s)
- Luca Pangrazzi
- Institute for Biomedical Aging Research, Faculty of Biology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andreas Meryk
- Department of Pediatrics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Mathur A, Taurin S, Alshammary S. New insights into methods to measure biological age: a literature review. FRONTIERS IN AGING 2024; 5:1395649. [PMID: 39743988 PMCID: PMC11688636 DOI: 10.3389/fragi.2024.1395649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025]
Abstract
Biological age is a concept that reflects the physiological state of an individual rather than the chronological time since birth. It can help assess the risk of age-related diseases and mortality and the effects of interventions to slow down or reverse aging. However, there is no consensus on measuring biological age best, and different methods may yield different results. In this paper, which includes 140 relevant pieces of literature, out of 33,000, we review some new methods to measure biological age based on recent advances in biotechnology and data science. We discussed some novel biomarkers and algorithms that can capture the dynamic and multidimensional aspects of aging at different levels. We evaluate their performance and validity using various datasets and criteria and compare them with existing methods. We also discuss their potential applications and implications for aging research and clinical practice. We conclude that the new methods offer more accurate and reliable estimates of biological age and open new avenues for understanding and modulating the aging process.
Collapse
Affiliation(s)
| | | | - Sfoug Alshammary
- Department of Molecular Medicine, Princess Al Jawhara Center, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
7
|
Wang B, Han J, Elisseeff JH, Demaria M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat Rev Mol Cell Biol 2024; 25:958-978. [PMID: 38654098 DOI: 10.1038/s41580-024-00727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Cellular senescence is a state of terminal growth arrest associated with the upregulation of different cell cycle inhibitors, mainly p16 and p21, structural and metabolic alterations, chronic DNA damage responses, and a hypersecretory state known as the senescence-associated secretory phenotype (SASP). The SASP is the major mediator of the paracrine effects of senescent cells in their tissue microenvironment and of various local and systemic biological functions. In this Review, we discuss the composition, dynamics and heterogeneity of the SASP as well as the mechanisms underlying its induction and regulation. We describe the various biological properties of the SASP, its beneficial and detrimental effects in different physiological and pathological settings, and its impact on overall health span. Finally, we discuss the use of the SASP as a biomarker and of SASP inhibitors as senomorphic interventions to treat cancer and other age-related conditions.
Collapse
Affiliation(s)
- Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands
| | - Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands.
| |
Collapse
|
8
|
Chen YY, Sullivan J, Hanley S, Price J, Tariq MA, McIlvenna LC, Whitham M, Sharma-Oates A, Harrison P, Lord JM, Hazeldine J. Impact of Senescent Cell-Derived Extracellular Vesicles on Innate Immune Cell Function. Adv Biol (Weinh) 2024; 8:e2400265. [PMID: 39441562 DOI: 10.1002/adbi.202400265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/10/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are components of the senescence-associated secretory phenotype (SASP) that influence cellular functions via their cargo. Here, the interaction between EVs derived from senescent (SEVs) and non-senescent (N-SEVs) fibroblasts and the immune system is investigated. Via endocytosis, SEVs are phagocytosed by monocytes, neutrophils, and B cells. Studies with the monocytic THP-1 cell line find that pretreatment with SEVs results in a 32% (p < 0.0001) and 66% (p < 0.0001) increase in lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNF-α) production when compared to vehicle control or N-SEVs respectively. Interestingly, relative to vehicle control, THP-1 cells exposed to N-SEVs exhibit a 20% decrease in TNF-α secretion (p < 0.05). RNA sequencing reveals significant differences in gene expression in THP-1 cells treated with SEVs or N-SEVs, with vesicle-mediated transport and cell cycle regulation pathways featuring predominantly with N-SEV treatment, while pathways relating to SLITS/ROBO signaling, cell metabolism, and cell cycle regulation are enriched in THP-1 cells treated with SEVs. Proteomic analysis also reveals significant differences between SEV and N-SEV cargo. These results demonstrate that phagocytes and B cells uptake SEVs and drive monocytes toward a more proinflammatory phenotype upon LPS stimulation. SEVs may therefore contribute to the more proinflammatory immune response seen with aging.
Collapse
Affiliation(s)
- Yung-Yi Chen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jack Sullivan
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
- Scar Free Foundation Centre for Conflict Wound Research, University Hospitals Birmingham, Birmingham, B15 2GW, UK
| | - Shaun Hanley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Joshua Price
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mohammad A Tariq
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Luke C McIlvenna
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, B15 2TT, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
- Scar Free Foundation Centre for Conflict Wound Research, University Hospitals Birmingham, Birmingham, B15 2GW, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT, UK
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, B15 2TH, UK
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
- Scar Free Foundation Centre for Conflict Wound Research, University Hospitals Birmingham, Birmingham, B15 2GW, UK
| |
Collapse
|
9
|
Mansfield L, Ramponi V, Gupta K, Stevenson T, Mathew AB, Barinda AJ, Herbstein F, Morsli S. Emerging insights in senescence: pathways from preclinical models to therapeutic innovations. NPJ AGING 2024; 10:53. [PMID: 39578455 PMCID: PMC11584693 DOI: 10.1038/s41514-024-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Senescence is a crucial hallmark of ageing and a significant contributor to the pathology of age-related disorders. As committee members of the young International Cell Senescence Association (yICSA), we aim to synthesise recent advancements in the identification, characterisation, and therapeutic targeting of senescence for clinical translation. We explore novel molecular techniques that have enhanced our understanding of senescent cell heterogeneity and their roles in tissue regeneration and pathology. Additionally, we delve into in vivo models of senescence, both non-mammalian and mammalian, to highlight tools available for advancing the contextual understanding of in vivo senescence. Furthermore, we discuss innovative diagnostic tools and senotherapeutic approaches, emphasising their potential for clinical application. Future directions of senescence research are explored, underscoring the need for precise, context-specific senescence classification and the integration of advanced technologies such as machine learning, long-read sequencing, and multifunctional senoprobes and senolytics. The dual role of senescence in promoting tissue homoeostasis and contributing to chronic diseases highlights the complexity of targeting these cells for improved clinical outcomes.
Collapse
Affiliation(s)
- Luke Mansfield
- The Bateson Centre, School of Medicine and Population Health, The University of Sheffield, Western Bank, Sheffield, UK
| | - Valentina Ramponi
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kavya Gupta
- Department of Cellular and Molecular Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Abraham Binoy Mathew
- Department of Developmental Biology and Genetics, Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - Samir Morsli
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum Q6A, Stockholm, Sweden.
| |
Collapse
|
10
|
Prasanna PGS. Harnessing Senescence for Antitumor Immunity to Advance Cancer Treatment. Radiat Res 2024; 202:727-733. [PMID: 39191430 PMCID: PMC11620177 DOI: 10.1667/rade-24-00098.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Considering the limitations and complexities of the cell-killing-based cancer treatment approaches, one could aim to integrate symbiotic advances in many energy delivery technologies and transformational pieces of evidence in research on senescence and immunomodulators to advance cancer treatment. Although senescent cells contribute to drug tolerance, resistance to therapy, tumorigenesis, maladapting cancer phenotypes, tumor relapse, recurrence, and metastasis, emerging pieces of evidence also demonstrate that acutely induced senescent cells in tumors can elicit a strong and lasting antitumor immune response juxtaposed to the immunologically silent apoptotic cells. This commentary is to help develop an unconventional conceptual framework to advance cancer treatment. Accordingly, it will involve transiently inducing senescent cells in tumors at optimal levels to prime the immune system with radiation, then eliminating senescent cells with senolytics (drugs that specifically eliminate senescent cells) to disrupt their positive feedback accumulation (to prevent tumor maladaptation and adverse effects in healthy cells) and unleash long-lasting antitumor immunity with immunomodulators. The approach is reasonably speculative and will require scientifically rigorous "fit-for-purpose," well-controlled preclinical research and development involving dose and schedule optimization of radiation and drugs, using representative in vitro and in vivo cancer models to obtain high-quality data to proceed to clinical studies.
Collapse
Affiliation(s)
- Pataje G. S. Prasanna
- The National Cancer Institute, Division of Cancer Treatment and Diagnosis, Radiation Research Program, Bethesda, Maryland 20892
| |
Collapse
|
11
|
Herbstein F, Sapochnik M, Attorresi A, Pollak C, Senin S, Gonilski‐Pacin D, Ciancio del Giudice N, Fiz M, Elguero B, Fuertes M, Müller L, Theodoropoulou M, Pontel LB, Arzt E. The SASP factor IL-6 sustains cell-autonomous senescent cells via a cGAS-STING-NFκB intracrine senescent noncanonical pathway. Aging Cell 2024; 23:e14258. [PMID: 39012326 PMCID: PMC11464112 DOI: 10.1111/acel.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024] Open
Abstract
Senescent cells produce a Senescence-Associated Secretory Phenotype (SASP) that involves factors with diverse and sometimes contradictory activities. One key SASP factor, interleukin-6 (IL-6), has the potential to amplify cellular senescence in the SASP-producing cells in an autocrine action, while simultaneously inducing proliferation in the neighboring cells. The underlying mechanisms for the contrasting actions remain unclear. We found that the senescence action does not involve IL-6 secretion nor the interaction with the receptor expressed in the membrane but is amplified through an intracrine mechanism. IL-6 sustains intracrine senescence interacting with the intracellular IL-6 receptor located in anterograde traffic specialized structures, with cytosolic DNA, cGAS-STING, and NFκB activation. This pathway triggered by intracellular IL-6 significantly contributes to cell-autonomous induction of senescence and impacts in tumor growth control. Inactivation of IL-6 in somatotrophic senescent cells transforms them into strongly tumorigenic in NOD/SCID mice, while re-expression of IL-6 restores senescence control of tumor growth. The intracrine senescent IL-6 pathway is further evidenced in three human cellular models of therapy-induced senescence. The compartmentalization of the intracellular signaling, in contrast to the paracrine tumorigenic action, provides a pathway for IL-6 to sustain cell-autonomous senescent cells, driving the SASP, and opens new avenues for clinical consideration to senescence-based therapies.
Collapse
Affiliation(s)
- Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Melanie Sapochnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Alejandra Attorresi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Cora Pollak
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Sergio Senin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - David Gonilski‐Pacin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Nicolas Ciancio del Giudice
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Manuel Fiz
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Belén Elguero
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Mariana Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| | - Lara Müller
- Medizinische Klinik und Poliklinik IVLudwig‐Maximilians‐Universität (LMU) MünchenMunichGermany
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IVLudwig‐Maximilians‐Universität (LMU) MünchenMunichGermany
| | - Lucas B. Pontel
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Present address:
Josep Carreras Leukaemia Research Institute (IJC)BadalonaSpain
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
12
|
Matuszewska J, Krawiec A, Radziemski A, Uruski P, Tykarski A, Mikuła-Pietrasik J, Książek K. Alterations of receptors and insulin-like growth factor binding proteins in senescent cells. Eur J Cell Biol 2024; 103:151438. [PMID: 38945074 DOI: 10.1016/j.ejcb.2024.151438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
The knowledge about cellular senescence expands dynamically, providing more and more conclusive evidence of its triggers, mechanisms, and consequences. Senescence-associated secretory phenotype (SASP), one of the most important functional traits of senescent cells, is responsible for a large extent of their context-dependent activity. Both SASP's components and signaling pathways are well-defined. A literature review shows, however, that a relatively underinvestigated aspect of senescent cell autocrine and paracrine activity is the change in the production of proteins responsible for the reception and transmission of SASP signals, i.e., receptors and binding proteins. For this reason, we present in this article the current state of knowledge regarding senescence-associated changes in cellular receptors and insulin-like growth factor binding proteins. We also discuss the role of these alterations in senescence induction and maintenance, pro-cancerogenic effects of senescent cells, and aging-related structural and functional malfunctions.
Collapse
Affiliation(s)
- Julia Matuszewska
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Artur Radziemski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Paweł Uruski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Andrzej Tykarski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland.
| |
Collapse
|
13
|
Dong Z, Luo Y, Yuan Z, Tian Y, Jin T, Xu F. Cellular senescence and SASP in tumor progression and therapeutic opportunities. Mol Cancer 2024; 23:181. [PMID: 39217404 PMCID: PMC11365203 DOI: 10.1186/s12943-024-02096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular senescence (CS), a permanent and irreversible arrest of the cell cycle and proliferation leading to the degeneration of cellular structure and function, has been implicated in various key physiological and pathological processes, particularly in cancer. Initially, CS was recognized as a barrier to tumorigenesis, serving as an intrinsic defense mechanism to protect cells from malignant transformation. However, increasing evidence suggests that senescent cells can promote tumor progression to overt malignancy, primarily through a set of factors known as senescence-associated secretory phenotypes (SASPs), including chemokines, growth factors, cytokines, and stromal metalloproteinases. These factors significantly reshape the tumor microenvironment (TME), enabling tumors to evade immune destruction. Interestingly, some studies have also suggested that SASPs may impede tumor development by enhancing immunosurveillance. These opposing roles highlight the complexity and heterogeneity of CS and SASPs in diverse cancers. Consequently, there has been growing interest in pharmacological interventions targeting CS or SASPs in cancer therapy, such as senolytics and senomorphics, to either promote the clearance of senescent cells or mitigate the harmful effects of SASPs. In this review, we will interpret the concept of CS, delve into the role of SASPs in reshaping the TME, and summarize recent advances in anti-tumor strategies targeting CS or SASPs.
Collapse
Affiliation(s)
- Zening Dong
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yahan Luo
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| | - Zhangchen Yuan
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianqiang Jin
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Feng Xu
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
14
|
Jha SK, De Rubis G, Devkota SR, Zhang Y, Adhikari R, Jha LA, Bhattacharya K, Mehndiratta S, Gupta G, Singh SK, Panth N, Dua K, Hansbro PM, Paudel KR. Cellular senescence in lung cancer: Molecular mechanisms and therapeutic interventions. Ageing Res Rev 2024; 97:102315. [PMID: 38679394 DOI: 10.1016/j.arr.2024.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Lung cancer stands as the primary contributor to cancer-related fatalities worldwide, affecting both genders. Two primary types exist where non-small cell lung cancer (NSCLC), accounts for 80-85% and SCLC accounts for 10-15% of cases. NSCLC subtypes include adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Smoking, second-hand smoke, radon gas, asbestos, and other pollutants, genetic predisposition, and COPD are lung cancer risk factors. On the other hand, stresses such as DNA damage, telomere shortening, and oncogene activation cause a prolonged cell cycle halt, known as senescence. Despite its initial role as a tumor-suppressing mechanism that slows cell growth, excessive or improper control of this process can cause age-related diseases, including cancer. Cellular senescence has two purposes in lung cancer. Researchers report that senescence slows tumor growth by constraining multiplication of impaired cells. However, senescent cells also demonstrate the pro-inflammatory senescence-associated secretory phenotype (SASP), which is widely reported to promote cancer. This review will look at the role of cellular senescence in lung cancer, describe its diagnostic markers, ask about current treatments to control it, look at case studies and clinical trials that show how senescence-targeting therapies can be used in lung cancer, and talk about problems currently being faced, and possible solutions for the same in the future.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Shankar Raj Devkota
- Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Yali Zhang
- School of Chemical Engineering, University of Adelaide, Adelaide 5005, Australia
| | - Radhika Adhikari
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Laxmi Akhileshwar Jha
- Naraina Vidya Peeth Group of Institutions, Faculty of Pharmacy, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh 0208020, India
| | - Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026, India; Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam 781035, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Nisha Panth
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| |
Collapse
|
15
|
Silva AO, Bitencourt TC, Vargas JE, Fraga LR, Filippi-Chiela E. Modulation of tumor plasticity by senescent cells: Deciphering basic mechanisms and survival pathways to unravel therapeutic options. Genet Mol Biol 2024; 47Suppl 1:e20230311. [PMID: 38805699 PMCID: PMC11132560 DOI: 10.1590/1678-4685-gmb-2023-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/21/2024] [Indexed: 05/30/2024] Open
Abstract
Senescence is a cellular state in which the cell loses its proliferative capacity, often irreversibly. Physiologically, it occurs due to a limited capacity of cell division associated with telomere shortening, the so-called replicative senescence. It can also be induced early due to DNA damage, oncogenic activation, oxidative stress, or damage to other cellular components (collectively named induced senescence). Tumor cells acquire the ability to bypass replicative senescence, thus ensuring the replicative immortality, a hallmark of cancer. Many anti-cancer therapies, however, can lead tumor cells to induced senescence. Initially, this response leads to a slowdown in tumor growth. However, the longstanding accumulation of senescent cells (SnCs) in tumors can promote neoplastic progression due to the enrichment of numerous molecules and extracellular vesicles that constitutes the senescence-associated secretory phenotype (SASP). Among other effects, SASP can potentiate or unlock the tumor plasticity and phenotypic transitions, another hallmark of cancer. This review discusses how SnCs can fuel mechanisms that underlie cancer plasticity, like cell differentiation, stemness, reprogramming, and epithelial-mesenchymal transition. We also discuss the main molecular mechanisms that make SnCs resistant to cell death, and potential strategies to target SnCs. At the end, we raise open questions and clinically relevant perspectives in the field.
Collapse
Affiliation(s)
- Andrew Oliveira Silva
- Faculdade Estácio, Porto Alegre, RS, Brazil
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
| | - Thais Cardoso Bitencourt
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Jose Eduardo Vargas
- Universidade Federal do Paraná, Departamento de Biologia Celular,
Curitiba, PR, Brazil
| | - Lucas Rosa Fraga
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Ciências
Morfológicas, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Medicina: Ciências Médicas, Porto Alegre, RS, Brazil
| | - Eduardo Filippi-Chiela
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Ciências
Morfológicas, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia,
Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Bitencourt TC, Vargas JE, Silva AO, Fraga LR, Filippi‐Chiela E. Subcellular structure, heterogeneity, and plasticity of senescent cells. Aging Cell 2024; 23:e14154. [PMID: 38553952 PMCID: PMC11019148 DOI: 10.1111/acel.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/17/2024] Open
Abstract
Cellular senescence is a state of permanent growth arrest. It can be triggered by telomere shortening (replicative senescence) or prematurely induced by stresses such as DNA damage, oncogene overactivation, loss of tumor suppressor genes, oxidative stress, tissue factors, and others. Advances in techniques and experimental designs have provided new evidence about the biology of senescent cells (SnCs) and their importance in human health and disease. This review aims to describe the main aspects of SnCs phenotype focusing on alterations in subcellular compartments like plasma membrane, cytoskeleton, organelles, and nuclei. We also discuss the heterogeneity, dynamics, and plasticity of SnCs' phenotype, including the SASP, and pro-survival mechanisms. We advance on the multiple layers of phenotypic heterogeneity of SnCs, such as the heterogeneity between inducers, tissues and within a population of SnCs, discussing the relevance of these aspects to human health and disease. We also raise the main challenges as well alternatives to overcome them. Ultimately, we present open questions and perspectives in understanding the phenotype of SnCs from the perspective of basic and applied questions.
Collapse
Affiliation(s)
- Thais Cardoso Bitencourt
- Programa de Pós‐Graduação Em Biologia Celular e MolecularUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| | | | - Andrew Oliveira Silva
- Faculdade Estácio RSPorto AlegreRio Grande do SulBrazil
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
| | - Lucas Rosa Fraga
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
- Programa de Pós‐Graduação Em Medicina: Ciências MédicasUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
- Departamento de Ciências MorfológicasUniversidade Federal Do Rio Grande Do SulPorto AlegreRio Grande do SulBrazil
| | - Eduardo Filippi‐Chiela
- Programa de Pós‐Graduação Em Biologia Celular e MolecularUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
- Departamento de Ciências MorfológicasUniversidade Federal Do Rio Grande Do SulPorto AlegreRio Grande do SulBrazil
- Centro de BiotecnologiaUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| |
Collapse
|
17
|
Tzoneva R. Special Issue "Role of Apoptosis and Cellular Senescence in Cancer and Aging". Int J Mol Sci 2024; 25:2103. [PMID: 38396780 PMCID: PMC10889768 DOI: 10.3390/ijms25042103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The intention of this Special Issue is to elucidate the role of apoptosis and cellular senescence in different pathological processes, such as cancer and aging [...].
Collapse
Affiliation(s)
- Rumiana Tzoneva
- Laboratory of Transmembrane Signaling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
18
|
Faleeva M, Ahmad S, Theofilatos K, Lynham S, Watson G, Whitehead M, Marhuenda E, Iskratsch T, Cox S, Shanahan CM. Sox9 Accelerates Vascular Aging by Regulating Extracellular Matrix Composition and Stiffness. Circ Res 2024; 134:307-324. [PMID: 38179698 PMCID: PMC10826924 DOI: 10.1161/circresaha.123.323365] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Vascular calcification and increased extracellular matrix (ECM) stiffness are hallmarks of vascular aging. Sox9 (SRY-box transcription factor 9) has been implicated in vascular smooth muscle cell (VSMC) osteo/chondrogenic conversion; however, its relationship with aging and calcification has not been studied. METHODS Immunohistochemistry was performed on human aortic samples from young and aged patients. Young and senescent primary human VSMCs were induced to produce ECM, and Sox9 expression was manipulated using adenoviral overexpression and depletion. ECM properties were characterized using atomic force microscopy and proteomics, and VSMC phenotype on hydrogels and the ECM were examined using confocal microscopy. RESULTS In vivo, Sox9 was not spatially associated with vascular calcification but correlated with the senescence marker p16 (cyclin-dependent kinase inhibitor 2A). In vitro Sox9 showed mechanosensitive responses with increased expression and nuclear translocation in senescent cells and on stiff matrices. Sox9 was found to regulate ECM stiffness and organization by orchestrating changes in collagen (Col) expression and reducing VSMC contractility, leading to the formation of an ECM that mirrored that of senescent cells. These ECM changes promoted phenotypic modulation of VSMCs, whereby senescent cells plated on ECM synthesized from cells depleted of Sox9 returned to a proliferative state, while proliferating cells on a matrix produced by Sox9 expressing cells showed reduced proliferation and increased DNA damage, reiterating features of senescent cells. LH3 (procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3) was identified as an Sox9 target and key regulator of ECM stiffness. LH3 is packaged into extracellular vesicles and Sox9 promotes extracellular vesicle secretion, leading to increased LH3 deposition within the ECM. CONCLUSIONS These findings highlight the crucial role of ECM structure and composition in regulating VSMC phenotype. We identify a positive feedback cycle, whereby cellular senescence and increased ECM stiffening promote Sox9 expression, which, in turn, drives further ECM modifications to further accelerate stiffening and senescence.
Collapse
Affiliation(s)
- Maria Faleeva
- British Heart Foundation (BHF) Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.F., S.A., K.T., G.W., M.W., C.M.S.) King’s College London, United Kingdom
| | - Sadia Ahmad
- British Heart Foundation (BHF) Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.F., S.A., K.T., G.W., M.W., C.M.S.) King’s College London, United Kingdom
| | - Konstantinos Theofilatos
- British Heart Foundation (BHF) Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.F., S.A., K.T., G.W., M.W., C.M.S.) King’s College London, United Kingdom
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry (S.L.) King’s College London, United Kingdom
| | - Gabriel Watson
- British Heart Foundation (BHF) Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.F., S.A., K.T., G.W., M.W., C.M.S.) King’s College London, United Kingdom
| | - Meredith Whitehead
- British Heart Foundation (BHF) Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.F., S.A., K.T., G.W., M.W., C.M.S.) King’s College London, United Kingdom
| | - Emilie Marhuenda
- School of Engineering and Material Science, Queen Mary University of London, United Kingdom (E.M., T.I.)
| | - Thomas Iskratsch
- School of Engineering and Material Science, Queen Mary University of London, United Kingdom (E.M., T.I.)
| | - Susan Cox
- Randall Centre for Cell & Molecular Biophysics, Faculty of Life Sciences & Medicine (S.C.) King’s College London, United Kingdom
| | - Catherine M. Shanahan
- British Heart Foundation (BHF) Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.F., S.A., K.T., G.W., M.W., C.M.S.) King’s College London, United Kingdom
| |
Collapse
|
19
|
Schwartz RE, Conboy IM. Non-Intrinsic, Systemic Mechanisms of Cellular Senescence. Cells 2023; 12:2769. [PMID: 38132089 PMCID: PMC10741531 DOI: 10.3390/cells12242769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Cellular senescence is believed to contribute to aging and disease through the activity of secreted factors that promote inflammation, remodel the extracellular matrix, and adversely modify the behavior of non-senescent cells. While the markers and properties of senescent cells are still under investigation, it is postulated that cellular senescence manifests in vivo as the consequence of cellular damage that accumulates and becomes exacerbated with time. Yet, the notions that senescence has a solely intrinsic and time-dependent nature are questioned by the rapid induction of senescence in young mice and young cells in vitro by exposure to blood from aged animals. Here, we review some of the research on the systemically present factors that increase with age and may contribute to extrinsically induced senescence or "bystander senescence". These include proteins, reactive oxygen species, lipids, and nucleic acids, which may be present in individual soluble form, in vesicles, and in non-membranous multi-component macromolecules.
Collapse
Affiliation(s)
| | - Irina M. Conboy
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA;
| |
Collapse
|
20
|
Wang LX, Zhang X, Guan LJ, Pen Y. What role do extracellular vesicles play in developing physical frailty and sarcopenia? : A systematic review. Z Gerontol Geriatr 2023; 56:697-702. [PMID: 36580105 DOI: 10.1007/s00391-022-02150-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/23/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Frailty and sarcopenia are typical geriatric conditions with a complex pathophysiology. Extracellular vesicles (EVs) are key regulators of age-related diseases, but the mechanisms underlying physical frailty, sarcopenia, and EVs are not well understood. METHODS A systematic literature review was conducted to examine the evidence supporting an association between EVs and physical frailty and/or sarcopenia by searching the electronic databases, including the Cochrane Library, PubMed, and Embase, from January 2000 to January 2021. RESULTS A total of 216 cross-sectional studies were retrieved, and after the removal of 43 duplicate records, the title and abstract of 167 articles were screened, identifying 6 relevant articles for full-text review. Of the studies five met the inclusion criteria, and heterogeneity among studies was high. There is controversy regarding whether frailty and/or sarcopenia are related to circulating EV levels; however, the cargo of EVs has been associated with frailty and sarcopenia in various ways, such as microRNAs, mitochondrial-derived vesicles (MDVs), and protein cargoes. CONCLUSION Recent studies, although limited, depicted that EVs could be one of the underlying mechanisms of frailty and/or sarcopenia. There is a possibility that physical frailty and sarcopenia may have specific EV concentrations and cargo profiles; however, further research is required to fully understand the mechanisms and identify potential biomarkers and early preventative strategies for physical frailty and sarcopenia.
Collapse
Affiliation(s)
- Ling-Xiao Wang
- Geriatric Diseases Institute of Chengdu, Department of gerontology and geriatrics, Chengdu Fifth People's Hospital, 611137, Chengdu, China.
| | - Xia Zhang
- Geriatric Diseases Institute of Chengdu, Department of gerontology and geriatrics, Chengdu Fifth People's Hospital, 611137, Chengdu, China
| | - Li-Juan Guan
- Geriatric Diseases Institute of Chengdu, Department of gerontology and geriatrics, Chengdu Fifth People's Hospital, 611137, Chengdu, China
| | - Yang Pen
- Geriatric Diseases Institute of Chengdu, Department of gerontology and geriatrics, Chengdu Fifth People's Hospital, 611137, Chengdu, China
| |
Collapse
|
21
|
Ungvari Z, Fazekas-Pongor V, Csiszar A, Kunutsor SK. The multifaceted benefits of walking for healthy aging: from Blue Zones to molecular mechanisms. GeroScience 2023; 45:3211-3239. [PMID: 37495893 PMCID: PMC10643563 DOI: 10.1007/s11357-023-00873-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Physical activity, including walking, has numerous health benefits in older adults, supported by a plethora of observational and interventional studies. Walking decreases the risk or severity of various health outcomes such as cardiovascular and cerebrovascular diseases, type 2 diabetes mellitus, cognitive impairment and dementia, while also improving mental well-being, sleep, and longevity. Dose-response relationships for walking duration and intensity are established for adverse cardiovascular outcomes. Walking's favorable effects on cardiovascular risk factors are attributed to its impact on circulatory, cardiopulmonary, and immune function. Meeting current physical activity guidelines by walking briskly for 30 min per day for 5 days can reduce the risk of several age-associated diseases. Additionally, low-intensity physical exercise, including walking, exerts anti-aging effects and helps prevent age-related diseases, making it a powerful tool for promoting healthy aging. This is exemplified by the lifestyles of individuals in Blue Zones, regions of the world with the highest concentration of centenarians. Walking and other low-intensity physical activities contribute significantly to the longevity of individuals in these regions, with walking being an integral part of their daily lives. Thus, incorporating walking into daily routines and encouraging walking-based physical activity interventions can be an effective strategy for promoting healthy aging and improving health outcomes in all populations. The goal of this review is to provide an overview of the vast and consistent evidence supporting the health benefits of physical activity, with a specific focus on walking, and to discuss the impact of walking on various health outcomes, including the prevention of age-related diseases. Furthermore, this review will delve into the evidence on the impact of walking and low-intensity physical activity on specific molecular and cellular mechanisms of aging, providing insights into the underlying biological mechanisms through which walking exerts its beneficial anti-aging effects.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Setor K Kunutsor
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4WP, UK.
| |
Collapse
|
22
|
Meng Q, Chen C, Yang N, Gololobova O, Shi C, Dunn CA, Rossi M, Martindale JL, Basisty N, Ding J, Delannoy M, Basu S, Mazan-Mamczarz K, Shin CH, Yang JH, Johnson PF, Witwer KW, Biragyn A, Sen P, Abdelmohsen K, De S, Gorospe M. Surfaceome analysis of extracellular vesicles from senescent cells uncovers uptake repressor DPP4. Proc Natl Acad Sci U S A 2023; 120:e2219801120. [PMID: 37862381 PMCID: PMC10614838 DOI: 10.1073/pnas.2219801120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 08/24/2023] [Indexed: 10/22/2023] Open
Abstract
Senescent cells are beneficial for repairing acute tissue damage, but they are harmful when they accumulate in tissues, as occurs with advancing age. Senescence-associated extracellular vesicles (S-EVs) can mediate cell-to-cell communication and export intracellular content to the microenvironment of aging tissues. Here, we studied the uptake of EVs from senescent cells (S-EVs) and proliferating cells (P-EVs) and found that P-EVs were readily taken up by proliferating cells (fibroblasts and cervical cancer cells) while S-EVs were not. We thus investigated the surface proteome (surfaceome) of P-EVs relative to S-EVs derived from cells that had reached senescence via replicative exhaustion, exposure to ionizing radiation, or treatment with etoposide. We found that relative to P-EVs, S-EVs from all senescence models were enriched in proteins DPP4, ANXA1, ANXA6, S10AB, AT1A1, and EPHB2. Among them, DPP4 was found to selectively prevent uptake by proliferating cells, as ectopic overexpression of DPP4 in HeLa cells rendered DPP4-expressing EVs that were no longer taken up by other proliferating cells. We propose that DPP4 on the surface of S-EVs makes these EVs refractory to internalization by proliferating cells, advancing our knowledge of the impact of senescent cells in aging-associated processes.
Collapse
Affiliation(s)
- Qiong Meng
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Chen Chen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Na Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Changyou Shi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Christopher A. Dunn
- Flow Cytometry Unit, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Nathan Basisty
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Jun Ding
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Michael Delannoy
- Department of Cell Biology and Imaging Facility, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Srikanta Basu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD21702
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Peter F. Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD21702
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Arya Biragyn
- Laboratory of Molecular Biology and Immunology, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| |
Collapse
|
23
|
Hughes BK, Wallis R, Bishop CL. Yearning for machine learning: applications for the classification and characterisation of senescence. Cell Tissue Res 2023; 394:1-16. [PMID: 37016180 PMCID: PMC10558380 DOI: 10.1007/s00441-023-03768-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/05/2023] [Indexed: 04/06/2023]
Abstract
Senescence is a widely appreciated tumour suppressive mechanism, which acts as a barrier to cancer development by arresting cell cycle progression in response to harmful stimuli. However, senescent cell accumulation becomes deleterious in aging and contributes to a wide range of age-related pathologies. Furthermore, senescence has beneficial roles and is associated with a growing list of normal physiological processes including wound healing and embryonic development. Therefore, the biological role of senescent cells has become increasingly nuanced and complex. The emergence of sophisticated, next-generation profiling technologies, such as single-cell RNA sequencing, has accelerated our understanding of the heterogeneity of senescence, with distinct final cell states emerging within models as well as between cell types and tissues. In order to explore data sets of increasing size and complexity, the senescence field has begun to employ machine learning (ML) methodologies to probe these intricacies. Most notably, ML has been used to aid the classification of cells as senescent, as well as to characterise the final senescence phenotypes. Here, we provide a background to the principles of ML tasks, as well as some of the most commonly used methodologies from both traditional and deep ML. We focus on the application of these within the context of senescence research, by addressing the utility of ML for the analysis of data from different laboratory technologies (microscopy, transcriptomics, proteomics, methylomics), as well as the potential within senolytic drug discovery. Together, we aim to highlight both the progress and potential for the application of ML within senescence research.
Collapse
Affiliation(s)
- Bethany K Hughes
- Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Ryan Wallis
- Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Cleo L Bishop
- Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| |
Collapse
|
24
|
Sharma R, Diwan B. Lipids and the hallmarks of ageing: From pathology to interventions. Mech Ageing Dev 2023; 215:111858. [PMID: 37652278 DOI: 10.1016/j.mad.2023.111858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Lipids are critical structural and functional architects of cellular homeostasis. Change in systemic lipid profile is a clinical indicator of underlying metabolic pathologies, and emerging evidence is now defining novel roles of lipids in modulating organismal ageing. Characteristic alterations in lipid metabolism correlate with age, and impaired systemic lipid profile can also accelerate the development of ageing phenotype. The present work provides a comprehensive review of the extent of lipids as regulators of the modern hallmarks of ageing viz., cellular senescence, chronic inflammation, gut dysbiosis, telomere attrition, genome instability, proteostasis and autophagy, epigenetic alterations, and stem cells dysfunctions. Current evidence on the modulation of each of these hallmarks has been discussed with emphasis on inherent age-dependent deficiencies in lipid metabolism as well as exogenous lipid changes. There appears to be sufficient evidence to consider impaired lipid metabolism as key driver of the ageing process although much of knowledge is yet fragmented. Considering dietary lipids, the type and quantity of lipids in the diet is a significant, but often overlooked determinant that governs the effects of lipids on ageing. Further research using integrative approaches amidst the known aging hallmarks is highly desirable for understanding the therapeutics of lipids associated with ageing.
Collapse
Affiliation(s)
- Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India.
| | - Bhawna Diwan
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India
| |
Collapse
|
25
|
Marcozzi S, Bigossi G, Giuliani ME, Lai G, Giacconi R, Piacenza F, Malavolta M. Spreading Senescent Cells' Burden and Emerging Therapeutic Targets for Frailty. Cells 2023; 12:2287. [PMID: 37759509 PMCID: PMC10528263 DOI: 10.3390/cells12182287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The spreading of senescent cells' burden holds profound implications for frailty, prompting the exploration of novel therapeutic targets. In this perspective review, we delve into the intricate mechanisms underlying senescent cell spreading, its implications for frailty, and its therapeutic development. We have focused our attention on the emerging age-related biological factors, such as microbiome and virome alterations, elucidating their significant contribution to the loss of control over the accumulation rate of senescent cells, particularly affecting key frailty domains, the musculoskeletal system and cerebral functions. We believe that gaining an understanding of these mechanisms could not only aid in elucidating the involvement of cellular senescence in frailty but also offer diverse therapeutic possibilities, potentially advancing the future development of tailored interventions for these highly diverse patients.
Collapse
Affiliation(s)
- Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| |
Collapse
|
26
|
Jiménez Peinado P, Urbach A. From Youthful Vigor to Aging Decline: Unravelling the Intrinsic and Extrinsic Determinants of Hippocampal Neural Stem Cell Aging. Cells 2023; 12:2086. [PMID: 37626896 PMCID: PMC10453598 DOI: 10.3390/cells12162086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Since Joseph Altman published his pioneering work demonstrating neurogenesis in the hippocampus of adult rats, the number of publications in this field increased exponentially. Today, we know that the adult hippocampus harbors a pool of adult neural stem cells (NSCs) that are the source of life-long neurogenesis and plasticity. The functions of these NSCs are regulated by extrinsic cues arising from neighboring cells and the systemic environment. However, this tight regulation is subject to imbalance with age, resulting in a decline in adult NSCs and neurogenesis, which contributes to the progressive deterioration of hippocampus-related cognitive functions. Despite extensive investigation, the mechanisms underlying this age-related decline in neurogenesis are only incompletely understood, but appear to include an increase in NSC quiescence, changes in differentiation patterns, and NSC exhaustion. In this review, we summarize recent work that has improved our knowledge of hippocampal NSC aging, focusing on NSC-intrinsic mechanisms as well as cellular and molecular changes in the niche and systemic environment that might be involved in the age-related decline in NSC functions. Additionally, we identify future directions that may advance our understanding of NSC aging and the concomitant loss of hippocampal neurogenesis and plasticity.
Collapse
Affiliation(s)
| | - Anja Urbach
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
- Jena Center for Healthy Aging, Jena University Hospital, 07747 Jena, Germany
- Aging Research Center Jena, Leibniz Institute on Aging, 07745 Jena, Germany
| |
Collapse
|
27
|
Giroud J, Bouriez I, Paulus H, Pourtier A, Debacq-Chainiaux F, Pluquet O. Exploring the Communication of the SASP: Dynamic, Interactive, and Adaptive Effects on the Microenvironment. Int J Mol Sci 2023; 24:10788. [PMID: 37445973 DOI: 10.3390/ijms241310788] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular senescence is a complex cell state that can occur during physiological ageing or after exposure to stress signals, regardless of age. It is a dynamic process that continuously evolves in a context-dependent manner. Senescent cells interact with their microenvironment by producing a heterogenous and plastic secretome referred to as the senescence-associated secretory phenotype (SASP). Hence, understanding the cross-talk between SASP and the microenvironment can be challenging due to the complexity of signal exchanges. In this review, we first aim to update the definition of senescence and its associated biomarkers from its discovery to the present day. We detail the regulatory mechanisms involved in the expression of SASP at multiple levels and develop how SASP can orchestrate microenvironment modifications, by focusing on extracellular matrix modifications, neighboring cells' fate, and intercellular communications. We present hypotheses on how these microenvironmental events may affect dynamic changes in SASP composition in return. Finally, we discuss the various existing approaches to targeting SASP and clarify what is currently known about the biological effects of these modified SASPs on the cellular environment.
Collapse
Affiliation(s)
- Joëlle Giroud
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Inès Bouriez
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Hugo Paulus
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Albin Pourtier
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Florence Debacq-Chainiaux
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Olivier Pluquet
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| |
Collapse
|
28
|
Fettucciari K, Fruganti A, Stracci F, Spaterna A, Marconi P, Bassotti G. Clostridioides difficile Toxin B Induced Senescence: A New Pathologic Player for Colorectal Cancer? Int J Mol Sci 2023; 24:8155. [PMID: 37175861 PMCID: PMC10179142 DOI: 10.3390/ijms24098155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Clostridioides difficile (C. difficile) is responsible for a high percentage of gastrointestinal infections and its pathological activity is due to toxins A and B. C. difficile infection (CDI) is increasing worldwide due to the unstoppable spread of C. difficile in the anthropized environment and the progressive human colonization. The ability of C. difficile toxin B to induce senescent cells and the direct correlation between CDI, irritable bowel syndrome (IBS), and inflammatory bowel diseases (IBD) could cause an accumulation of senescent cells with important functional consequences. Furthermore, these senescent cells characterized by long survival could push pre-neoplastic cells originating in the colon towards the complete neoplastic transformation in colorectal cancer (CRC) by the senescence-associated secretory phenotype (SASP). Pre-neoplastic cells could appear as a result of various pro-carcinogenic events, among which, are infections with bacteria that produce genotoxins that generate cells with high genetic instability. Therefore, subjects who develop IBS and/or IBD after CDI should be monitored, especially if they then have further CDI relapses, waiting for the availability of senolytic and anti-SASP therapies to resolve the pro-carcinogenic risk due to accumulation of senescent cells after CDI followed by IBS and/or IBD.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Alessandro Fruganti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Fabrizio Stracci
- Public Health Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
- Gastroenterology & Hepatology Unit, Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|
29
|
Jan Z, Hočevar M, Kononenko V, Michelini S, Repar N, Caf M, Kocjančič B, Dolinar D, Kralj S, Makovec D, Iglič A, Drobne D, Jenko M, Kralj-Iglič V. Inflammatory, Oxidative Stress and Small Cellular Particle Response in HUVEC Induced by Debris from Endoprosthesis Processing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093287. [PMID: 37176169 PMCID: PMC10179554 DOI: 10.3390/ma16093287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
We studied inflammatory and oxidative stress-related parameters and cytotoxic response of human umbilical vein endothelial cells (HUVEC) to a 24 h treatment with milled particles simulating debris involved in sandblasting of orthopedic implants (OI). We used different abrasives (corundum-(Al2O3), used corundum retrieved from removed OI (u. Al2O3), and zirconia/silica composite (ZrO2/SiO2)). Morphological changes were observed by scanning electron microscopy (SEM). Concentration of Interleukins IL-6 and IL-1β and Tumor Necrosis Factor α (TNF)-α was assessed by enzyme-linked immunosorbent assay (ELISA). Activity of Cholinesterase (ChE) and Glutathione S-transferase (GST) was measured by spectrophotometry. Reactive oxygen species (ROS), lipid droplets (LD) and apoptosis were measured by flow cytometry (FCM). Detachment of the cells from glass and budding of the cell membrane did not differ in the treated and untreated control cells. Increased concentration of IL-1β and of IL-6 was found after treatment with all tested particle types, indicating inflammatory response of the treated cells. Increased ChE activity was found after treatment with u. Al2O3 and ZrO2/SiO2. Increased GST activity was found after treatment with ZrO2/SiO2. Increased LD quantity but not ROS quantity was found after treatment with u. Al2O3. No cytotoxicity was detected after treatment with u. Al2O3. The tested materials in concentrations added to in vitro cell lines were found non-toxic but bioactive and therefore prone to induce a response of the human body to OI.
Collapse
Affiliation(s)
- Zala Jan
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia
| | - Matej Hočevar
- Institute of Metals and Technology, SI-1000 Ljubljana, Slovenia
| | - Veno Kononenko
- University of Ljubljana, Biotechnical Faculty, Nanobiology Group, SI-1000 Ljubljana, Slovenia
| | - Sara Michelini
- University of Ljubljana, Biotechnical Faculty, Nanobiology Group, SI-1000 Ljubljana, Slovenia
| | - Neža Repar
- University of Ljubljana, Biotechnical Faculty, Nanobiology Group, SI-1000 Ljubljana, Slovenia
| | - Maja Caf
- Department for Materials Synthesis, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Boštjan Kocjančič
- University of Ljubljana, Faculty of Medicine, Chair of Orthopaedics, SI-1000 Ljubljana, Slovenia
- MD-RI Institute for Materials Research in Medicine, SI-1000 Ljubljana, Slovenia
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Drago Dolinar
- University of Ljubljana, Faculty of Medicine, Chair of Orthopaedics, SI-1000 Ljubljana, Slovenia
- MD-RI Institute for Materials Research in Medicine, SI-1000 Ljubljana, Slovenia
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Darko Makovec
- Department for Materials Synthesis, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Aleš Iglič
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Physics, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Medicine, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Nanobiology Group, SI-1000 Ljubljana, Slovenia
| | - Monika Jenko
- MD-RI Institute for Materials Research in Medicine, SI-1000 Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
30
|
Mas-Bargues C, Sanz-Ros J, Romero-García N, Huete-Acevedo J, Dromant M, Borrás C. Small extracellular vesicles from senescent stem cells trigger adaptive mechanisms in young stem cells by increasing antioxidant enzyme expression. Redox Biol 2023; 62:102668. [PMID: 36965438 PMCID: PMC10060362 DOI: 10.1016/j.redox.2023.102668] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023] Open
Abstract
Extracellular vesicles' biogenesis, shedding, and uptake are redox-sensitive. Indeed, oxidative stress conditions influence extracellular vesicles' release and content, which can modulate the redox status of the receiving cells. In this study, we aimed to assess the effect of extracellular vesicles from human dental pulp stem cells cultured under 21% O2 (senescent stem cells) on human dental pulp stem cells cultured under 3% O2 (young stem cells). Extracellular vesicles were isolated by ultracentrifugation from senescent stem cells and prepared for the treatment of young stem cells at a final concentration of 10 μg/mL. Cells were analyzed for antioxidant gene expression, mitochondrial bioenergetic parameters, ROS production, culture kinetics, and apoptosis. The results show that extracellular vesicles from senescent stem cells induce overexpression of antioxidant genes (MnSOD, CAT, and GPx) in young stem cells, which show an increased non-mitochondrial oxygen consumption, accompanied by reduced maximal respiration and spare respiratory capacity without altering mitochondrial membrane potential. This is accompanied by improved cell proliferation, viability, and migration rates and a reduction of apoptosis. In conclusion, extracellular vesicles from senescent stem cells trigger an adaptive response in young stem cells which improves their antioxidant defenses and their proliferation, migration, and survival rates. This suggests that extracellular vesicles can modulate the cells' microenvironment and the balance between proliferation and senescence.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain; Department of Cardiology, Hospital Universitari I Politècnic La Fe, 46026, Valencia, Spain.
| | - Nekane Romero-García
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain; Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari de Valencia, 46010, Valencia, Spain.
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| |
Collapse
|
31
|
Sheekey E, Narita M. p53 in senescence - it's a marathon, not a sprint. FEBS J 2023; 290:1212-1220. [PMID: 34921507 DOI: 10.1111/febs.16325] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
Abstract
The tumour suppressor p53, a stress-responsive transcription factor, plays a central role in cellular senescence. The role of p53 in senescence-associated stable proliferative arrest has been extensively studied. However, increasing evidence indicates that p53 also modulates the ability of senescent cells to produce and secrete diverse bioactive factors (collectively called the senescence-associated secretory phenotype, SASP). Senescence has been linked with both physiological and pathological conditions, the latter including ageing, cancer and other age-related disorders, in part through the SASP. Cellular functions are generally dictated by the expression profile of lineage-specific genes. Indeed, expression of SASP factors and their regulators are often biased by cell type. In addition, emerging evidence suggests that p53 contributes to deregulation of more stringent lineage-specific genes during senescence. P53 itself is also tightly regulated at the protein level. In contrast to the rapid and transient activity of p53 upon stress ('acute-p53'), during senescence and other prolonged pathological conditions, p53 activities are sustained and fine-tuned through a combination of different inputs and outputs ('chronic-p53').
Collapse
Affiliation(s)
- Eleanor Sheekey
- Cancer Research UK Cambridge Institute, University of Cambridge, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, UK
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
32
|
Nejabati HR, Roshangar L, Nouri M. Follicular fluid extracellular vesicle miRNAs and ovarian aging. Clin Chim Acta 2023; 538:29-35. [PMID: 36368351 DOI: 10.1016/j.cca.2022.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
The decrease in the reproductive potential due to aging occurs as a gradual decline in the quantity and quality of the ovarian reserve, a phenomenon associated with risk of miscarriage, pregnancy loss, low ovarian stimulation, and oocyte abnormalities, such as chromosomal aneuploidies. Numerous studies have shown that the fertility potential of older women is decreased by changes to the cellular composition of the follicles. Additionally, a unique method of cellular communication has been identified which involves the release of extracellular vesicles (EVs) in various body fluids including follicular fluid (FF). The changing composition of EVs especially non-coding RNAs, such as miRNAs has been documented across a broad range of cell types during aging. Accordingly, alterations of miRNA cargo within FF-derived EVs due to increased age may serve as a potential predictor of oocyte quality. In this review we examine the relationship between FF EV miRNAs and ovarian aging.
Collapse
Affiliation(s)
- Hamid Reza Nejabati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Hurvitz N, Elkhateeb N, Sigawi T, Rinsky-Halivni L, Ilan Y. Improving the effectiveness of anti-aging modalities by using the constrained disorder principle-based management algorithms. FRONTIERS IN AGING 2022; 3:1044038. [PMID: 36589143 PMCID: PMC9795077 DOI: 10.3389/fragi.2022.1044038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
Aging is a complex biological process with multifactorial nature underlined by genetic, environmental, and social factors. In the present paper, we review several mechanisms of aging and the pre-clinically and clinically studied anti-aging therapies. Variability characterizes biological processes from the genome to cellular organelles, biochemical processes, and whole organs' function. Aging is associated with alterations in the degrees of variability and complexity of systems. The constrained disorder principle defines living organisms based on their inherent disorder within arbitrary boundaries and defines aging as having a lower variability or moving outside the boundaries of variability. We focus on associations between variability and hallmarks of aging and discuss the roles of disorder and variability of systems in the pathogenesis of aging. The paper presents the concept of implementing the constrained disease principle-based second-generation artificial intelligence systems for improving anti-aging modalities. The platform uses constrained noise to enhance systems' efficiency and slow the aging process. Described is the potential use of second-generation artificial intelligence systems in patients with chronic disease and its implications for the aged population.
Collapse
Affiliation(s)
- Noa Hurvitz
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Narmine Elkhateeb
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Tal Sigawi
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Lilah Rinsky-Halivni
- Braun School of Public Health, Hebrew University of Jerusalem, Jerusalem, Israel,Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel,*Correspondence: Yaron Ilan,
| |
Collapse
|
34
|
Quesnel A, Broughton A, Karagiannis GS, Filippou PS. Message in the bottle: regulation of the tumor microenvironment via exosome-driven proteolysis. Cancer Metastasis Rev 2022; 41:789-801. [PMID: 35394580 DOI: 10.1007/s10555-022-10030-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/29/2022] [Indexed: 01/25/2023]
Abstract
Exosomes comprise a subtype of extracellular vesicles involved in cell-to-cell communication, specifically by transporting biological molecules, such as proteins and nucleic acids, to either local or more distant recipient cells, thus triggering distinct biological behaviors. Included in the exosome cargo is frequently a wide range of proteolytic enzymes, such as the matrix metalloproteinases (MMPs), the disintegrin and metalloproteinases (ADAMs), and the ADAM with thrombospondin-like motifs (ADAMTSs), whose functions contribute to the development and progression of cancer. In recent years, extensive research on the potential use of exosomes in diagnostic and therapeutic applications for personalized medicine has emerged, but the targeting of the proteolytic cargo of exosomes has not been fully exploited in this direction. In this review, we aim to explore both the mechanistic and the translational importance of proteolytic enzymes carried by the tumor cell-derived exosomes, as well as their role in the acquisition and support of certain hallmarks of cancer.
Collapse
Affiliation(s)
- Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK.,National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK
| | - Amy Broughton
- School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK
| | - George S Karagiannis
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA.,Albert Einstein Cancer Center, Tumor Microenvironment and Metastasis Program, Bronx, NY, USA
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK. .,National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
35
|
Głuchowska A, Cysewski D, Baj-Krzyworzeka M, Szatanek R, Węglarczyk K, Podszywałow-Bartnicka P, Sunderland P, Kozłowska E, Śliwińska MA, Dąbrowski M, Sikora E, Mosieniak G. Unbiased proteomic analysis of extracellular vesicles secreted by senescent human vascular smooth muscle cells reveals their ability to modulate immune cell functions. GeroScience 2022; 44:2863-2884. [PMID: 35900662 PMCID: PMC9768090 DOI: 10.1007/s11357-022-00625-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/12/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis, a common age-related disease, is characterized by intense immunological activity. Atherosclerotic plaque is composed of endothelial cells, vascular smooth muscle cells (VSMCs), lipids and immune cells infiltrating from the blood. During progression of the disease, VSMCs undergo senescence within the plaque and secrete SASP (senescence-associated secretory phenotype) factors that can actively modulate plaque microenvironment. We demonstrated that senescent VSMCs secrete increased number of extracellular vesicles (senEVs). Based on unbiased proteomic analysis of VMSC-derived EVs and of the soluble fraction of SASP (sSASP), more than 900 proteins were identified in each of SASP compartments. Comparison of the composition of VMSC-derived EVs with the SASP atlas revealed several proteins, including Serpin Family F Member 1 (SERPINF1) and Thrombospondin 1 (THBS1), as commonly upregulated components of EVs secreted by senescent VSMCs and fibroblasts. Among soluble SASP factors, only Growth Differentiation Factor 15 (GDF15) was universally increased in the secretome of senescent VSMCs, fibroblasts, and epithelial cells. Bioinformatics analysis of EV proteins distinguished functionally organized protein networks involved in immune cell function regulation. Accordingly, EVs released by senescent VSMCs induced secretion of IL-17, INFγ, and IL-10 by T cells and of TNFα produced by monocytes. Moreover senEVs influenced differentiation of monocytes favoring mix M1/M2 polarization with proinflammatory characteristics. Altogether, our studies provide a complex, unbiased analysis of VSMC SASP and prove that EVs derived from senescent VSMCs influence the cytokine milieu by modulating immune cell activity. Our results strengthen the role of senescent cells as an important inducer of inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Agata Głuchowska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3 St., 02-093, Warsaw, Poland
| | - Dominik Cysewski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Rafał Szatanek
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | | | - Piotr Sunderland
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3 St., 02-093, Warsaw, Poland
| | - Ewa Kozłowska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology University of Warsaw, Warsaw, Poland
| | - Małgorzata A Śliwińska
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Michał Dąbrowski
- Laboratory of Bioinformatics, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3 St., 02-093, Warsaw, Poland
| | - Grażyna Mosieniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3 St., 02-093, Warsaw, Poland.
| |
Collapse
|
36
|
Abstract
Cellular senescence, once thought an artifact of in vitro culture or passive outcome of aging, has emerged as fundamental to tissue development and function. The senescence mechanism importantly halts cell cycle progression to protect against tumor formation, while transiently present senescent cells produce a complex secretome (or SASP) of inflammatory mediators, proteases, and growth factors that guide developmental remodeling and tissue regeneration. Transiently present senescence is important for skin repair, where it accelerates extracellular matrix formation, limits fibrosis, promotes reepithelialization, and modulates inflammation. Unfortunately, advanced age and diabetes drive pathological accumulation of senescent cells in chronic wounds, which is perpetuated by a proinflammatory SASP, advanced glycation end-products, and oxidative damage. Although the biology of wound senescence remains incompletely understood, drugs that selectively target senescent cells are showing promise in clinical trials for diverse pathological conditions. It may not be long before senescence-targeted therapies will be available for the management, or perhaps even prevention, of chronic wounds.
Collapse
Affiliation(s)
- Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, United Kingdom
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
37
|
Abstract
Cellular senescence is implicated in a wide range of physiological and pathological conditions throughout an organism's entire lifetime. In particular, it has become evident that senescence plays a causative role in aging and age-associated disorders. This is not due simply to the loss of function of senescent cells. Instead, the substantial alterations of the cellular activities of senescent cells, especially the array of secretory factors, impact the surrounding tissues or even entire organisms. Such non-cell-autonomous functionality is largely coordinated by tissue-specific genes, constituting a cell fate-determining state. Senescence can be viewed as a gain-of-function phenotype or a process of cell identity shift. Cellular functionality or lineage-specific gene expression is tightly linked to the cell type-specific epigenetic landscape, reinforcing the heterogeneity of senescence across cell types. Here, we aim to define the senescence cellular functionality and epigenetic features that may contribute to the gain-of-function phenotype.
Collapse
Affiliation(s)
- Ioana Olan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom; ,
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom; ,
| |
Collapse
|
38
|
Fibroblast morphology, growth rate and gene expression in facial melasma. An Bras Dermatol 2022; 97:575-582. [PMID: 35840442 PMCID: PMC9453522 DOI: 10.1016/j.abd.2021.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022] Open
Abstract
Background In addition to melanocytic hyperfunction, changes are observed in the upper dermis of melasma, and fibroblasts play a central role in collagen synthesis and pigmentation induction. Objective To explore the morphology, growth rate, and gene expression profile of fibroblasts from the skin with melasma in comparison to fibroblasts from the adjacent healthy skin. Methods Ten women with facial melasma were biopsied (lesion and adjacent healthy skin), and the fragments were processed for fibroblast culture. Samples from five participants were seeded to evaluate growth (days 2, 5 and 8) and senescence (SA-β-gal) curves. The samples from the other participants were submitted to real-time PCR to comparatively evaluation of the expression of 39 genes. Results Cultured fibroblasts from melasma skin were morphologically less fusiform in appearance and on average a 34% (95% CI 4%‒63%) greater proportion of cells labeled with SA-β-gal than the fibroblasts from the adjacent skin. The cell growth rate was lower for the melasma samples after eight days (p < 0.01). TheWNT3A, EDN3, ESR2, PTG2, MMP1, and SOD2 genes were up-regulated, whereas the COL4A1, CSF2, DKK3, COL7A1, TIMP4, CCL2, and CDH11 genes were down-regulated in melasma skin fibroblasts when compared to the ones from adjacent healthy skin. Study limitations Small sample size; absence of functional tests. Conclusions Fibroblasts from the skin with melasma showed a lower growth rate, less fusiform morphology and greater accumulation of SA-β-gal than those from adjacent photo exposed skin. Moreover, their gene expression profile comprised factors that may contribute to upper dermis damage and sustained melanogenesis.
Collapse
|
39
|
Wallis R, Milligan D, Hughes B, Mizen H, López-Domínguez JA, Eduputa U, Tyler EJ, Serrano M, Bishop CL. Senescence-associated morphological profiles (SAMPs): an image-based phenotypic profiling method for evaluating the inter and intra model heterogeneity of senescence. Aging (Albany NY) 2022; 14:4220-4246. [PMID: 35580013 PMCID: PMC9186762 DOI: 10.18632/aging.204072] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/22/2022] [Indexed: 01/10/2023]
Abstract
Senescence occurs in response to a number of damaging stimuli to limit oncogenic transformation and cancer development. As no single, universal senescence marker has been discovered, the confident classification of senescence induction requires the parallel assessment of a series of hallmarks. Therefore, there is a growing need for “first-pass” tools of senescence identification to streamline experimental workflows and complement conventional markers. Here, we utilise a high content, multidimensional phenotypic profiling-based approach, to assess the morphological profiles of senescent cells induced via a range of stimuli. In the context of senescence, we refer to these as senescence-associated morphological profiles (SAMPs), as they facilitate distinction between senescent and proliferating cells. The complexity of the profiles generated also allows exploration of the heterogeneity both between models of senescence and within an individual senescence model, providing a level of insight at the single cell level. Furthermore, we also demonstrate that these models are applicable to the assessment of senescence in vivo, which remains a key challenge for the field. Therefore, we believe SAMPs has the potential to serve as a useful addition in the repertoire of senescence researchers, either as a first-pass tool or as part of the established senescence hallmarks.
Collapse
Affiliation(s)
- Ryan Wallis
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Deborah Milligan
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Bethany Hughes
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hannah Mizen
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - José Alberto López-Domínguez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ugochim Eduputa
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eleanor J Tyler
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Cleo L Bishop
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
40
|
Popov A, Mandys V. Senescence-Associated miRNAs and Their Role in Pancreatic Cancer. Pathol Oncol Res 2022; 28:1610156. [PMID: 35570840 PMCID: PMC9098800 DOI: 10.3389/pore.2022.1610156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/12/2022] [Indexed: 01/17/2023]
Abstract
Replicative senescence is irreversible cell proliferation arrest for somatic cells which can be circumvented in cancers. Cellular senescence is a process, which may play two opposite roles. On the one hand, this is a natural protection of somatic cells against unlimited proliferation and malignant transformation. On the other hand, cellular secretion caused by senescence can stimulate inflammation and proliferation of adjacent cells that may promote malignancy. The main genes controlling the senescence pathways are also well known as tumor suppressors. Almost 140 genes regulate both cellular senescence and cancer pathways. About two thirds of these genes (64%) are regulated by microRNAs. Senescence-associated miRNAs can stimulate cancer progression or act as tumor suppressors. Here we review the role playing by senescence-associated miRNAs in development, diagnostics and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Alexey Popov
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czechia
| | | |
Collapse
|
41
|
Mas-Bargues C, Borrás C, Alique M. The Contribution of Extracellular Vesicles From Senescent Endothelial and Vascular Smooth Muscle Cells to Vascular Calcification. Front Cardiovasc Med 2022; 9:854726. [PMID: 35498012 PMCID: PMC9051028 DOI: 10.3389/fcvm.2022.854726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is an irreversible pathological process associated with a loss of vascular wall function. This process occurs as a result of aging and age-related diseases, such as cardiovascular and chronic kidney diseases, and leads to comorbidities. During these age-related diseases, the endothelium accumulates senescent cells, which stimulate calcification in vascular smooth muscle cells. Currently, vascular calcification is a silent pathology, and there are no early diagnostic tools. Therefore, by the time vascular calcification is diagnosed, it is usually untreatable. Some mediators, such as oxidative stress, inflammation, and extracellular vesicles, are inducers and promoters of vascular calcification. They play a crucial role during vascular generation and the progression of vascular calcification. Extracellular vesicles, mainly derived from injured endothelial cells that have acquired a senescent phenotype, contribute to calcification in a manner mostly dependent on two factors: (1) the number of extracellular vesicles released, and (2) their cargo. In this review, we present state-of-the-art knowledge on the composition and functions of extracellular vesicles involved in the generation and progression of vascular calcification.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Grupo de Investigación Freshage, Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Instituto Sanitario de Investigación INCLIVA, Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), Madrid, Spain
| | - Consuelo Borrás
- Grupo de Investigación Freshage, Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Instituto Sanitario de Investigación INCLIVA, Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), Madrid, Spain
- *Correspondence: Consuelo Borrás,
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Matilde Alique,
| |
Collapse
|
42
|
Jacob J, Aggarwal A, Aggarwal A, Bhattacharyya S, Kumar V, Sharma V, Sahni D. Senescent chondrogenic progenitor cells derived from articular cartilage of knee osteoarthritis patients contributes to senescence-associated secretory phenotype via release of IL-6 and IL-8. Acta Histochem 2022; 124:151867. [PMID: 35192993 DOI: 10.1016/j.acthis.2022.151867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Despite the presence of chondrogenic progenitor cells (CPCs) in knee osteoarthritis patients they are unable to repair the damaged cartilage. This study aimed to evaluate the oxidative stress, cellular senescence, and senescence-associated secretory phenotype (SASP) in the CPCs derived from osteoarthritic cartilage and compare with the CPCs of healthy articular cartilage. METHODS Isolated CPCs were characterized based on phenotypic expression of stem cell markers, clonogenicity, and tri-lineage differentiation assay. Production of ROS was measured using DCFDA assay. Cellular senescence in CPCs was assessed by senescence-associated beta-galactosidase assay and expression of senescence markers at the gene level using real-time PCR. Morphological features associated with senescent OA-CPCs were studied using scanning electron microscopy. To study SASP, the production of inflammatory cytokines was assessed in the culture supernatant using a flow-cytometer based cytometric bead array. RESULTS OA-CPCs exhibited elevated ROS levels along with a relatively high percentage of senescent cells compared to non-OA CPCs, and a positive correlation exists between ROS production and senescence. The morphological assessment of senescent CPCs revealed increased cell size and multiple nuclei in senescent OA-CPCs. These results were further validated by elevated expression of senescence genes p16, p21, and p53. Additionally, culture supernatant of senescent OA-CPCs expressed IL-6 and IL-8 cytokines indicative of SASP. CONCLUSIONS Despite exhibiting similar expression of stem cell markers and clonogenicity, CPCs undergo oxidative stress in diseased knee joint leading to increased production of intracellular ROS in chondrogenic progenitor cells that support cellular senescence. Further, senescence in OA-CPCs is mediated via the release of pro-inflammatory cytokines, IL-6 and IL-8.
Collapse
Affiliation(s)
- Justin Jacob
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Anjali Aggarwal
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Aditya Aggarwal
- Department of Orthopedics, Nehru Hospital, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Vishal Kumar
- Department of Orthopedics, Nehru Hospital, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Vinit Sharma
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Daisy Sahni
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Cellular senescence (i.e. permanent withdrawal from the cell cycle) is increasingly recognized as a pathologic feature in a variety of inflammatory liver diseases, including primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC) and additional cholangiopathies. Herein, we provide an update on the interplay between cholangiocytes, cellular senescence and the cholangiopathies. RECENT FINDINGS The themes covered by this review include novel models for studying the role of senescent cholangiocytes and the cholangiopathies, identification and modulation of key pathways or molecules regulating cholangiocyte senescence, and discovery of druggable targets to advance therapeutic options for the cholangiopathies. Most recent studies focused on PSC; however, the concepts and findings may be applied to additional cholangiopathies. SUMMARY Cholangiopathies present unique and divergent clinicopathological features, causes and genetic backgrounds, but share several common disease processes. Cholangiocyte senescence in the cholestatic cholangiopathies, primarily PSC and PBC, is regarded as a key pathogenetic process. Importantly, senescent cholangiocytes exhibit phenotypic features including the senescence-associated secretory phenotype (SASP) and resistance to apoptosis that provide new directions for basic research and new prognostic and therapeutic approaches for clinical practice.
Collapse
|
44
|
Mugoni V, Ciani Y, Nardella C, Demichelis F. Circulating RNAs in prostate cancer patients. Cancer Lett 2022; 524:57-69. [PMID: 34656688 DOI: 10.1016/j.canlet.2021.10.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022]
Abstract
Growing bodies of evidence have demonstrated that the identification of prostate cancer (PCa) biomarkers in the patients' blood and urine may remarkably improve PCa diagnosis and progression monitoring. Among diverse cancer-derived circulating materials, extracellular RNA molecules (exRNAs) represent a compelling component to investigate cancer-related alterations. Once outside the intracellular environment, exRNAs circulate in biofluids either in association with protein complexes or encapsulated inside extracellular vesicles (EVs). Notably, EV-associated RNAs (EV-RNAs) were used for the development of several assays (such as the FDA-approved Progensa Prostate Cancer Antigen 3 (PCA3 test) aiming at improving early PCa detection. EV-RNAs encompass a mixture of species, including small non-coding RNAs (e.g. miRNA and circRNA), lncRNAs and mRNAs. Several methods have been proposed to isolate EVs and relevant RNAs, and to perform RNA-Seq studies to identify potential cancer biomarkers. However, EVs in the circulation of a cancer patient include a multitude of diverse populations that are released by both cancer and normal cells from different tissues, thereby leading to a heterogeneous EV-RNA-associated transcriptional signal. Decrypting the complexity of such a composite signal is nowadays the major challenge faced in the identification of specific tumor-associated RNAs. Multiple deconvolution algorithms have been proposed so far to infer the enrichment of cancer-specific signals from gene expression data. However, novel strategies for EVs sorting and sequencing of RNA associated to single EVs populations will remarkably facilitate the identification of cancer-related molecules. Altogether, the studies summarized here demonstrate the high potential of using EV-RNA biomarkers in PCa and highlight the urgent need of improving technologies and computational approaches to characterize specific EVs populations and their relevant RNA cargo.
Collapse
Affiliation(s)
- Vera Mugoni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yari Ciani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Caterina Nardella
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| |
Collapse
|
45
|
Banerjee P, Kotla S, Reddy Velatooru L, Abe RJ, Davis EA, Cooke JP, Schadler K, Deswal A, Herrmann J, Lin SH, Abe JI, Le NT. Senescence-Associated Secretory Phenotype as a Hinge Between Cardiovascular Diseases and Cancer. Front Cardiovasc Med 2021; 8:763930. [PMID: 34746270 PMCID: PMC8563837 DOI: 10.3389/fcvm.2021.763930] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Overlapping risks for cancer and cardiovascular diseases (CVD), the two leading causes of mortality worldwide, suggest a shared biology between these diseases. The role of senescence in the development of cancer and CVD has been established. However, its role as the intersection between these diseases remains unclear. Senescence was originally characterized by an irreversible cell cycle arrest after a high number of divisions, namely replicative senescence (RS). However, it is becoming clear that senescence can also be instigated by cellular stress, so-called stress-induced premature senescence (SIPS). Telomere shortening is a hallmark of RS. The contribution of telomere DNA damage and subsequent DNA damage response/repair to SIPS has also been suggested. Although cellular senescence can mediate cell cycle arrest, senescent cells can also remain metabolically active and secrete cytokines, chemokines, growth factors, and reactive oxygen species (ROS), so-called senescence-associated secretory phenotype (SASP). The involvement of SASP in both cancer and CVD has been established. In patients with cancer or CVD, SASP is induced by various stressors including cancer treatments, pro-inflammatory cytokines, and ROS. Therefore, SASP can be the intersection between cancer and CVD. Importantly, the conventional concept of senescence as the mediator of cell cycle arrest has been challenged, as it was recently reported that chemotherapy-induced senescence can reprogram senescent cancer cells to acquire “stemness” (SAS: senescence-associated stemness). SAS allows senescent cancer cells to escape cell cycle arrest with strongly enhanced clonogenic growth capacity. SAS supports senescent cells to promote both cancer and CVD, particularly in highly stressful conditions such as cancer treatments, myocardial infarction, and heart failure. As therapeutic advances have increased overlapping risk factors for cancer and CVD, to further understand their interaction may provide better prevention, earlier detection, and safer treatment. Thus, it is critical to study the mechanisms by which these senescence pathways (SAS/SASP) are induced and regulated in both cancer and CVD.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Loka Reddy Velatooru
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Rei J Abe
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Elizabeth A Davis
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P Cooke
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Keri Schadler
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joerg Herrmann
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
46
|
Monti P, Solazzo G, Ferrari L, Bollati V. Extracellular Vesicles: Footprints of environmental exposures in the aging process? Curr Environ Health Rep 2021; 8:309-322. [PMID: 34743313 DOI: 10.1007/s40572-021-00327-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF THE REVIEW Extracellular vesicles (EVs) are nano-sized lipid particles that participate in intercellular signaling through the trafficking of bioactive molecules from parental cells to recipient ones. This well-orchestrated communication system is crucial for the organism to respond to external cues in a coordinated manner; indeed, environmental and lifestyle exposures can modify both EV number and content, with consequences on cellular metabolism and homeostasis. In particular, a growing body of evidence suggests that exposome-induced changes in EV profile could regulate the aging process, both at the cellular and organismal levels. Here, we provide an overview of the role played by ambient-induced EVs on aging and age-related diseases. Among the several environmental factors that can affect the communication network operated by EVs, we focused on air pollution, ultraviolet light, diet, and physical exercise. Moreover, we performed a miRNA target analysis, to support the role of EV-miRNA emerging from the literature in the context of aging. RECENT FINDINGS The overall emerging picture strongly supports a key regulatory role for EVs at the interface between external stimuli and cellular/organismal aging, thus providing novel insights into the molecular mechanisms linking a "healthy exposome" to well-being in old age. In addition, this knowledge will pave the way for research aimed at developing innovative antiaging strategies based on EVs.
Collapse
Affiliation(s)
- Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Giulia Solazzo
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Luca Ferrari
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy. .,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
47
|
Sikora E, Bielak-Zmijewska A, Mosieniak G. A common signature of cellular senescence; does it exist? Ageing Res Rev 2021; 71:101458. [PMID: 34500043 DOI: 10.1016/j.arr.2021.101458] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Cellular senescence is a stress response, which can be evoked in all type of somatic cells by different stimuli. Senescent cells accumulate in the body and participate in aging and aging-related diseases mainly by their secretory activity, commonly known as senescence-associated secretory phenotype-SASP. Senescence is typically described as cell cycle arrest. This definition stems from the original observation concerning limited cell division potential of human fibroblasts in vitro. At present, the process of cell senescence is attributed also to cancer cells and to non-proliferating post-mitotic cells. Many cellular signaling pathways and specific and unspecific markers contribute to the complex, dynamic and heterogeneous phenotype of senescent cells. Considering the diversity of cells that can undergo senescence upon different inducers and variety of mechanisms involved in the execution of this process, we ask if there is a common signature of cell senescence. It seems that cell cycle arrest in G0, G1 or G2 is indispensable for cell senescence; however, to ensure irreversibility of divisions, the exit from the cell cycle to the state, which we call a GS (Gero Stage), is necessary. The DNA damage, changes in nuclear architecture and chromatin rearrangement are involved in signaling pathways leading to altered gene transcription and secretion of SASP components. Thus, nuclear changes and SASP are vital features of cell senescence that, together with temporal arrest in the cell cycle (G1 or/and G2), which may be followed by polyploidisation/depolyploidisation or exit from the cell cycle leading to permanent proliferation arrest (GS), define the signature of cellular senescence.
Collapse
|
48
|
Admasu TD, Rae MJ, Stolzing A. Dissecting primary and secondary senescence to enable new senotherapeutic strategies. Ageing Res Rev 2021; 70:101412. [PMID: 34302996 DOI: 10.1016/j.arr.2021.101412] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable cell cycle arrest that is known to be elicited in response to different stresses or forms of damage. Senescence limits the replication of old, damaged, and precancerous cells in the short-term but is implicated in diseases and debilities of aging due to loss of regenerative reserve and secretion of a complex combination of factors called the senescence-associated secretory phenotype (SASP). More recently, investigators have discovered that senescent cells induced by these methods (what we term "primary senescent cells") are also capable of inducing other non-senescent cells to undergo senescence - a phenomenon we call "secondary senescence." Secondary senescence has been demonstrated to occur via two broad types of mechanisms. First, factors in the SASP have been shown to be involved in spreading senescence; we call this phenomenon "paracrine senescence." Second, primary senescent cells can induce senescence via an additional group of mechanisms involving cell-to-cell contacts of different types; we term this phenomenon "juxtacrine senescence." "Secondary senescence" in our definition is thus the overarching term for both paracrine and juxtacrine senescence together. By allowing cells that are inherently small in number and incapable of replication to increase in number and possibly spread to anatomically distant locations, secondary senescence allows an initially small number of senescent cells to contribute further to age-related pathologies. We propose that understanding how primary and secondary senescent cells differ from each other and the mechanisms of their spread will enable the development of new rejuvenation therapies to target different senescent cell populations and interrupt their spread, extending human health- and potentially lifespan.
Collapse
|
49
|
Extracellular vesicles tell all: How vesicle-mediated cellular communication shapes hematopoietic stem cell biology with increasing age. Exp Hematol 2021; 101-102:7-15. [PMID: 34407444 DOI: 10.1016/j.exphem.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer particles containing biologically important cargo and impart regulatory changes in target cells. Despite the importance of EVs in cellular communication, there remains a gap in our understanding of how EVs influence HSC fate and, in turn, how aging and longevity are affected. This review summarizes the current literature dealing with how age-altered intercellular communication mediated by EVs influences HSC biology.
Collapse
|
50
|
Hajinejad M, Sahab-Negah S. Neuroinflammation: The next target of exosomal microRNAs derived from mesenchymal stem cells in the context of neurological disorders. J Cell Physiol 2021; 236:8070-8081. [PMID: 34189724 DOI: 10.1002/jcp.30495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Among different types of mechanisms involved in neurological disorders, neuroinflammation links initial insults to secondary injuries and triggers some chronic outcomes, for example, neurodegenerative disorders. Thus, anti-inflammatory substances can be targeted as a novel therapeutic option for translational and clinical research to improve brain disease outcomes. In this review, we propose to introduce a new insight into the anti-inflammatory effects of mesenchymal stem cells (MSCs) as the most frequent source for stem cell therapy in neurological diseases. Our insight incorporates a bystander effect of these stem cells in modulating inflammation and microglia/macrophage polarization through exosomes. Exosomes are nano-sized membrane vesicles that carry cell-specific constituents, including protein, lipid, DNA, and RNA. microRNAs (miRNAs) have recently been detected in exosomes that can be taken up by other cells and affect the behavior of recipient cells. In this article, we outline and highlight the potential use of exosomal miRNAs derived from MSCs for inflammatory pathways in the context of neurological disorders. Furthermore, we suggest that focusing on exosomal miRNAs derived from MSCs in the course of neuroinflammatory pathways in the future could reveal their functions for diverse neurological diseases, including brain injuries and neurodegenerative diseases. It is hoped that this study will contribute to a deep understanding of stem cell bystander effects through exosomal miRNAs.
Collapse
Affiliation(s)
- Mehrdad Hajinejad
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Anatomy and Cell Biology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|