1
|
McNaughton N, Bannerman D. The homogenous hippocampus: How hippocampal cells process available and potential goals. Prog Neurobiol 2024; 240:102653. [PMID: 38960002 DOI: 10.1016/j.pneurobio.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
We present here a view of the firing patterns of hippocampal cells that is contrary, both functionally and anatomically, to conventional wisdom. We argue that the hippocampus responds to efference copies of goals encoded elsewhere; and that it uses these to detect and resolve conflict or interference between goals in general. While goals can involve space, hippocampal cells do not encode spatial (or other special types of) memory, as such. We also argue that the transverse circuits of the hippocampus operate in an essentially homogeneous way along its length. The apparently different functions of different parts (e.g. memory retrieval versus anxiety) result from the different (situational/motivational) inputs on which those parts perform the same fundamental computational operations. On this view, the key role of the hippocampus is the iterative adjustment, via Papez-like circuits, of synaptic weights in cell assemblies elsewhere.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, POB56, Dunedin 9054, New Zealand.
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, England, UK
| |
Collapse
|
2
|
Schreurs BG, O'Dell DE, Wang D. The Role of Cerebellar Intrinsic Neuronal Excitability, Synaptic Plasticity, and Perineuronal Nets in Eyeblink Conditioning. BIOLOGY 2024; 13:200. [PMID: 38534469 DOI: 10.3390/biology13030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Evidence is strong that, in addition to fine motor control, there is an important role for the cerebellum in cognition and emotion. The deep nuclei of the mammalian cerebellum also contain the highest density of perineural nets-mesh-like structures that surround neurons-in the brain, and it appears there may be a connection between these nets and cognitive processes, particularly learning and memory. Here, we review how the cerebellum is involved in eyeblink conditioning-a particularly well-understood form of learning and memory-and focus on the role of perineuronal nets in intrinsic membrane excitability and synaptic plasticity that underlie eyeblink conditioning. We explore the development and role of perineuronal nets and the in vivo and in vitro evidence that manipulations of the perineuronal net in the deep cerebellar nuclei affect eyeblink conditioning. Together, these findings provide evidence of an important role for perineuronal net in learning and memory.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | - Deidre E O'Dell
- Department of Biology, Earth and Environmental Sciences, Pennsylvania Western (PennWest) University, California, PA 15419, USA
| | - Desheng Wang
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
3
|
Cundari M, Vestberg S, Gustafsson P, Gorcenco S, Rasmussen A. Neurocognitive and cerebellar function in ADHD, autism and spinocerebellar ataxia. Front Syst Neurosci 2023; 17:1168666. [PMID: 37415926 PMCID: PMC10321758 DOI: 10.3389/fnsys.2023.1168666] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
The cerebellum plays a major role in balance, motor control and sensorimotor integration, but also in cognition, language, and emotional regulation. Several neuropsychiatric disorders such as attention deficit-hyperactivity disorder (ADHD), autism spectrum disorder (ASD), as well as neurological diseases such as spinocerebellar ataxia type 3 (SCA3) are associated with differences in cerebellar function. Morphological abnormalities in different cerebellar subregions produce distinct behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. The specific contribution of the cerebellum to typical development may therefore involve the optimization of the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains. Here, we review cerebellar structural and functional differences between healthy and patients with ADHD, ASD, and SCA3, and explore how disruption of cerebellar networks affects the neurocognitive functions in these conditions. We discuss how cerebellar computations contribute to performance on cognitive and motor tasks and how cerebellar signals are interfaced with signals from other brain regions during normal and dysfunctional behavior. We conclude that the cerebellum plays a role in many cognitive functions. Still, more clinical studies with the support of neuroimaging are needed to clarify the cerebellum's role in normal and dysfunctional behavior and cognitive functioning.
Collapse
Affiliation(s)
- Maurizio Cundari
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Unit of Neuropsychiatry, Hospital of Helsingborg, Helsingborg, Sweden
- Unit of Neurology, Hospital of Helsingborg, Helsingborg, Sweden
| | - Susanna Vestberg
- Department of Psychology, Faculty of Social Science, Lund University, Lund, Sweden
| | - Peik Gustafsson
- Child and Adolescent Psychiatry, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
| | - Sorina Gorcenco
- Department for Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anders Rasmussen
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Polarity- and Intensity-Independent Modulation of Timing During Delay Eyeblink Conditioning Using Cerebellar Transcranial Direct Current Stimulation. THE CEREBELLUM 2021; 19:383-391. [PMID: 32036562 DOI: 10.1007/s12311-020-01114-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Delay eyeblink conditioning (dEBC) is widely used to assess cerebellar-dependent associative motor learning, including precise timing processes. Transcranial direct current stimulation (tDCS), noninvasive brain stimulation used to indirectly excite and inhibit select brain regions, may be a promising tool for understanding how functional integrity of the cerebellum influences dEBC behavior. The aim of this study was to assess whether tDCS-induced inhibition (cathodal) and excitation (anodal) of the cerebellum differentially impact timing of dEBC. A standard 10-block dEBC paradigm was administered to 102 healthy participants. Participants were randomized to stimulation conditions in a double-blind, between-subjects sham-controlled design. Participants received 20-min active (anodal or cathodal) stimulation at 1.5 mA (n = 20 anodal, n = 22 cathodal) or 2 mA (n = 19 anodal, n = 21 cathodal) or sham stimulation (n = 20) concurrently with dEBC training. Stimulation intensity and polarity effects on percent conditioned responses (CRs) and CR peak and onset latency were examined using repeated-measures analyses of variance. Acquisition of CRs increased over time at a similar rate across sham and all active stimulation groups. CR peak and onset latencies were later, i.e., closer to air puff onset, in all active stimulation groups compared to the sham group. Thus, tDCS facilitated cerebellar-dependent timing of dEBC, irrespective of stimulation intensity and polarity. These findings highlight the feasibility of using tDCS to modify cerebellar-dependent functions and provide further support for cerebellar contributions to human eyeblink conditioning and for exploring therapeutic tDCS interventions for cerebellar dysfunction.
Collapse
|
5
|
Conway CM. How does the brain learn environmental structure? Ten core principles for understanding the neurocognitive mechanisms of statistical learning. Neurosci Biobehav Rev 2020; 112:279-299. [PMID: 32018038 PMCID: PMC7211144 DOI: 10.1016/j.neubiorev.2020.01.032] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 10/25/2022]
Abstract
Despite a growing body of research devoted to the study of how humans encode environmental patterns, there is still no clear consensus about the nature of the neurocognitive mechanisms underpinning statistical learning nor what factors constrain or promote its emergence across individuals, species, and learning situations. Based on a review of research examining the roles of input modality and domain, input structure and complexity, attention, neuroanatomical bases, ontogeny, and phylogeny, ten core principles are proposed. Specifically, there exist two sets of neurocognitive mechanisms underlying statistical learning. First, a "suite" of associative-based, automatic, modality-specific learning mechanisms are mediated by the general principle of cortical plasticity, which results in improved processing and perceptual facilitation of encountered stimuli. Second, an attention-dependent system, mediated by the prefrontal cortex and related attentional and working memory networks, can modulate or gate learning and is necessary in order to learn nonadjacent dependencies and to integrate global patterns across time. This theoretical framework helps clarify conflicting research findings and provides the basis for future empirical and theoretical endeavors.
Collapse
Affiliation(s)
- Christopher M Conway
- Center for Childhood Deafness, Language, and Learning, Boys Town National Research Hospital, Omaha, NE, United States.
| |
Collapse
|
6
|
Moussa-Tooks AB, Larson ER, Gimeno AF, Leishman E, Bartolomeo LA, Bradshaw HB, Green JT, O'Donnell BF, Mackie K, Hetrick WP. Long-Term Aberrations To Cerebellar Endocannabinoids Induced By Early-Life Stress. Sci Rep 2020; 10:7236. [PMID: 32350298 PMCID: PMC7190863 DOI: 10.1038/s41598-020-64075-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/07/2020] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence points to the role of the endocannabinoid system in long-term stress-induced neural remodeling with studies on stress-induced endocannabinoid dysregulation focusing on cerebral changes that are temporally proximal to stressors. Little is known about temporally distal and sex-specific effects, especially in cerebellum, which is vulnerable to early developmental stress and is dense with cannabinoid receptors. Following limited bedding at postnatal days 2-9, adult (postnatal day 70) cerebellar and hippocampal endocannabinoids, related lipids, and mRNA were assessed, and behavioral performance evaluated. Regional and sex-specific effects were present at baseline and following early-life stress. Limited bedding impaired peripherally-measured basal corticosterone in adult males only. In the CNS, early-life stress (1) decreased 2-arachidonoyl glycerol and arachidonic acid in the cerebellar interpositus nucleus in males only; (2) decreased 2-arachidonoyl glycerol in females only in cerebellar Crus I; and (3) increased dorsal hippocampus prostaglandins in males only. Cerebellar interpositus transcriptomics revealed substantial sex effects, with minimal stress effects. Stress did impair novel object recognition in both sexes and social preference in females. Accordingly, the cerebellar endocannabinoid system exhibits robust sex-specific differences, malleable through early-life stress, suggesting the role of endocannabinoids and stress to sexual differentiation of the brain and cerebellar-related dysfunctions.
Collapse
Affiliation(s)
- Alexandra B Moussa-Tooks
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Eric R Larson
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Alex F Gimeno
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Emma Leishman
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Lisa A Bartolomeo
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Heather B Bradshaw
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - John T Green
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Brian F O'Donnell
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ken Mackie
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - William P Hetrick
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, USA.
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Zhang LQ, Yao J, Gao J, Sun L, Wang LT, Sui JF. Modulation of eyeblink conditioning through sensory processing of conditioned stimulus by cortical and subcortical regions. Behav Brain Res 2019; 359:149-155. [PMID: 30385367 DOI: 10.1016/j.bbr.2018.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
Abstract
Classical eyeblink conditioning (EBC) is one of the simplest forms of associative learning that depends critically on the cerebellum. Using delay EBC (dEBC), a standard paradigm in which the unconditioned stimulus (US) is delayed and co-terminates with the conditioned stimulus (CS), converging lines of evidence has been accumulated and shows that the essential neural circuit mediating EBC resides in the cerebellum and brainstem. In addition to this essential circuit, multiple cerebral cortical and subcortical structures are required to modulate dEBC with suboptimal training parameters, and trace EBC (tEBC) in which a trace-interval separates the CS and US. However, it remains largely unclear why and how so many brain regions are involved for modulation of EBC. Previous research has suggested that the forebrain regions, such as medial prefrontal cortex (mPFC) and hippocampus, may be required to process weak CSs, or to realize temporal overlap between the CS and US signal inputs when the two stimuli were separated in time (i.e. during tEBC). Here, we proposed a multi-level network model for EBC modulation which focuses on sensory processing of CS. The model explains how different neural pathways projecting to pontine nucleus (PN) are involved to amplify or extend CS through heterosynaptic facilitation mechanism or "substitution effect" under different circumstances to achieve EBC. As such, our model can serve as a general framework to explain the modulating mechanism of EBC in a variety of conditions and to help understand the interaction among cerebellum, brainstem, cortical and subcortical regions in EBC modulation.
Collapse
Affiliation(s)
- Lang-Qian Zhang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China; Department of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 University City Road, Shapingba District, Chongqing 401331, PR China
| | - Juan Yao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Jie Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Lin Sun
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Li-Ting Wang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China.
| | - Jian-Feng Sui
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China.
| |
Collapse
|
8
|
Kjell K, Löwgren K, Rasmussen A. A Longer Interstimulus Interval Yields Better Learning in Adults and Young Adolescents. Front Behav Neurosci 2018; 12:299. [PMID: 30559655 PMCID: PMC6286956 DOI: 10.3389/fnbeh.2018.00299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022] Open
Abstract
Eyeblink conditioning is one of the most popular experimental paradigms for studying the neural mechanisms underlying learning and memory. A key parameter in eyeblink conditioning is the interstimulus interval (ISI), the time between the onset of the conditional stimulus (CS) and the onset of the unconditional stimulus (US). Though previous studies have examined how the ISI affects learning there is no clear consensus concerning which ISI is most effective and different researchers use different ISIs. Importantly, the brain undergoes changes throughout life with significant cerebellar growth in adolescents, which could mean that different ISIs might be called for in children, adolescents and adults. Moreover, the fact that animals are often trained with a shorter ISI than humans make direct comparisons problematic. In this study, we compared eyeblink conditioning in young adolescents aged 10-15 and adults using one short ISI (300 ms) and one long ISI (500 ms). The results demonstrate that young adolescents and adults produce a higher percentage of CRs when they are trained with a 500 ms ISI compared to a 300 ms ISI. The results also show that learning is better in the adults, especially for the shorter ISI.
Collapse
Affiliation(s)
| | - Karolina Löwgren
- Logopedics, Phoniatrics and Audiology, Department of Clinical Sciences, Lund University, Lund, Sweden
- The Linnaeus Centre Thinking in Time: Cognition, Communication and Learning, Lund University, Lund, Sweden
| | - Anders Rasmussen
- The Linnaeus Centre Thinking in Time: Cognition, Communication and Learning, Lund University, Lund, Sweden
- Associative Learning, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Erasmus Medical Center, Department of Neuroscience, Rotterdam, Netherlands
| |
Collapse
|
9
|
Changes in membrane properties of rat deep cerebellar nuclear projection neurons during acquisition of eyeblink conditioning. Proc Natl Acad Sci U S A 2018; 115:E9419-E9428. [PMID: 30154170 DOI: 10.1073/pnas.1808539115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Previous studies have shown changes in membrane properties of neurons in rat deep cerebellar nuclei (DCN) as a function of development, but due to technical difficulties in obtaining viable DCN slices from adult animals, it remains unclear whether there are learning-related alterations in the membrane properties of DCN neurons in adult rats. This study was designed to record from identified DCN cells in cerebellar slices from postnatal day 25-26 (P25-26) rats that had a relatively mature sensory nervous system and were able to acquire learning as a result of tone-shock eyeblink conditioning (EBC) and to document resulting changes in electrophysiological properties. After electromyographic electrode implantation at P21 and inoculation with a fluorescent pseudorabies virus (PRV-152) at P22-23, rats received either four sessions of paired delay EBC or unpaired stimulus presentations with a tone conditioned stimulus and a shock unconditioned stimulus or sat in the training chamber without stimulus presentations. Compared with rats given unpaired stimuli or no stimulus presentations, rats given paired EBC showed an increase in conditioned responses across sessions. Whole-cell recordings of both fluorescent and nonfluorescent DCN projection neurons showed that delay EBC induced significant changes in membrane properties of evoked DCN action potentials including a reduced after-hyperpolarization amplitude and shortened latency. Similar findings were obtained in hyperpolarization-induced rebound spikes of DCN neurons. In sum, delay EBC produced significant changes in the membrane properties of juvenile rat DCN projection neurons. These learning-specific changes in DCN excitability have not previously been reported in any species or task.
Collapse
|
10
|
Absence of associative motor learning and impaired time perception in a rare case of complete cerebellar agenesis. Neuropsychologia 2018; 117:551-557. [PMID: 30031016 DOI: 10.1016/j.neuropsychologia.2018.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/20/2018] [Accepted: 07/18/2018] [Indexed: 11/23/2022]
Abstract
Primary cerebellar agenesis (PCA), a brain disease where the cerebellum does not develop, is an extremely rare congenital disease with only eleven living cases reported thus far. Studies of the PCA case will thus provide valuable insights into the necessity of cerebellar development for controlling and modulating cognitive functions of the brain. In this follow-up study, we further investigated the performance of associative learning and time perception of a 26-year-old female complete PCA case. We assessed whether delayed eyeblink conditioning (EBC), which represents prototypical associative motor learning function of the cerebellum, could be partially compensated by the extracerebellar brain regions in complete absence of the cerebellum. We also assessed whether the cerebellum, a critical brain region for millisecond-range interval timing, is essential for perception of the second-range time interval. Twelve neurotypical age-matched individuals were used as controls. We found that although the complete PCA patient had only mild to moderate motor deficits, she was unable to perform the delayed EBC even after 1-week of extensive training. Additionally, the PCA patient also performed poorly during time reproduction experiments in which she overproduced the millisecond-range time intervals, while underproduced the second-range time intervals. The PCA patient also failed to perform the temporal eyeblink conditioning with a 5 s fixed interval as the conditioned stimulus. These results indicate that the cerebellum is indispensable for associative motor learning and involved in timing of sub-second intervals, as well as in the perception of second-range intervals.
Collapse
|
11
|
Akison LK, Kuo J, Reid N, Boyd RN, Moritz KM. Effect of Choline Supplementation on Neurological, Cognitive, and Behavioral Outcomes in Offspring Arising from Alcohol Exposure During Development: A Quantitative Systematic Review of Clinical and Preclinical Studies. Alcohol Clin Exp Res 2018; 42:1591-1611. [PMID: 29928762 DOI: 10.1111/acer.13817] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/16/2018] [Indexed: 12/29/2022]
Abstract
Prenatal alcohol exposure results in cognitive, behavioral, and neurological deficits in offspring. There is an urgent need for safe and effective treatments to overcome these effects. Maternal choline supplementation has been identified as a potential intervention. Our objective was to review preclinical and clinical studies using choline supplementation in known cases of fetal alcohol exposure to determine its effectiveness in ameliorating deficits in offspring. A systematic search of 6 electronic databases was conducted and studies selected by reviewing titles/abstracts against specific inclusion/exclusion criteria. Study characteristics, population demographics, alcohol exposure, and intervention methods were tabulated, and quality of reporting was assessed. Data on cognitive, behavioral, and neurological outcomes were extracted and tabulated. Quantitative analysis was performed to determine treatment effects for individual study outcomes. A total of 189 studies were retrieved following duplicate removal. Of these, 22 studies (2 randomized controlled trials, 2 prospective cohort studies, and 18 preclinical studies) met the full inclusion/exclusion criteria. Choline interventions were administered at different times relative to alcohol exposure, impacting on their success to prevent deficits for specific outcomes. Only 1 clinical study showed significant improvements in information processing in 6-month-old infants from mothers treated with choline during pregnancy. Preclinical studies showed significant amelioration of deficits due to prenatal alcohol exposure across a wide variety of outcomes, including epigenetic/molecular changes, gross motor, memory, and executive function. This review suggests that choline supplementation has the potential to ameliorate specific behavioral, neurological, and cognitive deficits in offspring caused by fetal alcohol exposure, at least in preclinical studies. As only 1 clinical study has shown benefit, we recommend more clinical trials be undertaken to assess the effectiveness of choline in preventing deficits across a wider range of cognitive domains in children.
Collapse
Affiliation(s)
- Lisa K Akison
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.,Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | - Jenny Kuo
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natasha Reid
- Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | - Roslyn N Boyd
- Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia.,Queensland Cerebral Palsy and Rehabilitation Research Centre, Child Health Research Centre, Centre for Children's Health Research, The University of Queensland, South Brisbane, QLD, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.,Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| |
Collapse
|
12
|
Video-based data acquisition system for use in eye blink classical conditioning procedures in sheep. Behav Res Methods 2018; 49:1838-1851. [PMID: 27815865 DOI: 10.3758/s13428-016-0826-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pavlovian eye blink conditioning (EBC) has been extensively studied in humans and laboratory animals, providing one of the best-understood models of learning in neuroscience. EBC has been especially useful in translational studies of cerebellar and hippocampal function. We recently reported a novel extension of EBC procedures for use in sheep, and now describe new advances in a digital video-based system. The system delivers paired presentations of conditioned stimuli (CSs; a tone) and unconditioned stimuli (USs; an air puff to the eye), or CS-alone "unpaired" trials. This system tracks the linear distance between the eyelids to identify blinks occurring as either unconditioned (URs) or conditioned (CRs) responses, to a resolution of 5 ms. A separate software application (Eye Blink Reviewer) is used to review and autoscore the trial CRs and URs, on the basis of a set of predetermined rules, permitting an operator to confirm (or rescore, if needed) the autoscore results, thereby providing quality control for accuracy of scoring. Learning curves may then be quantified in terms of the frequencies of CRs over sessions, both on trials with paired CS-US presentations and on CS-alone trials. The latency to CR onset, latency to CR peak, and occurrence of URs are also obtained. As we demonstrated in two example cases, this video-based system provides efficient automated means to conduct EBC in sheep and can facilitate fully powered studies with multigroup designs that involve paired and unpaired training. This can help extend new studies in sheep, a species well suited for translational studies of neurodevelopmental disorders resulting from gestational exposure to drugs, toxins, or intrauterine distress.
Collapse
|
13
|
Locomotor activity modulates associative learning in mouse cerebellum. Nat Neurosci 2018; 21:725-735. [PMID: 29662214 PMCID: PMC5923878 DOI: 10.1038/s41593-018-0129-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/01/2018] [Indexed: 11/26/2022]
Abstract
Changes in behavioral state can profoundly influence brain function. Here we show that behavioral state modulates performance in delay eyeblink conditioning, a cerebellum-dependent form of associative learning. Increased locomotor speed in head-fixed mice drove earlier onset of learning and trial-by-trial enhancement of learned responses that were dissociable from changes in arousal and independent of sensory modality. Eyelid responses evoked by optogenetic stimulation of mossy fiber inputs to the cerebellum, but not at sites downstream, were positively modulated by ongoing locomotion. Substituting prolonged, low-intensity optogenetic mossy fiber stimulation for locomotion was sufficient to enhance conditioned responses. Our results suggest that locomotor activity modulates delay eyeblink conditioning through increased activation of the mossy fiber pathway within the cerebellum. Taken together, these results provide evidence for a novel role for behavioral state modulation in associative learning and suggest a potential mechanism through which engaging in movement can improve an individual’s ability to learn.
Collapse
|
14
|
Schuetze M, Rohr CS, Dewey D, McCrimmon A, Bray S. Reinforcement Learning in Autism Spectrum Disorder. Front Psychol 2017; 8:2035. [PMID: 29209259 PMCID: PMC5702301 DOI: 10.3389/fpsyg.2017.02035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/07/2017] [Indexed: 01/21/2023] Open
Abstract
Early behavioral interventions are recognized as integral to standard care in autism spectrum disorder (ASD), and often focus on reinforcing desired behaviors (e.g., eye contact) and reducing the presence of atypical behaviors (e.g., echoing others' phrases). However, efficacy of these programs is mixed. Reinforcement learning relies on neurocircuitry that has been reported to be atypical in ASD: prefrontal-sub-cortical circuits, amygdala, brainstem, and cerebellum. Thus, early behavioral interventions rely on neurocircuitry that may function atypically in at least a subset of individuals with ASD. Recent work has investigated physiological, behavioral, and neural responses to reinforcers to uncover differences in motivation and learning in ASD. We will synthesize this work to identify promising avenues for future research that ultimately can be used to enhance the efficacy of early intervention.
Collapse
Affiliation(s)
- Manuela Schuetze
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada
- Behaviour and the Developing Brain, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Neuroscience, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Christiane S. Rohr
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada
- Behaviour and the Developing Brain, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Deborah Dewey
- Behaviour and the Developing Brain, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Adam McCrimmon
- Behaviour and the Developing Brain, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Educational Psychology, Werklund School of Education, University of Calgary, Calgary, AB, Canada
| | - Signe Bray
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada
- Behaviour and the Developing Brain, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Tran TD, Amin A, Jones KG, Sheffer EM, Ortega L, Dolman K. The Use of Trace Eyeblink Classical Conditioning to Assess Hippocampal Dysfunction in a Rat Model of Fetal Alcohol Spectrum Disorders. J Vis Exp 2017. [PMID: 28809846 PMCID: PMC5614106 DOI: 10.3791/55350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neonatal rats were administered a relatively high concentration of ethyl alcohol (11.9% v/v) during postnatal days 4-9, a time when the fetal brain undergoes rapid organizational change and is similar to accelerated brain changes that occur during the third trimester in humans. This model of fetal alcohol spectrum disorders (FASDs) produces severe brain damage, mimicking the amount and pattern of binge-drinking that occurs in some pregnant alcoholic mothers. We describe the use of trace eyeblink classical conditioning (ECC), a higher-order variant of associative learning, to assess long-term hippocampal dysfunction that is typically seen in alcohol-exposed adult offspring. At 90 days of age, rodents were surgically prepared with recording and stimulating electrodes, which measured electromyographic (EMG) blink activity from the left eyelid muscle and delivered mild shock posterior to the left eye, respectively. After a 5 day recovery period, they underwent 6 sessions of trace ECC to determine associative learning differences between alcohol-exposed and control rats. Trace ECC is one of many possible ECC procedures that can be easily modified using the same equipment and software, so that different neural systems can be assessed. ECC procedures in general, can be used as diagnostic tools for detecting neural pathology in different brain systems and different conditions that insult the brain.
Collapse
Affiliation(s)
- Tuan D Tran
- Department of Psychology, East Carolina University; Multidisciplinary Studies Program in Neuroscience, East Carolina University;
| | - Aenia Amin
- Department of Psychology, East Carolina University; Multidisciplinary Studies Program in Neuroscience, East Carolina University
| | - Keith G Jones
- Multidisciplinary Studies Program in Neuroscience, East Carolina University
| | | | - Lidia Ortega
- Department of Psychology, East Carolina University
| | - Keith Dolman
- Multidisciplinary Studies Program in Neuroscience, East Carolina University
| |
Collapse
|
16
|
Löwgren K, Bååth R, Rasmussen A, Boele HJ, Koekkoek SKE, De Zeeuw CI, Hesslow G. Performance in eyeblink conditioning is age and sex dependent. PLoS One 2017; 12:e0177849. [PMID: 28542383 PMCID: PMC5436819 DOI: 10.1371/journal.pone.0177849] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/04/2017] [Indexed: 01/18/2023] Open
Abstract
A growing body of evidence suggests that the cerebellum is involved in both cognition and language. Abnormal cerebellar development may contribute to neurodevelopmental disorders such as attention deficit hyperactivity disorder (ADHD), autism, fetal alcohol syndrome, dyslexia, and specific language impairment. Performance in eyeblink conditioning, which depends on the cerebellum, can potentially be used to clarify the neural mechanisms underlying the cerebellar dysfunction in disorders like these. However, we must first understand how the performance develops in children who do not have a disorder. In this study we assessed the performance in eyeblink conditioning in 42 typically developing children between 6 and 11 years old as well as in 26 adults. Older children produced more conditioned eyeblink responses than younger children and adults produced more than children. In addition, females produced more conditioned eyeblink responses than males among both children and adults. These results highlight the importance of considering the influence of age and sex on the performance when studying eyeblink conditioning as a measure of cerebellar development.
Collapse
Affiliation(s)
- Karolina Löwgren
- Department of Clinical Sciences, Lund University, Lund, Sweden
- * E-mail:
| | - Rasmus Bååth
- Department of Philosophy, Cognitive Science, Lund University, Lund, Sweden
| | - Anders Rasmussen
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Henk-Jan Boele
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Germund Hesslow
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Gómez A, Rodríguez-Expósito B, Durán E, Martín-Monzón I, Broglio C, Salas C, Rodríguez F. Relational and procedural memory systems in the goldfish brain revealed by trace and delay eyeblink-like conditioning. Physiol Behav 2016; 167:332-340. [PMID: 27720737 DOI: 10.1016/j.physbeh.2016.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Abstract
The presence of multiple memory systems supported by different neural substrata has been demonstrated in animal and human studies. In mammals, two variants of eyeblink classical conditioning, differing only in the temporal relationships between the conditioned stimulus (CS) and the unconditioned stimulus (US), have been widely used to study the neural substrata of these different memory systems. Delay conditioning, in which both stimuli coincide in time, depends on a non-relational memory system supported by the cerebellum and associated brainstem circuits. In contrast, trace conditioning, in which a stimulus-free time gap separates the CS and the US, requires a declarative or relational memory system, thus depending on forebrain structures in addition to the cerebellum. The distinction between the explicit or relational and the implicit or procedural memory systems that support trace and delay classical conditioning has been extensively studied in mammals, but studies in other vertebrate groups are relatively scarce. In the present experiment we analyzed the differential involvement of the cerebellum and the telencephalon in delay and trace eyeblink-like classical conditioning in goldfish. The results show that whereas the cerebellum lesion prevented the eyeblink-like conditioning in both procedures, the telencephalon ablation impaired exclusively the acquisition of the trace conditioning. These data showing that comparable neural systems support delay and trace eyeblink conditioning in teleost fish and mammals suggest that these separate memory systems and their neural bases could be a shared ancestral brain feature of the vertebrate lineage.
Collapse
Affiliation(s)
- A Gómez
- Laboratorio de Psicobiología, Campus Santiago Ramón y Cajal, Universidad de Sevilla, Spain
| | - B Rodríguez-Expósito
- Laboratorio de Psicobiología, Campus Santiago Ramón y Cajal, Universidad de Sevilla, Spain
| | - E Durán
- Laboratorio de Psicobiología, Campus Santiago Ramón y Cajal, Universidad de Sevilla, Spain
| | - I Martín-Monzón
- Laboratorio de Psicobiología, Campus Santiago Ramón y Cajal, Universidad de Sevilla, Spain
| | - C Broglio
- Laboratorio de Psicobiología, Campus Santiago Ramón y Cajal, Universidad de Sevilla, Spain
| | - C Salas
- Laboratorio de Psicobiología, Campus Santiago Ramón y Cajal, Universidad de Sevilla, Spain; Universidad Autónoma de Chile, Chile
| | - F Rodríguez
- Laboratorio de Psicobiología, Campus Santiago Ramón y Cajal, Universidad de Sevilla, Spain
| |
Collapse
|
18
|
Abstract
The central point of this article is that the concept of memory as information storage in the brain is inadequate for and irrelevant to understanding the nervous system. Beginning from the sensorimotor hypothesis that underlies neuroscience—that the entire function of the nervous system is to connect experience to appropriate behavior—the paper defines memories as sequences of events that connect remote experience to present behavior. Their essential components are (a) persistent events that bridge the time from remote experience to present behavior and (b) junctional events in which connections from remote experience and recent experience merge to produce behavior. The sequences comprising even the simplest memories are complex. This is both necessary—to preserve previously learned behaviors—and inevitable—due to secondary activity-driven plasticity. This complexity further highlights the inadequacy of the information storage concept and the importance of extreme simplicity in models used to study memory.
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| |
Collapse
|
19
|
Abstract
For most ofthe 20th century, the brain science community held the view that the cerebellum was exclusively involved in motor control functions. Over the past 20 years, this has largely been replaced by the idea that the cerebellum participates in a variety of motor and nonmotor functions and, importantly, may contain neurons that display longand short-term plasticity, encoding behavioral and cognitive functions. The authors present evidence for the involvement of the cerebellum in motor and nonmotor functions and further suggest that the cerebellum’s internal neural architecture and connectivity patterns with other areas ofthe brain determine the range offunctions that the cerebellum participates in. To stress the interactive nature ofthe structure, the authors suggest that the phenomena that the cerebellum encodes may be best described generally as the psychological functions ofthe cerebellum instead ofattempting to categorize all functions as either motor or nonmotor.
Collapse
|
20
|
Rahman MA, Tanaka N, Usui K, Kawahara S. Role of Muscarinic Acetylcholine Receptors in Serial Feature-Positive Discrimination Task during Eyeblink Conditioning in Mice. PLoS One 2016; 11:e0147572. [PMID: 26808980 PMCID: PMC4725850 DOI: 10.1371/journal.pone.0147572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022] Open
Abstract
We investigated the role of muscarinic acetylcholine receptors (mAChRs) in eyeblink serial feature-positive discrimination learning in mice using the mAChR antagonist. A 2-s light cue was delivered 5 or 6 s before the presentation of a 350-ms tone paired with a 100-ms periorbital electrical shock (cued trial) but not before the tone-alone presentation (non-cued trial). Mice received 30 cued and 30 non-cued trials each day in a random order. We found that saline-injected control mice were successfully discriminating between cued and non-cued trials within a few days of conditioning. The mice responded more frequently to the tone in cued trials than in non-cued trials. Analysis of conditioned response (CR) dynamics revealed that the CR onset latency was shorter in cued trials than in non-cued trials, despite the CR peak amplitude not differing significantly between the two conditions. In contrast, scopolamine-injected mice developed an equal number of CRs with similar temporal patterns irrespective of the presence of the cue during the 7 days of conditioning, indicating in a failure to acquire conditional discrimination. In addition, the scopolamine administration to the control mice after they had successfully acquired discrimination did not impair the conditional discrimination and expression of pre-acquired CR. These results suggest that mAChRs may play a pivotal role in memory formation in the conditional brain state associated with the feature cue; however they are unlikely to be involved in the development of discrimination after conditional memory had formed in the serial feature-positive discrimination task during eyeblink conditioning.
Collapse
Affiliation(s)
- Md. Ashrafur Rahman
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama, 930–8555, Japan
| | - Norifumi Tanaka
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama, 930–8555, Japan
| | - Koji Usui
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama, 930–8555, Japan
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930–8555, Japan
| | - Shigenori Kawahara
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama, 930–8555, Japan
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930–8555, Japan
- * E-mail:
| |
Collapse
|
21
|
Bolbecker AR, Petersen IT, Kent JS, Howell JM, O'Donnell BF, Hetrick WP. New Insights into the Nature of Cerebellar-Dependent Eyeblink Conditioning Deficits in Schizophrenia: A Hierarchical Linear Modeling Approach. Front Psychiatry 2016; 7:4. [PMID: 26834653 PMCID: PMC4725217 DOI: 10.3389/fpsyt.2016.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/11/2016] [Indexed: 11/18/2022] Open
Abstract
Evidence of cerebellar dysfunction in schizophrenia has mounted over the past several decades, emerging from neuroimaging, neuropathological, and behavioral studies. Consistent with these findings, cerebellar-dependent delay eyeblink conditioning (dEBC) deficits have been identified in schizophrenia. While repeated-measures analysis of variance is traditionally used to analyze dEBC data, hierarchical linear modeling (HLM) more reliably describes change over time by accounting for the dependence in repeated-measures data. This analysis approach is well suited to dEBC data analysis because it has less restrictive assumptions and allows unequal variances. The current study examined dEBC measured with electromyography in a single-cue tone paradigm in an age-matched sample of schizophrenia participants and healthy controls (N = 56 per group) using HLM. Subjects participated in 90 trials (10 blocks) of dEBC, during which a 400 ms tone co-terminated with a 50 ms air puff delivered to the left eye. Each block also contained 1 tone-alone trial. The resulting block averages of dEBC data were fitted to a three-parameter logistic model in HLM, revealing significant differences between schizophrenia and control groups on asymptote and inflection point, but not slope. These findings suggest that while the learning rate is not significantly different compared to controls, associative learning begins to level off later and a lower ultimate level of associative learning is achieved in schizophrenia. Given the large sample size in the present study, HLM may provide a more nuanced and definitive analysis of differences between schizophrenia and controls on dEBC.
Collapse
Affiliation(s)
- Amanda R Bolbecker
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Isaac T Petersen
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Jerillyn S Kent
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Josselyn M Howell
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Brian F O'Donnell
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| |
Collapse
|
22
|
Carrere M, Alexandre F. A pavlovian model of the amygdala and its influence within the medial temporal lobe. Front Syst Neurosci 2015; 9:41. [PMID: 25852499 PMCID: PMC4364175 DOI: 10.3389/fnsys.2015.00041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/27/2015] [Indexed: 11/13/2022] Open
Abstract
Recent advances in neuroscience give us a better view of the inner structure of the amygdala, of its relations with other regions in the Medial Temporal Lobe (MTL) and of the prominent role of neuromodulation. They have particularly shed light on two kinds of neurons in the basal nucleus of the amygdala, the so-called fear neurons and extinction neurons. Fear neurons mediate context-dependent fear by receiving contextual information from the hippocampus, whereas extinction neurons are linked with the medial prefrontal cortex (mPFC) and involved in fear extinction. The computational model of the amygdala that we describe in this paper is primarily a model of pavlovian conditioning, but its architecture also emphasizes the central role of the amygdala in the MTL memory processes through three main information flows. (i) Thalamic and higher order sensory cortical inputs including from the perirhinal cortex are received in the lateral amygdalar nucleus, where CS-US associations can be acquired. (ii) These associations are subsequently modulated, in the basal nucleus of the amygdala, by contextual inputs coming from the hippocampus and the mPFC. Basal fear and extinction neurons indicate the currently valid association to their main targets including in the MTL and the mPFC. (iii) The competition for the choice of the pavlovian response is ultimately performed by projection of these amygdalar neurons in the central nucleus of the amygdala where, beyond motor responding, a hormonal response, including cholinergic modulation, is also triggered via the basal forebrain. In turn, acetylcholine modulates activation in the basal nucleus and facilitates learning in the hippocampus. Based on biologically founded arguments, our model replicates a number of biological experiments, proposes some predictions about the role of amygdalar regions and describes pavlovian conditioning as a distributed systemic learning, binding memory processes in the MTL.
Collapse
Affiliation(s)
- Maxime Carrere
- LaBRI, UMR 5800, CNRS, Bordeaux INP, Université de Bordeaux Talence, France ; Inria Bordeaux Sud-Ouest Talence, France ; Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Université de Bordeaux Bordeaux, France
| | - Frédéric Alexandre
- Inria Bordeaux Sud-Ouest Talence, France ; LaBRI, UMR 5800, CNRS, Bordeaux INP, Université de Bordeaux Talence, France ; Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Université de Bordeaux Bordeaux, France
| |
Collapse
|
23
|
du Plessis L, Jacobson SW, Molteno CD, Robertson FC, Peterson BS, Jacobson JL, Meintjes EM. Neural correlates of cerebellar-mediated timing during finger tapping in children with fetal alcohol spectrum disorders. Neuroimage Clin 2014; 7:562-70. [PMID: 25844307 PMCID: PMC4377649 DOI: 10.1016/j.nicl.2014.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Classical eyeblink conditioning (EBC), an elemental form of learning, is among the most sensitive indicators of fetal alcohol spectrum disorders. The cerebellum plays a key role in maintaining timed movements with millisecond accuracy required for EBC. Functional MRI (fMRI) was used to identify cerebellar regions that mediate timing in healthy controls and the degree to which these areas are also recruited in children with prenatal alcohol exposure. EXPERIMENTAL DESIGN fMRI data were acquired during an auditory rhythmic/non-rhythmic finger tapping task. We present results for 17 children with fetal alcohol syndrome (FAS) or partial FAS, 17 heavily exposed (HE) nonsyndromal children and 16 non- or minimally exposed controls. PRINCIPAL OBSERVATIONS Controls showed greater cerebellar blood oxygen level dependent (BOLD) activation in right crus I, vermis IV-VI, and right lobule VI during rhythmic than non-rhythmic finger tapping. The alcohol-exposed children showed smaller activation increases during rhythmic tapping in right crus I than the control children and the most severely affected children with either FAS or PFAS showed smaller increases in vermis IV-V. Higher levels of maternal alcohol intake per occasion during pregnancy were associated with reduced activation increases during rhythmic tapping in all four regions associated with rhythmic tapping in controls. CONCLUSIONS The four cerebellar areas activated by the controls more during rhythmic than non-rhythmic tapping have been implicated in the production of timed responses in several previous studies. These data provide evidence linking binge-like drinking during pregnancy to poorer function in cerebellar regions involved in timing and somatosensory processing needed for complex tasks requiring precise timing.
Collapse
Affiliation(s)
- Lindie du Plessis
- Faculty of Health Sciences, Medical Research Council, University of Cape Town Medical Imaging Research Unit, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandra W. Jacobson
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christopher D. Molteno
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frances C. Robertson
- Faculty of Health Sciences, Medical Research Council, University of Cape Town Medical Imaging Research Unit, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Bradley S. Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles and the Keck School of Medicine, University of Southern California, CA, USA
| | - Joseph L. Jacobson
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ernesta M. Meintjes
- Faculty of Health Sciences, Medical Research Council, University of Cape Town Medical Imaging Research Unit, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
24
|
Tokuda K, Nishikawa M, Kawahara S. Hippocampal state-dependent behavioral reflex to an identical sensory input in rats. PLoS One 2014; 9:e112927. [PMID: 25397873 PMCID: PMC4232594 DOI: 10.1371/journal.pone.0112927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/09/2014] [Indexed: 01/28/2023] Open
Abstract
We examined the local field potential of the hippocampus to monitor brain states during a conditional discrimination task, in order to elucidate the relationship between ongoing brain states and a conditioned motor reflex. Five 10-week-old Wistar/ST male rats underwent a serial feature positive conditional discrimination task in eyeblink conditioning using a preceding light stimulus as a conditional cue for reinforced trials. In this task, a 2-s light stimulus signaled that the following 350-ms tone (conditioned stimulus) was reinforced with a co-terminating 100-ms periorbital electrical shock. The interval between the end of conditional cue and the onset of the conditioned stimulus was 4±1 s. The conditioned stimulus was not reinforced when the light was not presented. Animals successfully utilized the light stimulus as a conditional cue to drive differential responses to the identical conditioned stimulus. We found that presentation of the conditional cue elicited hippocampal theta oscillations, which persisted during the interval of conditional cue and the conditioned stimulus. Moreover, expression of the conditioned response to the tone (conditioned stimulus) was correlated with the appearance of theta oscillations immediately before the conditioned stimulus. These data support hippocampal involvement in the network underlying a conditional discrimination task in eyeblink conditioning. They also suggest that the preceding hippocampal activity can determine information processing of the tone stimulus in the cerebellum and its associated circuits.
Collapse
Affiliation(s)
- Keita Tokuda
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Michimasa Nishikawa
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Shigenori Kawahara
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
- * E-mail:
| |
Collapse
|
25
|
Bolbecker AR, Kent JS, Petersen IT, Klaunig MJ, Forsyth JK, Howell JM, Westfall DR, O’Donnell BF, Hetrick WP. Impaired cerebellar-dependent eyeblink conditioning in first-degree relatives of individuals with schizophrenia. Schizophr Bull 2014; 40:1001-10. [PMID: 23962891 PMCID: PMC4133656 DOI: 10.1093/schbul/sbt112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Consistent with reports of cerebellar structural, functional, and neurochemical anomalies in schizophrenia, robust cerebellar-dependent delay eyeblink conditioning (dEBC) deficits have been observed in the disorder. Impaired dEBC is also present in schizotypal personality disorder, an intermediate phenotype of schizophrenia. The present work sought to determine whether dEBC deficits exist in nonpsychotic first-degree relatives of individuals with schizophrenia. A single-cue tone dEBC paradigm consisting of 10 blocks with 10 trials each (9 paired and 1 unpaired trials) was used to examine the functional integrity of cerebellar circuitry in schizophrenia participants, individuals with a first-degree relative diagnosed with schizophrenia, and healthy controls with no first-degree relatives diagnosed with schizophrenia. The conditioned stimulus (a 400ms tone) coterminated with the unconditioned stimulus (a 50ms air puff to the left eye) on paired trials. One relative and 2 healthy controls were removed from further analysis due to declining conditioned response rates, leaving 18 schizophrenia participants, 17 first-degree relatives, and 16 healthy controls. Electromyographic data were subsequently analyzed using growth curve models in hierarchical linear regression. Acquisition of dEBC conditioned responses was significantly impaired in schizophrenia and first-degree relative groups compared with controls. This finding that cerebellar-mediated associative learning deficits are present in first-degree relatives of individuals with schizophrenia provides evidence that dEBC abnormalities in schizophrenia may not be due to medication or course of illness effects. Instead, the present results are consistent with models of schizophrenia positing cerebellar-cortical circuit abnormalities and suggest that cerebellar abnormalities represent a risk marker for the disorder.
Collapse
Affiliation(s)
| | - Jerillyn S. Kent
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | - Isaac T. Petersen
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | | | | | | | | | | | - William P. Hetrick
- *To whom correspondence should be addressed; Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405, US; tel: 812-855-2620, fax: 812-856-4544, e-mail:
| |
Collapse
|
26
|
Kosten TA, Nielsen DA. Litter and sex effects on maternal behavior and DNA methylation of the Nr3c1 exon 17 promoter gene in hippocampus and cerebellum. Int J Dev Neurosci 2014; 36:5-12. [PMID: 24721039 PMCID: PMC4101021 DOI: 10.1016/j.ijdevneu.2014.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 01/03/2023] Open
Abstract
Early life events can alter gene expression through DNA methylation. The methylation status of the exon 17 promoter of the glucocorticoid receptor (Nr3c1 gene) in hippocampus associates with frequency of pup licking. Much of this work was conducted with male rats. Because dams more frequently lick male pups, this may contribute to sex differences in phenotypes through DNA methylation. Modifying litter gender composition (LGC), in which offspring of single-sex litters are compared to mixed-sex litters, alters maternal behavior. Previously, we demonstrated that LGC and sex affected pup licking times as well as anxiety and hippocampal DNA methylation of the Nr3c1 exon 17 promoter gene in adolescence. Now, we expand upon this work by examining effects in cerebellum and measuring mRNA levels. We also re-assessed DNA methylation in hippocampus using pyrosequencing and re-analyzed pup licking with the more commonly used frequency measure. Litters, culled to 8 pups on postnatal day 1 (PN1), were assigned to one of three conditions: all male (n = 10), all female (n = 12), or half of each sex (n = 20). Licking was rated on PN4, 7, and 10. On PN35, hippocampal and cerebellar samples were obtained. Single-sex males were licked the least and mixed-sex males, the most. Hippocampal Nr3c1 mRNA levels were lowest in mixed females with no LGC or Sex effects in DNA methylation. Cerebellar DNA methylation levels were lowest in mixed males with no effect on mRNA levels. Maternal pup licking associated with DNA methylation of the Nr3c1 exon 17 promoter gene in cerebellum and with hippocampal mRNA.
Collapse
Affiliation(s)
- Therese A Kosten
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine and Michael E DeBakey Veteran's Affairs Medical Center, Houston, TX 77030, United States.
| | - David A Nielsen
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine and Michael E DeBakey Veteran's Affairs Medical Center, Houston, TX 77030, United States
| |
Collapse
|
27
|
Taub AH, Segalis E, Marcus-Kalish M, Mintz M. Acceleration of cerebellar conditioning through improved detection of its sensory input. BRAIN-COMPUTER INTERFACES 2014. [DOI: 10.1080/2326263x.2013.867652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Yang Y, Wu GY, Li X, Huang H, Hu B, Yao J, Wu B, Sui JF. Limited impairments of associative learning in a mouse model of accelerated senescence. Behav Brain Res 2013; 257:140-7. [PMID: 24076384 DOI: 10.1016/j.bbr.2013.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 01/20/2023]
Abstract
Research concerning impairment of associative learning during aging remains limited. The senescence-accelerated mice (SAM) prone/8 (P8) has been proposed as a useful model for the study of aging, and SAM resistant/1(SAMR1) is its control as a normal aging strain. Classical eyeblink conditioning has long been served as a model of associative learning. In order to explore the effects of aging on associative learning in SAM, the present study successively tested three paradigms of eyeblink conditioning in SAMP8 and SAMR1: classical single cue trace eyeblink conditioning (TEC), discriminative trace eyeblink conditioning and reversal learning of TEC. Behavioral performance indicated that SAMP8 could acquire limited single-cue trace eyeblink conditioning task and two-tone discrimination trace eyeblink conditioning with a relative lower acquisition rate compared to SAMR1. Both SAMP8 and SAMR1 failed to acquire reversal learning of discriminative TEC, and SAMP8' startle reflex to tone CS was lower than SAMR1. These results indicated that the impairments of aging on associative learning were incomplete in SAMP8.
Collapse
Affiliation(s)
- Yi Yang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China; Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kent JS, Michael Bailey D, Vollmer JM, Newman SD, Bolbecker AR, O'Donnell BF, Hetrick WP. A magnetic resonance imaging-safe method for the study of human eyeblink conditioning. J Neurosci Methods 2013; 216:16-21. [PMID: 23500969 DOI: 10.1016/j.jneumeth.2013.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 11/24/2022]
Abstract
Eyeblink conditioning (EBC) is a widely used translational probe of cerebellar function in both humans and non-human animals. Decades of animal research have identified the cerebellum as critical for EBC. While there is evidence for the involvement of the cerebellum in human EBC, the neural circuitry of EBC in healthy humans has yet to be fully elucidated. The purpose of this study was to design and validate a highly customisable system for EBC stimulus presentation and response recording using infrared (IR) reflectance suitable for use in magnetic resonance imaging (MRI) environments; in this way, the neural activity of EBC could be investigated using fMRI in humans. Four participants underwent delay EBC and simultaneous fMRI. The results indicate (1) a high signal-to-noise ratio in the IR reflectance data that effectively quantifies the eyeblink morphology and timing and (2) evidence of conditioning in the fMRI environment. The quality of the data, the feasibility of conducting EBC experiments in the fMRI environment, and the customisability of the current system to fit a variety of EBC experimental design parameters are discussed.
Collapse
Affiliation(s)
- Jerillyn S Kent
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 1101 East 10th Street, Bloomington, IN 47405, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Functional inactivation of orexin 1 receptors in the cerebellum disrupts trace eyeblink conditioning and local theta oscillations in guinea pigs. Behav Brain Res 2013; 250:114-22. [PMID: 23680162 DOI: 10.1016/j.bbr.2013.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 11/24/2022]
Abstract
The cerebellum plays an essential role in motor learning. Recently, orexins, the newfound lateral hypothalamic neuropeptides, have been found to excite Purkinje cells in the cerebellar cortex and neurons in the deep cerebellar nuclei (DCN). However, little is known about their roles in cerebellum-dependent motor learning. Therefore, the present study was designed to investigate the functional significance of hypothalamic orexinergic system during trace eyeblink conditioning, a tractable behavioral model system of cerebellum-dependent motor learning. It was revealed that the orexin 1 receptors (OXR1) were specifically localized on the soma of Purkinje cells and large DCN neurons. Furthermore, interfering with the endogenous orexins' effects on the cerebellum via the selective OXR1 antagonist SB-334867 disrupted the timing rather than the acquisition of trace conditioned eyeblink responses. In addition to the behavioral effects, the SB-334867 prevented the increase in peak amplitude of cerebellar theta oscillations with learning. These results suggest that the endogenous orexins may modulate motor learning via the activation of cerebellar OXR1.
Collapse
|
31
|
Wagner JL, Klintsova AY, Greenough WT, Goodlett CR. Rehabilitation training using complex motor learning rescues deficits in eyeblink classical conditioning in female rats induced by binge-like neonatal alcohol exposure. Alcohol Clin Exp Res 2013; 37:1561-70. [PMID: 23647404 DOI: 10.1111/acer.12122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/22/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Effective treatments for the behavioral and cognitive deficits in children with fetal alcohol spectrum disorders (FASD) are lacking, and translational approaches using animal models can help develop rational interventions. One such model, binge-like alcohol exposure in neonatal rats during the period of brain development comparable with that of the human third trimester, causes structural and functional damage to the cerebellum and disrupts cerebellar-dependent eyeblink classical conditioning. The eyeblink conditioning deficits first demonstrated in this rat model predicted the similar deficits subsequently demonstrated in children with FASD. METHODS The current study extends this translational approach by testing the hypothesis that rehabilitation training involving 20 days of training on traversal of an obstacle course (complex motor learning) would ameliorate the deficits on classical conditioning of eyeblink responses produced by the neonatal alcohol exposure. We have previously shown that this training stimulates cerebellar synaptic plasticity and improves alcohol-induced deficits on motor coordination tasks. RESULTS The current studies found that rehabilitation training significantly attenuated alcohol-induced deficits in acquisition of eyeblink conditioning in females but not in males. These results are consistent with normalization of cerebellar-dependent learning, at least in alcohol-exposed females. CONCLUSIONS These findings extend previous studies in this model suggesting that rehabilitation of adolescents with FASD using training with complex motor learning tasks could be effective in ameliorating functional impairments associated with cerebellar damage. Eyeblink classical conditioning deficits are now well documented in children with FASD and could serve as an evaluation measure to continue to develop therapeutic interventions such as complex motor learning.
Collapse
Affiliation(s)
- Jennifer L Wagner
- Department of Psychology , Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | | | | | | |
Collapse
|
32
|
Forsyth JK, Bolbecker AR, Mehta CS, Klaunig MJ, Steinmetz JE, O'Donnell BF, Hetrick WP. Cerebellar-dependent eyeblink conditioning deficits in schizophrenia spectrum disorders. Schizophr Bull 2012; 38:751-9. [PMID: 21148238 PMCID: PMC3406528 DOI: 10.1093/schbul/sbq148] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Accumulating evidence suggests that abnormalities in neural circuitry and timing associated with the cerebellum may play a role in the pathophysiology of schizophrenia. Schizotypal personality disorder (SPD) may be genetically linked to schizophrenia, but individuals with SPD are freer from potential research confounds and may therefore offer insight into psychophysiological correlates of schizophrenia. The present study employed a delay eyeblink conditioning (EBC) procedure to examine cerebellar-dependent learning in schizophrenia, SPD, and healthy control subjects (n = 18 per group) who were matched for age and gender. The conditioned stimulus was a 400-ms tone that coterminated with a 50 ms unconditioned stimulus air puff. Cognitive performance on the Picture Completion, Digit Symbol Coding, Similarities, and Digit Span subscales of the Wechsler Adult Intelligence Scale--Third Edition was also investigated. The schizophrenia and SPD groups demonstrated robust EBC impairment relative to the control subjects; they had significantly fewer conditioned responses (CRs), as well as smaller CR amplitudes. Schizophrenia subjects showed cognitive impairment across subscales compared with SPD and control subjects; SPD subjects showed intermediate performance to schizophrenia and control subjects and performed significantly worse than controls on Picture Completion. Impaired EBC was significantly related to decreased processing speed in schizophrenia spectrum subjects. These findings support the role of altered cortico-cerebellar-thalamic-cortical circuitry in the pathophysiology of schizophrenia spectrum disorders.
Collapse
Affiliation(s)
- Jennifer K. Forsyth
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405,Larue D. Carter Memorial Hospital, Indianapolis, IN
| | - Amanda R. Bolbecker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405,Larue D. Carter Memorial Hospital, Indianapolis, IN
| | - Crystal S. Mehta
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405,Larue D. Carter Memorial Hospital, Indianapolis, IN
| | - Mallory J. Klaunig
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405,Larue D. Carter Memorial Hospital, Indianapolis, IN
| | | | - Brian F. O'Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405,Larue D. Carter Memorial Hospital, Indianapolis, IN,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN
| | - William P. Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405,Larue D. Carter Memorial Hospital, Indianapolis, IN,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN,To whom correspondence should be addressed; tel: 812-855-2620, fax: 812-855-4544, e-mail:
| |
Collapse
|
33
|
Classical eyeblink conditioning using electrical stimulation of caudal mPFC as conditioned stimulus is dependent on cerebellar interpositus nucleus in guinea pigs. Acta Pharmacol Sin 2012; 33:717-27. [PMID: 22562015 DOI: 10.1038/aps.2012.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To determine whether electrical stimulation of caudal medial prefrontal cortex (mPFC) as conditioned stimulus (CS) paired with airpuff unconditioned stimulus (US) was sufficient for establishing eyeblink conditioning in guinea pigs, and whether it was dependent on cerebellar interpositus nucleus. METHODS Thirty adult guinea pigs were divided into 3 conditioned groups, and trained on the delay eyeblink conditioning, short-trace eyeblink conditioning, and long-trace eyeblink conditioning paradigms, respectively, in which electrical stimulation of the right caudal mPFC was used as CS and paired with corneal airpuff US. A pseudo conditioned group of another 10 adult guinea pigs was given unpaired caudal mPFC electrical stimulation and the US. Muscimol (1 μg in 1 μL saline) and saline (1 μL) were infused into the cerebellar interpositus nucleus of the animals through the infusion cannula on d 11 and 12, respectively. RESULTS The 3 eyeblink conditioning paradigms have been successfully established in guinea pigs. The animals acquired the delay and short-trace conditioned responses more rapidly than long-trace conditioned responses. Muscimol infusion into the cerebellar interpositus nucleus markedly impaired the expression of the 3 eyeblink conditioned responses. CONCLUSION Electrical stimulation of caudal mPFC is effective CS for establishing eyeblink conditioning in guinea pigs, and it is dependent on the cerebellar interpositus nucleus.
Collapse
|
34
|
Evaluation of bidirectional interstimulus interval (ISI) shift in auditory delay eye-blink conditioning in healthy humans. Learn Behav 2012; 39:358-70. [PMID: 21562779 DOI: 10.3758/s13420-011-0031-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Delay eye-blink conditioning is an associative learning task that can be utilized to probe the functional integrity of the cerebellum and related neural circuits. Typically, a single interstimulus interval (ISI) is utilized, and the amplitude of the conditioned response (CR) is the primary dependent variable. To study the timing of the CR, an ISI shift can be introduced (e.g., shifting the ISI from 350 to 850 ms). In each phase, a conditioned stimulus (e.g., a 400- or 900-ms tone) coterminates with a 50-ms corneal air puff unconditioned stimulus. The ability of a subject to adjust the CR to the changing ISI constitutes a critical timing shift. The feasibility of this procedure was examined in healthy human participants (N = 58) using a bidirectional ISI shift procedure while cortical event-related brain potentials were measured. CR acquisition was faster and the responses better timed when a short ISI was used. After the ISI shift, additional training was necessary to allow asymptotic responding at the new ISI. Interestingly, auditory event-related potentials to the CR were not associated with conditioning measures at either ISI.
Collapse
|
35
|
Carrel AJ, Zbarska S, Zenitsky GD, Bracha V. A trigeminal conditioned stimulus yields fast acquisition of cerebellum-dependent conditioned eyeblinks. Behav Brain Res 2011; 226:189-96. [PMID: 21933685 DOI: 10.1016/j.bbr.2011.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 01/28/2023]
Abstract
Classical conditioning of the eyeblink response in the rabbit is a form of motor learning whereby the animal learns to respond to an initially irrelevant conditioned stimulus (CS). It is thought that acquired conditioned responses (CRs) are adaptive because they protect the eye in anticipation of potentially harmful events. This protective mechanism is surprisingly inefficient because the acquisition of CRs requires extensive training - a condition that is unlikely to occur in nature. We hypothesized that the rate of conditioning in rabbits could depend on CS modality and that stimulating mystacial vibrissae as the CS could produce CR acquisition faster than the traditional auditory or visual stimulation. We tested this hypothesis by conditioning naïve rabbits in the delay paradigm using a weak airpuff CS (vCS) directed to the ipsilateral mystacial vibrissae. We found that the trigeminal vCS yields significantly faster CR acquisition. We next examined if vCS-evoked CRs are dependent on the intermediate cerebellum in the same fashion as CRs evoked by the traditional auditory CS. We found that vibrissal CRs could be abolished by inactivating the cerebellar interposed nuclei (IN) with muscimol. In addition, injections of picrotoxin in the IN shortened the onset latency of vibrissal CRs. These findings suggest that the tone and vCS-evoked CRs share similar cerebellar dependency.
Collapse
Affiliation(s)
- Andrew J Carrel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
36
|
Jacobson SW, Jacobson JL, Stanton ME, Meintjes EM, Molteno CD. Biobehavioral markers of adverse effect in fetal alcohol spectrum disorders. Neuropsychol Rev 2011; 21:148-66. [PMID: 21541763 PMCID: PMC3148825 DOI: 10.1007/s11065-011-9169-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/17/2011] [Indexed: 11/27/2022]
Abstract
Identification of children with fetal alcohol spectrum disorders (FASD) is difficult because information regarding prenatal exposure is often lacking, a large proportion of affected children do not exhibit facial anomalies, and no distinctive behavioral phenotype has been identified. Castellanos and Tannock have advocated going beyond descriptive symptom-based approaches to diagnosis to identify biomarkers derived from cognitive neuroscience. Classical eyeblink conditioning and magnitude comparison are particularly promising biobehavioral markers of FASD-eyeblink conditioning because a deficit in this elemental form of learning characterizes a very large proportion of alcohol-exposed children; magnitude comparison because it is a domain of higher order cognitive function that is among the most sensitive to fetal alcohol exposure. Because the neural circuitry mediating both these biobehavioral markers is well understood, they have considerable potential for advancing understanding of the pathophysiology of FASD, which can contribute to development of treatments targeted to the specific deficits that characterize this disorder.
Collapse
Affiliation(s)
- Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48207, USA.
| | | | | | | | | |
Collapse
|
37
|
Thomas JD, Tran TD. Choline supplementation mitigates trace, but not delay, eyeblink conditioning deficits in rats exposed to alcohol during development. Hippocampus 2011; 22:619-30. [PMID: 21542051 DOI: 10.1002/hipo.20925] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2010] [Indexed: 12/12/2022]
Abstract
Children exposed to alcohol prenatally suffer from a range of physical, neuropathological, and behavioral alterations, referred to as fetal alcohol spectrum disorders (FASD). Both the cerebellum and hippocampus are affected by alcohol exposure during development, which may contribute to behavioral and cognitive deficits observed in children with FASD. Despite the known neuropathology associated with prenatal alcohol exposure, many pregnant women continue to drink (heavy drinkers, in particular), creating a need to identify effective treatments for their children who are adversely affected by alcohol. We previously reported that choline supplementation can mitigate alcohol's effects on cognitive development, specifically on tasks which depend on the functional integrity of the hippocampus. The present study examined whether choline supplementation could differentially mitigate alcohol's effects on trace eyeblink classical conditioning (ECC, a hippocampal-dependent task) and delay ECC (a cerebellar-dependent task). Long-Evans rats were exposed to 5.25 g/kg/day alcohol via gastric intubation from postnatal days (PD) 4-9, a period of brain development equivalent to late gestation in humans. A sham-intubated control group was included. From PD 10-30, subjects received subcutaneous injections of 100 mg/kg choline chloride or vehicle. Beginning on PD 32-34, subjects were trained on either delay or trace eyeblink conditioning. Performance of subjects exposed to alcohol was significantly impaired on both tasks, as indicated by significant reductions in percentage and amplitude of conditioned eyeblink responses, an effect that was attenuated by choline supplementation on the trace, but not delay conditioning task. Indeed, alcohol-exposed subjects treated with choline performed at control levels on the trace eyeblink conditioning task. There were no significant main or interactive effects of sex. These data indicate that choline supplementation can significantly reduce the severity of trace eyeblink conditioning deficits associated with early alcohol exposure, even when administered after the alcohol insult is complete. These findings have important implications for the treatment of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Jennifer D Thomas
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, California, USA
| | | |
Collapse
|
38
|
Abstract
The work of recent decades has shown that the nervous system changes continually throughout life. Activity-dependent central nervous system (CNS) plasticity has many different mechanisms and involves essentially every region, from the cortex to the spinal cord. This new knowledge radically changes the challenge of explaining learning and memory and greatly increases the relevance of the spinal cord. The challenge is now to explain how continual and ubiquitous plasticity accounts for the initial acquisition and subsequent stability of many different learned behaviors. The spinal cord has a key role because it is the final common pathway for all behavior and is a site of substantial plasticity. Furthermore, because it is simple, accessible, distant from the rest of the CNS, and directly connected to behavior, the spinal cord is uniquely suited for identifying sites and mechanisms of plasticity and for determining how they account for behavioral change. Experimental models based on spinal cord reflexes facilitate study of the gradual plasticity that makes possible most rapid learning phenomena. These models reveal principles and generate concepts that are likely to apply to learning and memory throughout the CNS. In addition, they offer new approaches to guiding activity-dependent plasticity so as to restore functions lost to injury or disease.
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- Laboratory of Neural Injury and Repair, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| |
Collapse
|
39
|
Steinmetz AB, Rice ML. Cerebellar-dependent delay eyeblink conditioning in adolescents with Specific Language Impairment. J Neurodev Disord 2010; 2:243-251. [PMID: 21132123 PMCID: PMC2995585 DOI: 10.1007/s11689-010-9058-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Accepted: 07/28/2010] [Indexed: 11/07/2022] Open
Abstract
Cerebellar impairments have been hypothesized as part of the pathogenesis of Specific Language Impairment (SLI), although direct evidence of cerebellar involvement is sparse. Eyeblink Conditioning (EBC) is a learning task with well documented cerebellar pathways. This is the first study of EBC in affected adolescents and controls. 16 adolescent controls, 15 adolescents with SLI, and 12 adult controls participated in a delay EBC task. Affected children had low general language performance, grammatical deficits but no speech impairments. The affected group did not differ from the control adolescent or control adult group, showing intact cerebellar functioning on the EBC task. This study did not support cerebellar impairment at the level of basic learning pathways as part of the pathogenesis of SLI. Outcomes do not rule out cerebellar influences on speech impairment, or possible other forms of cerebellar functioning as contributing to SLI.
Collapse
Affiliation(s)
- Adam B. Steinmetz
- Department of Psychology, University of Iowa, E11 Seashore Hall, Iowa City, IA 52242 USA
| | - Mabel L. Rice
- Department of Speech-Language-Hearing: Sciences & Disorders, University of Kansas, 1000 Sunnyside Ave., Lawrence, KS 66045 USA
| |
Collapse
|
40
|
Jacobson SW, Stanton ME, Dodge NC, Pienaar M, Fuller DS, Molteno CD, Meintjes EM, Hoyme HE, Robinson LK, Khaole N, Jacobson JL. Impaired delay and trace eyeblink conditioning in school-age children with fetal alcohol syndrome. Alcohol Clin Exp Res 2010; 35:250-64. [PMID: 21073484 DOI: 10.1111/j.1530-0277.2010.01341.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Classical eyeblink conditioning (EBC) involves contingent temporal pairing of a conditioned stimulus (e.g., tone) with an unconditioned stimulus (e.g., air puff). Impairment of EBC has been demonstrated in studies of alcohol-exposed animals and in children exposed prenatally at heavy levels. METHODS Fetal alcohol syndrome (FAS) was diagnosed by expert dysmorphologists in a large sample of Cape Coloured, South African children. Delay EBC was examined in a new sample of 63 children at 11.3 years, and trace conditioning in 32 of the same children at 12.8 years. At each age, 2 sessions of 50 trials each were administered on the same day; 2 more sessions the next day, for children not meeting criterion for conditioning. RESULTS Six of 34 (17.6%) children born to heavy drinkers were diagnosed with FAS, 28 were heavily exposed nonsyndromal (HE), and 29 were nonexposed controls. Only 33.3% with FAS and 42.9% of HE met criterion for delay conditioning, compared with 79.3% of controls. The more difficult trace conditioning task was also highly sensitive to fetal alcohol exposure. Only 16.7% of the FAS and 21.4% of HE met criterion for trace conditioning, compared with 66.7% of controls. The magnitude of the effect of diagnostic group on trace conditioning was not greater than the effect on short delay conditioning, findings consistent with recent rat studies. Longer latency to onset and peak eyeblink CR in exposed children indicated poor timing and failure to blink in anticipation of the puff. Extended training resulted in some but not all of the children reaching criterion. CONCLUSIONS These data showing alcohol-related delay and trace conditioning deficits extend our earlier findings of impaired EBC in 5-year-olds to school-age. Alcohol-related impairment in the cerebellar circuitry required for both forms of conditioning may be sufficient to account for the deficit in both tasks. Extended training was beneficial for some exposed children. EBC provides a well-characterized model system for assessment of degree of cerebellar-related learning and memory dysfunction in fetal alcohol exposed children.
Collapse
Affiliation(s)
- Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48207, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Steinmetz AB, Freeman JH. Central cannabinoid receptors modulate acquisition of eyeblink conditioning. Learn Mem 2010; 17:571-6. [PMID: 21030483 DOI: 10.1101/lm.1954710] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Delay eyeblink conditioning is established by paired presentations of a conditioned stimulus (CS) such as a tone or light, and an unconditioned stimulus (US) that elicits the blink reflex. Conditioned stimulus information is projected from the basilar pontine nuclei to the cerebellar interpositus nucleus and cortex. The cerebellar cortex, particularly the molecular layer, contains a high density of cannabinoid receptors (CB1R). The CB1Rs are located on the axon terminals of parallel fibers, stellate cells, and basket cells where they inhibit neurotransmitter release. The present study examined the effects of a CB1R agonist WIN55,212-2 and antagonist SR141716A on the acquisition of delay eyeblink conditioning in rats. Rats were given subcutaneous administration of 1, 2, or 3 mg/kg of WIN55,212-2 or 1, 3, or 5 mg/kg of SR141716A before each day of acquisition training (10 sessions). Dose-dependent impairments in acquisition were found for WIN55,212-2 and SR141716A, with no effects on spontaneous or nonassociative blinking. However, the magnitude of impairment was greater for WIN55,212-2 than SR141716A. Dose-dependent impairments in conditioned blink response (CR) amplitude and timing were found with WIN55,212-2 but not with SR141716A. The findings support the hypothesis that CB1Rs in the cerebellar cortex play an important role in plasticity mechanisms underlying eyeblink conditioning.
Collapse
Affiliation(s)
- Adam B Steinmetz
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
42
|
Gerwig M, Guberina H, Eßer AC, Siebler M, Schoch B, Frings M, Kolb FP, Aurich V, Beck A, Forsting M, Timmann D. Evaluation of multiple-session delay eyeblink conditioning comparing patients with focal cerebellar lesions and cerebellar degeneration. Behav Brain Res 2010; 212:143-51. [DOI: 10.1016/j.bbr.2010.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/31/2010] [Accepted: 04/03/2010] [Indexed: 10/19/2022]
|
43
|
Amygdala conditioning modulates sensory input to the cerebellum. Neurobiol Learn Mem 2010; 94:521-9. [PMID: 20832497 DOI: 10.1016/j.nlm.2010.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 08/29/2010] [Accepted: 09/02/2010] [Indexed: 11/22/2022]
Abstract
Localization of emotional learning in the amygdala and discrete motor learning in the cerebellum provides empirical means to study the mechanisms mediating the interaction between fast emotional and slow motor learning. Behavioral studies have demonstrated that fear conditioning facilitates the motor conditioning. The present study tests the hypothesis that the amygdala output induces this facilitation by increasing the salience of the conditioned stimulus (CS) representation in the pontine nucleus (PN) input to the cerebellum. Paired trials of CS-US (unconditioned stimulus) were applied to anesthetized rats, a condition that allows for amygdala-based fear conditioning but not cerebellar-based motor conditioning. Multiple unit recordings in the PN served to assess the salience of the CS. Results showed that CS-US conditioning increased the PN-reactivity to the CS. Lidocaine-induced reversible inactivation of the amygdala prevented the facilitatory effect of conditioning on the PN-reactivity to the CS. These findings suggest that the amygdala-based conditioned responses reach the PN and increase the salience of the CS signal there, perhaps facilitating cerebellar conditioning. This facilitatory effect of the amygdala may be conceptualized under the 'two-stage theory of learning', which predicts that emotional learning in the first stage accelerates the motor learning in the second stage. We hereby demonstrate the physiological mechanism through which fast emotional learning in the first stage facilitates slow cerebellar learning in the second stage.
Collapse
|
44
|
Wilber AA, Lin GL, Wellman CL. Glucocorticoid receptor blockade in the posterior interpositus nucleus reverses maternal separation-induced deficits in adult eyeblink conditioning. Neurobiol Learn Mem 2010; 94:263-8. [PMID: 20558309 PMCID: PMC2922459 DOI: 10.1016/j.nlm.2010.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/05/2010] [Accepted: 06/08/2010] [Indexed: 11/16/2022]
Abstract
Previously, we showed that neonatal maternal separation impaired eyeblink conditioning in adult rats. This impairment is correlated with increased glucocorticoid receptor (GR) expression in the cerebellar posterior interpositus nucleus, a critical site of learning-related plasticity. To assess whether increased GR expression is responsible for the separation-induced learning impairment, we infused a GR antagonist (mifepristone) or vehicle into the posterior interpositus during eyeblink conditioning in adult male Long-Evans rats that had undergone control rearing or neonatal maternal separation (1h/day, postnatal days 2-14). Rats received standard rearing (control) or neonatal maternal separation (separated; 1h/day on postnatal days 2-14). In adulthood, rats underwent surgery for implantation of recording electrodes in the orbicularis oculi of the left eyelid, a bipolar stimulating electrode dorsocaudal to the left eye, and an infusion guide cannula positioned over the posterior interpositus. Then, rats underwent 10 daily sessions of eyeblink conditioning. Rats in each group received either 0.2microl of mifepristone (2ng in 2% EtOH) or vehicle infusion prior to each eyeblink conditioning session. Mifepristone infusions improved conditioning in separated rats, but impaired control rats' performance. Thus, separation-induced increases in GRs may mediate the learning deficit seen in adult neonatally separated rats.
Collapse
Affiliation(s)
- Aaron A Wilber
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States
| | | | | |
Collapse
|
45
|
Young BW, Sengelaub DR, Steinmetz JE. MK-801 administration during neonatal ethanol withdrawal attenuates interpositus cell loss and juvenile eyeblink conditioning deficits. Alcohol 2010; 44:359-69. [PMID: 20598489 PMCID: PMC2918724 DOI: 10.1016/j.alcohol.2009.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 12/17/2009] [Accepted: 12/30/2009] [Indexed: 02/06/2023]
Abstract
Binge-level doses of ethanol have been demonstrated to severely disrupt the cerebellum and cerebellum-dependent tasks when administered to rodent subjects during the early postnatal period. N-methyl-d-aspartic acid (NMDA) receptor-mediated excitotoxicity associated with ethanol withdrawal has been implicated as a significant component contributing to neurotoxic effects resulting from early ethanol exposure, and studies using MK-801 (dizocilpine) have reported protection from ethanol-induced damage. The present study examined whether the administration of MK-801 during ethanol withdrawal would ameliorate ethanol-associated cell death in the interpositus nucleus of the cerebellum and behavioral deficits in a cerebellar dependent task. Long Evans rat pups were treated with ethanol (5.25 g/kg) in a binge-like manner on postnatal day 6 using intragastric intubation. Subjects then received an injection of MK-801 (0.5mg/kg) or vehicle during withdrawal, 30h after ethanol exposure. Rats were then trained on an eyeblink classical conditioning task as juveniles (40 days of age), and cerebellar interpositus nucleus numbers were assessed after conditioning. Ethanol-exposed subjects exhibited reductions in neuronal populations and behavioral deficits during eyeblink conditioning. However, MK-801 administration significantly attenuated observed deficiencies, suggesting a protective effect resulting from MK-801 treatment during ethanol withdrawal. These results support the role of NMDA receptor-mediated excitotoxicity as a component mechanism by which ethanol produces teratogenicity. Additionally, our findings support previous reports that have shown correlations between dependent measures of eyeblink classical-conditioning behavior and unbiased cell counts in the interpositus nucleus.
Collapse
Affiliation(s)
- Brandt W Young
- Department of Physiology, Northwestern University, Chicago, IL, USA.
| | | | | |
Collapse
|
46
|
Gómez A, Durán E, Salas C, Rodríguez F. Cerebellum lesion impairs eyeblink-like classical conditioning in goldfish. Neuroscience 2010; 166:49-60. [DOI: 10.1016/j.neuroscience.2009.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/03/2009] [Accepted: 12/05/2009] [Indexed: 12/18/2022]
|
47
|
McEchron MD, Alexander DN, Smith ME, Hoffman DL, Podskalny GD, Connor JR. Altered eyeblink reflex conditioning in restless legs syndrome patients. Sleep Med 2010; 11:314-9. [DOI: 10.1016/j.sleep.2009.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/24/2009] [Accepted: 06/16/2009] [Indexed: 10/19/2022]
|
48
|
Horiuchi T, Kawahara S. Effects of ipsilateral cerebellum ablation on acquisition and retention of classically conditioned eyeblink responses in rats. Neurosci Lett 2010; 472:148-52. [PMID: 20138123 DOI: 10.1016/j.neulet.2010.01.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/28/2010] [Accepted: 01/28/2010] [Indexed: 11/25/2022]
Abstract
The ipsilateral cerebellum to the trained eye has been reported to be essential for acquisition and retention of the conditioned response (CR) in rabbit eyeblink conditioning. Although pharmacological studies have suggested its important roles in other species too, to what degree does eyeblink conditioning in rats depend on the ipsilateral cerebellum is not clear. In this work, we ablated the ipsilateral cerebellum in rats before or after conditioning to examine its roles in acquisition and retention of the CR. In the first experiment, rats received ablation of the ipsilateral cerebellum and recovered for more than 3 weeks. They then underwent eyeblink conditioning for 7 days with a tone and a periorbital electrical shock. Consistent with other previous reports, hemicerebellectomized rats showed significant impairment compared to sham-lesioned rats. However, the hemicerebellectomized rats acquired CRs to some degree, and the acquired CR showed adaptive timing. In the second experiment, rats received the hemicerebellectomy after acquiring CR by 7 days of conditioning in a delay paradigm. After more than 3 weeks of recovery, they were again conditioned in a delay paradigm. Rats with ipsilateral cerebellar lesions showed severe impairment in retention of the pre-acquired CR; however, they reacquired CR to some degree during the subsequent reconditioning sessions. These results suggest that the ipsilateral cerebellum plays an important role in rat eyeblink conditioning as well but that other brain regions can partially compensate for its removal.
Collapse
Affiliation(s)
- Takahiro Horiuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
49
|
Brasted P, Wise S. The Arbitrary Mapping of Sensory Inputs to Voluntary and Involuntary Movement. ACTA ACUST UNITED AC 2010. [DOI: 10.1201/9780203503584.sec3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
50
|
Comparison of auditory and visual conditioning stimuli in delay eyeblink conditioning in healthy young adults. Learn Behav 2009; 37:349-56. [PMID: 19815931 DOI: 10.3758/lb.37.4.349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Classical eyeblink conditioning (EBC) has been widely used to probe cerebellar function in humans and nonhuman mammals. Although the neural pathways governing behavior in this task are well understood and fairly discrete, it remains unclear in the human literature how conditioned stimuli (CSs) of different modalities (e.g., visual and auditory) influence the exhibition of conditioned responses (CRs). In the present study, therefore, CRs to a visual CS and an auditory CS were examined with the single-cue delay EBC procedure. An initial experiment (N = 61) was conducted to identify visual and auditory stimuli that had equal perceived intensities. Using these perceptually equivalent stimuli, a second group of 25 subjects completed auditory and visual EBC procedures in two testing sessions 5-8 days apart. Whereas the acquisition of CRs was similar between the CS modality conditions, the timing of the CRs differed such that earlier CR onset and peak latencies were associated with the visual CS. In addition, CR timing improved across testing sessions, as indicated by the later CR peak latencies exhibited during the second testing session, as compared with the first.
Collapse
|