1
|
Sun G, Fang B, Yang Y, Qu Y, Zhang Q, Li W. Microscopic Significance of Hydrophobic Residues for Protein Stability in Ionic Liquids. J Phys Chem B 2025; 129:3244-3252. [PMID: 40095550 DOI: 10.1021/acs.jpcb.5c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
It is well-known that ionic liquids (ILs) can alter the structural stability of proteins. The change in protein conformation is closely related to the interaction between the protein residue and ILs. To probe the impact of hydrophobic interactions on protein stability in ILs, we conducted molecular dynamic simulations and compared the unfolding process of two proteins, the wild-type villin headpiece protein HP35 and its doubly mutant form HP35NN which contains two hydrophobic norleucine (NLE) substitutions at Lys24/29, in hydrated 1-butyl-3-methylimidazolium chloride ([BMIM]Cl). By sampling at a long time scale, the denaturation ability of ILs was well captured. Specifically, HP35NN exhibits greater structural instability than HP35, characterized by the unfolding of helix-3 where the mutated hydrophobic residues are located. These findings highlight the thermodynamic instability of the protein caused by the mutation of two hydrophobic residues in the ILs. By evaluating the hydration kinetics of helix-3 with ILs, we found that the intramolecular hydrogen bonds of HP35NN were broken. At the same time, HP35NN binds to more ILs through hydrophobic interactions. Therefore, we propose that the hydrophobic interaction between ILs and the mutated hydrophobic residue plays a crucial role in the denaturation of HP35NN. The stability comparison and verification of the alkyl chain model of hydrophobic residues in ILs also further prove the instability of hydrophobic residue mutation in ILs. These findings may provide valuable basic information for understanding the effect of ILs on the conformational stability of proteins.
Collapse
Affiliation(s)
- Guochao Sun
- School of Physics, Shandong University, Jinan 250100, Shandong, China
| | - Bing Fang
- School of Physics, Shandong University, Jinan 250100, Shandong, China
| | - Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yuanyuan Qu
- School of Physics, Shandong University, Jinan 250100, Shandong, China
| | - Qingmeng Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Weifeng Li
- School of Physics, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
2
|
Bharmoria P, Tietze AA, Mondal D, Kang TS, Kumar A, Freire MG. Do Ionic Liquids Exhibit the Required Characteristics to Dissolve, Extract, Stabilize, and Purify Proteins? Past-Present-Future Assessment. Chem Rev 2024; 124:3037-3084. [PMID: 38437627 PMCID: PMC10979405 DOI: 10.1021/acs.chemrev.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Smart Molecular, Inorganic and Hybrid Materials, Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Alesia A. Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Dibyendu Mondal
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute
of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
- Centre
for Nano and Material Sciences, JAIN (Deemed-to-be
University), Jain Global
Campus, Bangalore 562112, India
| | - Tejwant Singh Kang
- Department
of Chemistry, UGC Center for Advance Studies-II,
Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India
| | - Arvind Kumar
- Salt
and Marine Chemicals Division, CSIR-Central
Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Mara G Freire
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Gupta M, Choudhury B, Navani NK. Production and characterization of an organic solvent activated protease from haloalkaliphilic bacterium Halobiforma sp. strain BNMIITR. Heliyon 2024; 10:e25084. [PMID: 38314259 PMCID: PMC10837622 DOI: 10.1016/j.heliyon.2024.e25084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
An unusual haloalkaliphilic bacterium known as Halobiforma sp. strain BNMIITR, which was noticed to produce an extracellular alkaline protease, was found in a soil sample from Northern India's Sambhar Lake. On the generation of protease, the effects of dietary elements including nitrogen and carbon sources, amino acids, and growth conditions like temperature and pH were investigated. When low-cost agricultural by-products were employed as nitrogen sources, the manufacturing of enzymes was significantly boosted. In the present study, protease production was enhanced by 2.94 fold and 2.17 fold. By solvent precipitation and Hydrophobic interaction chromatography (HIC) on Phenyl Sepharose 6 Fast Flow matrix, the enzyme was purified 31.67 fold. It was determined that the apparent molecular mass was 21 kDa. The pH range where the enzyme was most stable was 6.0-12.0, with a temperature of 50 °C as optimum. When there was alkaline earth metals and heavy metals, protease was discovered to be active. It was evident that the enzyme was a serine type of protease because it was active in the presence of a variety of surfactants, oxidizing and reducing chemicals, and phenylmethylsulfonyl fluoride (PMSF) completely inhibited activity. Enzyme exhibited a wide range of substrate specificity. Amazingly, enzyme remained stable both in polar and nonpolar solvents. The most interesting aspect of this enzyme is enhanced activity in polar solvents like dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). It was discovered that the protease was stable and compatible with a number of widely available detergents.
Collapse
Affiliation(s)
- Meenu Gupta
- Botany Department, J. D. Women's College Patna, Bihar, 800023, India
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Bijan Choudhury
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Naveen Kumar Navani
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
4
|
Trombino S, Sole R, Di Gioia ML, Procopio D, Curcio F, Cassano R. Green Chemistry Principles for Nano- and Micro-Sized Hydrogel Synthesis. Molecules 2023; 28:molecules28052107. [PMID: 36903352 PMCID: PMC10004334 DOI: 10.3390/molecules28052107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 03/06/2023] Open
Abstract
The growing demand for drug carriers and green-technology-based tissue engineering materials has enabled the fabrication of different types of micro- and nano-assemblies. Hydrogels are a type of material that have been extensively investigated in recent decades. Their physical and chemical properties, such as hydrophilicity, resemblance to living systems, swelling ability and modifiability, make them suitable to be exploited for many pharmaceutical and bioengineering applications. This review deals with a brief account of green-manufactured hydrogels, their characteristics, preparations, importance in the field of green biomedical technology and their future perspectives. Only hydrogels based on biopolymers, and primarily on polysaccharides, are considered. Particular attention is given to the processes of extracting such biopolymers from natural sources and the various emerging problems for their processing, such as solubility. Hydrogels are catalogued according to the main biopolymer on which they are based and, for each type, the chemical reactions and the processes that enable their assembly are identified. The economic and environmental sustainability of these processes are commented on. The possibility of large-scale processing in the production of the investigated hydrogels are framed in the context of an economy aimed at waste reduction and resource recycling.
Collapse
|
5
|
Abstract
Lipases are efficient enzymes with promising applications in the nutraceutical and food industry, as they can offer high yields, pure products under achievable reaction conditions, and are an environmentally friendly option. This review addresses the production of high-value-added compounds such as fatty acid esters, with the potential to be used as flavoring agents or antioxidant and antimicrobial agents, as well as structured lipids that offer specific functional properties that do not exist in nature, with important applications in different food products, and pharmaceuticals. In addition, the most recent successful cases of reactions with lipases to produce modified compounds for food and nutraceuticals are reported.
Collapse
|
6
|
Blach D, Girardi VR, Silber JJ, Correa NM, Falcone RD. How the type of interface can alter the behavior of an aprotic ionic liquid-water mixture entrapped in different reverse micelles. An exploratory study using an enzymatic reaction as a sensor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Le Crom S, Dourdain S, Pellet-Rostaing S, Duvail M. Long-Range Organization Study of Piperidinium-Based Ionic Liquids by Polarizable Molecular Dynamics Simulations. J Phys Chem B 2022; 126:3355-3365. [PMID: 35471118 DOI: 10.1021/acs.jpcb.2c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nanoscale organization of some classes of ionic liquids is responsible for their singular properties. In this paper, we use polarizable molecular dynamics simulations and small-angle X-ray scattering to probe the structure of two piperidinium- and (trifluoromethylsulfonyl)imide-based ionic liquids ([EBPip+][NTf2-] and [EOPip+][NTf2-]) that differ in the alkyl chain length of their cation. The X-ray scattering intensities calculated numerically, from the radial distribution functions, are in excellent agreement with the experimental data. The analysis of the different contributions of the X-ray scattering data allowed us to highlight the correlations responsible for the low q peak observed for the long-chain alkyl cations. New angular analyses showed that anions were more likely to align with alkyl chains as their size increased, inducing angular correlation between anions at larger distances. They also showed that the long alkyl chains of the cations aligned more with each other than the short ones. These more aligned alkyl chains induce a smaller volume of the apolar microdomains compared to the well-studied imidazolium-based ionic liquids, leading to the smaller correlation distance for piperidinium-based ionic liquids.
Collapse
Affiliation(s)
| | | | | | - Magali Duvail
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, France
| |
Collapse
|
8
|
Intermolecular interactions between imidazolium- and cholinium-based ionic liquids and lysozyme: Regularities and peculiarities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Valorization of Asparagus leafy by-product by ionic-liquid extraction and characterization of bioactive compounds in the extracts. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Studies on volumetric and acoustic behfavior of L-alanine and L-leucine in aqueous 1-dodecyl-3-methylimidazolium bromide ionic liquid solutions at different temperatures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Kumar H, Kaur G. Influence of sodium bis(2-ethylhexyl) sulfosuccinate on the self-assembly of AOT based surface-active ionic liquids having different pharmacologically active cations in the aqueous medium. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Sun Y, Chen D, Li Y, Sun S, Zheng J, Cui J, Wang G, Zheng L, Wang Y, Zhou H. High-performance green electronic substrate employing flexible and transparent cellulose films. Carbohydr Polym 2021; 270:118359. [PMID: 34364604 DOI: 10.1016/j.carbpol.2021.118359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Today's widely used and rapidly updated electronic substrates are composed of petroleum-based polymers, but the resulting electronic waste (such as Dioxin, oxole, PCBs, etc.) will cause massive harm to the environment and human body. Therefore, we report an effective approach for fabricating recyclable and high-performance cellulose films as green electronic substrates by calendering. The crosslinking between CH and CHCH in cellulose modified by maleic anhydride led to the in-situ formation of a chemical crosslinking network, and hydrogen bonds acted as a sacrificial physical crosslinking network. The dual crosslinked cellulose film exhibits high strength (120.56 MPa), improved elongation (increased by 263%), and outstanding thermal stability (thermal decomposition temperature is 311 °C). Further, the film has been successfully used as a substrate for biomass sensor and realized apparent responses to changes. The scientific strategy paves the way for the large-scale fabrication of high-performance cellulose films and simultaneously promotes green electronic substrates' industrialization.
Collapse
Affiliation(s)
- Yanling Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuang Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Zheng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingqiang Cui
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, TuoRen Medical Device Research & Development Institute Co., Ltd., Health Technology Industry Park, Changyuan County, Henan 453000, PR China
| | - Guosheng Wang
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, TuoRen Medical Device Research & Development Institute Co., Ltd., Health Technology Industry Park, Changyuan County, Henan 453000, PR China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yunming Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Huamin Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
Zarski A, Bajer K, Kapuśniak J. Review of the Most Important Methods of Improving the Processing Properties of Starch toward Non-Food Applications. Polymers (Basel) 2021; 13:832. [PMID: 33803238 PMCID: PMC7967182 DOI: 10.3390/polym13050832] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Starch is the second most abundantly available natural polymer in the world, after cellulose. If we add its biodegradability and non-toxicity to the natural environment, it becomes a raw material very attractive for the food and non-food industries. However, in the latter case, mainly due to the high hydrophilicity of starch, it is necessary to carry out many more or less complex operations and processes. One of the fastest growing industries in the last decade is the processing of biodegradable materials for packaging purposes. This is mainly due to awareness of producers and consumers about the dangers of unlimited production and the use of non-degradable petroleum polymers. Therefore, in the present review, an attempt was made to show the possibilities and limitations of using starch as a packaging material. The most important physicochemical features of this biopolymer are discussed, and special attention is paid to more or less environmentally friendly methods of improving its processing properties.
Collapse
Affiliation(s)
- Arkadiusz Zarski
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15 Ave., 42-200 Czestochowa, Poland;
| | - Krzysztof Bajer
- Lukasiewicz Research Network—Institute for Engineering of Polymer Materials and Dyes, Marii Sklodowskiej-Curie 55 Str., 87-100 Torun, Poland;
| | - Janusz Kapuśniak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15 Ave., 42-200 Czestochowa, Poland;
| |
Collapse
|
14
|
Nb-MCM-Type Mesoporous Material Synthesis Using Ionic Solid as Structure-Directing Agent for In Situ Lipase Immobilization. Appl Biochem Biotechnol 2021; 193:1072-1085. [PMID: 33405010 DOI: 10.1007/s12010-020-03484-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
MCM-41 and MCM-48 with niobium were successfully synthesized using 1-tetradecyl-3-methylimidazolium chloride ([C14MI]Cl) as a structure-directing agent. The best Si/Nb molar ratio was chosen (Si/Nb = 20) and the CALB enzyme was immobilized in situ in the synthesized Nb-MCM. SEM micrographs showed the formation of very regular spherical agglomerates with a diameter between 0.25 and 0.75 μm. The material presented a surface area of 954 and 704 m2/g and a pore volume of 0.321 and 0.286 cm3/g, for Nb-MCM-41 and Nb-MCM-48, respectively. Also, both materials showed a pore size of 2.261 nm. The number of recycles obtained for the CALB enzyme immobilized in Nb-MCM-41 and Nb-MCM-48 was 26 recycles with a residual activity of 49.62% and 16 recycles with a residual activity of 53.01%, respectively. For both materials, enzymatic activity remained stable for 5 months of storage at room temperature and refrigeration. The supports were able to catalyze the esterification reaction at 40, 60, and 80 °C, showing industrial application in reactions that require high temperatures. This methodology allows the preparation of new highly active and selective enzyme catalysts using niobium and [C14MI]Cl. Also, the new materials can provide greater viability in processes, ensuring a longer service life of catalysts. Graphical abstract.
Collapse
|
15
|
Singh K, Chauhan S. Temperature dependent micellar behaviour of sodium cholate and sodium deoxycholate in the presence of ceftriaxone sodium: A physicochemical study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Santos AG, de Albuquerque TL, Ribeiro BD, Coelho MAZ. In situ product recovery techniques aiming to obtain biotechnological products: A glance to current knowledge. Biotechnol Appl Biochem 2020; 68:1044-1057. [PMID: 32931049 DOI: 10.1002/bab.2024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/07/2020] [Indexed: 11/07/2022]
Abstract
Biotechnology and bioengineering techniques have been widely used in the production of biofuels, chemicals, pharmaceuticals, and food additives, being considered a "green" form of production because they use renewable and nonpolluting energy sources. On the other hand, in the traditional processes of production, the target product obtained by biotechnological routes must undergo several stages of purification, which makes these processes more expensive. In the past few years, some works have focused on processes that integrate fermentation to the recovery and purification steps necessary to obtain the final product required. This type of process is called in situ product recovery or extractive fermentation. However, there are some differences in the concepts of the techniques used in these bioprocesses. In this way, this review sought to compile relevant content on considerations and procedures that are being used in this field, such as evaporation, liquid-liquid extraction, permeation, and adsorption techniques. Also, the objective of this review was to approach the different configurations in the recent literature of the processes employed and the main bioproducts obtained, which can be used in the food, pharmaceutical, chemical, and/or fuel additives industry. We intended to elucidate concepts of these techniques, considered very recent, but which emerge as a promising alternative for the integration of bioprocesses.
Collapse
Affiliation(s)
- Ariane G Santos
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tiago L de Albuquerque
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bernardo D Ribeiro
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Alice Z Coelho
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Wang P, Wan R, Huo W, Dong H, Chang Z, Xia X. Cytotoxicity, genotoxicity, oxidative stress, and apoptosis in HepG2 cells induced by the imidazole ionic liquid 1-dodecyl-3-methylimidazolium chloride. ENVIRONMENTAL TOXICOLOGY 2020; 35:665-672. [PMID: 31916396 DOI: 10.1002/tox.22901] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
This study purposes to assess the cytotoxicity of 1-dodecyl-3-methylimidazolium chloride ([C12 min]Cl) in human hepatocellular carcinoma (HepG2) cells. To this end, HepG2 cells were exposed to a range concentration of [C12 min]Cl and evaluated cell viability, genotoxicity, oxidative stress, apoptosis, cell cycle, and apoptosis-related gene expression to determine cytotoxicity. The outcomes showed that [C12 min]Cl curbed HepG2 cell growth and reduced cell viability in a concentration- and time-dependent manner. Moreover, our assay results also revealed that exposure to [C12 min]Cl prompted DNA damage and apoptosis, reduced SOD and GSH content, enhanced MDA level, and changed the cell cycle of HepG2 cells. In addition, [C12 min] Cl caused alters in the expression levels of p53, Bax, and Bcl-2, indicating that p53 and Bcl-2 family may be involved in the cytotoxicity and apoptosis of HepG2 cells induced by [C12 min]C1. In summary, these results indicate that [C12 min]Cl exerts genotoxicity, physiological toxicity and prompts apoptosis in HepG2 cells, and is not an alleged green solvent.
Collapse
Affiliation(s)
- Peijin Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan, People's Republic of China
| | - Ruyan Wan
- College of Life Science, Henan Normal University, Xinxiang, Henan, People's Republic of China
| | - Weiran Huo
- College of Life Science, Henan Normal University, Xinxiang, Henan, People's Republic of China
| | - Hui Dong
- College of Life Science, Henan Normal University, Xinxiang, Henan, People's Republic of China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, People's Republic of China
| | - Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan, People's Republic of China
| |
Collapse
|
18
|
Sahoo T, Panda J, Sahu J, Sarangi D, Sahoo SK, Nanda BB, Sahu R. Green Solvent: Green Shadow on Chemical Synthesis. Curr Org Synth 2020; 17:426-439. [PMID: 32370717 DOI: 10.2174/1570179417666200506102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/22/2022]
Abstract
The natural beauty and purity of our planet has been contaminated deeply due to human selfish activities such as pollution, improper waste management, and various industrial and commercial discharges of untreated toxic by-products into the lap of nature. The collective impact of these hazardous suspensions into the natural habitat is very deadly. Challenges due to human activity on the environment have become ubiquitous. The chemical industry has a major role in human evolution and, predictably, opened gates of increased risk of pollution if the production is not done sustainably. In these circumstances, the notion of Green Chemistry has been identified as the efficient medium of synthesis of chemicals and procedures to eradicate the toxic production of harmful substances. Principles of Green Chemistry guide the scientist in their hunt towards chemical synthesis which requires the use of solvents. These solvents contaminate our air, water, land and surrounding due to its toxic properties. Even though sufficient precautions are taken for proper disposal of these solvents but it is difficult to be recycled. In order to preserve our future and coming generation from the adverse impacts associated with solvents it is very important to find alternative of this which will be easy to use, reusable and also eco-friendly. Solvents are used daily in various industrial processes as reaction medium, as diluters, and in separation procedures. As reaction medium, the role of solvent is to bring catalysts and reactants together and to release heat thus affecting activity and selectivity. The proper selection of the solvent considering its biological, physical and chemical properties is very necessary for product separation, environmental, safety handling and economic factors. Green solvents are the boon in this context. They are not only environmentally benign but also cost effective. The biggest challenge faced by the chemists is adaptation of methods and selection of solvents during chemical synthesis which will give negligible waste product and will remain human and nature friendly. During designing compounds for a particular reaction it is difficult to give assurance regarding the toxicity and biodegradability of the method. Chemists are still far away from predicting the various chemical and biological effects of the compounds on the back of the envelope. To achieve that point is formidable task but it will definitely act as inspiration for the coming generation of chemists. The green solvents are undoubtedly a far better approach to eliminate the negative impacts and aftermath of any chemical synthesis on the environment. Our study in this review covers an overview of green solvents, their role in safer chemical synthesis with reference to some of the important green solvents and their detail summarization.
Collapse
Affiliation(s)
- Tejaswini Sahoo
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, India
| | - Jagannath Panda
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, India
| | - Jnanaranjan Sahu
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, India
| | - Dayananda Sarangi
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, India
| | | | - Braja B Nanda
- P.G. Department of Chemistry, Vikram Deb Autonomous College, Jeypore- 764001, Odisha, India
| | - Rojalin Sahu
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, India
| |
Collapse
|
19
|
Kumar H, Kaur G. Effect of changing alkyl chain in imidazolium based ionic liquid on the micellization behavior of anionic surfactant sodium hexadecyl sulfate in aqueous media. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1724796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Harsh Kumar
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Gagandeep Kaur
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| |
Collapse
|
20
|
Modification and management of lignocellulosic waste as an ecofriendly biosorbent for the application of heavy metal ions sorption. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.matpr.2020.02.756] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Zhang M, Wang Z, Liu Z, Li S, Zhang L, Zhu L, Li X. Cold‐model investigation of the effect of dispersed phase inlet on the dispersion uniformity in a liquid‐liquid cyclone reactor for ionic liquid‐catalyzed isobutene alkylation. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mingyang Zhang
- School of Thermal EngineeringShandong Jianzhu University Jinan China
| | - Zhenbo Wang
- State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum (East China) Qingdao China
| | - Zhichang Liu
- State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum Beijing China
| | - Shijie Li
- School of Thermal EngineeringShandong Jianzhu University Jinan China
| | - Linhua Zhang
- School of Thermal EngineeringShandong Jianzhu University Jinan China
| | - Liyun Zhu
- State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum (East China) Qingdao China
| | - Xiaoyu Li
- College of Mechanical and Electronic EngineeringShandong University of Science and Technology Qingdao China
| |
Collapse
|
22
|
Ramondo F, Gontrani L, Campetella M. Coupled hydroxyl and ether functionalisation in EAN derivatives: the effect of hydrogen bond donor/acceptor groups on the structural heterogeneity studied with X-ray diffractions and fixed charge/polarizable simulations. Phys Chem Chem Phys 2019; 21:11464-11475. [PMID: 31112158 DOI: 10.1039/c9cp00571d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a study by energy-dispersive X-ray diffraction of liquid 2-(2-hydroxyethoxy)ethan-1-ammonium nitrate, NH3CH2CH2(OCH2CH2OH)+NO3- (22HHEAN). This ionic liquid is derived from the parent ethylammonium nitrate (EAN) with an ether link in the chain and a hydroxyl group in the terminal position. The absence of peaks at low-q values in the experimental diffraction curve indicates that the added polar groups and the high conformational isomerism of the cations alter strongly the nanosegregation of the parent EAN liquid. Aggregation between ionic species may involve hydrogen bonding between cations and anions and a variety of intermolecular hydrogen bonds between cations. Diffraction patterns are compared with the results of molecular dynamics simulations with two different force fields: the fixed point charge force field (GAFF) with different charge scaling protocols and the polarizable AMOEBA force field. Most point charge models lead to the appearance of a quite evident low q-peak which decreases gradually, when the percentage and type of the scaling (uniform vs. non-uniform) are increased. In the polarisable model and in the model where only anion charges are scaled to 20%, instead, the pre-peak is absent in agreement with our experiments.
Collapse
Affiliation(s)
- Fabio Ramondo
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio I-67100, L'Aquila, Italy
| | - Lorenzo Gontrani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, I-40126 Bologna, Italy. and Department of Chemistry, University "La Sapienza", Roma Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Marco Campetella
- Department of Chemistry, University "La Sapienza", Roma Piazzale Aldo Moro 5, I-00185, Roma, Italy and Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris, F-75005 Paris, France
| |
Collapse
|
23
|
Takekiyo T, Ishikawa Y, Yamaguchi E, Yamada N, Yoshimura Y. Dissolution of Amyloid Aggregates in Aqueous Ionic Liquid Solutions: A Case Study of Insulin Amyloid. Aust J Chem 2019. [DOI: 10.1071/ch18361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Dissolution of amyloid aggregates with high β-sheet content is required for the correct refolding of ordered protein aggregates. The dissolution of bovine insulin amyloid aggregates in five different ionic liquids (ILs) is investigated. These were comprised of three 1-butyl-3-methylimidazolium ([bmim])-based ILs, containing either SCN−, NO3−, or Cl− anions, and two alkylammonium nitrate-based ILs, ethyl- and propylammonium nitrate (EAN and PAN). A broad IL concentration range (x=0–30mol-% IL) was analysed using FTIR spectroscopy combined with the Congo red assay. On the whole, the [bmim]-based ILs showed a higher dissolution ability than EAN and PAN for all concentrations of x. It is notable that the dissolution ability of dilute aqueous IL solutions (x<15) for insulin amyloid was different to that of concentrated aqueous IL solutions (x>15). The former condition for insulin amyloid may affect dissolution based on the denaturant effect of cations and anions in the ILs. The latter condition may affect this dissolution based on the hydrogen-bonding ability (α and β values) of the ILs, as described by the Kamlet–Taft parameters. Moreover, the difference between these α and β values (α–β) was found to be a good indicator of the dissolution ability of ILs for insulin amyloid aggregates in concentrated conditions above x=20 (α–β<0, strong dissolution ability; α–β>0, weak dissolution ability). These findings may assist the future design of aqueous IL-based dissolution agents for ordered aggregated proteins.
Collapse
|
24
|
Influence of ionic liquid on Novozym 435-catalyzed the transesterification of castor oil and ethyl caffeate. 3 Biotech 2019; 9:34. [PMID: 30622872 DOI: 10.1007/s13205-018-1564-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/29/2018] [Indexed: 10/27/2022] Open
Abstract
Caffeic acid (CA), one kind of phenolic acids widely occurring in the plant kingdom, can be used as potential UV protective ingredient and antioxidant. However, the application of CA was limited because of its unsatisfactory solubility in hydrophilic and lipophilic media. In this work, BMIMPF6, one kind of ionic liquids (ILs), was developed as an environmental friendly reaction media for the enzymatic preparation of CA derivatives by the transesterification of castor oil (CO) and ethyl caffeate (EC). Different series of ILs with BF 4 - , TF 2 - , and PF 6 - were screened and compared, and the effects of transesterification variables [temperature (60-100 °C) enzyme concentration (10-90 mg/mL), substrate molar ratio (CO/EC, 1:1-5:1), water load (0-8%), and reaction pressure] were also investigated. Results showed that, in the IL system, hydrophilic and lipophilic products were formed by two competitive reactions [(i) hydrolysis + transesterification and (ii) transesterification]. The maximum hydrophilic caffeoyl lipids yield (26.10 ± 0.28%) and reaction selectivity for hydrophilic caffeoyl lipids (0.4) was achieved in BMIMPF6 system. The increases of substrate ratio (molar ratio of CO to EC, from 1:1 to 5:1), water load (from 0 to 8%), and enzyme concentration (from 10 to 90 mg/mL) were in favor of hydrophilic caffeoyl lipid formation. However, the vacuum system and high temperature (from 70 to 100 °C) are favorable for lipophilic caffeoyl lipids formation. Under the optimal reaction conditions (90 °C, 75 mg/mL enzyme concentration, substrate ratio 3:1, 60 h, and 10 mmHg vacuum pressures), the maximum EC conversion was 72.48 ± 2.67%. The activation energies of the transesterification, and the selective formations of lipophilic and hydrophilic products were calculated as 44.55, 47.65, and 54.96 kJ/mol, respectively.
Collapse
|
25
|
Javed F, Ullah F, Zakaria MR, Akil HM. An approach to classification and hi-tech applications of room-temperature ionic liquids (RTILs): A review. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Diaz E, Monsalvo VM, Lopez J, Mena IF, Palomar J, Rodriguez JJ, Mohedano AF. Assessment the ecotoxicity and inhibition of imidazolium ionic liquids by respiration inhibition assays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:29-34. [PMID: 29960119 DOI: 10.1016/j.ecoenv.2018.06.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
The ecotoxicity and inhibition of 12 imidazolium ionic liquids (ILs) with alkyl chain from C4 to C10 and chloride (Cl-), tetrafluoroborate (BF4-) and bis(trifluoromethanesulfonyl)imide (NTf2-) anions have been studied by means of respiration inhibition assays using activated sludge collected from a wastewater treatment plant. This test represents an alternative easy, economic and quick way to evaluate the true impact of ILs on activated sludge-based wastewater treatment. For comparison purposes, the EC50 values were also determined by the Microtox test (Vibrio fischeri). It was observed that this widely used microbial test overestimates the effect of the ILs on biological wastewater treatment facilities, especially in the case of ILs with lower ecotoxicity. The results of the biological tests showed that the alkyl chain length plays a crucial role in the ecotoxicity of ILs. A significant increase of the toxicity with the length of the n-alkyl chain was found. Regarding to the impact of the anion, the ecotoxicity measured by respiration inhibition assays follows the order NTf2- > Cl- > BF4-, being the anion effect higher as decreasing the length of cation alkyl chain. According to the hazard substances ranking for aquatic organisms (Passino and Smith, 1987), imidazolium ILs with C4 alkyl chain can be classified as "practically harmless" compounds whereas those with alkyl chains C8 or C10 correspond to "highly toxic" species.
Collapse
Affiliation(s)
- E Diaz
- Chemical Engineering Section, University Autonoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain.
| | - V M Monsalvo
- Chemical Engineering Section, University Autonoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - J Lopez
- Chemical Engineering Section, University Autonoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - I F Mena
- Chemical Engineering Section, University Autonoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - J Palomar
- Chemical Engineering Section, University Autonoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - J J Rodriguez
- Chemical Engineering Section, University Autonoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - A F Mohedano
- Chemical Engineering Section, University Autonoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| |
Collapse
|
27
|
Xia X, Wan R, Wang P, Huo W, Dong H, Du Q. Toxicity of imidazoles ionic liquid [C 16mim]Cl to Hela cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:408-414. [PMID: 30015186 DOI: 10.1016/j.ecoenv.2018.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/24/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Our study aimed to evaluate the toxicity of 1-hexadecyl-3-methylimidazolium chloride ([C16min]Cl) on the human cervical carcinoma (Hela) cells. We evaluated toxicity, cell viability, genotoxicity, oxidative stress, apoptosis, and apoptosis-related gene expression in Hela cells following exposure to [C16min]Cl. The results indicated that [C16min]Cl inhibited the growth of Hela cells, decreased cell viability, induced DNA damage and apoptosis, inhibited superoxide dismutase, decreased glutathione content, as well as increased the cellular malondialdehyde level of Hela cells. Moreover, [C16min]Cl induced changes in the transcription of p53, Bax and Bcl-2, suggesting that the p53 and Bcl-2 family might have been involved in the cytotoxicity and apoptosis induced by [C16min]Cl in Hela cells. Taken together, these results revealed that [C16min]Cl imparts oxidative stress, genotoxicity, and induces apoptosis in Hela cells; hence, it is not a green solvent.
Collapse
Affiliation(s)
- Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Ruyan Wan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Peijin Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Weiran Huo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Hui Dong
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| |
Collapse
|
28
|
Lim GS, Klähn M. On the Stability of Proteins Solvated in Imidazolium-Based Ionic Liquids Studied with Replica Exchange Molecular Dynamics. J Phys Chem B 2018; 122:9274-9288. [DOI: 10.1021/acs.jpcb.8b06452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Geraldine S. Lim
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16, Connexis, Singapore 138632, Republic of Singapore
| | - Marco Klähn
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|
29
|
Alvim HGO, Pinheiro DLJ, Carvalho-Silva VH, Fioramonte M, Gozzo FC, da Silva WA, Amarante GW, Neto BAD. Combined Role of the Asymmetric Counteranion-Directed Catalysis (ACDC) and Ionic Liquid Effect for the Enantioselective Biginelli Multicomponent Reaction. J Org Chem 2018; 83:12143-12153. [DOI: 10.1021/acs.joc.8b02101] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Haline G. O. Alvim
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília, Distrito Federal 70904-970, Brazil
| | - Danielle L. J. Pinheiro
- Chemistry Department, Federal University of Juiz de Fora Rua José Lourenço Kelmer, Campus Universitário São Pedro, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Valter H. Carvalho-Silva
- Grupo de Química Teórica e Estrutural de Anápolis, Unidade Universitária de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, P.O. Box 459, Anápolis, Goiás 75001-970, Brazil
| | - Mariana Fioramonte
- Institute of Chemistry, University of Campinas (Unicamp), Campinas, São Paulo 13083-861, Brazil
| | - Fabio C. Gozzo
- Institute of Chemistry, University of Campinas (Unicamp), Campinas, São Paulo 13083-861, Brazil
| | - Wender A. da Silva
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília, Distrito Federal 70904-970, Brazil
| | - Giovanni W. Amarante
- Chemistry Department, Federal University of Juiz de Fora Rua José Lourenço Kelmer, Campus Universitário São Pedro, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Brenno A. D. Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília, Distrito Federal 70904-970, Brazil
| |
Collapse
|
30
|
Janati-Fard F, Housaindokht MR, Monhemi H, Esmaeili AA, Nakhaei Pour A. The influence of two imidazolium-based ionic liquids on the structure and activity of glucose oxidase: Experimental and theoretical studies. Int J Biol Macromol 2018; 114:656-665. [DOI: 10.1016/j.ijbiomac.2018.03.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/27/2018] [Accepted: 03/17/2018] [Indexed: 01/27/2023]
|
31
|
Chabba S, Vashishat R, Mahajan RK. Characterization of interactions between β-lactoglobulin with surface active ionic liquids in aqueous medium. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
32
|
Grabner B, Nazario M, Gundersen M, Loïs S, Fantini S, Bartsch S, Woodley J, Gruber-Woelfler H. Room-temperature solid phase ionic liquid (RTSPIL) coated ω-transaminases: Development and application in organic solvents. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Wan R, Xia X, Wang P, Huo W, Dong H, Chang Z. Toxicity of imidazoles ionic liquid [C 16mim]Cl to HepG2 cells. Toxicol In Vitro 2018; 52:1-7. [PMID: 29842889 DOI: 10.1016/j.tiv.2018.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/09/2023]
Abstract
Ionic liquids have garnered increasing attention due to their capacity for low vapor pressure, lack of flammability, designability, good stability, and as a asubstitute for conventional organic solvents. However, their toxicity to various organisms has caused growing concern in recent years. Our study aims to evaluate the toxicity of 1-hexadecyl-3-methylimidazolium chloride ([C16min]Cl) to human hepatocellular carcinoma (HepG2) cells, including cell viability, genotoxicity, oxidative stress, apoptosis, cell cycle, and apoptosis-related gene expression. Our results with HepG2 cells suggested that [C16min]Cl inhibited cellular growth, decreased cell viability, induced DNA damage and apoptosis, inhibited superoxide dismutase, decreased glutathione content, increased cellular malondialdehyde levels as well as altering the cell cycle. Moreover, the induction of [C16min]Cl altered the transcription of p53, Bax and Bcl-2, which are critical for controlling cell cycles progression and death, which suggests its involvement with cytotoxicity and apoptosis induced by [C16min]Cl in HepG2 cells. Taken together, these results revealed that [C16min]Cl exerted genotoxicity, oxidative stress and induced apoptosis in HepG2 cells; hence, it is not a healthy solvent.
Collapse
Affiliation(s)
- Ruyan Wan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Peijin Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Weiran Huo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Hui Dong
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| |
Collapse
|
34
|
Lipase-Catalyzed Synthesis of Sucrose Monolaurate and Its Antibacterial Property and Mode of Action against Four Pathogenic Bacteria. Molecules 2018; 23:molecules23051118. [PMID: 29738519 PMCID: PMC6100556 DOI: 10.3390/molecules23051118] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to evaluate the antibacterial activities and mode of action of sucrose monolaurate (SML) with a desirable purity, synthesized by Lipozyme TL IM-mediated transesterification in the novel ionic liquid, against four pathogenic bacteria including L. monocytogenes, B. subtilis, S. aureus, and E. coli. The antibacterial activity was determined by minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and the time⁻kill assay. SML showed varying antibacterial activity against tested bacteria with MICs and MBCs of 2.5 and 20 mM for L. monocytogenes, 2.5 and 20 mM for B. subtilis, 10 and 40 mM for S. aureus, respectively. No dramatic inhibition was observed for E. coli at 80 mM SML. Mechanism of bacterial inactivation caused by SML was revealed through comprehensive factors including cell morphology, cellular lysis, membrane permeability, K⁺ leakage, zeta potential, intracellular enzyme, and DNA assay. Results demonstrated that bacterial inactivation against Gram-positive bacteria was primarily induced by the pronounced damage to the cell membrane integrity. SML may interact with cytoplasmic membrane to disturb the regulation system of peptidoglycan hydrolase activities to degrade the peptidoglycan layer and form a hole in the layer. Then, the inside cytoplasmic membrane was blown out due to turgor pressure and the cytoplasmic materials inside leaked out. Leakage of intracellular enzyme to the supernatants implied that the cell membrane permeability was compromised. Consequently, the release of K⁺ from the cytosol lead to the alterations of the zeta potential of cells, which would disturb the subcellular localization of some proteins, and thereby causing bacterial inactivation. Moreover, remarkable interaction with DNA was also observed. SML at sub-MIC inhibited biofilm formation by these bacteria.
Collapse
|
35
|
Argüelles-Monal WM, Lizardi-Mendoza J, Fernández-Quiroz D, Recillas-Mota MT, Montiel-Herrera M. Chitosan Derivatives: Introducing New Functionalities with a Controlled Molecular Architecture for Innovative Materials. Polymers (Basel) 2018; 10:E342. [PMID: 30966377 PMCID: PMC6414943 DOI: 10.3390/polym10030342] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022] Open
Abstract
The functionalization of polymeric substances is of great interest for the development of innovative materials for advanced applications. For many decades, the functionalization of chitosan has been a convenient way to improve its properties with the aim of preparing new materials with specialized characteristics. In the present review, we summarize the latest methods for the modification and derivatization of chitin and chitosan under experimental conditions, which allow a control over the macromolecular architecture. This is because an understanding of the interdependence between chemical structure and properties is an important condition for proposing innovative materials. New advances in methods and strategies of functionalization such as the click chemistry approach, grafting onto copolymerization, coupling with cyclodextrins, and reactions in ionic liquids are discussed.
Collapse
Affiliation(s)
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Sonora, Mexico.
| | - Daniel Fernández-Quiroz
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | | | - Marcelino Montiel-Herrera
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| |
Collapse
|
36
|
Chado GR, Holland EN, Tice AK, Stoykovich MP, Kaar JL. Modification of Lipase with Poly(4-acryloylmorpholine) Enhances Solubility and Transesterification Activity in Anhydrous Ionic Liquids. Biomacromolecules 2018. [DOI: 10.1021/acs.biomac.8b00176] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Garrett R. Chado
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Elijah N. Holland
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Andrew K. Tice
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Mark P. Stoykovich
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Joel L. Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
37
|
One-step synthesis of carbohydrate esters as antibacterial and antifungal agents. Bioorg Med Chem 2018; 26:765-774. [DOI: 10.1016/j.bmc.2017.12.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 11/23/2022]
|
38
|
Chauhan S, Kaur M, Singh K, Chauhan M, Kohli P. Micellar and antimicrobial activities of ionic surfactants in aqueous solutions of synthesized tetraalkylammonium based ionic liquids. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.09.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Kołodziejska R, Studzińska R, Pawluk H. Lipase-catalyzed enantioselective transesterification of prochiral 1-((1,3-dihydroxypropan-2-yloxy)methyl)-5,6,7,8-tetrahydroquinazoline-2,4(1H,3H)-dione in ionic liquids. Chirality 2017; 30:206-214. [PMID: 29139569 DOI: 10.1002/chir.22787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 11/10/2022]
Abstract
The application of ionic liquids as solvents for transesterification of prochiral pirymidine acyclonucleoside using lipase (EC 3.1.1.3) Amano PS from Burkholderia cepacia (BCL) is reported. The effect of using medium reaction, acyl group donor, and temperature on the activity and enantioselectivity of BCL was studied. From the investigated ionic solvents, the hydrophobic ionic liquid [BMIM]PF6 ] was the preferred medium for enzymatic reactions. However, the best result was obtained in the mixture [BMIM][PF6 ]:TBME (1:1 v/v) at 50°C. Enzyme activity and selectivity in [BMIM][PF6 ]:TBME (1:1 v/v) was slightly higher in than in conventional organic solvents (for example, TBME), and in this condition, good activity and enantioselectivity were associated with unique properties of ionic liquid such as hydrophobicity and high polarity. Independently of solvents, monester of (R)-configuration was obtained in excess. Under optimal conditions, desymmetrization of the prochiral compound using different acyl donors was performed. If vinyl butyrate was used as the acylating agent, BCL completely selectively acylated enantiotopic hydroxyl groups.
Collapse
Affiliation(s)
- Renata Kołodziejska
- Department of Biochemistry, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Hanna Pawluk
- Department of Biochemistry, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| |
Collapse
|
40
|
Kan Z, Zheng D, Ma J. Self-aggregation of trehalose in the mixed solvents of 1,3-dimethylimidazolium ionic liquid and water. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1321756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zigui Kan
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, People’s Republic of China
- School of Sciences, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Dong Zheng
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, People’s Republic of China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
41
|
Kumar PK, Jha I, Venkatesu P, Bahadur I, Ebenso EE. A comparative study of the stability of stem bromelain based on the variation of anions of imidazolium-based ionic liquids. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Synthesis, Characterization, Surface Properties and Micellization Behaviour of Imidazolium-based Ionic Liquids. J SURFACTANTS DETERG 2017. [DOI: 10.1007/s11743-017-2021-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Rauf S, Nawaz MAH, Muhammad N, Raza R, Shahid SA, Marty JL, Hayat A. Protic ionic liquids as a versatile modulator and stabilizer in regulating artificial peroxidase activity of carbon materials for glucose colorimetric sensing. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
de Paula BR, Zampieri DS, Nasário FD, Rodrigues JAR, Moran PJ. Regioselectivity Control of Enone Reduction Mediated by Aqueous Baker's Yeast with Addition of Ionic Liquid [bmim(PF 6 )]. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Baghery S, Zolfigol MA, Schirhagl R, Hasani M. {[1,4-DHPyrazine][C(CN)3]2} as a New Nano Molten Salt Catalyst for the Synthesis of Novel Piperazine Based bis(4-hydroxy-2H-chromen-2-one) Derivatives. Catal Letters 2017. [DOI: 10.1007/s10562-017-2096-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Roosta A, Bardool R. A Simple Correlation for Estimating the Viscosity of Pure Ionic Liquids and Their Binary Mixtures. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Aliakbar Roosta
- Chemical Engineering, Oil
and Gas Department, Shiraz University of Technology, Shiraz 13876-71557, Iran
| | - Roghayeh Bardool
- Chemical Engineering, Oil
and Gas Department, Shiraz University of Technology, Shiraz 13876-71557, Iran
| |
Collapse
|
47
|
Immobilization of purified β-glucuronidase on ZnO nanoparticles for efficient biotransformation of glycyrrhizin in ionic liquid/buffer biphasic system. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2016.12.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Kumar R, Sharma RK, Singh AP. Cellulose based grafted biosorbents - Journey from lignocellulose biomass to toxic metal ions sorption applications - A review. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.02.050] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Lipase-catalyzed esterification of ferulic acid with lauryl alcohol in ionic liquids and antibacterial properties in vitro against three food-related bacteria. Food Chem 2017; 220:249-256. [DOI: 10.1016/j.foodchem.2016.09.187] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 11/22/2022]
|
50
|
Ali I, Suhail M, Sanagi MM, Aboul-Enein HY. Ionic Liquids in HPLC and CE: A Hope for Future. Crit Rev Anal Chem 2017; 47:332-339. [DOI: 10.1080/10408347.2017.1294047] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Mohd. Suhail
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Mohd. Marsin Sanagi
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|