1
|
Okman Koçoğlu İ, Erden PE, Kılıç E. Disposable biosensor based on ionic liquid, carbon nanofiber and poly(glutamic acid) for tyramine determination. Anal Biochem 2024; 684:115387. [PMID: 37951456 DOI: 10.1016/j.ab.2023.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
In this study, an electrochemical biosensor based on carbon nanofibers (CNF), ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (IL), poly(glutamic acid) (PGA) and tyrosinase (Tyr) modified screen printed carbon electrode (SPE) was constructed for tyramine determination. Optimum experimental parameters such as CNF and IL amount, polymerization conditions of glutamic acid, enzyme loading, pH of test solution and operating potential were explored. The construction steps of the Tyr/PGA/CNF-IL/SPE were pursued by scanning electron microscopy and cyclic voltammetry. The Tyr/PGA/CNF-IL/SPE biosensor exhibited linear response to tyramine in the range of 2.0 × 10-7 - 4.8 × 10-5 M with a low detection limit of 9.1 × 10-8 M and sensitivity of 302.6 μA mM-1. The other advantages of Tyr/PGA/CNF-IL/SPE include its high reproducibility, good stability and anti-interference ability. The presented biosensor was also applied for tyramine determination in malt drink and pickle juice samples and mean analytical recoveries of spiked tyramine were calculated as 100.6% and 100.4% respectively.
Collapse
Affiliation(s)
- İrem Okman Koçoğlu
- Department of Chemistry, Faculty of Science, Karabük University, 78050, Karabük, Turkey.
| | - Pınar Esra Erden
- Department of Chemistry, Polatlı Faculty of Science and Arts, Ankara Haci Bayram Veli University, Ankara, Turkey
| | - Esma Kılıç
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Wang Y, Aoki S, Nara K, Kikuchi Y, Jiao Z, Hasebe Y. Shield, Anchor, and Adhesive Roles of Methylene Blue in Tyrosinase Adsorbed on Carbon Felt for a Flow Injection Amperometric Enzyme Biosensor for Phenolic Substrates and Inhibitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4676-4691. [PMID: 36961887 DOI: 10.1021/acs.langmuir.2c03483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Methylene blue (MB) acted as a stabilizer for preventing surface-induced denaturation of tyrosinase (TYR) adsorbed on a carbon felt (CF) surface, which is based on shield and anchor roles preventing the unfavorable conformational change of TYR on the hydrophobic CF surface. Furthermore, MB acted as an effective adhesive for TYR immobilization on CF. The resulting TYR and MB coadsorbed CF (TYR/MB-CF) worked as an excellent working electrode unit in an electrochemical detector in a flow injection amperometric biosensor, which allowed highly sensitive consecutive determination of not only TYR substrates but also competitive inhibitors. Simultaneous adsorption of TYR and MB from their mixed solution was much useful as compared with step-wise separated adsorption of TYR on the MB-adsorbed CF, which suggests that the binding interaction of MB with TYR in the solution phase is important for this phenomenon. Fluorescence and UV-vis spectroscopy revealed that not only electrostatic forces between the cationic MB and anionic amino acid residues of TYR but also hydrophobic interactions via the phenothiazine ring of MB play a principal binding driving force of MB with TYR at the surface of the TYR molecules. Synchronous fluorescence, three-dimensional fluorescence, and circular dichroism (CD) spectroscopy clarified that the conformation and the secondary structure of TYR slightly changed upon the MB binding, implying that MB binding leads to the modification of the original intramolecular bonding in part.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering, University of Science and Technology LiaoNing, Anshan, LiaoNing 114501, China
| | - Shiori Aoki
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Kazuyuki Nara
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Yugo Kikuchi
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Zeting Jiao
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Yasushi Hasebe
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| |
Collapse
|
3
|
Mayorga-Martinez CC, Gusmão R, Sofer Z, Pumera M. Pnictogen-Based Enzymatic Phenol Biosensors: Phosphorene, Arsenene, Antimonene, and Bismuthene. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201808846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Carmen C. Mayorga-Martinez
- Center for Advanced Functional Nanorobots; Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technicka 5 166 28 Prague 6 Czech Republic
| | - Rui Gusmão
- Center for Advanced Functional Nanorobots; Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technicka 5 166 28 Prague 6 Czech Republic
| | - Zdeněk Sofer
- Center for Advanced Functional Nanorobots; Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technicka 5 166 28 Prague 6 Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots; Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technicka 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
4
|
Mayorga-Martinez CC, Gusmão R, Sofer Z, Pumera M. Pnictogen-Based Enzymatic Phenol Biosensors: Phosphorene, Arsenene, Antimonene, and Bismuthene. Angew Chem Int Ed Engl 2018; 58:134-138. [DOI: 10.1002/anie.201808846] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Carmen C. Mayorga-Martinez
- Center for Advanced Functional Nanorobots; Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technicka 5 166 28 Prague 6 Czech Republic
| | - Rui Gusmão
- Center for Advanced Functional Nanorobots; Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technicka 5 166 28 Prague 6 Czech Republic
| | - Zdeněk Sofer
- Center for Advanced Functional Nanorobots; Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technicka 5 166 28 Prague 6 Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots; Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technicka 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
5
|
A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode. Bioelectrochemistry 2018; 122:174-182. [PMID: 29656242 DOI: 10.1016/j.bioelechem.2018.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Abstract
The fabrication, characterization and analytical performance were investigated for a phenol biosensor based on the covalent bonding of tyrosinase (TYR) onto a graphene oxide (GO)-modified glassy carbon electrode (GCE) via glutaraldehyde (GA). The surface morphology of the modified electrode was studied by atomic force microscope (AFM) and field-emission scanning electron microscopy (FE-SEM). The fabricated TYR/GA/GO/GCE biosensor showed very good stability, reproducibility, sensitivity and practical usage. The catechol biosensor exhibited a wide sensing linear range from 5×10-8M to 5×10-5M, a lower detection limit of 3×10-8M, a current maximum (Imax) of 65.8μA and an apparent Michaelis constant (Kmapp) of 169.9μM.
Collapse
|
6
|
Wang GL, Yuan F, Gu T, Dong Y, Wang Q, Zhao WW. Enzyme-Initiated Quinone-Chitosan Conjugation Chemistry: Toward A General in Situ Strategy for High-Throughput Photoelectrochemical Enzymatic Bioanalysis. Anal Chem 2018; 90:1492-1497. [DOI: 10.1021/acs.analchem.7b04625] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guang-Li Wang
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Fang Yuan
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Tiantian Gu
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuming Dong
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qian Wang
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department
of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Dong W, Han J, Shi J, Liang W, Zhang Y, Dong C. Amperometric Biosensor for Detection of Phenolic Compounds Based on Tyrosinase, N
-Acetyl-L
-cysteine-capped Gold Nanoparticles and Chitosan Nanocomposite. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wenjuan Dong
- Institution of Environmental Science, College of Chemistry and Chemical Engineering; Shanxi University; Taiyuan Shanxi 030006 China
| | - Jiyan Han
- Institution of Environmental Science, College of Chemistry and Chemical Engineering; Shanxi University; Taiyuan Shanxi 030006 China
| | - Jia Shi
- Department of Laboratory Medicine, College of Fenyang; Shanxi Medical University; Fenyang Shanxi 032200 China
| | - Wenting Liang
- Institution of Environmental Science, College of Chemistry and Chemical Engineering; Shanxi University; Taiyuan Shanxi 030006 China
| | - Yuexia Zhang
- Institution of Environmental Science, College of Chemistry and Chemical Engineering; Shanxi University; Taiyuan Shanxi 030006 China
| | - Chuan Dong
- Institution of Environmental Science, College of Chemistry and Chemical Engineering; Shanxi University; Taiyuan Shanxi 030006 China
| |
Collapse
|
8
|
Biosensor Based on Tyrosinase Immobilized on Graphene-Decorated Gold Nanoparticle/Chitosan for Phenolic Detection in Aqueous. SENSORS 2017; 17:s17051132. [PMID: 28509848 PMCID: PMC5470808 DOI: 10.3390/s17051132] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/14/2017] [Accepted: 04/21/2017] [Indexed: 02/04/2023]
Abstract
In this research work, electrochemical biosensor was fabricated based on immobilization of tyrosinase onto graphene-decorated gold nanoparticle/chitosan (Gr-Au-Chit/Tyr) nanocomposite-modified screen-printed carbon electrode (SPCE) for the detection of phenolic compounds. The nanocomposite film was constructed via solution casting method. The electrocatalytic activity of the proposed biosensor for phenol detection was studied using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Experimental parameters such as pH buffer, enzyme concentration, ratio of Gr-Au-Chit, accumulation time and potential were optimized. The biosensor shows linearity towards phenol in the concentration range from 0.05 to 15 μM with sensitivity of 0.624 μA/μM and the limit of detection (LOD) of 0.016 μM (S/N = 3). The proposed sensor also depicts good reproducibility, selectivity and stability for at least one month. The biosensor was compared with high-performance liquid chromatography (HPLC) method for the detection of phenol spiked in real water samples and the result is in good agreement and comparable.
Collapse
|
9
|
LU Z, WANG Y, ZHANG Z, SHEN Y, LI M. Tyrosinase Modified Poly(thionine) Electrodeposited Glassy Carbon Electrode for Amperometric Determination of Catechol. ELECTROCHEMISTRY 2017. [DOI: 10.5796/electrochemistry.85.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- ZhenYong LU
- School of Chemical Engineering, University of Science and Technology LiaoNing
| | - Yue WANG
- School of Chemical Engineering, University of Science and Technology LiaoNing
| | - ZhiQiang ZHANG
- School of Chemical Engineering, University of Science and Technology LiaoNing
| | - Yang SHEN
- School of Chemical Engineering, University of Science and Technology LiaoNing
| | - MengFan LI
- School of Chemical Engineering, University of Science and Technology LiaoNing
| |
Collapse
|
10
|
Bi H, Duarte CM, Brito M, Vilas-Boas V, Cardoso S, Freitas P. Performance enhanced UV/vis spectroscopic microfluidic sensor for ascorbic acid quantification in human blood. Biosens Bioelectron 2016; 85:568-572. [DOI: 10.1016/j.bios.2016.05.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/08/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
|
11
|
Dinakaran T, Chang SC. A new nano-composite carbon ink for disposable dopamine biosensors. ANALYTICAL SCIENCE AND TECHNOLOGY 2016. [DOI: 10.5806/ast.2016.29.1.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Zou Y, Lou D, Dou K, He L, Dong Y, Wang S. Amperometric tyrosinase biosensor based on boron-doped nanocrystalline diamond film electrode for the detection of phenolic compounds. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-3003-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Microbial tyrosinases: promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. Biochem Res Int 2014; 2014:854687. [PMID: 24895537 PMCID: PMC4033337 DOI: 10.1155/2014/854687] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/31/2014] [Indexed: 12/20/2022] Open
Abstract
Tyrosinase is a natural enzyme and is often purified to only a low degree and it is involved in a variety of functions which mainly catalyse the o-hydroxylation of monophenols into their corresponding o-diphenols and the oxidation of o-diphenols to o-quinones using molecular oxygen, which then polymerizes to form brown or black pigments. The synthesis of o-diphenols is a potentially valuable catalytic ability and thus tyrosinase has attracted a lot of attention with respect to industrial applications. In environmental technology it is used for the detoxification of phenol-containing wastewaters and contaminated soils, as biosensors for phenol monitoring, and for the production of L-DOPA in pharmaceutical industries, and is also used in cosmetic and food industries as important catalytic enzyme. Melanin pigment synthesized by tyrosinase has found applications for protection against radiation cation exchangers, drug carriers, antioxidants, antiviral agents, or immunogen. The recombinant V. spinosum tryosinase protein can be used to produce tailor-made melanin and other polyphenolic materials using various phenols and catechols as starting materials. This review compiles the recent data on biochemical and molecular properties of microbial tyrosinases, underlining their importance in the industrial use of these enzymes. After that, their most promising applications in pharmaceutical, food processing, and environmental fields are presented.
Collapse
|
14
|
Ramírez-Silva M, Corona-Avendaño S, Alarcón-Angeles G, Palomar-Pardavé M, Romero-Romo M, Rojas-Hernández A. Construction of Supramolecular Systems for the Selective and Quantitative Determination of Dopamine in the Presence of Ascorbic Acid. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.proche.2014.12.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Gittens JE, Smith TJ, Suleiman R, Akid R. Current and emerging environmentally-friendly systems for fouling control in the marine environment. Biotechnol Adv 2013; 31:1738-53. [PMID: 24051087 DOI: 10.1016/j.biotechadv.2013.09.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 09/05/2013] [Accepted: 09/10/2013] [Indexed: 01/25/2023]
Abstract
Following the ban in 2003 on the use of tributyl-tin compounds in antifouling coatings, the search for an environmentally-friendly alternative has accelerated. Biocidal TBT alternatives, such as diuron and Irgarol 1051®, have proved to be environmentally damaging to marine organisms. The issue regarding the use of biocides is that concerning the half-life of the compounds which allow a perpetuation of the toxic effects into the marine food chain, and initiate changes in the early stages of the organisms' life-cycle. In addition, the break-down of biocides can result in metabolites with greater toxicity and longevity than the parent compound. Functionalized coatings have been designed to repel the settlement and permanent attachment of fouling organisms via modification of either or both surface topography and surface chemistry, or by interfering with the natural mechanisms via which fouling organisms settle upon and adhere to surfaces. A large number of technologies are being developed towards producing new coatings that will be able to resist biofouling over a period of years and thus truly replace biocides as antifouling systems. In addition urgent research is directed towards the exploitation of mechanisms used by living organisms designed to repel the settlement of fouling organisms. These biomimetic strategies include the production of antifouling enzymes and novel surface topography that are incompatible with permanent attachment, for example, by mimicking the microstructure of shark skin. Other research seeks to exploit chemical signals and antimicrobial agents produced by diverse living organisms in the environment to prevent settlement and growth of fouling organisms on vulnerable surfaces. Novel polymer-based technologies may prevent fouling by means of unfavourable surface chemical and physical properties or by concentrating antifouling compounds around surfaces.
Collapse
Affiliation(s)
- Jeanette E Gittens
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | | | | | | |
Collapse
|
16
|
|
17
|
Chen H, Li S, Wang S, Tan Y, Kan J. A New Catechol Biosensor Immobilized Polyphenol Oxidase by Combining Electropolymerization and Cross-Linking Process. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2012.761629] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Rutenberg A, Vinogradov VV, Avnir D. Synthesis and enhanced thermal stability of albumins@alumina: towards injectable sol-gel materials. Chem Commun (Camb) 2013; 49:5636-8. [PMID: 23682354 DOI: 10.1039/c3cc41696h] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A major obstacle to the introduction of bioactively-doped sol-gel based materials for medical applications has been the fact that silica - the most widely studied sol-gel material - despite being a GRAS material, which is widely used as an additive in foods and drug formulations, is still not approved by regulatory agencies for intramuscular injections. Here we point to a potential solution to this problem by shifting the weight to alumina, which is approved for injections as the most common immunization adjuvant. Towards the achievement of this goal we describe the development of protein entrapment methods tailored to alumina, and show high thermal stability of protein-dopants, using a newly developed DSC methodology for this purpose.
Collapse
Affiliation(s)
- Avi Rutenberg
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
19
|
Liu H, Cui Y, Li P, Zhou Y, Chen Y, Tang Y, Lu T. Polyphosphonate induced coacervation of chitosan: Encapsulation of proteins/enzymes and their biosensing. Anal Chim Acta 2013; 776:24-30. [DOI: 10.1016/j.aca.2013.03.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 02/07/2023]
|
20
|
Li T, Jia F, Fan Y, Ding Z, Yang J. Fabrication of nanoporous thin-film working electrodes and their biosensingapplications. Biosens Bioelectron 2013. [DOI: 10.1016/j.bios.2012.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
|
22
|
Kisner A, Stockmann R, Jansen M, Yegin U, Offenhäusser A, Kubota LT, Mourzina Y. Sensing small neurotransmitter–enzyme interaction with nanoporous gated ion-sensitive field effect transistors. Biosens Bioelectron 2012; 31:157-63. [DOI: 10.1016/j.bios.2011.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/04/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
|
23
|
Zhu Y, Jiang Z, Zhang L, Shi J, Yang D. Sol–Gel Derived Boehmite as an Efficient and Robust Carrier for Enzyme Encapsulation. Ind Eng Chem Res 2011. [DOI: 10.1021/ie2015069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yuanyuan Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lei Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiafu Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Dong Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
24
|
Fu Y, Li P, Bu L, Wang T, Xie Q, Chen J, Yao S. Exploiting Metal-Organic Coordination Polymers as Highly Efficient Immobilization Matrixes of Enzymes for Sensitive Electrochemical Biosensing. Anal Chem 2011; 83:6511-7. [DOI: 10.1021/ac200471v] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yingchun Fu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Penghao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Lijuan Bu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Ting Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
25
|
Jung SH, Lee YK, Son YK. Improved Sensitivity of a Glucose Sensor by Encapsulation of Free GOx in Conducting Polymer Micropillar Structure. J ELECTROCHEM SCI TE 2011. [DOI: 10.5229/jecst.2011.2.2.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Frau AF, Lane TJ, Schlather AE, Park JY, Advincula RC. Modulating Electrochemical Activity in Polyaniline/Titanium Oxide Hybrid Nanostructured Ultrathin Films. Ind Eng Chem Res 2011. [DOI: 10.1021/ie101805a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Antonio F. Frau
- Department of Chemistry and Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-5003, United States
| | - Thomas J. Lane
- Department of Chemistry and Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-5003, United States
| | - Andrea E. Schlather
- Department of Chemistry and Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-5003, United States
| | - Jin Young Park
- Department of Chemistry and Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-5003, United States
| | - Rigoberto C. Advincula
- Department of Chemistry and Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
27
|
Meunier CF, Yang XY, Rooke JC, Su BL. Biofuel cells Based on the Immobilization of Photosynthetically Active Bioentities. ChemCatChem 2011. [DOI: 10.1002/cctc.201000410] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Lee JM, Xu GR, Kim BK, Choi HN, Lee WY. Amperometric Tyrosinase Biosensor Based on Carbon Nanotube-Doped Sol-Gel-Derived Zinc Oxide-Nafion Composite Films. ELECTROANAL 2011. [DOI: 10.1002/elan.201000556] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Liu X, Luo L, Ding Y, Xu Y. Amperometric biosensors based on aluminananoparticles-chitosan-horseradish peroxidase nanobiocomposites for the determination of phenolic compounds. Analyst 2011; 136:696-701. [DOI: 10.1039/c0an00752h] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Liu Y, Lei J, Ju H. CuO-Doped Mesoporous Silica Hybrid for Rapid and Sensitive Amperometric Detection of Phenolic Compounds. ELECTROANAL 2010. [DOI: 10.1002/elan.201000200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
|
32
|
Majidi M, Asadpour-Zeynali K, Gholizadeh S. Nanobiocomposite Modified Carbon-Ceramic Electrode Based on Nano-TiO2-Plant Tissue and Its Application for Electrocatalytic Oxidation of Dopamine. ELECTROANAL 2010. [DOI: 10.1002/elan.201000008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Lu L, Zhang L, Zhang X, Huan S, Shen G, Yu R. A novel tyrosinase biosensor based on hydroxyapatite–chitosan nanocomposite for the detection of phenolic compounds. Anal Chim Acta 2010; 665:146-51. [DOI: 10.1016/j.aca.2010.03.033] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 03/05/2010] [Accepted: 03/17/2010] [Indexed: 02/07/2023]
|
34
|
Sensitive phenol determination based on co-modifying tyrosinase and palygorskite on glassy carbon electrode. Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0320-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Sanchez-Amat A, Solano F, Lucas-Elío P. Finding new enzymes from bacterial physiology: a successful approach illustrated by the detection of novel oxidases in Marinomonas mediterranea. Mar Drugs 2010; 8:519-41. [PMID: 20411113 PMCID: PMC2855505 DOI: 10.3390/md8030519] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 02/21/2010] [Accepted: 02/22/2010] [Indexed: 12/04/2022] Open
Abstract
The identification and study of marine microorganisms with unique physiological traits can be a very powerful tool discovering novel enzymes of possible biotechnological interest. This approach can complement the enormous amount of data concerning gene diversity in marine environments offered by metagenomic analysis, and can help to place the activities associated with those sequences in the context of microbial cellular metabolism and physiology. Accordingly, the detection and isolation of microorganisms that may be a good source of enzymes is of great importance. Marinomonas mediterranea, for example, has proven to be one such useful microorganism. This Gram-negative marine bacterium was first selected because of the unusually high amounts of melanins synthesized in media containing the amino acid L-tyrosine. The study of its molecular biology has allowed the cloning of several genes encoding oxidases of biotechnological interest, particularly in white and red biotechnology. Characterization of the operon encoding the tyrosinase responsible for melanin synthesis revealed that a second gene in that operon encodes a protein, PpoB2, which is involved in copper transfer to tyrosinase. This finding made PpoB2 the first protein in the COG5486 group to which a physiological role has been assigned. Another enzyme of interest described in M. mediterranea is a multicopper oxidase encoding a membrane-associated enzyme that shows oxidative activity on a wide range of substrates typical of both laccases and tyrosinases. Finally, an enzyme very specific for L-lysine, which oxidises this amino acid in epsilon position and that has received a new EC number (1.4.3.20), has also been described for M. mediterranea. Overall, the studies carried out on this bacterium illustrate the power of exploring the physiology of selected microorganisms to discover novel enzymes of biotechnological relevance.
Collapse
Affiliation(s)
- Antonio Sanchez-Amat
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Campus de Espinardo, Murcia 30100, Spain; E-Mail:
| | - Francisco Solano
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Murcia 30100, Spain; E-Mail:
| | - Patricia Lucas-Elío
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Campus de Espinardo, Murcia 30100, Spain; E-Mail:
| |
Collapse
|
36
|
Tan Y, Guo X, Zhang J, Kan J. Amperometric catechol biosensor based on polyaniline–polyphenol oxidase. Biosens Bioelectron 2010; 25:1681-7. [DOI: 10.1016/j.bios.2009.12.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/04/2009] [Accepted: 12/06/2009] [Indexed: 11/17/2022]
|
37
|
Sharma MK, Agarwal GS, Rao VK, Upadhyay S, Merwyn S, Gopalan N, Rai GP, Vijayaraghavan R, Prakash S. Amperometric immunosensor based on gold nanoparticles/alumina sol–gel modified screen-printed electrodes for antibodies to Plasmodium falciparum histidine rich protein-2. Analyst 2010; 135:608-14. [DOI: 10.1039/b918880k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Shan D, Zhang J, Xue HG, Zhang YC, Cosnier S, Ding SN. Polycrystalline bismuth oxide films for development of amperometric biosensor for phenolic compounds. Biosens Bioelectron 2009; 24:3671-6. [DOI: 10.1016/j.bios.2009.05.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Accepted: 05/28/2009] [Indexed: 11/24/2022]
|
39
|
Çete S, Yaşar A, Arslan F. Immobilization of Uricase Upon Polypyrrole-Ferrocenium Film. ACTA ACUST UNITED AC 2009; 35:607-20. [DOI: 10.1080/10731190701378634] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
High performance glucose biosensor based on the immobilization of glucose oxidase onto modified titania nanotube arrays. J Electroanal Chem (Lausanne) 2009. [DOI: 10.1016/j.jelechem.2008.12.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2008.10.072] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Moghaddam AB, Ganjali MR, Niasari M, Ahadi S. Bioelectrocatalysis of Dopamine Using Adsorbed Tyrosinase on Single-Walled Carbon Nanotubes. ANAL LETT 2008. [DOI: 10.1080/00032710802463923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Yang X, Chen X, Yang L, Yang W. Direct electrochemistry and electrocatalysis of horseradish peroxidase in α-zirconium phosphate nanosheet film. Bioelectrochemistry 2008; 74:90-5. [DOI: 10.1016/j.bioelechem.2008.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/15/2008] [Accepted: 05/04/2008] [Indexed: 11/29/2022]
|
44
|
Conductometric immunoassay for interleukin-6 in human serum based on organic/inorganic hybrid membrane-functionalized interface. Bioprocess Biosyst Eng 2008; 32:353-9. [DOI: 10.1007/s00449-008-0254-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/23/2008] [Indexed: 12/29/2022]
|
45
|
Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles–chitosan nanocomposite. Biosens Bioelectron 2008; 23:1781-7. [DOI: 10.1016/j.bios.2008.02.014] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 02/13/2008] [Accepted: 02/15/2008] [Indexed: 11/18/2022]
|
46
|
Phenol biosensor based on Sonogel-Carbon transducer with tyrosinase alumina sol–gel immobilization. Anal Chim Acta 2008; 612:198-203. [DOI: 10.1016/j.aca.2008.02.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/14/2008] [Accepted: 02/16/2008] [Indexed: 11/18/2022]
|
47
|
Wang H, Meng S, Guo K, Liu Y, Yang P, Zhong W, Liu B. Microfluidic immunosensor based on stable antibody-patterned surface in PMMA microchip. Electrochem commun 2008. [DOI: 10.1016/j.elecom.2008.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
48
|
Kochana J, Gala A, Parczewski A, Adamski J. Titania sol-gel-derived tyrosinase-based amperometric biosensor for determination of phenolic compounds in water samples. Examination of interference effects. Anal Bioanal Chem 2008; 391:1275-81. [PMID: 18188544 DOI: 10.1007/s00216-007-1798-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/05/2007] [Accepted: 12/06/2007] [Indexed: 11/26/2022]
Abstract
For detection of phenolic compounds in environmental water samples we propose an amperometric biosensor based on tyrosinase immobilized in titania sol-gel. The analytical characteristics toward catechol, p-cresol, phenol, p-chlorophenol, and p-methylcatechol were determined. The linear range for catechol determination was 2.2 x 10(-7)-1.3 x 10(-5) mol L(-1) with a limit of detection of 9 x 10(-8) mol L(-1) and sensitivity 2.0 x 10(3) mA mol(-1) L. The influence of sample matrix components on the electrode response was studied according to Plackett-Burman experimental design. The potential interferents Mg(2+), Ca(2+), HCO3(-), SO4(2-), and Cl(-), which are usually encountered in waters, were taken into account in the examination. Cu(2+) was also taken into account, because CuSO(4) is sometimes added to a water sample, as a preservative, before determination of phenolic compounds. It was found that among the ions tested only Mg(2+) and Ca(2+) did not directly affect the electrode response. The developed biosensor was used for determination of catechol in spring and surface water samples using the standard addition method.
Collapse
Affiliation(s)
- J Kochana
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland.
| | | | | | | |
Collapse
|
49
|
Shan D, Zhu M, Han E, Xue H, Cosnier S. Calcium carbonate nanoparticles: a host matrix for the construction of highly sensitive amperometric phenol biosensor. Biosens Bioelectron 2007; 23:648-54. [PMID: 17768039 DOI: 10.1016/j.bios.2007.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/23/2007] [Accepted: 07/24/2007] [Indexed: 12/01/2022]
Abstract
We reported on the utilization of a novel attractive nanoscaled calcium carbonate (nano-CaCO(3))-polyphenol oxidase (PPO) biocomposite to create a highly responsive phenol biosensor. The phenol sensor could be easily achieved by casting the biocomposite on the surface of glassy carbon electrode (GCE) via the cross-linking step by glutaraldehyde. The special three-dimensional structure, porous morphology, hydrophilic and biocompatible properties of the nano-CaCO(3) matrix resulted in high enzyme loading, and the enzyme entrapped in this matrix retained its activity to a large extent. The proposed PPO/nano-CaCO(3) exhibited dramatically developed analytical performance such as such as a broad determination range (6 x 10(-9) -2 x 10(-5)M), a short response time (less than 12 s), high sensitivity (474 mA M(-1)), subnanomolar detection limit (0.44 nM at a signal to noise ratio of 3) and good long-term stability (70% remained after 56 days). In addition, effects of pH value, applied potential, temperature and electrode construction were investigated and discussed.
Collapse
Affiliation(s)
- Dan Shan
- Key Laboratory of Environmental Materials & Environmental Engineering of Jiangsu Province, Yangzhou, China.
| | | | | | | | | |
Collapse
|
50
|
Zhou X, Yu T, Zhang Y, Kong J, Tang Y, Marty JL, Liu B. Nanozeolite-assembled interface towards sensitive biosensing. Electrochem commun 2007. [DOI: 10.1016/j.elecom.2007.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|