1
|
Chen X, Li R, Qiu Y, Lin F, Chen S, Li X, Sun H, Jiang G, Fang H, Qin J, Fang M. Design, synthesis, and biological evaluation of N-(2-amino-phenyl)-5-(4-aryl- pyrimidin-2-yl) amino)-1H-indole-2-carboxamide derivatives as novel inhibitors of CDK9 and class I HDACs for cancer treatment. Bioorg Chem 2025; 162:108577. [PMID: 40383016 DOI: 10.1016/j.bioorg.2025.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
The mechanisms underlying transcriptional dysregulation in tumorigenesis have received considerable attention as promising therapeutic targets to combat human cancer. Cyclin-dependent kinase 9 (CDK9) and class I histone deacetylases (HDACs) are significant therapeutic targets due to their pivotal roles in the dysregulated transcriptional programs characteristic of many cancers. Furthermore, the combinatorial transcriptional therapy with CDK9 and class I HDAC inhibitors has been shown to have a synergistic anticancer effect. In this study, a series of novel N-(2-amino-phenyl)-5-(4-aryl-pyrimidin-2-yl) amino)-1H-indole-2-carboxamide derivatives were designed and synthesized as novel dual-functional inhibitors targeting CDK9 and HDAC signaling pathways for cancer treatment. Among the synthesized compounds, 13ea demonstrated potent anti-proliferative activities (IC50 < 5.0 μM) in various cancer cell lines (HeLa, MDA-MB-231, HepG2). In addition, 13ea was found to significantly inhibit the phosphorylation function of CDK9 and the deacetylation function of class I HDACs. Furthermore, 13ea was found to inhibit the protein activity of CDK9 (IC50 = 0.17 μM), HDAC1 (IC50 = 1.73 μM), and HDAC3 (IC50 = 1.11 μM). The docking studies predicted the binding patterns of 13ea in the active pockets of CDK9 and HDAC1/3. The cellular assays revealed that 13ea induced mitochondria-related apoptosis and G2/M phase arrest in cancer cells, showing superior activities compared to those of AZD-5438 (a CDK9 inhibitor) and Mocetinostat (an inhibitor of class I HDACs). Notably, the in vivo assay demonstrated that 13ea (30 mg/kg) exhibited significant inhibition on MDA-MB-231 xenograft tumor growth, with a tumor shrinkage rate of 76.83 %. In summary, we have identified 13ea as a novel CDK9/HDAC inhibitor with excellent anticancer activity in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Rongna Li
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Yingkun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Fanhong Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Shutong Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaodan Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Hui Sun
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Guanmin Jiang
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Hua Fang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Jingbo Qin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; Guangdong Provincial Engineering Research Center of Molecular Imaging and Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine Foundation of Guangdong Province, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Zheng Y, Zhang TN, Hao PH, Yang N, Du Y. Histone deacetylases and their inhibitors in kidney diseases. Mol Ther 2025:S1525-0016(25)00300-4. [PMID: 40263937 DOI: 10.1016/j.ymthe.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/18/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
Histone deacetylases (HDACs) have emerged as key regulators in the pathogenesis of various kidney diseases. This review explores recent advancements in HDAC research, focusing on their role in kidney development and their critical involvement in the progression of chronic kidney disease (CKD), acute kidney injury (AKI), autosomal dominant polycystic kidney disease (ADPKD), and diabetic kidney disease (DKD). It also discusses the therapeutic potential of HDAC inhibitors in treating these conditions. Various HDAC inhibitors have shown promise by targeting specific HDAC isoforms and modulating a range of biological pathways. Their protective effects include modulation of apoptosis, autophagy, inflammation, and fibrosis, underscoring their broad therapeutic potential for kidney diseases. However, further research is essential to improve the selectivity of HDAC inhibitors, minimize toxicity, overcome drug resistance, and enhance their pharmacokinetic properties. This review offers insights to guide future research and prevention strategies for kidney disease management.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Peng-Hui Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yue Du
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Zhou Y, Luo Q, Gu L, Tian X, Zhao Y, Zhang Y, Wang F. Histone Deacetylase Inhibitors Promote the Anticancer Activity of Cisplatin: Mechanisms and Potential. Pharmaceuticals (Basel) 2025; 18:563. [PMID: 40283998 PMCID: PMC12030095 DOI: 10.3390/ph18040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Cisplatin is a widely used DNA-targeting anticancer drug. Histone deacetylase inhibitors (HDACi) cause histone hyperacetylation, changing chromatin structure and accessibility of genomic DNA by the genotoxic drug. As a consequence, HDACi could promote cisplatin cytotoxicity. Hence, the underlying mechanisms by which HDACi alter the action pathways of cisplatin to promote its anticancer activity have attracted increasing attention during the past decades. It has been commonly accepted that HDACi elevate the acetylation level of histones to release genomic DNA to cisplatin attack, increasing the level of cisplatin-induced DNA lesions to promote cisplatin cytotoxicity. However, how the HDACi-enhanced cisplatin lesion on DNA impacts the downstream biological processes, and whether the promotion of HDACi to cisplatin activity is attributed to their inherent anticancer activity or to their induced elevation of histone acetylation, have been in debate. Several studies showed that HDACi-enhanced DNA lesion could promote cisplatin-induced apoptosis, cell cycle arrest, and reactive oxygen species (ROS) generation, subsequently promoting cisplatin efficiency. In contrast, HDACi-induced elimination of ROS and inhibition of ferroptosis were thought to be the main ways by which HDACi protect kidneys from acute injury caused by cisplatin. Based on our recent research, we herein review and discuss the advances in research on the mechanisms of HDACi-induced enhancement in cisplatin cytotoxicity. Given that histone acetyltransferase (HAT) inhibitors also show an effect enhancing cisplatin cytotoxicity, we will discuss the diverse roles of histone acetylation in cancer therapy in addition to the synergistic anticancer effect and potential of HDACi with genotoxic drugs and radiotherapy.
Collapse
Affiliation(s)
- Yang Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhen Gu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Tian
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- National Centre for Mass Spectrometry in Beijing, Beijing 100190, China
| |
Collapse
|
4
|
Cui H, Zhang G, Zhang L, Sun S, Yang K, Gen A, Wang P, Wang H, Zhou QQ, Li H, Chen Y, Yao Y, Lu T, Zhang L, Zhu Y. Discovery of N-Phenyl-5-propyl-1 H-pyrazole-3-carboxamide, with Selective Inhibition and Degradation of HDAC6 for the Treatment of Acute Liver Injury. J Med Chem 2025; 68:531-554. [PMID: 39680630 DOI: 10.1021/acs.jmedchem.4c02341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Acute liver injury is a severe and potentially life-threatening condition. Currently, there are no specific effective treatments available. HDAC6 has been identified as a promising strategy for treating ALI by inhibiting necrosis and inflammation. In this study, a series of pyrazole derivatives were designed to specifically target HDAC6, among which compound 6 demonstrated high antinecroptotic activity (IC50 = 0.5 nM) and excellent selective HDAC6 inhibition (IC50 = 4.95 nM, HDAC1/HDAC6 = 251). Surprisingly, compound 6 also exhibited excellent HDAC6 degradation activity (DC50 = 0.96 nM) through mechanistic studies. Additionally, it demonstrated strong inhibitory effects on inflammatory proteins TNF-α, IL-1β, and IL-6, indicating significant anti-inflammatory activity. Moreover, in a mouse model of acetaminophen (APAP)-induced acute liver injury, compound 6 exhibited significant therapeutic and protective efficacy at a dose of 40 mg/kg. These findings confirm that compound 6 is a promising lead structure for combating ALI-related diseases and warrants further investigation.
Collapse
Affiliation(s)
- Hao Cui
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Guodong Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Liyuan Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shilong Sun
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Kang Yang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Aixin Gen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Penfeng Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Hui Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Qing-Qing Zhou
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, PR China
| | - Hongmei Li
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yuqin Yao
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, PR China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Lei Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Yong Zhu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| |
Collapse
|
5
|
Raouf YS, Moreno-Yruela C. Slow-Binding and Covalent HDAC Inhibition: A New Paradigm? JACS AU 2024; 4:4148-4161. [PMID: 39610753 PMCID: PMC11600154 DOI: 10.1021/jacsau.4c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024]
Abstract
The dysregulated post-translational modification of proteins is an established hallmark of human disease. Through Zn2+-dependent hydrolysis of acyl-lysine modifications, histone deacetylases (HDACs) are key regulators of disease-implicated signaling pathways and tractable drug targets in the clinic. Early targeting of this family of 11 enzymes (HDAC1-11) afforded a first generation of broadly acting inhibitors with medicinal applications in oncology, specifically in cutaneous and peripheral T-cell lymphomas and in multiple myeloma. However, first-generation HDAC inhibitors are often associated with weak-to-modest patient benefits, dose-limited efficacies, pharmacokinetic liabilities, and recurring clinical toxicities. Alternative inhibitor design to target single enzymes and avoid toxic Zn2+-binding moieties have not overcome these limitations. Instead, recent literature has seen a shift toward noncanonical mechanistic approaches focused on slow-binding and covalent inhibition. Such compounds hold the potential of improving the pharmacokinetic and pharmacodynamic profiles of HDAC inhibitors through the extension of the drug-target residence time. This perspective aims to capture this emerging paradigm and discuss its potential to improve the preclinical/clinical outlook of HDAC inhibitors in the coming years.
Collapse
Affiliation(s)
- Yasir S. Raouf
- Department
of Chemistry, United Arab Emirates University, P.O. Box No. 15551 Al Ain, UAE
| | - Carlos Moreno-Yruela
- Laboratory
of Chemistry and Biophysics of Macromolecules (LCBM), Institute of
Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Shen S, Zhuang H. Homoharringtonine in the treatment of acute myeloid leukemia: A review. Medicine (Baltimore) 2024; 103:e40380. [PMID: 39496012 PMCID: PMC11537654 DOI: 10.1097/md.0000000000040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by the accumulation of immature myeloid precursor cells. Over half of AML patients fail to achieve long-term disease-free survival under existing therapy, and the overall prognosis is poor, necessitating the urgent development of novel therapeutic approaches. The plant alkaloid homoharringtonine (HHT), which has anticancer properties, was first identified more than 40 years ago. It works in a novel method of action that prevents the early elongation phase of protein synthesis. HHT has been widely utilized in the treatment of AML, with strong therapeutic effects, few toxic side effects, and the ability to enhance AML patients' prognoses. In AML, HHT can induce cell apoptosis through multiple pathways, exerting synergistic antitumor effects, according to clinical and pharmacological research. About its modes of action, some findings have been made recently. This paper reviews the development of research on the mechanisms of HHT in treating AML to offer insights for further research and clinical therapy.
Collapse
Affiliation(s)
- Siyu Shen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Haifeng Zhuang
- Department of Clinical Hematology and Transfusion, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
7
|
Xiao T, Chen Z, Xie Y, Yang C, Wu J, Gao L. Histone deacetylase inhibitors: targeting epigenetic regulation in the treatment of acute leukemia. Ther Adv Hematol 2024; 15:20406207241283277. [PMID: 39421716 PMCID: PMC11483798 DOI: 10.1177/20406207241283277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024] Open
Abstract
Acute leukemia (AL) is a rare yet perilous malignancy. Currently, the primary treatment for AL involves combination chemotherapy as the cornerstone of comprehensive measures, alongside hematopoietic stem cell transplantation as a radical approach. However, despite these interventions, mortality rates remain high, particularly among refractory/recurrent patients or elderly individuals with a poor prognosis. Acetylation, a form of epigenetic regulation, has emerged as a promising therapeutic avenue for treating AL. Recent studies have highlighted the potential of acetylation regulation as a novel treatment pathway. Histone deacetylase inhibitors (HDACis) play a pivotal role in modulating the differentiation and development of tumor cells through diverse pathways, simultaneously impacting the maturation and function of lymphocytes. HDACis demonstrate promise in enhancing survival rates and achieving a complete response in both acute myeloid leukemia and acute T-lymphoblastic leukemia patients. This article provides a comprehensive review of the advancements in HDACi therapy for AL, shedding light on its potential implications for clinical practice.
Collapse
Affiliation(s)
- Tong Xiao
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zhigang Chen
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yutong Xie
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chao Yang
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Junhong Wu
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lei Gao
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao Street, Shapingba District, Chongqing 400037, China
| |
Collapse
|
8
|
Bhat SA, Chandramohan S, Krishna GS, Hiranmaya C, Pajaniradje S, Nair AS, Mohanty D, Rajagopalan R. Betanin-encapsulated starch nanoparticles: synthesis and cytotoxic effect on colon cancer. 3 Biotech 2024; 14:233. [PMID: 39297057 PMCID: PMC11405737 DOI: 10.1007/s13205-024-04078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Colorectal cancer (CRC) is a common and life-threatening neoplastic disease that continues to pose a formidable challenge to global health. The present work was performed to evaluate the anticancer properties of betanin and betanin (BT) loaded starch nanoparticles (S-BT). The BT and S-BT were characterized by DLS, SEM, UV spectroscopy, XPS and FTIR. The cytotoxic effect was assessed by MTT and LDH assay. The apoptotic potential of BT and S-BT was assessed by DCFDA, Rh123, AO/EB and DAPI staining methods. Cell cycle arrest was depicted using flow cytometry. The antimetastatic potential of BT and S-BT was evaluated by wound healing assay. The S-BT showed a spherical morphology with a size of 175 nm. The betanin contained SNPs were found to have strong encapsulation efficiency and favorable release profiles. Both BT and S-BT exhibited cytotoxicity in SW480 cells but S-BT displayed increased cytotoxicity when compared to BT alone. Loss of mitochondrial membrane potential, nuclear fragmentation, chromatin condensation and generation of ROS, all indicative of apoptotic mode of cell death, were revealed by fluorescence imaging. The cells were arrested in the G2M phase. Moreover, both BT and S-BT were able to inhibit the migratory potential of SW480 cells. Overall, our results indicated that both BT and S-BT were able to induce anticancer effects; and, S-BT was found to have increased therapeutic efficacy when compared to BT alone.
Collapse
Affiliation(s)
- Suhail Ahmad Bhat
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Sathyapriya Chandramohan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Guguloth Sai Krishna
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Chandansri Hiranmaya
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Anjali Suresh Nair
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Debabrata Mohanty
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| |
Collapse
|
9
|
Seitz R, Tümen D, Kunst C, Heumann P, Schmid S, Kandulski A, Müller M, Gülow K. Exploring the Thioredoxin System as a Therapeutic Target in Cancer: Mechanisms and Implications. Antioxidants (Basel) 2024; 13:1078. [PMID: 39334737 PMCID: PMC11428833 DOI: 10.3390/antiox13091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Cells constantly face the challenge of managing oxidants. In aerobic organisms, oxygen (O2) is used for energy production, generating reactive oxygen species (ROS) as byproducts of enzymatic reactions. To protect against oxidative damage, cells possess an intricate system of redox scavengers and antioxidant enzymes, collectively forming the antioxidant defense system. This system maintains the redox equilibrium and enables the generation of localized oxidative signals that regulate essential cellular functions. One key component of this defense is the thioredoxin (Trx) system, which includes Trx, thioredoxin reductase (TrxR), and NADPH. The Trx system reverses oxidation of macromolecules and indirectly neutralizes ROS via peroxiredoxin (Prx). This dual function protects cells from damage accumulation and supports physiological cell signaling. However, the Trx system also shields tumors from oxidative damage, aiding their survival. Due to elevated ROS levels from their metabolism, tumors often rely on the Trx system. In addition, the Trx system regulates critical pathways such as proliferation and neoangiogenesis, which tumors exploit to enhance growth and optimize nutrient and oxygen supply. Consequently, the Trx system is a potential target for cancer therapy. The challenge lies in selectively targeting malignant cells without disrupting the redox equilibrium in healthy cells. The aim of this review article is threefold: first, to elucidate the function of the Trx system; second, to discuss the Trx system as a potential target for cancer therapies; and third, to present the possibilities for inhibiting key components of the Trx system, along with an overview of the latest clinical studies on these inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (R.S.); (D.T.); (C.K.); (P.H.); (S.S.); (A.K.); (M.M.)
| |
Collapse
|
10
|
Zhang Y, Zhang X. Virus-Induced Histone Lactylation Promotes Virus Infection in Crustacean. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401017. [PMID: 38874057 PMCID: PMC11321649 DOI: 10.1002/advs.202401017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/04/2024] [Indexed: 06/15/2024]
Abstract
As "non-cellular organisms", viruses need to infect living cells to survive themselves. The virus infection must alter host's metabolisms. However, the influence of the metabolites from the altered metabolisms of virus-infected host cells on virus-host interactions remains largely unclear. To address this issue, shrimp, a representative species of crustaceans, is challenged with white spot syndrome virus (WSSV) in this study. The in vivo results presented that the WSSV infection enhanced shrimp glycolysis, leading to the accumulation of lactate. The lactate accumulation in turn promoted the site-specific histone lactylation (H3K18la and H4K12la) in a p300/HDAC1/HDAC3-dependent manner. H3K18la and H4K12la are enriched in the promoters of 75 target genes, of which the H3K18la and H4K12la modification upregulated the expression of ribosomal protein S6 kinases 2 (S6K2) in the virus-infected hosts to promote the virus infection. Further data revealed that the virus-encoded miR-N20 targeted hypoxia inducible factor-1α (HIF-1α) to inhibit the host glycolysis, leading to the suppression of H3K18la and H4K12la. Therefore, the findings contributed novel insights into the effects and the underlying mechanism of the virus-induced histone lactylation on the virus-host interactions, providing new targets for the control of virus infection.
Collapse
Affiliation(s)
- Yu Zhang
- College of Life SciencesZhejiang UniversityHangzhou310058P. R. China
- Department of Clinical PharmacologyKey Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang ProvinceAffiliated Hangzhou First People's HospitalCancer CenterWestlake University School of MedicineHangzhou310006P. R. China
| | - Xiaobo Zhang
- College of Life SciencesZhejiang UniversityHangzhou310058P. R. China
- Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao)Qingdao266003P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Zhuhai519000P. R. China
| |
Collapse
|
11
|
Safari M, Scotto L, Basseville A, Litman T, Xue H, Petrukhin L, Zhou P, Morales DV, Damoci C, Zhu M, Hull K, Olive KP, Fojo T, Romo D, Bates SE. Combined HDAC and eIF4A inhibition: A novel epigenetic therapy for pancreatic adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.600495. [PMID: 39005268 PMCID: PMC11244854 DOI: 10.1101/2024.06.30.600495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Pancreatic ductal adenocarcinoma-(PDAC) needs innovative approaches due to its 12% 5-year survival despite current therapies. We show marked sensitivity of pancreatic cancer cells to the combination of a novel eIF4A inhibitor, des-methyl pateamine A (DMPatA), and a histone deacetylase inhibitor, romidepsin, inducing epigenetic reprogramming as an innovative therapeutic strategy. Exploring the mechanistic activity of this combination showed that with a short duration of romidepsin at low doses, robust acetylation persisted up to 48h with the combination, while histone acetylation rapidly faded with monotherapy. This represents an unexpected mechanism of action against PDAC cells that triggers transcriptional overload, metabolic stress, and augmented DNA damage. Structurally different class I HDAC inhibitors exhibit the same hyperacetylation patterns when co-administered with DMPatA, suggesting a class effect. We show efficacy of this combination regimen against tumor growth in a MIA PaCa-2 xenograft model of PDAC with persistent hyperacetylation confirmed in tumor samples. STATEMENT OF SIGNIFICANCE Pancreatic ductal adenocarcinoma, a significant clinical challenge, could benefit from the latent potential of epigenetic therapies like HDAC inhibitors-(HDIs), typically limited to hematological malignancies. Our study shows that a synergistic low dose combination of HDIs with an eIF4A-inhibitor in pancreatic cancer models results in marked pre-clinical efficacy, offering a promising new treatment strategy.
Collapse
|
12
|
Sardar S, Jyotisha, Amin SA, Khatun S, Qureshi IA, Patil UK, Jha T, Gayen S. Identification of structural fingerprints among natural inhibitors of HDAC1 to accelerate nature-inspired drug discovery in cancer epigenetics. J Biomol Struct Dyn 2024; 42:5642-5656. [PMID: 38870352 DOI: 10.1080/07391102.2023.2227710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/15/2023] [Indexed: 06/15/2024]
Abstract
Histone deacetylase 1 (HDAC1), a class I HDAC enzyme, is crucial for histone modification. Currently, it is emerged as one of the important biological targets for designing small molecule drugs through cancer epigenetics. Along with synthetic inhibitors different natural inhibitors are showing potential HDAC1 inhibitions. In order to gain insights into the relationship between the molecular structures of the natural inhibitors and HDAC1, different molecular modelling techniques (Bayesian classification, recursive partitioning, molecular docking and molecular dynamics simulations) have been applied on a dataset of 155 HDAC1 nature-inspired inhibitors with diverse scaffolds. The Bayesian study showed acceptable ROC values for both the training set and test sets. The Recursive partitioning study produced decision tree 1 with 6 leaves. Further, molecular docking study was processed for generating the protein ligand complex which identified some potential amino acid residues such as F205, H28, L271, P29, F150, Y204 for the binding interactions in case of natural inhibitors. Stability of these HDAC1-natutal inhibitors complexes has been also evaluated by molecular dynamics simulation study. The current modelling study is an attempt to get a deep insight into the different important structural fingerprints among different natural compounds modulating HDAC1 inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sourav Sardar
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Jyotisha
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sk Abdul Amin
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Umesh Kumar Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
13
|
Chen PH, Guo XS, Zhang HE, Dubey GK, Geng ZZ, Fierke CA, Xu S, Hampton JT, Liu WR. Leveraging a Phage-Encoded Noncanonical Amino Acid: A Novel Pathway to Potent and Selective Epigenetic Reader Protein Inhibitors. ACS CENTRAL SCIENCE 2024; 10:782-792. [PMID: 38680566 PMCID: PMC11046469 DOI: 10.1021/acscentsci.3c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 05/01/2024]
Abstract
Epigenetic reader proteins interpret histone epigenetic marks to regulate gene expression. Given their vital roles and the link between their dysfunction and various diseases, these proteins present compelling targets for therapeutic interventions. Nevertheless, designing selective inhibitors for these proteins poses significant challenges, primarily due to their unique properties such as shallow binding sites and similarities with homologous proteins. To overcome these challenges, we propose an innovative strategy that uses phage display with a genetically encoded noncanonical amino acid (ncAA) containing an epigenetic mark. This ncAA guides binding to the reader protein's active site, allowing the identification of peptide inhibitors with enhanced affinity and selectivity. In this study, we demonstrate this novel approach's effectiveness by identifying potent inhibitors for the ENL YEATS domain that plays a critical role in leukemogenesis. Our strategy involved genetically incorporating Nε-butyryl-l-lysine (BuK), known for its binding to ENL YEATS, into a phage display library for enriching the pool of potent inhibitors. One resultant hit was further optimized by substituting BuK with other pharmacophores to exploit a unique π-π-π stacking interaction with ENL YEATS. This led to the creation of selective ENL YEATS inhibitors with a KD value of 2.0 nM and a selectivity 28 times higher for ENL YEATS than its close homologue AF9 YEATS. One such inhibitor, tENL-S1f, demonstrated robust cellular target engagement and on-target effects to inhibit leukemia cell growth and suppress the expression of ENL target genes. As a pioneering study, this work opens up extensive avenues for the development of potent and selective peptidyl inhibitors for a broad spectrum of epigenetic reader proteins.
Collapse
Affiliation(s)
- Peng-Hsun
Chase Chen
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xuejiao Shirley Guo
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hanyuan Eric Zhang
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gopal K. Dubey
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zhi Zachary Geng
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Carol A. Fierke
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Shiqing Xu
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Texas A&M
University, College
Station, Texas 77843, United States
| | - J. Trae Hampton
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Texas A&M
University, College
Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
14
|
Watchon M, Robinson KJ, Luu L, An Y, Yuan KC, Plenderleith SK, Cheng F, Don EK, Nicholson GA, Lee A, Laird AS. Treatment with sodium butyrate induces autophagy resulting in therapeutic benefits for spinocerebellar ataxia type 3. FASEB J 2024; 38:e23429. [PMID: 38258931 DOI: 10.1096/fj.202300963rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
Spinocerebellar ataxia type 3 (SCA3, also known as Machado Joseph disease) is a fatal neurodegenerative disease caused by the expansion of the trinucleotide repeat region within the ATXN3/MJD gene. Mutation of ATXN3 causes formation of ataxin-3 protein aggregates, neurodegeneration, and motor deficits. Here we investigated the therapeutic potential and mechanistic activity of sodium butyrate (SB), the sodium salt of butyric acid, a metabolite naturally produced by gut microbiota, on cultured SH-SY5Y cells and transgenic zebrafish expressing human ataxin-3 containing 84 glutamine (Q) residues to model SCA3. SCA3 SH-SY5Y cells were found to contain high molecular weight ataxin-3 species and detergent-insoluble protein aggregates. Treatment with SB increased the activity of the autophagy protein quality control pathway in the SCA3 cells, decreased the presence of ataxin-3 aggregates and presence of high molecular weight ataxin-3 in an autophagy-dependent manner. Treatment with SB was also beneficial in vivo, improving swimming performance, increasing activity of the autophagy pathway, and decreasing the presence of insoluble ataxin-3 protein species in the transgenic SCA3 zebrafish. Co-treating the SCA3 zebrafish with SB and chloroquine, an autophagy inhibitor, prevented the beneficial effects of SB on zebrafish swimming, indicating that the improved swimming performance was autophagy-dependent. To understand the mechanism by which SB induces autophagy we performed proteomic analysis of protein lysates from the SB-treated and untreated SCA3 SH-SY5Y cells. We found that SB treatment had increased activity of Protein Kinase A and AMPK signaling, with immunoblot analysis confirming that SB treatment had increased levels of AMPK protein and its substrates. Together our findings indicate that treatment with SB can increase activity of the autophagy pathway process and that this has beneficial effects in vitro and in vivo. While our results suggested that this activity may involve activity of a PKA/AMPK-dependent process, this requires further confirmation. We propose that treatment with sodium butyrate warrants further investigation as a potential treatment for neurodegenerative diseases underpinned by mechanisms relating to protein aggregation including SCA3.
Collapse
Affiliation(s)
- Maxinne Watchon
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Katherine J Robinson
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Luan Luu
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Yousun An
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kristy C Yuan
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Stuart K Plenderleith
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Flora Cheng
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Emily K Don
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Garth A Nicholson
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- ANZAC Research Institute, Concord Repatriation Hospital, Concord, New South Wales, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Angela S Laird
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Qin L, Berk M, Chung YM, Cui D, Zhu Z, Chakraborty AA, Sharifi N. Chronic hypoxia stabilizes 3βHSD1 via autophagy suppression. Cell Rep 2024; 43:113575. [PMID: 38181788 PMCID: PMC10851248 DOI: 10.1016/j.celrep.2023.113575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/02/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
Progression of prostate cancer depends on androgen receptor, which is usually activated by androgens. Therefore, a mainstay treatment is androgen deprivation therapy. Unfortunately, despite initial treatment response, resistance nearly always develops, and disease progresses to castration-resistant prostate cancer (CRPC), which remains driven by non-gonadal androgens synthesized in prostate cancer tissues. 3β-Hydroxysteroid dehydrogenase/Δ5-->4 isomerase 1 (3βHSD1) catalyzes the rate-limiting step in androgen synthesis. However, how 3βHSD1, especially the "adrenal-permissive" 3βHSD1(367T) that permits tumor synthesis of androgen from dehydroepiandrosterone (DHEA), is regulated at the protein level is not well understood. Here, we investigate how hypoxia regulates 3βHSD1(367T) protein levels. Our results show that, in vitro, hypoxia stabilizes 3βHSD1 protein by suppressing autophagy. Autophagy inhibition promotes 3βHSD1-dependent tumor progression. Hypoxia represses transcription of autophagy-related (ATG) genes by decreasing histone acetylation. Inhibiting deacetylase (HDAC) restores ATG gene transcription under hypoxia. Therefore, HDAC inhibition may be a therapeutic target for hypoxic tumor cells.
Collapse
Affiliation(s)
- Liang Qin
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael Berk
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yoon-Mi Chung
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Di Cui
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ziqi Zhu
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Abhishek A Chakraborty
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
16
|
Abstract
Metalloenzymes are responsible for numerous physiological and pathological processes in living organisms; however, there are very few FDA-approved metalloenzyme-targeting therapeutics (only ~ 67 FDA-approved metalloenzyme inhibitors as of 2020, less than ~ 5 % of all FDA-approved therapeutics). Most metalloenzyme inhibitors have been developed to target the catalytic metal centers in metalloenzymes via the incorporation of metal-binding groups. Light-controlled inhibition of metalloenzymes has been used as a means to specifically activate and inactivate inhibitor engagement at a desired location and time via light irradiation, allowing for precise spatiotemporal control over metalloenzyme activity. In this review, we summarize the strategies that have been employed to develop biocompatible light-sensitive inhibitors for metalloenzymes via the incorporation of different photo-activatable moieties (including photoswitchable and photocleavable groups), and the application of photo-activateable inhibitors both in vitro and in vivo. We also discuss the photophysical mechanisms of different photo-activatable groups, their action under physiological conditions, and the different modes of interaction between inhibitors and proteins (i.e., inhibition mechanisms) in the presence and absence of light. Finally, we discuss considerations for the future development of light-responsive metalloenzyme inhibitors and the challenges limiting their application in vivo.
Collapse
Affiliation(s)
- Noushaba Nusrat Mafy
- Department of Chemistry, University of Texas at Austin, 105 E 24th St, Austin, TX 78712, United States
| | - Dorothea B. Hudson
- Department of Chemistry, University of Texas at Austin, 105 E 24th St, Austin, TX 78712, United States
| | - Emily L. Que
- Department of Chemistry, University of Texas at Austin, 105 E 24th St, Austin, TX 78712, United States
| |
Collapse
|
17
|
Asfaha Y, Bollmann LM, Skerhut AJ, Fischer F, Horstick N, Roth D, Wecker M, Mammen C, Smits SHJ, Fluegen G, Kassack MU, Kurz T. 5-(Trifluoromethyl)-1,2,4-oxadiazole (TFMO)-based highly selective class IIa HDAC inhibitors exhibit synergistic anticancer activity in combination with bortezomib. Eur J Med Chem 2024; 263:115907. [PMID: 37979441 DOI: 10.1016/j.ejmech.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/20/2023]
Abstract
Clinically used pan and class I HDACi cause severe side effects, whereas class IIa HDACi are less cytotoxic. Here, we present the synthesis and anticancer effects of a series of 5-(trifluoromethyl)-1,2,4-oxadiazole (TFMO)-based amides and alkoxyamides derived from the previously reported class IIa HDACi YAK540. The most active class IIa inhibitor 1a showed nanomolar inhibition of the class IIa enzymes 4, 5, 7 (IC50 HDAC4: 12 nM) and high selectivity (selectivity index >318 for HDAC4) over non-class IIa HDACs. Instead of a hydroxamic acid group, 1a has a trifluoromethyloxadiazolyl (TFMO) moiety as a non-chelating Zinc-binding group (ZBG). Applying the Chou-Talalay-method we found an increased synergistic cytotoxic effect of 1a in combination with bortezomib in THP1 cells. 1a in combination with bortezomib enhanced expression of p21 leading to increased caspase-induced apoptosis. Eventually, growth inhibition by 1a of the head-neck cancer cell line Cal27 was increased upon HDAC4 overexpression in Cal27 in cell culture and using the in vivo chorioallantoic membrane model. The class IIa HDACi 1a outperforms previously described HDAC class IIa inhibitor YAK540 regarding anticancer effects and may constitute a novel option compared to pan and class I HDACi in anticancer combination treatments.
Collapse
Affiliation(s)
- Yodita Asfaha
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Lukas M Bollmann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Alexander J Skerhut
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Fabian Fischer
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Nadine Horstick
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Dennis Roth
- Department of Surgery (A), Medical Faculty, University Hospital of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Maria Wecker
- Department of Surgery (A), Medical Faculty, University Hospital of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Christian Mammen
- Institute of Biochemistry I, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry I, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany; Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Georg Fluegen
- Department of Surgery (A), Medical Faculty, University Hospital of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
18
|
Goida NG, Oktysiuk ZS. Results of the study of the attitude of women of reproductive age to the integrated gynecological care provision by family physicians. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:506-513. [PMID: 38691793 DOI: 10.36740/wlek202403120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
OBJECTIVE Aim: To study and analyze the attitude of women of reproductive age to the integrated gynecological care provision by family physicians, their readiness to receive some gynecological services from family physicians, as well as to analyze the level of women's support and readiness for the integrated provision of gynecological care depending on age and level of education. PATIENTS AND METHODS Materials and Methods: For the survey, anonymous questionnaires containing questions on the attitude of women of reproductive age to the integrated provision of certain types of gynecological care by family physicians were developed. 181 women from the Kyiv region took part in the survey. RESULTS Results: Support of more than 80% of respondents regarding the integrated gynecological care provision by family physicians received the following questions: counseling on the prevention of sexually transmitted infections and human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) (92,3%); counseling on family planning and prevention of unwanted pregnancy (83,4%); counseling on the use of various methods of contraception (82,3%); examination and palpation of mammary glands (80,1%); referral of women to a higher level of obstetric and gynecological care (if necessary (86,2%). CONCLUSION Conclusions: The majority of respondents (67,4%) are ready or better ready than not ready to receive certain types of gynecological care services from family physicians. Almost the same percentage ratio (more than 60%) of women of each age group and all levels of education are ready or better ready than not ready to receive gynecological care services, which they supported, from family physicians.
Collapse
Affiliation(s)
- Nina G Goida
- SHUPYK NATIONAL HEALTHCARE UNIVERSITY OF UKRAINE, KYIV, UKRAINE
| | | |
Collapse
|
19
|
Veschi V, Durinck K, Thiele CJ, Speleman F. Neuroblastoma Epigenetic Landscape: Drugging Opportunities. PEDIATRIC ONCOLOGY 2024:71-95. [DOI: 10.1007/978-3-031-51292-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Guo YY, Zhang JY, Sun JF, Nie P, Gao H. Synthesis and application of small molecules approved for the treatment of lymphoma. Eur J Med Chem 2023; 261:115835. [PMID: 37801827 DOI: 10.1016/j.ejmech.2023.115835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
Lymphoma is a form of cancer that impacts the lymphatic system, which plays a crucial role in defending the body against infections and illnesses. It is characterized by the atypical proliferation of lymphocytes, a type of white blood cell, which can form tumors in the lymph nodes, bone marrow, spleen, etc. Lymphoma is usually treated using a combination of targeted therapy, chemotherapy, and radiation therapy. In recent years, there has been a growing interest in the development of new drugs to treat lymphoma, which has led to the discovery of several promising compounds. The primary targets for lymphoma treatment have been identified as Bruton's tyrosine kinase (BTK), phosphoinositide3-kinase (PI3K), histone deacetylase (HDAC), and DNA polymerase (POLA). This review aims to provide an overview of the clinical applications and synthesis of several notable drugs approved to treat lymphoma, to expedite the exploration of more potent novel medications for the management of lymphoma.
Collapse
Affiliation(s)
- Yuan-Yuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing-Yi Zhang
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, 450044, China.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin, 133002, China.
| | - Peng Nie
- Medicinal Chemistry, Rega Institute of Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Hua Gao
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
21
|
Chen G, Bao B, Cheng Y, Tian M, Song J, Zheng L, Tong Q. Acetyl-CoA metabolism as a therapeutic target for cancer. Biomed Pharmacother 2023; 168:115741. [PMID: 37864899 DOI: 10.1016/j.biopha.2023.115741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023] Open
Abstract
Acetyl-coenzyme A (acetyl-CoA), an essential metabolite, not only takes part in numerous intracellular metabolic processes, powers the tricarboxylic acid cycle, serves as a key hub for the biosynthesis of fatty acids and isoprenoids, but also serves as a signaling substrate for acetylation reactions in post-translational modification of proteins, which is crucial for the epigenetic inheritance of cells. Acetyl-CoA links lipid metabolism with histone acetylation to create a more intricate regulatory system that affects the growth, aggressiveness, and drug resistance of malignancies such as glioblastoma, breast cancer, and hepatocellular carcinoma. These fascinating advances in the knowledge of acetyl-CoA metabolism during carcinogenesis and normal physiology have raised interest regarding its modulation in malignancies. In this review, we provide an overview of the regulation and cancer relevance of main metabolic pathways in which acetyl-CoA participates. We also summarize the role of acetyl-CoA in the metabolic reprogramming and stress regulation of cancer cells, as well as medical application of inhibitors targeting its dysregulation in therapeutic intervention of cancers.
Collapse
Affiliation(s)
- Guo Chen
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Minxiu Tian
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Jiyu Song
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China.
| |
Collapse
|
22
|
Chen X, Wang J, Zhao P, Dang B, Liang T, Steimbach RR, Miller AK, Liu J, Wang X, Zhang T, Luan X, Hu J, Gao J. Tetrahydro-β-carboline derivatives as potent histone deacetylase 6 inhibitors with broad-spectrum antiproliferative activity. Eur J Med Chem 2023; 260:115776. [PMID: 37660484 DOI: 10.1016/j.ejmech.2023.115776] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
A series of tetrahydro-β-carboline (THβC)-based hydroxamic acids were rationally designed and synthesized as novel selective HDAC6 inhibitors (sHDAC6is) by the application of scaffold hopping strategy. Several THβC analogues were highly potent (IC50 < 5 nM) and selective against HDAC6 enzyme and exhibited good antiproliferative activity against human multiple myeloma (MM) cell. Molecular docking interpreted the structure activity relationship (SAR). Target engagement of HDAC6 was confirmed in RPMI-8226 cells using the WB assay. In vitro, (1S, 3R)-1-(4-chlorophenyl)-N-(4-(hydroxycarbamoyl)benzyl)-2,3,4,9-tetrahydro-1H-pyrido[3, 4-b]indole-3-carboxamide (14g) showed potent broad antiproliferative activity against various tumors including leukemia, colon cancer, melanoma, and breast cancer cell lines, better than ACY-1215. Moreover, 14g also showed good pharmacokinetics properties in mice via oral administration.
Collapse
Affiliation(s)
- Xin Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| | - Jiayun Wang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Peng Zhao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Baiyun Dang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Ting Liang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Raphael R Steimbach
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Biosciences Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - Aubry K Miller
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Jia Liu
- Pharmaceutical Animal Experimental Center, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xin Wang
- Department of Clinical Research Center, Chia Tai Tianqing Pharmaceutical Group Co.,Ltd, Jiangsu, China
| | - Tongtong Zhang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Xiaofa Luan
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Jiadong Hu
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, 24 Weihui Road, Yangling, 712100, Shaanxi, PR China.
| | - Jinming Gao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
23
|
Li A, Zheng W, Xiao B, Huang W, Li L, Luo M, Liu Z, Chu B, Jiang Y. Design, synthesis and biological evaluation of pyrimidine base hydroxamic acid derivatives as dual JMJD3 and HDAC inhibitors. Bioorg Med Chem Lett 2023; 94:129466. [PMID: 37660833 DOI: 10.1016/j.bmcl.2023.129466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
The Jumonji domain-containing protein demethylase 3 (JMJD3) and histone deacetylase (HADC) are related to various cancers and regard as antitumor targets for drug discovery. In this study, based on rational drug design strategy, we designed and synthesized a series of pyrimidine derivatives with hydroxamic acid as novel dual JMJD3 and HDAC inhibitors for synergistic cancer treatment. Compound A5b exhibited inhibitory potency against JMJD3 and HDAC1/6 simultaneously and favorable cytotoxicity against human cancer cells such as A549 and U937. Furthermore, mechanistic studies showed that A5b treatment in A549 cells increased the hypermethylation of histone H3K27 and hyperacetylation of H3K9, suppressed clonogenicity, migration and invasion of cancer cells. Besides, A5b induced apoptosis via the cleavage of caspase-7 and PARP, and G1 cell cycle arrest via upregulated p21 expression. All these results suggested that A5b was the first dual inhibitor against JMJD3 and HDAC and can be a potential compound for cancer therapy.
Collapse
Affiliation(s)
- Anqi Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenwen Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Boren Xiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenjun Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Lulu Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Minglang Luo
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Zijian Liu
- Shenzhen Bay Biopharm Co., Ltd, Shenzhen 518057, China; Shenzhen Winkey Technology Co., Ltd, Shenzhen 518055, China.
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Yuyang Jiang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
24
|
Kugler E, Madiwale S, Yong D, Thoms JAI, Birger Y, Sykes DB, Schmoellerl J, Drakul A, Priebe V, Yassin M, Aqaqe N, Rein A, Fishman H, Geron I, Chen CW, Raught B, Liu Q, Ogana H, Liedke E, Bourquin JP, Zuber J, Milyavsky M, Pimanda J, Privé GG, Izraeli S. The NCOR-HDAC3 co-repressive complex modulates the leukemogenic potential of the transcription factor ERG. Nat Commun 2023; 14:5871. [PMID: 37735473 PMCID: PMC10514085 DOI: 10.1038/s41467-023-41067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
The ERG (ETS-related gene) transcription factor is linked to various types of cancer, including leukemia. However, the specific ERG domains and co-factors contributing to leukemogenesis are poorly understood. Drug targeting a transcription factor such as ERG is challenging. Our study reveals the critical role of a conserved amino acid, proline, at position 199, located at the 3' end of the PNT (pointed) domain, in ERG's ability to induce leukemia. P199 is necessary for ERG to promote self-renewal, prevent myeloid differentiation in hematopoietic progenitor cells, and initiate leukemia in mouse models. Here we show that P199 facilitates ERG's interaction with the NCoR-HDAC3 co-repressor complex. Inhibiting HDAC3 reduces the growth of ERG-dependent leukemic and prostate cancer cells, indicating that the interaction between ERG and the NCoR-HDAC3 co-repressor complex is crucial for its oncogenic activity. Thus, targeting this interaction may offer a potential therapeutic intervention.
Collapse
Affiliation(s)
- Eitan Kugler
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Shreyas Madiwale
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Darren Yong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Julie A I Thoms
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Yehudit Birger
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA & Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Johannes Schmoellerl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Aneta Drakul
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Valdemar Priebe
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nasma Aqaqe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avigail Rein
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Hila Fishman
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Ifat Geron
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Qiao Liu
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Elisabeth Liedke
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - John Pimanda
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Gilbert G Privé
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| | - Shai Izraeli
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| |
Collapse
|
25
|
Omidkhoda N, Mahdiani S, Samadi S, Rahimi H, Mohammadpour AH. Efficacy and Safety of Valproic Acid in Myelodysplastic Syndrome and Acute Myeloid Leukemia; a Narrative Review. Drug Res (Stuttg) 2023; 73:378-387. [PMID: 37220791 DOI: 10.1055/a-2088-3718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Loads of new therapeutic regimes have been turned up to manage Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), particularly in elderly patients who are unfit for intensive chemotherapy. Despite accumulating research, the best MDS and AML management approach is indeterminate. Myelodysplastic syndrome implies a group of various hematopoietic stem cell disorders that may progress to acute myeloid leukemia. These disorders are more frequent in older adults. To the high rate of morbidity and abundant toxicities related to the therapeutic approaches, also, the treatment would be challenging. The clinical effectiveness of valproic acid, a histone deacetylase inhibitor, in MDS and AML patients is unknown, even though it has demonstrated positive activities to promote differentiation and apoptosis in cancer cells. We investigated the clinical research on the effects of valproic acid in conjunction with various drugs, including low-dose cytarabine, all-trans retinoic acid, DNA-hypomethylating agents, hydrazine, and theophylline. We conclude that VPA is a safe and effective treatment option for MDS and AML patients, particularly when used in conjunction with all-trans retinoic acid, DNA-hypomethylating drugs, and hydralazine. However, more randomized clinical studies are required to identify an ideal regimen.
Collapse
Affiliation(s)
- Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Samadi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Rahimi
- Department of Internal Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Zaghi M, Banfi F, Massimino L, Volpin M, Bellini E, Brusco S, Merelli I, Barone C, Bruni M, Bossini L, Lamparelli LA, Pintado L, D'Aliberti D, Spinelli S, Mologni L, Colasante G, Ungaro F, Cioni JM, Azzoni E, Piazza R, Montini E, Broccoli V, Sessa A. Balanced SET levels favor the correct enhancer repertoire during cell fate acquisition. Nat Commun 2023; 14:3212. [PMID: 37270547 DOI: 10.1038/s41467-023-39043-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
Within the chromatin, distal elements interact with promoters to regulate specific transcriptional programs. Histone acetylation, interfering with the net charges of the nucleosomes, is a key player in this regulation. Here, we report that the oncoprotein SET is a critical determinant for the levels of histone acetylation within enhancers. We disclose that a condition in which SET is accumulated, the severe Schinzel-Giedion Syndrome (SGS), is characterized by a failure in the usage of the distal regulatory regions typically employed during fate commitment. This is accompanied by the usage of alternative enhancers leading to a massive rewiring of the distal control of the gene transcription. This represents a (mal)adaptive mechanism that, on one side, allows to achieve a certain degree of differentiation, while on the other affects the fine and corrected maturation of the cells. Thus, we propose the differential in cis-regulation as a contributing factor to the pathological basis of SGS and possibly other the SET-related disorders in humans.
Collapse
Affiliation(s)
- Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Federica Banfi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Luca Massimino
- Esperimental Gastroenterology Unit, Division of Immunology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Monica Volpin
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget); IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Edoardo Bellini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Simone Brusco
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Ivan Merelli
- CNR Institute of Biomedical Technologies, 20090, Segrate, Italy
| | - Cristiana Barone
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Michela Bruni
- RNA biology of the Neuron Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Linda Bossini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Luigi Antonio Lamparelli
- Esperimental Gastroenterology Unit, Division of Immunology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Laura Pintado
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Deborah D'Aliberti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Silvia Spinelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Luca Mologni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Federica Ungaro
- Esperimental Gastroenterology Unit, Division of Immunology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Jean-Michel Cioni
- RNA biology of the Neuron Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Rocco Piazza
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget); IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
| |
Collapse
|
27
|
Young D, Guha C, Sidoli S. The role of histone H3 lysine demethylases in glioblastoma. Cancer Metastasis Rev 2023; 42:445-454. [PMID: 37286866 DOI: 10.1007/s10555-023-10114-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults with an average survival of 15-18 months. Part of its malignancy derives from epigenetic regulation that occurs as the tumor develops and after therapeutic treatment. Specifically, enzymes involved in removing methylations from histone proteins on chromatin, i.e., lysine demethylases (KDMs), have a significant impact on GBM biology and reoccurrence. This knowledge has paved the way to considering KDMs as potential targets for GBM treatment. For example, increases in trimethylation of histone H3 on the lysine 9 residue (H3K9me3) via inhibition of KDM4C and KDM7A has been shown to lead to cell death in Glioblastoma initiating cells. KDM6 has been shown to drive Glioma resistance to receptor tyrosine kinase inhibitors and its inhibition decreases tumor resistance. In addition, increased expression of the histone methyltransferase MLL4 and UTX histone demethylase are associated with prolonged survival in a subset of GBM patients, potentially by regulating histone methylation on the promoter of the mgmt gene. Thus, the complexity of how histone modifiers contribute to glioblastoma pathology and disease progression is yet to be fully understood. To date, most of the current work on histone modifying enzymes in GBM are centered upon histone H3 demethylase enzymes. In this mini-review, we summarize the current knowledge on the role of histone H3 demethylase enzymes in Glioblastoma tumor biology and therapy resistance. The objective of this work is to highlight the current and future potential areas of research for GBM epigenetics therapy.
Collapse
Affiliation(s)
- Dejauwne Young
- Department of Biochemistry, Albert Einstein College of Medicine, The Bronx, New York City, NY, 10461, USA
- Department of Radiation Oncology, Department of Pathology, Department of Urology, Albert Einstein College of Medicine, The Bronx, New York City, NY, 10461, USA
| | - Chandan Guha
- Department of Radiation Oncology, Department of Pathology, Department of Urology, Albert Einstein College of Medicine, The Bronx, New York City, NY, 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, The Bronx, New York City, NY, 10461, USA.
| |
Collapse
|
28
|
Chou PJ, Sarwar MS, Wang L, Wu R, Li S, Hudlikar RR, Wang Y, Su X, Kong AN. Metabolomic, DNA Methylomic, and Transcriptomic Profiling of Suberoylanilide Hydroxamic Acid Effects on LPS-Exposed Lung Epithelial Cells. Cancer Prev Res (Phila) 2023; 16:321-332. [PMID: 36867722 PMCID: PMC10238674 DOI: 10.1158/1940-6207.capr-22-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/12/2022] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase (HDAC) inhibitor with anticancer effects via epigenetic and non-epigenetic mechanisms. The role of SAHA in metabolic rewiring and epigenomic reprogramming to inhibit pro-tumorigenic cascades in lung cancer remains unknown. In this study, we aimed to investigate the regulation of mitochondrial metabolism, DNA methylome reprogramming, and transcriptomic gene expression by SAHA in lipopolysaccharide (LPS)-induced inflammatory model of lung epithelial BEAS-2B cells. LC/MS was used for metabolomic analysis, while next-generation sequencing was done to study epigenetic changes. The metabolomic study reveals that SAHA treatment significantly regulated methionine, glutathione, and nicotinamide metabolism with alteration of the metabolite levels of methionine, S-adenosylmethionine, S-adenosylhomocysteine, glutathione, nicotinamide, 1-methylnicotinamide, and nicotinamide adenine dinucleotide in BEAS-2B cells. Epigenomic CpG methyl-seq shows SAHA revoked a list of differentially methylated regions in the promoter region of the genes, such as HDAC11, miR4509-1, and miR3191. Transcriptomic RNA sequencing (RNA-seq) reveals SAHA abrogated LPS-induced differentially expressed genes encoding proinflammatory cytokines, including interleukin 1α (IL1α), IL1β, IL2, IL6, IL24, and IL32. Integrative analysis of DNA methylome-RNA transcriptome displays a list of genes, of which CpG methylation correlated with changes in gene expression. qPCR validation of transcriptomic RNA-seq data shows that SAHA treatment significantly reduced the LPS-induced mRNA levels of IL1β, IL6, DNA methyltransferase 1 (DNMT1), and DNMT3A in BEAS-2B cells. Altogether, SAHA treatment alters the mitochondrial metabolism, epigenetic CpG methylation, and transcriptomic gene expression to inhibit LPS-induced inflammatory responses in lung epithelial cells, which may provide novel molecular targets to inhibit the inflammation component of lung carcinogenesis. PREVENTION RELEVANCE Inflammation increases the risk of lung cancer and blocking inflammation could reduce the incidence of lung cancer. Herein, we demonstrate that histone deacetylase inhibitor suberoylanilide hydroxamic acid regulates metabolic rewiring and epigenetic reprogramming to attenuate lipopolysaccharide-driven inflammation in lung epithelial cells.
Collapse
Affiliation(s)
- Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rasika R Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
29
|
Luo G, Liu B, Fu T, Liu Y, Li B, Li N, Geng Q. The Role of Histone Deacetylases in Acute Lung Injury-Friend or Foe. Int J Mol Sci 2023; 24:ijms24097876. [PMID: 37175583 PMCID: PMC10178380 DOI: 10.3390/ijms24097876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lung injury (ALI), caused by intrapulmonary or extrapulmonary factors such as pneumonia, shock, and sepsis, eventually disrupts the alveolar-capillary barrier, resulting in diffuse pulmonary oedema and microatasis, manifested by refractory hypoxemia, and respiratory distress. Not only is ALI highly lethal, but even if a patient survives, there are also multiple sequelae. Currently, there is no better treatment than supportive care, and we urgently need to find new targets to improve ALI. Histone deacetylases (HDACs) are epigenetically important enzymes that, together with histone acetylases (HATs), regulate the acetylation levels of histones and non-histones. While HDAC inhibitors (HDACis) play a therapeutic role in cancer, inflammatory, and neurodegenerative diseases, there is also a large body of evidence suggesting the potential of HDACs as therapeutic targets in ALI. This review explores the unique mechanisms of HDACs in different cell types of ALI, including macrophages, pulmonary vascular endothelial cells (VECs), alveolar epithelial cells (AECs), and neutrophils.
Collapse
Affiliation(s)
- Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
30
|
Dong Y, Yan J, Yang M, Xu W, Hu Z, Paquet-Durand F, Jiao K. Inherited Retinal Degeneration: Towards the Development of a Combination Therapy Targeting Histone Deacetylase, Poly (ADP-Ribose) Polymerase, and Calpain. Biomolecules 2023; 13:biom13040581. [PMID: 37189329 DOI: 10.3390/biom13040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Inherited retinal degeneration (IRD) represents a diverse group of gene mutation-induced blinding diseases. In IRD, the loss of photoreceptors is often connected to excessive activation of histone-deacetylase (HDAC), poly-ADP-ribose-polymerase (PARP), and calpain-type proteases (calpain). Moreover, the inhibition of either HDACs, PARPs, or calpains has previously shown promise in preventing photoreceptor cell death, although the relationship between these enzyme groups remains unclear. To explore this further, organotypic retinal explant cultures derived from wild-type mice and rd1 mice as a model for IRD were treated with different combinations of inhibitors specific for HDAC, PARP, and calpain. The outcomes were assessed using in situ activity assays for HDAC, PARP, and calpain, immunostaining for activated calpain-2, and the TUNEL assay for cell death detection. We confirmed that inhibition of either HDAC, PARP, or calpain reduced rd1 mouse photoreceptor degeneration, with the HDAC inhibitor Vorinostat (SAHA) being most effective. Calpain activity was reduced by inhibition of both HDAC and PARP whereas PARP activity was only reduced by HDAC inhibition. Unexpectedly, combined treatment with either PARP and calpain inhibitors or HDAC and calpain inhibitors did not produce synergistic rescue of photoreceptors. Together, these results indicate that in rd1 photoreceptors, HDAC, PARP, and calpain are part of the same degenerative pathway and are activated in a sequence that begins with HDAC and ends with calpain.
Collapse
|
31
|
Hao JR, Hu QM, Yang X, Wei P, Wang HY, Sun N, Gao C. Isoflurane impairs GluN2B-containing NMDA receptors trafficking and cognition via decreasing histone acetylation and EphB2 expression in aged hippocampal neurons. Basic Clin Pharmacol Toxicol 2023; 132:180-196. [PMID: 36321664 DOI: 10.1111/bcpt.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/25/2022] [Accepted: 09/04/2022] [Indexed: 11/18/2022]
Abstract
Perioperative neurocognitive disorders (PND) is a common complication that occurs among elderly patients in the perioperative course. Current clinical evidence has shown that isoflurane exposure could cause cognitive decline, but the exact molecular mechanisms remain unclear. As both NMDARs-dependent synaptic plasticity and histone acetylation play vital roles in processing learning and memory, we postulated that these alternations might occur in the isoflurane-associated PND. Here, we found that isoflurane impaired fear memory in aged mice, decreased GluN2B-containing NMDA receptors phosphorylation and trafficking, as well as the expression of EphB2, a key regulator of synaptic localization of NMDA receptors. We also identified that isoflurane could increase the expression of HDAC2, which was significantly enriched at the ephb2 gene promoter and regulated the transcription of ephb2. Furthermore, we showed that suberoylanilide hydroxamic acid (SAHA), a nonselective HDAC inhibitor or knocking-down HDAC2 rescued the cognitive dysfunction in isoflurane-treated aged mice via increasing acetylation of H3Ac, expression of EphB2 and promoting NMDA receptor trafficking. Collectively, our study highlighted the crucial role of histone posttranslational modifications for EphB2-GluN2B signals in isoflurane-associated PND, and modulating HDAC2 might be a new therapeutic strategy for isoflurane-associated PND.
Collapse
Affiliation(s)
- Jing-Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiu-Mei Hu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiu Yang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pan Wei
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hu-Yi Wang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Can Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China.,School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
32
|
Pal D, Sahu P, Mishra AK, Hagelgans A, Sukocheva O. Histone Deacetylase Inhibitors as Cognitive Enhancers and Modifiers of Mood and Behavior. Curr Drug Targets 2023; 24:728-750. [PMID: 36475351 DOI: 10.2174/1389450124666221207090108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Epigenetic regulation of gene signalling is one of the fundamental molecular mechanisms for the generation and maintenance of cellular memory. Histone acetylation is a common epigenetic mechanism associated with increased gene transcription in the central nervous system (CNS). Stimulation of gene transcription by histone acetylation is important for the development of CNS-based long-term memory. Histone acetylation is a target for cognitive enhancement via the application of histone deacetylase (HDAC) inhibitors. The promising potential of HDAC inhibitors has been observed in the treatment of several neurodevelopmental and neurodegenerative diseases. OBJECTIVE This study assessed the current state of HDAC inhibition as an approach to cognitive enhancement and treatment of neurodegenerative diseases. Our analysis provides insights into the mechanism of action of HDAC inhibitors, associated epigenetic priming, and describes the therapeutic success and potential complications after unsupervised use of the inhibitors. RESULTS AND CONCLUSION Several chromatin-modifying enzymes play key roles in the regulation of cognitive processes. The importance of HDAC signaling in the brain is highlighted in this review. Recent advancements in the field of cognitive epigenetics are supported by the successful development of various HDAC inhibitors, demonstrating effective treatment of mood-associated disorders. The current review discusses the therapeutic potential of HDAC inhibition and observed complications after mood and cognitive enhancement therapies.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495 009, India
| | - Pooja Sahu
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495 009, India
| | | | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Olga Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, 5042, SA, Australia
| |
Collapse
|
33
|
Kumar A, Emdad L, Fisher PB, Das SK. Targeting epigenetic regulation for cancer therapy using small molecule inhibitors. Adv Cancer Res 2023; 158:73-161. [PMID: 36990539 DOI: 10.1016/bs.acr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cancer cells display pervasive changes in DNA methylation, disrupted patterns of histone posttranslational modification, chromatin composition or organization and regulatory element activities that alter normal programs of gene expression. It is becoming increasingly clear that disturbances in the epigenome are hallmarks of cancer, which are targetable and represent attractive starting points for drug creation. Remarkable progress has been made in the past decades in discovering and developing epigenetic-based small molecule inhibitors. Recently, epigenetic-targeted agents in hematologic malignancies and solid tumors have been identified and these agents are either in current clinical trials or approved for treatment. However, epigenetic drug applications face many challenges, including low selectivity, poor bioavailability, instability and acquired drug resistance. New multidisciplinary approaches are being designed to overcome these limitations, e.g., applications of machine learning, drug repurposing, high throughput virtual screening technologies, to identify selective compounds with improved stability and better bioavailability. We provide an overview of the key proteins that mediate epigenetic regulation that encompass histone and DNA modifications and discuss effector proteins that affect the organization of chromatin structure and function as well as presently available inhibitors as potential drugs. Current anticancer small-molecule inhibitors targeting epigenetic modified enzymes that have been approved by therapeutic regulatory authorities across the world are highlighted. Many of these are in different stages of clinical evaluation. We also assess emerging strategies for combinatorial approaches of epigenetic drugs with immunotherapy, standard chemotherapy or other classes of agents and advances in the design of novel epigenetic therapies.
Collapse
|
34
|
Wei Z, Li Y, Ali F, Wang Y, Liu J, Yang Z, Wang Z, Xing Y, Li F. Transcriptomic analysis reveals the key role of histone deacetylation via mediating different phytohormone signalings in fiber initiation of cotton. Cell Biosci 2022; 12:107. [PMID: 35831870 PMCID: PMC9277824 DOI: 10.1186/s13578-022-00840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background Histone deacetylation is one of the most important epigenetic modifications and plays diverse roles in plant development. However, the detailed functions and mechanisms of histone deacetylation in fiber development of cotton are still unclear. HDAC inhibitors (HDACi) have been commonly used to study the molecular mechanism underlying histone deacetylation or to facilitate disease therapy in humans through hindering the histone deacetylase catalytic activity. Trichostatin A (TSA)—the most widely used HDACi has been extensively employed to determine the role of histone deacetylation on different developmental stages of plants. Results Through in vitro culture of ovules, we observed that exogenous application of TSA was able to inhibit the fiber initiation development. Subsequently, we performed a transcriptomic analysis to reveal the underlying mechanisms. The data showed that TSA treatment resulted in 4209 differentially expressed genes, which were mostly enriched in plant hormone signal transduction, phenylpropanoid biosynthesis, photosynthesis, and carbon metabolism pathways. The phytohormone signal transduction pathways harbor the most differentially expressed genes. Deeper studies showed that some genes promoting auxin, Gibberellic Acid (GA) signaling were down-regulated, while some genes facilitating Abscisic Acid (ABA) and inhibiting Jasmonic Acid (JA) signaling were up-regulated after the TSA treatments. Further analysis of plant hormone contents proved that TSA significantly promoted the accumulation of ABA, JA and GA3. Conclusions Collectively, histone deacetylation can regulate some key genes involved in different phytohormone pathways, and consequently promoting the auxin, GA, and JA signaling, whereas repressing the ABA synthesis and signaling to improve the fiber cell initiation. Moreover, the genes associated with energy metabolism, phenylpropanoid, and glutathione metabolism were also regulated by histone deacetylation. The above results provided novel clues to illuminate the underlying mechanisms of epigenetic modifications as well as related different phytohormones in fiber cell differentiation, which is also very valuable for the molecular breeding of higher quality cotton. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00840-4.
Collapse
|
35
|
Dang F, Wei W. Targeting the acetylation signaling pathway in cancer therapy. Semin Cancer Biol 2022; 85:209-218. [PMID: 33705871 PMCID: PMC8423867 DOI: 10.1016/j.semcancer.2021.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Acetylation represents one of the major post-translational protein modifications, which introduces an acetyl functional group into amino acids such as the lysine residue to yield an acetate ester bond, neutralizing its positive charge. Regulation of protein functions by acetylation occurs in multiple ways, such as affecting protein stability, activity, localization, and interaction with other proteins or DNA. It has been well documented that the recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery can modulate histone acetylation status, which is directly involved in the dynamic regulation of genes controlling cell proliferation and division. Dysregulation of gene expression is involved in tumorigenesis and aberrant activation of histone deacetylases has been reported in several types of cancer. Moreover, there is growing body of evidence showing that acetylation is widely involved in non-histone proteins to impact their roles in various cellular processes including tumorigenesis. As such, small molecular compounds inhibiting HAT or HDAC enzymatic activities have been developed and investigated for therapeutic purpose. Here we review the recent progress in our understanding of protein acetylation and discuss the therapeutic potential of targeting the acetylation signaling pathway in cancer.
Collapse
Affiliation(s)
- Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
36
|
Herp D, Ridinger J, Robaa D, Shinsky SA, Schmidtkunz K, Yesiloglu TZ, Bayer T, Steimbach RR, Herbst‐Gervasoni CJ, Merz A, Romier C, Sehr P, Gunkel N, Miller AK, Christianson DW, Oehme I, Sippl W, Jung M. First Fluorescent Acetylspermidine Deacetylation Assay for HDAC10 Identifies Selective Inhibitors with Cellular Target Engagement. Chembiochem 2022; 23:e202200180. [PMID: 35608330 PMCID: PMC9308754 DOI: 10.1002/cbic.202200180] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Indexed: 11/06/2022]
Abstract
Histone deacetylases (HDACs) are important epigenetic regulators involved in many diseases, especially cancer. Five HDAC inhibitors have been approved for anticancer therapy and many are in clinical trials. Among the 11 zinc-dependent HDACs, HDAC10 has received relatively little attention by drug discovery campaigns, despite its involvement, e. g., in the pathogenesis of neuroblastoma. This is due in part to a lack of robust enzymatic conversion assays. In contrast to the protein lysine deacetylase and deacylase activity of most other HDAC subtypes, it has recently been shown that HDAC10 has strong preferences for deacetylation of oligoamine substrates like acetyl-putrescine or -spermidine. Hence, it is also termed a polyamine deacetylase (PDAC). Here, we present the first fluorescent enzymatic conversion assay for HDAC10 using an aminocoumarin-labelled acetyl-spermidine derivative to measure its PDAC activity, which is suitable for high-throughput screening. Using this assay, we identified potent inhibitors of HDAC10-mediated spermidine deacetylation in vitro. Based on the oligoamine preference of HDAC10, we also designed inhibitors with a basic moiety in appropriate distance to the zinc binding hydroxamate that showed potent inhibition of HDAC10 with high selectivity, and we solved a HDAC10-inhibitor structure using X-ray crystallography. We could demonstrate selective cellular target engagement for HDAC10 but a lysosomal phenotype in neuroblastoma cells that was previously associated with HDAC10 inhibition was not observed. Thus, we have developed new chemical probes for HDAC10 that allow further clarification of the biological role of this enzyme.
Collapse
Affiliation(s)
- Daniel Herp
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstraße 2579104FreiburgGermany
| | - Johannes Ridinger
- Hopp Children's Cancer Center Heidelberg (KiTZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Dina Robaa
- Institute of PharmacyMartin-Luther University of Halle-Wittenberg06120Halle (Saale)Halle/SaaleGermany
| | - Stephen A. Shinsky
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of Pennsylvania231 South 34th StreetPhiladelphiaPennsylvania19104-6323USA
| | - Karin Schmidtkunz
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstraße 2579104FreiburgGermany
| | - Talha Z. Yesiloglu
- Institute of PharmacyMartin-Luther University of Halle-Wittenberg06120Halle (Saale)Halle/SaaleGermany
| | - Theresa Bayer
- Institute of PharmacyMartin-Luther University of Halle-Wittenberg06120Halle (Saale)Halle/SaaleGermany
| | | | - Corey J. Herbst‐Gervasoni
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of Pennsylvania231 South 34th StreetPhiladelphiaPennsylvania19104-6323USA
| | - Annika Merz
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstraße 2579104FreiburgGermany
| | - Christophe Romier
- Université de StrasbourgCNRSINSERMInstitut de Génétique et de Biologie Moléculaire et CellulaireUMR 7104, U 125867404IllkirchFrance
- IGBMCDepartment of Integrated Structural Biology1 rue Laurent Fries, B.P. 1014267404Illkirch CedexFrance
| | - Peter Sehr
- Chemical Biology Core FacilityEuropean Molecular Biology Laboratory69117HeidelbergGermany
| | - Nikolas Gunkel
- German Cancer Consortium (DKTK)Im Neuenheimer Feld 28069120HeidelbergGermany
- Cancer Drug Development GroupIm Neuenheimer Feld 28069120HeidelbergGermany
| | - Aubry K. Miller
- German Cancer Consortium (DKTK)Im Neuenheimer Feld 28069120HeidelbergGermany
- Cancer Drug Development GroupIm Neuenheimer Feld 28069120HeidelbergGermany
| | - David W. Christianson
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of Pennsylvania231 South 34th StreetPhiladelphiaPennsylvania19104-6323USA
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Wolfgang Sippl
- Institute of PharmacyMartin-Luther University of Halle-Wittenberg06120Halle (Saale)Halle/SaaleGermany
| | - Manfred Jung
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstraße 2579104FreiburgGermany
- German Cancer Consortium (DKTK), Partner site FreiburgHugstetter Str. 5579106FreiburgGermany
- CIBSS - Centre for Integrative Biological Signalling StudiesUniversity of Freiburg (Germany)
| |
Collapse
|
37
|
Dushanan R, Weerasinghe S, Dissanayake DP, Senthilinithy R. Implication of Ab Initio, QM/MM, and molecular dynamics calculations on the prediction of the therapeutic potential of some selected HDAC inhibitors. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2097672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ramachandren Dushanan
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nugegoda, Sri Lanka
| | - Samantha Weerasinghe
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | - Rajendram Senthilinithy
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nugegoda, Sri Lanka
| |
Collapse
|
38
|
BRD4 promotes resection and homology-directed repair of DNA double-strand breaks. Nat Commun 2022; 13:3016. [PMID: 35641523 PMCID: PMC9156784 DOI: 10.1038/s41467-022-30787-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Double-strand breaks (DSBs) are one of the most toxic forms of DNA damage and represent a major source of genomic instability. Members of the bromodomain and extra-terminal (BET) protein family are characterized as epigenetic readers that regulate gene expression. However, evidence suggests that BET proteins also play a more direct role in DNA repair. Here, we establish a cell-free system using Xenopus egg extracts to elucidate the gene expression-independent functions of BET proteins in DSB repair. We identify the BET protein BRD4 as a critical regulator of homologous recombination and describe its role in stimulating DNA processing through interactions with the SWI/SNF chromatin remodeling complex and resection machinery. These results establish BRD4 as a multifunctional regulator of chromatin binding that links transcriptional activity and homology-directed repair. BRD4 is a multifunctional regulator of chromatin binding that plays a direct role in DNA double-strand break repair. BRD4 interacts with the SWI/SNF chromatin remodeling complex and resection machinery to promote homologous recombination.
Collapse
|
39
|
Ma X, Zhao M, Wu ZX, Yao J, Zhang L, Wang J, Hu Z, Wei L, Chen ZS. The Histone Deacetylase Inhibitor I13 Induces Differentiation of M2, M3 and M5 Subtypes of Acute Myeloid Leukemia Cells and Leukemic Stem-Like Cells. Front Oncol 2022; 12:855570. [PMID: 35494054 PMCID: PMC9039182 DOI: 10.3389/fonc.2022.855570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by reduced differentiation of myeloid cells and uncontrolled cell proliferation. AML is prone to drug resistance and has a high recurrence rate during treatment with cytarabine-based chemotherapy. Our study aims to explore the cell differentiation effect of a potent histone deacetylase inhibitor (HDACi), I13, and its possible mechanism on AML cell lines (Kasumi-1, KG-1, MOLM-13 and NB4). It has been shown that I13 can significantly inhibit proliferation and colony formation of these AML cells by inducing cell differentiation coupled with cell-cycle exit at G0/G1. Mechanically, I13 presented the property of HDAC inhibition, as assessed by the acetylation of histone H3, which led to the differentiation of Kasumi-1 cells. In addition, the HDAC inhibition of I13 likely dictated the activation of the antigen processing and presentation pathway, which maybe has the potential to promote immune cells to recognize leukemic cells and respond directly against leukemic cells. These results indicated that I13 could induce differentiation of M3 and M5 subtypes of AML cells, M2 subtype AML cells with t(8;21) translocation and leukemic stem-like cells. Therefore, I13 could be an alternative compound which is able to overcome differentiation blocks in AML.
Collapse
Affiliation(s)
- Xiangyu Ma
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Mengjie Zhao
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| | - Jingfang Yao
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jinhong Wang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhenbo Hu
- Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| |
Collapse
|
40
|
Barbier C, Mansour A, Ismailova A, Sarmadi F, Scarlata DA, Bouttier M, Zeitouni C, Wang C, Gleason JL, White JH. Molecular mechanisms of bifunctional vitamin D receptor agonist-histone deacetylase inhibitor hybrid molecules in triple-negative breast cancer. Sci Rep 2022; 12:6745. [PMID: 35468986 PMCID: PMC9038752 DOI: 10.1038/s41598-022-10740-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
The active form of vitamin D, 1,25-dihydroxyvitamin D (1,25D), and its analogues signal through the nuclear vitamin D receptor (VDR), a ligand-regulated transcription factor, and have been extensively investigated as anticancer agents. 1,25D and its analogs have potential in combination therapies because they exhibit synergistic activities with other anticancer agents such as histone deacetylase inhibitors (HDACi). We have developed a series of hybrid molecules that combine HDACi within the backbone of a VDR agonist and thus represent fully integrated bifunctional molecules. They exhibit anti-tumor efficacy in reducing tumor growth and metastases in an aggressive model of triple-negative breast cancer. However, their solubility is limited by their hydrophobic diarylpentane cores. Our goals here were two-fold: (1) to improve the solubility of hybrids by introducing nitrogen into diarylpentane cores, and (2) to investigate the molecular mechanisms underlying their anti-tumor efficacy by performing comparative gene expression profiling studies with 1,25D and the potent HDACi suberoylanilide hydroxamic acid (SAHA). We found that substituting aryl with pyrydyl rings did not sacrifice bifunctionality and modestly improved solubility. Notably, one compound, AM-193, displayed enhanced potency as a VDR agonist and in cellular assays of cytotoxicity. RNAseq studies in triple negative breast cancer cells revealed that gene expression profiles of hybrids were very similar to that of 1,25D, as was that observed with 1,25D and SAHA combined. The effects of SAHA alone on gene expression were limited and distinct from those 1,25D or hybrids. The combined results suggest that efficacy of hybrids arises from targeting HDACs that do not have a direct role in gene regulation. Moreover, pathways analysis revealed that hybrids regulate numerous genes controlling immune cell infiltration into tumors and suppress the expression of several secreted molecules that promote breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Camille Barbier
- Departments of Physiology, McGill University, Montreal, QC, Canada
| | - Ali Mansour
- Departments of Chemistry, McGill University, Montreal, QC, Canada
| | - Aiten Ismailova
- Departments of Physiology, McGill University, Montreal, QC, Canada
| | - Fatemeh Sarmadi
- Departments of Physiology, McGill University, Montreal, QC, Canada
| | - David A Scarlata
- Departments of Chemistry, McGill University, Montreal, QC, Canada
| | | | - Camille Zeitouni
- Departments of Physiology, McGill University, Montreal, QC, Canada
| | - Catherine Wang
- Departments of Physiology, McGill University, Montreal, QC, Canada
| | - James L Gleason
- Departments of Chemistry, McGill University, Montreal, QC, Canada.
| | - John H White
- Departments of Physiology, McGill University, Montreal, QC, Canada.
- Departments of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
41
|
Barone S, Cassese E, Alfano AI, Brindisi M, Summa V. Chasing a Breath of Fresh Air in Cystic Fibrosis (CF): Therapeutic Potential of Selective HDAC6 Inhibitors to Tackle Multiple Pathways in CF Pathophysiology. J Med Chem 2022; 65:3080-3097. [PMID: 35148101 PMCID: PMC8883472 DOI: 10.1021/acs.jmedchem.1c02067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
Compelling new support
has been provided for histone deacetylase
isoform 6 (HDAC6) as a common thread in the generation of the dysregulated
proinflammatory and fibrotic phenotype in cystic fibrosis (CF). HDAC6
also plays a crucial role in bacterial clearance or killing as a direct
consequence of its effects on CF immune responses. Inhibiting HDAC6
functions thus eventually represents an innovative and effective strategy
to tackle multiple aspects of CF-associated lung disease. In this
Perspective, we not only showcase the latest evidence linking HDAC(6)
activity and expression with CF phenotype but also track the new dawn
of HDAC(6) modulators in CF and explore potentialities and future
perspectives in the field.
Collapse
Affiliation(s)
- Simona Barone
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Emilia Cassese
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Antonella Ilenia Alfano
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| |
Collapse
|
42
|
Sunil AA, Skaria T. Novel regulators of airway epithelial barrier function during inflammation: potential targets for drug repurposing. Expert Opin Ther Targets 2022; 26:119-132. [PMID: 35085478 DOI: 10.1080/14728222.2022.2035720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Endogenous inflammatory signaling molecules resulting from deregulated immune responses, can impair airway epithelial barrier function and predispose individuals with airway inflammatory diseases to exacerbations and lung infections. Targeting the specific endogenous factors disrupting the airway barrier therefore has the potential to prevent disease exacerbations without affecting the protective immune responses. AREAS COVERED Here, we review the endogenous factors and specific mechanisms disrupting airway epithelial barrier during inflammation and reflect on whether these factors can be specifically targeted by repurposed existing drugs. Literature search was conducted using PubMed, drug database of US FDA and European Medicines Agency until and including September 2021. EXPERT OPINION IL-4 and IL-13 signaling are the major pathways disrupting the airway epithelial barrier during airway inflammation. However, blocking IL-4/IL-13 signaling may adversely affect protective immune responses and increase susceptibility of host to infections. An alternate approach to modulate airway epithelial barrier function involves targeting specific downstream component of IL-4/IL-13 signaling or different inflammatory mediators responsible for regulation of airway epithelial barrier. Airway epithelium-targeted therapy using inhibitors of HDAC, HSP90, MIF, mTOR, IL-17A and VEGF may be a potential strategy to prevent airway epithelial barrier dysfunction in airway inflammatory diseases.
Collapse
Affiliation(s)
- Ahsan Anjoom Sunil
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
43
|
Zou Z, Iwata M, Yamanishi Y, Oki S. Epigenetic landscape of drug responses revealed through large-scale ChIP-seq data analyses. BMC Bioinformatics 2022; 23:51. [PMID: 35073843 PMCID: PMC8785570 DOI: 10.1186/s12859-022-04571-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Elucidating the modes of action (MoAs) of drugs and drug candidate compounds is critical for guiding translation from drug discovery to clinical application. Despite the development of several data-driven approaches for predicting chemical–disease associations, the molecular cues that organize the epigenetic landscape of drug responses remain poorly understood.
Results
With the use of a computational method, we attempted to elucidate the epigenetic landscape of drug responses, in terms of transcription factors (TFs), through large-scale ChIP-seq data analyses. In the algorithm, we systematically identified TFs that regulate the expression of chemically induced genes by integrating transcriptome data from chemical induction experiments and almost all publicly available ChIP-seq data (consisting of 13,558 experiments). By relating the resultant chemical–TF associations to a repository of associated proteins for a wide range of diseases, we made a comprehensive prediction of chemical–TF–disease associations, which could then be used to account for drug MoAs. Using this approach, we predicted that: (1) cisplatin promotes the anti-tumor activity of TP53 family members but suppresses the cancer-inducing function of MYCs; (2) inhibition of RELA and E2F1 is pivotal for leflunomide to exhibit antiproliferative activity; and (3) CHD8 mediates valproic acid-induced autism.
Conclusions
Our proposed approach has the potential to elucidate the MoAs for both approved drugs and candidate compounds from an epigenetic perspective, thereby revealing new therapeutic targets, and to guide the discovery of unexpected therapeutic effects, side effects, and novel targets and actions.
Collapse
|
44
|
Abstract
The development of therapies to eliminate the latent HIV-1 reservoir is hampered by our incomplete understanding of the biomolecular mechanism governing HIV-1 latency. To further complicate matters, recent single cell RNA-seq studies reported extensive heterogeneity between latently HIV-1-infected primary T cells, implying that latent HIV-1 infection can persist in greatly differing host cell environments. We here show that transcriptomic heterogeneity is also found between latently infected T cell lines, which allowed us to study the underlying mechanisms of intercell heterogeneity at high signal resolution. Latently infected T cells exhibited a de-differentiated phenotype, characterized by the loss of T cell-specific markers and gene regulation profiles reminiscent of hematopoietic stem cells (HSC). These changes had functional consequences. As reported for stem cells, latently HIV-1 infected T cells efficiently forced lentiviral superinfections into a latent state and favored glycolysis. As a result, metabolic reprogramming or cell re-differentiation destabilized latent infection. Guided by these findings, data-mining of single cell RNA-seq data of latently HIV-1 infected primary T cells from patients revealed the presence of similar dedifferentiation motifs. >20% of the highly detectable genes that were differentially regulated in latently infected cells were associated with hematopoietic lineage development (e.g. HUWE1, IRF4, PRDM1, BATF3, TOX, ID2, IKZF3, CDK6) or were hematopoietic markers (SRGN; hematopoietic proteoglycan core protein). The data add to evidence that the biomolecular phenotype of latently HIV-1 infected cells differs from normal T cells and strategies to address their differential phenotype need to be considered in the design of therapeutic cure interventions. IMPORTANCE HIV-1 persists in a latent reservoir in memory CD4 T cells for the lifetime of a patient. Understanding the biomolecular mechanisms used by the host cells to suppress viral expression will provide essential insights required to develop curative therapeutic interventions. Unfortunately, our current understanding of these control mechanisms is still limited. By studying gene expression profiles, we demonstrated that latently HIV-1-infected T cells have a de-differentiated T cell phenotype. Software-based data integration allowed for the identification of drug targets that would re-differentiate viral host cells and, in extension, destabilize latent HIV-1 infection events. The importance of the presented data lies within the clear demonstration that HIV-1 latency is a host cell phenomenon. As such, therapeutic strategies must first restore proper host cell functionality to accomplish efficient HIV-1 reactivation.
Collapse
|
45
|
Pozo MR, Meredith GW, Entcheva E. Human iPSC-Cardiomyocytes as an Experimental Model to Study Epigenetic Modifiers of Electrophysiology. Cells 2022; 11:200. [PMID: 35053315 PMCID: PMC8774228 DOI: 10.3390/cells11020200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
The epigenetic landscape and the responses to pharmacological epigenetic regulators in each human are unique. Classes of epigenetic writers and erasers, such as histone acetyltransferases, HATs, and histone deacetylases, HDACs, control DNA acetylation/deacetylation and chromatin accessibility, thus exerting transcriptional control in a tissue- and person-specific manner. Rapid development of novel pharmacological agents in clinical testing-HDAC inhibitors (HDACi)-targets these master regulators as common means of therapeutic intervention in cancer and immune diseases. The action of these epigenetic modulators is much less explored for cardiac tissue, yet all new drugs need to be tested for cardiotoxicity. To advance our understanding of chromatin regulation in the heart, and specifically how modulation of DNA acetylation state may affect functional electrophysiological responses, human-induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology can be leveraged as a scalable, high-throughput platform with ability to provide patient-specific insights. This review covers relevant background on the known roles of HATs and HDACs in the heart, the current state of HDACi development, applications, and any adverse cardiac events; it also summarizes relevant differential gene expression data for the adult human heart vs. hiPSC-CMs along with initial transcriptional and functional results from using this new experimental platform to yield insights on epigenetic control of the heart. We focus on the multitude of methodologies and workflows needed to quantify responses to HDACis in hiPSC-CMs. This overview can help highlight the power and the limitations of hiPSC-CMs as a scalable experimental model in capturing epigenetic responses relevant to the human heart.
Collapse
Affiliation(s)
| | | | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA; (M.R.P.); (G.W.M.)
| |
Collapse
|
46
|
Quaas CE, Long DT. Targeting (de)acetylation: A Diversity of Mechanism and Disease. COMPREHENSIVE PHARMACOLOGY 2022:469-492. [DOI: 10.1016/b978-0-12-820472-6.00076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
47
|
Zhai S, Zhang H, Chen R, Wu J, Ai D, Tao S, Cai Y, Zhang JQ, Wang L. Design, synthesis and biological evaluation of novel hybrids targeting mTOR and HDACs for potential treatment of hepatocellular carcinoma. Eur J Med Chem 2021; 225:113824. [PMID: 34509167 DOI: 10.1016/j.ejmech.2021.113824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/19/2021] [Accepted: 08/28/2021] [Indexed: 01/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major contributor to global cancer incidence and mortality. Many pathways are involved in the development of HCC and various proteins including mTOR and HDACs have been identified as potential drug targets for HCC treatment. In the present study, two series of novel hybrid molecules targeting mTOR and HDACs were designed and synthesized based on parent inhibitors (MLN0128 and PP121 for mTOR, SAHA for HDACs) by using a fusion-type molecular hybridization strategy. In vitro antiproliferative assays demonstrated that these novel hybrids with suitable linker lengths exhibited broad cytotoxicity against various cancer cell lines, with significant activity against HepG2 cells. Notably, DI06, an MLN0128-based hybrid, exhibited antiproliferative activity against HepG2 cells with an IC50 value of 1.61 μM, which was comparable to those of both parent drugs (MLN0128, IC50 = 2.13 μM and SAHA, IC50 = 2.26 μM). In vitro enzyme inhibition assays indicated that DI06, DI07 and DI17 (PP121-based hybrid) exhibited nanomolar inhibitory activity against mTOR kinase and HDACs (e.g., HDAC1, HDAC2, HDAC3, HADC6 and HADC8). Cellular studies and western blot analyses uncovered that in HepG2 cells, DI06 and DI17 induced cell apoptosis by targeting mTOR and HDACs, blocked the cell cycle at the G0/G1 phase and suppressed cell migration. The potential binding modes of the hybrids (DI06 and DI17) with mTOR and HDACs were investigated by molecular docking. DI06 displayed better stability in rat liver microsomes than DI07 and DI17. Collectively, DI06 as a novel mTOR and HDACs inhibitor presented here warrants further investigation as a potential treatment of HCC.
Collapse
Affiliation(s)
- Shiyang Zhai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Huimin Zhang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Rui Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Jiangxia Wu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Daiqiao Ai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Shunming Tao
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yike Cai
- Center for Certification and Evaluation, Guangdong Drug Administration, Guangzhou, 510080, China
| | - Ji-Quan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Ling Wang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
48
|
Carbajo-García MC, García-Alcázar Z, Corachán A, Monleón J, Trelis A, Faus A, Pellicer A, Ferrero H. Histone deacetylase inhibition by suberoylanilide hydroxamic acid: a therapeutic approach to treat human uterine leiomyoma. Fertil Steril 2021; 117:433-443. [PMID: 34809976 DOI: 10.1016/j.fertnstert.2021.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To evaluate the effect of inhibition of histone deacetylases (HDACs) by suberoylanilide hydroxamic acid (SAHA) treatment of human uterine leiomyoma primary (HULP) cells in vitro on cell proliferation, cell cycle, extracellular matrix (ECM) formation, and transforming growth factor β3 (TGF-β3) signaling. DESIGN Prospective study comparing uterine leiomyoma (UL) vs. adjacent myometrium (MM) tissue and cells with or without SAHA treatment. SETTING Hospital and university laboratories. PATIENT(S) Women with UL without any hormone treatment. INTERVENTION(S) Myomectomy or hysterectomy surgery in women for leiomyoma disease. MAIN OUTCOME MEASURE(S) HDAC activity was assessed by enzyme-linked immunosorbent assay, and gene expression was assessed by quantitative real-time polymerase chain reaction. Effects of SAHA on HULP cells were analyzed by CellTiter (Promega, Madison, Wisconsin), Western blot, and quantitative real-time polymerase chain reaction. RESULT(S) The expression of HDAC genes (HDAC1, fold change [FC] = 1.65; HDAC3, FC = 2.08; HDAC6, FC = 2.42) and activity (0.56 vs. 0.10 optical density [OD]/h/mg) was significantly increased in UL vs. MM tissue. SAHA decreased HDAC activity in HULP cells but not in MM cells. Cell viability significantly decreased in HULP cells (81.68% at 5 μM SAHA, 73.46% at 10 μM SAHA), but not in MM cells. Proliferating cell nuclear antigen expression was significantly inhibited in SAHA-treated HULP cells (5 μM SAHA, FC = 0.556; 10 μM SAHA, FC = 0.622). Cell cycle markers, including C-MYC (5 μM SAHA, FC = 0.828) and CCND1 (5 μM SAHA, FC = 0.583; 10 μM SAHA, FC = 0.482), were significantly down-regulated after SAHA treatment. SAHA significantly inhibited ECM protein expression, including FIBRONECTIN (5 μM SAHA, FC = 0.815; 10 μM SAHA, FC = 0.673) and COLLAGEN I (5 μM SAHA, FC = 0.599; 10 μM SAHA, FC = 0.635), in HULP cells. TGFβ3 and MMP9 gene expression was also significantly down-regulated by 10 μM SAHA (TGFβ3, FC = 0.596; MMP9, FC = 0.677). CONCLUSION(S) SAHA treatment inhibits cell proliferation, cell cycle, ECM formation, and TGF-β3 signaling in HULP cells, suggesting that histone deacetylation may be useful for treatment of UL.
Collapse
Affiliation(s)
- María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Spain
| | | | - Ana Corachán
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Spain
| | - Javier Monleón
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Amparo Faus
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; IVIRMA Rome, Rome, Italy
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| |
Collapse
|
49
|
Histone Deacetylase Inhibitors: Providing New Insights and Therapeutic Avenues for Unlocking Human Birth. Reprod Sci 2021; 29:3134-3146. [PMID: 34713433 DOI: 10.1007/s43032-021-00778-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023]
Abstract
The pregnant uterus remains relaxed throughout fetal gestation before transforming to a contractile phenotype at term to facilitate birth. Despite ongoing progress, the precise mechanisms that regulate this phenotypic transformation are not yet understood. This knowledge gap limits our understanding of how dysregulation of uterine smooth muscle biology contributes to life-threatening obstetric complications, including preterm birth, and hampers our ability to develop effective therapeutic intervention strategies. Protein acetylation plays a vital role in regulating protein structure, function, and subcellular localization, as well as gene transcription availability through regulating chromatin condensation. Histone deacetylase inhibitors (HDACis) are a class of compounds that block the removal of acetyl functional groups from proteins and, as such, have profound effects on important cellular events, including phenotypic transformation. A large body of data now demonstrates that HDACis have profound effects on pregnant human myometrium. Studies to date show that HDACis operate through both genomic and non-genomic mechanisms to affect myometrial function and phenotype. Interestingly, the effects of HDACis on pregnant myometrium are largely "pro-relaxation," including the direct inhibition of contractile machinery as well as repression of pro-labor genes. The "dual action" effects of HDACis make them a powerful tool for unlocking the regulatory processes that underpin myometrial phenotypic transformation and raises prospects of their therapeutic applications. Here, we review the new insights into human myometrial biology that have garnered through the application of HDACis and explore their potential therapeutic application toward the development of novel preterm birth prevention strategies.
Collapse
|
50
|
Rodriguez FD. Targeting Epigenetic Mechanisms to Treat Alcohol Use Disorders (AUD). Curr Pharm Des 2021; 27:3252-3272. [PMID: 33535943 PMCID: PMC8778698 DOI: 10.2174/1381612827666210203142539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/08/2020] [Indexed: 12/04/2022]
Abstract
BACKGROUND The impact of abusive alcohol consumption on human health is remarkable. According to the World Health Organization (WHO), approximately 3.3 million people die annually because of harmful alcohol consumption (the figure represents around 5.9% of global deaths). Alcohol Use Disorder (AUD) is a chronic disease where individuals exhibit compulsive alcohol drinking and present negative emotional states when they do not drink. In the most severe manifestations of AUD, the individuals lose control over intake despite a decided will to stop drinking. Given the multiple faces and the specific forms of this disease, the term AUD often appears in the plural (AUDs). Since only a few approved pharmacological treatments are available to treat AUD and they do not apply to all individuals or AUD forms, the search for compounds that may help to eliminate the burden of the disease and complement other therapeutical approaches is necessary. METHODS This work reviews recent research focused on the involvement of epigenetic mechanisms in the pathophysiology of AUD. Excessive drinking leads to chronic and compulsive consumption that eventually damages the organism. The central nervous system is a key target and is the focus of this study. The search for the genetic and epigenetic mechanisms behind the intricated dysregulation induced by ethanol will aid researchers in establishing new therapy approaches. CONCLUSION Recent findings in the field of epigenetics are essential and offer new windows for observation and research. The study of small molecules that inhibit key epienzymes involved in nucleosome architecture dynamics is necessary in order to prove their action and specificity in the laboratory and to test their effectivity and safety in clinical trials with selected patients bearing defined alterations caused by ethanol.
Collapse
Affiliation(s)
- F. David Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Salamanca and Group GIR BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| |
Collapse
|