1
|
Nagpal S, Png Yi Jie J, Malinovskaya J, Kovshova T, Jain P, Naik S, Khopade A, Bhowmick S, Shahi P, Chakra A, Bhokari A, Shah V, Gelperina S, Wacker MG. A Design-Conversed Strategy Establishes the Performance Safe Space for Doxorubicin Nanosimilars. ACS NANO 2024; 18:6162-6175. [PMID: 38359902 PMCID: PMC10906076 DOI: 10.1021/acsnano.3c08290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Nanomedicines exhibit multifaceted performances, yet their biopharmaceutics remain poorly understood and present several challenges in the translation from preclinical to clinical research. To address this issue and promote the production of high-quality nanomedicines, a systematic screening of the design space and in vivo performance is necessary. Establishing formulation performance specifications early on enables an informed selection of candidates and promotes the development of nanosimilars. The deconvolution of the pharmacokinetics enables the identification of key characteristics that influence their performances and disposition. Using an in vitro-in vivo rank-order relationship for doxorubicin nanoformulations, we defined in vitro release specifications for Doxil/Caelyx-like follow-on products. Additionally, our model predictions were used to establish the bioequivalence of Lipodox, a nanosimilar of Doxil/Caelyx. Furthermore, a virtual safe space was established, providing crucial insights into expected disposition kinetics and informing formulation development. By addressing bottlenecks in biopharmaceutics and formulation screening, our research advances the translation of nanomedicine from bench to bedside.
Collapse
Affiliation(s)
- Shakti Nagpal
- Department
of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| | - Jordan Png Yi Jie
- Department
of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| | - Julia Malinovskaya
- Dmitry
Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow 125047, Russia
| | - Tatyana Kovshova
- Dmitry
Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow 125047, Russia
| | - Pankaj Jain
- Sun
Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road,
Andheri (East), Mumbai, Maharashtra 400093, India
- Sun
Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat 390 020, India
| | - Sachin Naik
- Sun
Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road,
Andheri (East), Mumbai, Maharashtra 400093, India
- Sun
Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat 390 020, India
| | - Ajay Khopade
- Sun
Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road,
Andheri (East), Mumbai, Maharashtra 400093, India
- Sun
Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat 390 020, India
| | - Subhas Bhowmick
- Sun
Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road,
Andheri (East), Mumbai, Maharashtra 400093, India
- Sun
Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat 390 020, India
| | - Pradeep Shahi
- Sun
Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road,
Andheri (East), Mumbai, Maharashtra 400093, India
- Sun
Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat 390 020, India
| | - Amaresh Chakra
- Sun
Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road,
Andheri (East), Mumbai, Maharashtra 400093, India
- Sun
Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat 390 020, India
| | - Ashutosh Bhokari
- Sun
Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road,
Andheri (East), Mumbai, Maharashtra 400093, India
- Sun
Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat 390 020, India
| | - Vishal Shah
- Sun
Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road,
Andheri (East), Mumbai, Maharashtra 400093, India
- Sun
Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat 390 020, India
| | - Svetlana Gelperina
- Dmitry
Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow 125047, Russia
| | - Matthias G. Wacker
- Department
of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| |
Collapse
|
2
|
Wei M, Qian N, Gao X, Lang X, Song D, Min W. Single-particle imaging of nanomedicine entering the brain. Proc Natl Acad Sci U S A 2024; 121:e2309811121. [PMID: 38252832 PMCID: PMC10835139 DOI: 10.1073/pnas.2309811121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Nanomedicine has emerged as a revolutionary strategy of drug delivery. However, fundamentals of the nano-neuro interaction are elusive. In particular, whether nanocarriers can cross the blood-brain barrier (BBB) and release the drug cargo inside the brain, a basic process depicted in numerous books and reviews, remains controversial. Here, we develop an optical method, based on stimulated Raman scattering, for imaging nanocarriers in tissues. Our method achieves a suite of capabilities-single-particle sensitivity, chemical specificity, and particle counting capability. With this method, we visualize individual intact nanocarriers crossing the BBB of mouse brains and quantify the absolute number by particle counting. The fate of nanocarriers after crossing the BBB shows remarkable heterogeneity across multiple scales. With a mouse model of aging, we find that blood-brain transport of nanocarriers decreases with age substantially. This technology would facilitate development of effective therapeutics for brain diseases and clinical translation of nanocarrier-based treatment in general.
Collapse
Affiliation(s)
- Mian Wei
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
| | - Xin Gao
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
| | - Xiaoqi Lang
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
| | - Donghui Song
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
- Department of Biomedical Engineering, Columbia University, New York, NY10027
| |
Collapse
|
3
|
Tekade AR, Suryavanshi MR, Shewale AB, Patil VS. Design and development of donepezil hydrochloride loaded nanostructured lipid carriers for efficient management of Alzheimer's disease. Drug Dev Ind Pharm 2023; 49:590-600. [PMID: 37733474 DOI: 10.1080/03639045.2023.2262035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE The primary objective of this study was to develop nanostructured lipid carriers of donepezil hydrochloride (DNZ HCl) for effective management of Alzheimer's disease (AD). SIGNIFICANCE Intranasal administration of DNZ NLC containing Nigella sativa (NS) oil as a liquid lipid may significantly improve nasal penetration and deliver the drug directly to the brain avoiding blood brain barrier (BBB). METHOD High pressure homogenization was used to prepare nanostructured lipid carriers (NLCs), followed by ultrasonication. Glyceryl monostearate (GMS), Tween 80, and Poloxamer 407 were used as solid lipid, surfactant and co-surfactant respectively, whereas, Nigella sativa oil was used as a liquid lipid. RESULT The particle size, polydispersity index and zeta potential were found to be 107.4 ± 2.64 nm, 0.25 ± 0.04 and -41.7 mV. The entrapment efficiency and drug content were found to be 70.20% and 89.05% respectively. After intranasal administration of Donepezil hydrochloride (DNZ HCl) loaded NLC's, the maximum concentrations (Cmax) of 4.597 µg/mL in brain and 2.2583 µg/mL in blood was achieved after 1 h (Tmax). CONCLUSION The formulated DNZ HCl loaded NLCs significantly improved nasal penetration and enhanced drug distribution in brain resulting in a potentially effective intranasal drug delivery system for the effective management of Alzheimer's disease.
Collapse
Affiliation(s)
- Avinash R Tekade
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Mayuri R Suryavanshi
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Ashutosh B Shewale
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Vilas S Patil
- Department of Pharmacology, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| |
Collapse
|
4
|
Bechinger P, Serrano Sponton L, Grützner V, Musyanovych A, Jussen D, Krenzlin H, Eldahaby D, Riede N, Kempski O, Ringel F, Alessandri B. In-vivo time course of organ uptake and blood-brain-barrier permeation of poly(L-lactide) and poly(perfluorodecyl acrylate) nanoparticles with different surface properties in unharmed and brain-traumatized rats. Front Neurol 2023; 14:994877. [PMID: 36814997 PMCID: PMC9939480 DOI: 10.3389/fneur.2023.994877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Background Traumatic brain injury (TBI) has a dramatic impact on mortality and quality of life and the development of effective treatment strategies is of great socio-economic relevance. A growing interest exists in using polymeric nanoparticles (NPs) as carriers across the blood-brain barrier (BBB) for potentially effective drugs in TBI. However, the effect of NP material and type of surfactant on their distribution within organs, the amount of the administrated dose that reaches the brain parenchyma in areas with intact and opened BBB after trauma, and a possible elicited inflammatory response are still to be clarified. Methods The organ distribution, BBB permeation and eventual inflammatory activation of polysorbate-80 (Tw80) and sodiumdodecylsulfate (SDS) stabilized poly(L-lactide) (PLLA) and poly(perfluorodecyl acrylate) (PFDL) nanoparticles were evaluated in rats after intravenous administration. The NP uptake into the brain was assessed under intact conditions and after controlled cortical impact (CCI). Results A significantly higher NP uptake at 4 and 24 h after injection was observed in the liver and spleen, followed by the brain and kidney, with minimal concentrations in the lungs and heart for all NPs. A significant increase of NP uptake at 4 and 24 h after CCI was observed within the traumatized hemisphere, especially in the perilesional area, but NPs were still found in areas away from the injury site and the contralateral hemisphere. NPs were internalized in brain capillary endothelial cells, neurons, astrocytes, and microglia. Immunohistochemical staining against GFAP, Iba1, TNFα, and IL1β demonstrated no glial activation or neuroinflammatory changes. Conclusions Tw80 and SDS coated biodegradable PLLA and non-biodegradable PFDL NPs reach the brain parenchyma with and without compromised BBB by TBI, even though a high amount of NPs are retained in the liver and spleen. No inflammatory reaction is elicited by these NPs within 24 h after injection. Thus, these NPs could be considered as potentially effective carriers or markers of newly developed drugs with low or even no BBB permeation.
Collapse
Affiliation(s)
- Patrick Bechinger
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,Department of Anesthesiology, Helios Dr. Horst Schmidt Clinic, Wiesbaden, Germany
| | - Lucas Serrano Sponton
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,Department of Neurosurgery, Sana Clinic Offenbach, Offenbach, Germany,*Correspondence: Lucas Serrano Sponton ✉
| | - Verena Grützner
- Fraunhofer Institute for Microengineering and Microsystems, Mainz, Germany
| | - Anna Musyanovych
- Fraunhofer Institute for Microengineering and Microsystems, Mainz, Germany
| | - Daniel Jussen
- Department of Neurosurgery, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Harald Krenzlin
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Daniela Eldahaby
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nicole Riede
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Oliver Kempski
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Beat Alessandri
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| |
Collapse
|
5
|
Parrasia S, Szabò I, Zoratti M, Biasutto L. Peptides as Pharmacological Carriers to the Brain: Promises, Shortcomings and Challenges. Mol Pharm 2022; 19:3700-3729. [PMID: 36174227 DOI: 10.1021/acs.molpharmaceut.2c00523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Central nervous system (CNS) diseases are among the most difficult to treat, mainly because the vast majority of the drugs fail to cross the blood-brain barrier (BBB) or to reach the brain at concentrations adequate to exert a pharmacological activity. The obstacle posed by the BBB has led to the in-depth study of strategies allowing the brain delivery of CNS-active drugs. Among the most promising strategies is the use of peptides addressed to the BBB. Peptides are versatile molecules that can be used to decorate nanoparticles or can be conjugated to drugs, with either a stable link or as pro-drugs. They have been used to deliver to the brain both small molecules and proteins, with applications in diverse therapeutic areas such as brain cancers, neurodegenerative diseases and imaging. Peptides can be generally classified as receptor-targeted, recognizing membrane proteins expressed by the BBB microvessels (e.g., Angiopep2, CDX, and iRGD), "cell-penetrating peptides" (CPPs; e.g. TAT47-57, SynB1/3, and Penetratin), undergoing transcytosis through unspecific mechanisms, or those exploiting a mixed approach. The advantages of peptides have been extensively pointed out, but so far few studies have focused on the potential negative aspects. Indeed, despite having a generally good safety profile, some peptide conjugates may display toxicological characteristics distinct from those of the peptide itself, causing for instance antigenicity, cardiovascular alterations or hemolysis. Other shortcomings are the often brief lifetime in vivo, caused by the presence of peptidases, the vulnerability to endosomal/lysosomal degradation, and the frequently still insufficient attainable increase of brain drug levels, which remain below the therapeutically useful concentrations. The aim of this review is to analyze not only the successful and promising aspects of the use of peptides in brain targeting but also the problems posed by this strategy for drug delivery.
Collapse
Affiliation(s)
- Sofia Parrasia
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| |
Collapse
|
6
|
A comparative evaluation of anti-tumor activity following oral and intravenous delivery of doxorubicin in a xenograft model of breast tumor. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Purpose
Natural materials have been extensively studied for oral drug delivery due to their biodegradability and other unique properties. In the current research, we fabricated sodium caseinate nanomicelles (NaCNs) using casein as a natural polymer to develop a controlled-release oral delivery system that would improve the therapeutic potential of doxorubicin (DOX) and reduce its toxicity.
Methods
DOX-loaded NaCNs were synthesized and thoroughly characterized, then subjected to in vivo anti-tumor evaluation and bio-distribution analysis in a 4T1-induced breast cancer model.
Results
Our findings indicated that the tumor would shrink by eight-fold in the group orally treated with DOX-NaCNs when compared to free DOX. The tumor accumulated drug 1.27-fold more from the orally administered DOX-NaCNs compared to the intravenously administered DOX-NaCNs, 6.8-fold more compared to free DOX, and 8.34-times more compared to orally administered free DOX. In comparison, the orally administered DOX-NaCNs lead to a significant reduction in tumor size (5.66 ± 4.36 mm3) compared to intravenously administered DOX-NaCNs (10.29 ± 4.86 mm3) on day 17 of the experiment. NaCNs were well tolerated at a single dose of 2000 mg/kg in an acute oral toxicity study.
Conclusion
The enhanced anti-tumor effects of oral DOX-NaCNs might be related to the controlled release of DOX from the delivery system when compared to free DOX and the intravenous formulation of DOX-NaCNs. Moreover, NaCNs is recognized as a safe and non-toxic delivery system with excellent bio-distribution profile and high anti-tumor effects that has a potential for oral chemotherapy.
Collapse
|
7
|
Wang Y, Jia F, Lin Y. Poly(butyl cyanoacrylate) nanoparticles-delivered β-nerve growth factor promotes the neurite outgrowth and reduces the mortality in the rat after traumatic brain injury. NANOTECHNOLOGY 2022; 33:135101. [PMID: 34929684 DOI: 10.1088/1361-6528/ac44e8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Several transport vectors, including nanoparticles, have been reported to be used for the delivery of therapeutic medicines crossing the impermeable blood-brain barrier (BBB) to treat the diseases in the central nerve system (CNS), such as traumatic brain injury (TBI). Poly(n-butyl-2-cyanoacrylate) (PBCA) nanoparticles, made from biocompatible material, are regarded as a better potential delivery tool than others such as gold nanoparticles due to their degradabilityin vivo. However, little is known whether PBCA nanoparticles can be used to deliver neurotrophic factors into the brain to treat TBI. In this study, we first synthesized PBCA-carriedβ-nerve growth factor, a neurotrophic agent with a large molecular weight, and then intravenously injected the compound into TBI rats. We found that despite undergoing several synthesis steps and host circulation,β-NGF was able to be successfully delivered into the injured brain by PBCA nanoparticles, still maintain its neurotrophic activity for neurite outgrowth, and reduce the mortality of TBI rats. Our findings indicate that PBCA nanoparticles, with Tween 80, are an efficient delivery vector and a protective reservoir for large molecular therapeutic agents to treat TBI intravenously.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, People's Republic of China
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, People's Republic of China
| | - Yong Lin
- Traumatic Brain Injury Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, People's Republic of China
| |
Collapse
|
8
|
Mehrabian A, Mashreghi M, Dadpour S, Badiee A, Arabi L, Hoda Alavizadeh S, Alia Moosavian S, Reza Jaafari M. Nanocarriers Call the Last Shot in the Treatment of Brain Cancers. Technol Cancer Res Treat 2022; 21:15330338221080974. [PMID: 35253549 PMCID: PMC8905056 DOI: 10.1177/15330338221080974] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our brain is protected by physio-biological barriers. The blood–brain barrier (BBB) main mechanism of protection relates to the abundance of tight junctions (TJs) and efflux pumps. Although BBB is crucial for healthy brain protection against toxins, it also leads to failure in a devastating disease like brain cancer. Recently, nanocarriers have been shown to pass through the BBB and improve patients’ survival rates, thus becoming promising treatment strategies. Among nanocarriers, inorganic nanocarriers, solid lipid nanoparticles, liposomes, polymers, micelles, and dendrimers have reached clinical trials after delivering promising results in preclinical investigations. The size of these nanocarriers is between 10 and 1000 nm and is modified by surface attachment of proteins, peptides, antibodies, or surfactants. Multiple research groups have reported transcellular entrance as the main mechanism allowing for these nanocarriers to cross BBB. Transport proteins and transcellular lipophilic pathways exist in BBB for small and lipophilic molecules. Nanocarriers cannot enter via the paracellular route, which is limited to water-soluble agents due to the TJs and their small pore size. There are currently several nanocarriers in clinical trials for the treatment of brain cancer. This article reviews challenges as well as fitting attributes of nanocarriers for brain tumor treatment in preclinical and clinical studies.
Collapse
Affiliation(s)
- Amin Mehrabian
- School of Pharmacy, Biotechnology Research Center, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Mohammad Mashreghi
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Dadpour
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Student Research Committee, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Alia Moosavian
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- School of Pharmacy, Biotechnology Research Center, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Islam Y, Leach AG, Smith J, Pluchino S, Coxon CR, Sivakumaran M, Downing J, Fatokun AA, Teixidò M, Ehtezazi T. Physiological and Pathological Factors Affecting Drug Delivery to the Brain by Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2002085. [PMID: 34105297 PMCID: PMC8188209 DOI: 10.1002/advs.202002085] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/06/2021] [Indexed: 05/04/2023]
Abstract
The prevalence of neurological/neurodegenerative diseases, such as Alzheimer's disease is known to be increasing due to an aging population and is anticipated to further grow in the decades ahead. The treatment of brain diseases is challenging partly due to the inaccessibility of therapeutic agents to the brain. An increasingly important observation is that the physiology of the brain alters during many brain diseases, and aging adds even more to the complexity of the disease. There is a notion that the permeability of the blood-brain barrier (BBB) increases with aging or disease, however, the body has a defense mechanism that still retains the separation of the brain from harmful chemicals in the blood. This makes drug delivery to the diseased brain, even more challenging and complex task. Here, the physiological changes to the diseased brain and aged brain are covered in the context of drug delivery to the brain using nanoparticles. Also, recent and novel approaches are discussed for the delivery of therapeutic agents to the diseased brain using nanoparticle based or magnetic resonance imaging guided systems. Furthermore, the complement activation, toxicity, and immunogenicity of brain targeting nanoparticles as well as novel in vitro BBB models are discussed.
Collapse
Affiliation(s)
- Yamir Islam
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Andrew G. Leach
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- Division of Pharmacy and OptometryThe University of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUK
| | - Jayden Smith
- Cambridge Innovation Technologies Consulting (CITC) LimitedSt. John's Innovation CentreCowley RoadCambridgeCB4 0WSUK
| | - Stefano Pluchino
- Department of Clinical NeurosciencesClifford Allbutt Building – Cambridge Biosciences Campus and NIHR Biomedical Research CentreUniversity of CambridgeHills RoadCambridgeCB2 0HAUK
| | - Christopher R. Coxon
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityWilliam Perkin BuildingEdinburghEH14 4ASUK
| | - Muttuswamy Sivakumaran
- Department of HaematologyPeterborough City HospitalEdith Cavell CampusBretton Gate PeterboroughPeterboroughPE3 9GZUK
| | - James Downing
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Amos A. Fatokun
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Meritxell Teixidò
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 10Barcelona08028Spain
| | - Touraj Ehtezazi
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| |
Collapse
|
10
|
Santonocito D, Raciti G, Campisi A, Sposito G, Panico A, Siciliano EA, Sarpietro MG, Damiani E, Puglia C. Astaxanthin-Loaded Stealth Lipid Nanoparticles (AST-SSLN) as Potential Carriers for the Treatment of Alzheimer's Disease: Formulation Development and Optimization. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:391. [PMID: 33546352 PMCID: PMC7913486 DOI: 10.3390/nano11020391] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with marked oxidative stress at the level of the brain. Recent studies indicate that increasing the antioxidant capacity could represent a very promising therapeutic strategy for AD treatment. Astaxanthin (AST), a powerful natural antioxidant, could be a good candidate for AD treatment, although its use in clinical practice is compromised by its high instability. In order to overcome this limit, our attention focused on the development of innovative AST-loaded stealth lipid nanoparticles (AST-SSLNs) able to improve AST bioavailability in the brain. AST-SSLNs prepared by solvent-diffusion technique showed technological parameters suitable for parenteral administration (<200 nm). Formulated nanosystems were characterized by calorimetric studies, while their toxicological profile was evaluated by the MTT assay on the stem cell line OECs (Olfactory Ensheathing Cells). Furthemore, the protective effect of the nanocarriers was assessed by a long-term stability study and a UV stability assay confirming that the lipid shell of the nanocarriers was able to preserve AST concentration in the formulation. SSLNs were also capable of preserving AST's antioxidant capacity as demonstrated in the oxygen radical absorbance capacity (ORAC) assay. In conclusion, these preliminary studies outline that SSLNs could be regarded as promising carriers for systemic administration of compounds such as AST aimed at AD treatment.
Collapse
Affiliation(s)
- Debora Santonocito
- Department of Drug Science and Health, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (D.S.); (G.R.); (A.C.); (G.S.); (A.P.); (E.A.S.); (M.G.S.)
| | - Giuseppina Raciti
- Department of Drug Science and Health, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (D.S.); (G.R.); (A.C.); (G.S.); (A.P.); (E.A.S.); (M.G.S.)
| | - Agata Campisi
- Department of Drug Science and Health, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (D.S.); (G.R.); (A.C.); (G.S.); (A.P.); (E.A.S.); (M.G.S.)
| | - Giovanni Sposito
- Department of Drug Science and Health, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (D.S.); (G.R.); (A.C.); (G.S.); (A.P.); (E.A.S.); (M.G.S.)
| | - Annamaria Panico
- Department of Drug Science and Health, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (D.S.); (G.R.); (A.C.); (G.S.); (A.P.); (E.A.S.); (M.G.S.)
| | - Edy Angela Siciliano
- Department of Drug Science and Health, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (D.S.); (G.R.); (A.C.); (G.S.); (A.P.); (E.A.S.); (M.G.S.)
| | - Maria Grazia Sarpietro
- Department of Drug Science and Health, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (D.S.); (G.R.); (A.C.); (G.S.); (A.P.); (E.A.S.); (M.G.S.)
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy;
| | - Carmelo Puglia
- Department of Drug Science and Health, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (D.S.); (G.R.); (A.C.); (G.S.); (A.P.); (E.A.S.); (M.G.S.)
| |
Collapse
|
11
|
You Q, Sabel BA. Nanoparticles as a tool to deliver drugs to the retina and brain: an update. Neural Regen Res 2021; 16:283-284. [PMID: 32859776 PMCID: PMC7896206 DOI: 10.4103/1673-5374.290886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Qing You
- Institute of Medical Psychology, Otto-von-Guericke University of Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Bernhard A Sabel
- Institute of Medical Psychology, Otto-von-Guericke University of Magdeburg, Medical Faculty, Magdeburg, Germany
| |
Collapse
|
12
|
Targeted nano-drug delivery system for glioblastoma therapy: In vitro and in vivo study. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Pandey V, Haider T, Chandak AR, Chakraborty A, Banerjee S, Soni V. Surface modified silk fibroin nanoparticles for improved delivery of doxorubicin: Development, characterization, in-vitro studies. Int J Biol Macromol 2020; 164:2018-2027. [PMID: 32758604 DOI: 10.1016/j.ijbiomac.2020.07.326] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Silk fibroin nanoparticles possess the hydrophobic nature which assists them to become a good substrate for reticulo-endothelial system (RES) and macrophageal uptake. Surface coating of these nanoparticles with hydrophilic stabilizers, like Tween-80 make them long circulating and facilitate their uptake by low density lipoprotein (LDL) receptors to cross blood brain barrier (BBB). Surface modified silk fibroin nanoparticles bearing anti-cancer agent doxorubicin (DOX) were fabricated by desolvation method and coated with Tween-80 as surface modifier. The prepared nanoparticles were characterized for various physicochemical parameters, like particle size, surface charge, surface morphology by scanning electron microscope (SEM) and transmission electron microscopy (TEM), and in vitro drug release along with in vitro cell cytotoxicity, flow cytometry and cellular uptake studies by flourocytometry on glioblastoma cell lines. Entrapment efficiency for the silk fibroin nanoparticles were found to be >85% for coated and uncoated nanoparticles. Nanoparticles with average diameter less than 150 nm having negative charge were found to show no toxicity of its own. The pro-inflammatory response of nanoparticles was observed by determining the cytokines level, such as TNF-α and IL-1β. Sustained drug release pattern from the nanoparticles with better cytotoxicty as compared to free drug was observed, signifying their potential ability to work as a drug delivery system.
Collapse
Affiliation(s)
- Vikas Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar 470003, India
| | - Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar 470003, India
| | - Ashok R Chandak
- Radiation Medicine Centre, Bhabha Atomic Research Centre (BARC), Mumbai 400012, India
| | - Avik Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre (BARC), Mumbai 400012, India
| | - Sharmila Banerjee
- Radiation Medicine Centre, Bhabha Atomic Research Centre (BARC), Mumbai 400012, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar 470003, India.
| |
Collapse
|
14
|
Targeted Transport as a Promising Method of Drug Delivery to the Central Nervous System (Review). Pharm Chem J 2019. [DOI: 10.1007/s11094-019-02088-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
You Q, Sokolov M, Grigartzik L, Hintz W, van Wachem BGM, Henrich-Noack P, Sabel BA. How Nanoparticle Physicochemical Parameters Affect Drug Delivery to Cells in the Retina via Systemic Interactions. Mol Pharm 2019; 16:5068-5075. [PMID: 31609624 DOI: 10.1021/acs.molpharmaceut.9b01046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Minor changes in the composition of poloxamer 188-modified, DEAE-dextran-stabilized (PDD) polybutylcyanoacrylate (PBCA) nanoparticles (NPs), by altering the physicochemical parameters (such as size or surface charge), can substantially influence their delivery kinetics across the blood-retina barrier (BRB) in vivo. We now investigated the physicochemical mechanisms underlying these different behaviors of NP variations at biological barriers and their influence on the cellular and body distribution. Retinal whole mounts from rats injected in vivo with fluorescent PBCA NPs were processed for retina imaging ex vivo to obtain a detailed distribution of NPs with cellular resolution in retinal tissue. In line with previous in vivo imaging results, NPs with a larger size and medium surface charge accumulated more readily in brain tissue, and they could be more easily detected in retinal ganglion cells (RGCs), demonstrating the potential of these NPs for drug delivery into neurons. The biodistribution of the NPs revealed a higher accumulation of small-sized NPs in peripheral organs, which may reduce the passage of these particles into brain tissue via a "steal effect" mechanism. Thus, systemic interactions significantly determine the potential of NPs to deliver markers or drugs to the central nervous system (CNS). In this way, minor changes of NPs' physicochemical parameters can significantly impact their rate of brain/body biodistribution.
Collapse
Affiliation(s)
- Qing You
- Institute of Medical Psychology , Otto-von-Guericke University , Magdeburg 39120 , Germany
| | - Maxim Sokolov
- Institute of Medical Psychology , Otto-von-Guericke University , Magdeburg 39120 , Germany
| | - Lisa Grigartzik
- Institute of Medical Psychology , Otto-von-Guericke University , Magdeburg 39120 , Germany
| | - Werner Hintz
- Institute of Process Engineering , Otto-von-Guericke University , Magdeburg 39106 , Germany
| | - Berend G M van Wachem
- Institute of Process Engineering , Otto-von-Guericke University , Magdeburg 39106 , Germany
| | - Petra Henrich-Noack
- Institute of Medical Psychology , Otto-von-Guericke University , Magdeburg 39120 , Germany.,Clinic of Neurology with Institute of Translational Neurology , University Clinic Münster , Münster 48149 , Germany
| | - Bernhard A Sabel
- Institute of Medical Psychology , Otto-von-Guericke University , Magdeburg 39120 , Germany.,InEye Hospital , Chengdu University of TCM , Chengdu 610084 , PR China
| |
Collapse
|
16
|
Vauthier C. A journey through the emergence of nanomedicines with poly(alkylcyanoacrylate) based nanoparticles. J Drug Target 2019; 27:502-524. [PMID: 30889991 DOI: 10.1080/1061186x.2019.1588280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Starting in the late 1970s, the pioneering work of Patrick Couvreur gave birth to the first biodegradable nanoparticles composed of a biodegradable synthetic polymer. These nanoparticles, made of poly(alkylcyanoacrylate) (PACA), were the first synthetic polymer-based nanoparticulate drug carriers undergoing a phase III clinical trial so far. Analyzing the journey from the birth of PACA nanoparticles to their clinical evaluation, this paper highlights their remarkable adaptability to bypass various drug delivery challenges found on the way. At present, PACA nanoparticles include a wide range of nanoparticles that can associate drugs of different chemical nature and can be administered in vivo by different routes. The most recent technologies giving the nanoparticles customised functions could also be implemented on this family of nanoparticles. Through different examples, this paper discusses the seminal role of the PACA nanoparticles' family in the development of nanomedicines.
Collapse
Affiliation(s)
- Christine Vauthier
- a Institut Galien Paris Sud, UMR CNRS 8612 , Université Paris-Sud , Chatenay-Malabry Cedex , France
| |
Collapse
|
17
|
Saeedi M, Eslamifar M, Khezri K, Dizaj SM. Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother 2019; 111:666-675. [PMID: 30611991 DOI: 10.1016/j.biopha.2018.12.133] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
In recent years, the researchers and drug designers have given growing attention to new nanotechnology strategies to improve drug delivery to the central nervous system (CNS). Nanotechnology has a great potential to affect the treatment of neurological disorders, mainly Alzheimer's disease, Parkinson's disease, brain tumors, and stroke. With regard to neurodegeneration, several studies showed that nanomaterials have been successfully used for the treatments of CNS disorders. In this regard, nanocarriers have facilitated the targeted delivery of chemotherapeutics resulting in the efficient inhibition of disease progression in malignant brain tumors. Therefore, the most efficacious application of nanomaterials is the use of these substances in the treatment of CNS disease that enhances the overall effect of drug and highlights the importance of nano-therapeutics. This study was conducted to review the evidence on the applications of nanotechnology in designing drug delivery systems with the ability to cross through the blood-brain barrier (BBB) in order to transfer the therapeutic agents to the CNS.
Collapse
Affiliation(s)
- Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Masoumeh Eslamifar
- Department of Environmental Health Engineering, Faculty of Health, Mazandaran University of Medical Science, Sari, Iran.
| | - Khadijeh Khezri
- Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran..
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Abstract
Nanoparticles made of poly(butyl cyanoacrylate) (PBCA) or poly(lactic-co-glycolic acid) (PLGA) coated with polysorbate 80 or poloxamer 188 enable the transport of cytostatics such as doxorubicin across the blood-brain barrier (BBB). Following intravenous injection to rats bearing intracranially the very aggressive glioblastoma 101/8 these particles loaded with doxorubicin significantly increased the survival times and led to a complete tumor remission in 20–40% of the animals. Moreover, these particles considerably reduced the dose-limiting cardiotoxicity and also the testicular toxicity of this drug. The drug transport across the BBB by nanoparticles appears to be due to a receptor-mediated interaction with the brain capillary endothelial cells, which is facilitated by certain plasma apolipoproteins adsorbed by nanoparticles in the blood.
Collapse
Affiliation(s)
- Jörg Kreuter
- Institute for Pharmaceutical Technology, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany
| | | |
Collapse
|
19
|
Kanwal U, Irfan Bukhari N, Ovais M, Abass N, Hussain K, Raza A. Advances in nano-delivery systems for doxorubicin: an updated insight. J Drug Target 2017; 26:296-310. [DOI: 10.1080/1061186x.2017.1380655] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ummarah Kanwal
- University College of Pharmacy, University of Punjab, Lahore, Pakistan
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
| | | | - Muhammad Ovais
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nasir Abass
- University College of Pharmacy, University of Punjab, Lahore, Pakistan
| | - Khalid Hussain
- University College of Pharmacy, University of Punjab, Lahore, Pakistan
| | - Abida Raza
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
| |
Collapse
|
20
|
Esposito E, Cortesi R, Drechsler M, Fan J, Fu BM, Calderan L, Mannucci S, Boschi F, Nastruzzi C. Nanoformulations for dimethyl fumarate: Physicochemical characterization and in vitro / in vivo behavior. Eur J Pharm Biopharm 2017; 115:285-296. [DOI: 10.1016/j.ejpb.2017.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/24/2016] [Accepted: 04/11/2017] [Indexed: 12/27/2022]
|
21
|
Esposito E, Drechsler M, Mariani P, Carducci F, Servadio M, Melancia F, Ratano P, Campolongo P, Trezza V, Cortesi R, Nastruzzi C. Lipid nanoparticles for administration of poorly water soluble neuroactive drugs. Biomed Microdevices 2017; 19:44. [DOI: 10.1007/s10544-017-0188-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Schuster T, Mühlstein A, Yaghootfam C, Maksimenko O, Shipulo E, Gelperina S, Kreuter J, Gieselmann V, Matzner U. Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A. J Control Release 2017; 253:1-10. [DOI: 10.1016/j.jconrel.2017.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 02/08/2023]
|
23
|
Joseph E, Saha RN. Investigations on pharmacokinetics and biodistribution of polymeric and solid lipid nanoparticulate systems of atypical antipsychotic drug: effect of material used and surface modification. Drug Dev Ind Pharm 2017; 43:678-686. [DOI: 10.1080/03639045.2016.1278014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Emil Joseph
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Ranendra N. Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| |
Collapse
|
24
|
Yokel RA. Physicochemical properties of engineered nanomaterials that influence their nervous system distribution and effects. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2081-2093. [DOI: 10.1016/j.nano.2016.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
|
25
|
Kealy J, Campbell M. The Blood-Brain Barrier in Glioblastoma: Pathology and Therapeutic Implications. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2016. [DOI: 10.1007/978-3-319-46505-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Gao S, Xu Y, Asghar S, Chen M, Zou L, Eltayeb S, Huo M, Ping Q, Xiao Y. Polybutylcyanoacrylate nanocarriers as promising targeted drug delivery systems. J Drug Target 2015; 23:481-96. [DOI: 10.3109/1061186x.2015.1020426] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Cannabinoid antagonist in nanostructured lipid carriers (NLCs): design, characterization and in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:328-36. [DOI: 10.1016/j.msec.2014.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/22/2014] [Accepted: 12/05/2014] [Indexed: 12/24/2022]
|
28
|
Nanoparticles and the blood-brain barrier: advancing from in-vitro models towards therapeutic significance. Pharm Res 2014; 32:1161-85. [PMID: 25446769 DOI: 10.1007/s11095-014-1545-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/06/2014] [Indexed: 01/12/2023]
Abstract
The blood-brain barrier is a unique cell-based restrictive barrier that prevents the entry of many substances, including most therapeutics, into the central nervous system. A wide range of nanoparticulate delivery systems have been investigated with the aim of targeting therapeutics (drugs, nucleic acids, proteins) to the brain following administration by various routes. This review provides a comprehensive description of the design and formulation of these nanoparticles including the rationale behind individual approaches. In addition, the ability of currently available in-vitro BBB models to accurately predict the in-vivo performance of targeted nanoparticles is critically assessed.
Collapse
|
29
|
Salameh TS, Banks WA. Delivery of therapeutic peptides and proteins to the CNS. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:277-99. [PMID: 25307220 PMCID: PMC6087545 DOI: 10.1016/bs.apha.2014.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptides and proteins have potent effects on the brain after their peripheral administration, suggesting that they may be good substrates for the development of CNS therapeutics. Major hurdles to such development include their relation to the blood-brain barrier (BBB) and poor pharmacokinetics. Some peptides cross the BBB by transendothelial diffusion and others cross in the blood-to-brain direction by saturable transporters. Some regulatory proteins are also transported across the BBB and antibodies can enter the CNS via the extracellular pathways. Glycoproteins and some antibody fragments can be taken up and cross the BBB by mechanisms related to adsorptive endocytosis/transcytosis. Many peptides and proteins are transported out of the CNS by saturable efflux systems and enzymatic activity in the blood, CNS, or BBB are substantial barriers to others. Both influx and efflux transporters are altered by various substances and in disease states. Strategies that manipulate these interactions between the BBB and peptides and proteins provide many opportunities for the development of therapeutics. Such strategies include increasing transendothelial diffusion of small peptides, upregulation of saturable influx transporters with allosteric regulators and other posttranslational means, use of vectors and other Trojan horse strategies, inhibition of efflux transporters including with antisense molecules, and improvement in pharmacokinetic parameters to overcome short half-lives, tissue sequestration, and enzymatic degradation.
Collapse
Affiliation(s)
- Therese S Salameh
- Geriatric Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington USA; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, Washington, USA
| | - William A Banks
- Geriatric Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington USA; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
30
|
Voigt N, Henrich-Noack P, Kockentiedt S, Hintz W, Tomas J, Sabel BA. Surfactants, not size or zeta-potential influence blood–brain barrier passage of polymeric nanoparticles. Eur J Pharm Biopharm 2014; 87:19-29. [DOI: 10.1016/j.ejpb.2014.02.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/16/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
|
31
|
Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev 2014; 71:2-14. [PMID: 23981489 DOI: 10.1016/j.addr.2013.08.008] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 02/06/2023]
Abstract
Nanoparticles enable the delivery of a great variety of drugs including anticancer drugs, analgesics, anti-Alzheimer's drugs, cardiovascular drugs, protease inhibitors, and several macromolecules into the brain after intravenous injection of animals. The mechanism of the nanoparticle-mediated drug transport across the BBB appears to be receptor-mediated endocytosis followed by transcytosis into the brain or by drug release within the endothelial cells. Modification of the nanoparticle surface with covalently attached targeting ligands or by coating with certain surfactants that lead to the adsorption of specific plasma proteins after injection is necessary for this receptor-mediated uptake. A very critical and important requirement for nanoparticulate brain delivery is that the employed nanoparticles are biocompatible and, moreover, rapidly biodegradable, i.e. over a time frame of a few days. In addition to enabling drug delivery to the brain, nanoparticles, as with doxorubicin, may importantly reduce the drug's toxicity and adverse effects due to an alteration of the body distribution. Because of the possibility to treat severe CNS diseases such as brain tumours and to even transport proteins and other macromolecules across the blood-brain barrier, this technology holds great promise for a non-invasive therapy of these diseases.
Collapse
Affiliation(s)
- Jörg Kreuter
- Institut für Pharmazeutische Technologie, Goethe-Universtät, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| |
Collapse
|
32
|
Insight on the fate of CNS-targeted nanoparticles. Part I: Rab5-dependent cell-specific uptake and distribution. J Control Release 2013; 174:195-201. [PMID: 24316476 DOI: 10.1016/j.jconrel.2013.11.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 11/24/2022]
Abstract
Nanocarriers can be useful tools for delivering drugs to the central nervous system (CNS). Their distribution within the brain and their interaction with CNS cells must be assessed accurately before they can be proposed for therapeutic use. In this paper, we investigated these issues by employing poly-lactide-co-glycolide nanoparticles (NPs) specifically engineered with a glycopeptide (g7) conferring to NPs the ability to cross the blood brain barrier (BBB) at a concentration of up to 10% of the injected dose. g7-NPs display increased in vitro uptake in neurons and glial cells. Our results show that in vivo administration of g7-NPs leads to a region- and cell type-specific enrichment of NPs within the brain. We provide evidence that g7-NPs are endocytosed in a clathrin-dependent manner and transported into a specific subset of early endosomes positive for Rab5 in vitro and in vivo. The differential Rab5 expression level is strictly correlated with the amount of g7-NP accumulation. These findings show that g7-NPs can cross the BBB and target specific brain cell populations, suggesting that these NPs can be promising carriers for the treatment of neuropsychiatric and neurodegenerative diseases.
Collapse
|
33
|
Şimşek S, Eroğlu H, Kurum B, Ulubayram K. Brain targeting of Atorvastatin loaded amphiphilic PLGA-b-PEG nanoparticles. J Microencapsul 2012; 30:10-20. [DOI: 10.3109/02652048.2012.692400] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
34
|
Kloust H, Pöselt E, Kappen S, Schmidtke C, Kornowski A, Pauer W, Moritz HU, Weller H. Ultrasmall biocompatible nanocomposites: a new approach using seeded emulsion polymerization for the encapsulation of nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7276-7281. [PMID: 22497455 DOI: 10.1021/la300231r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report a novel approach of seeded emulsion polymerization in which nanocrystals are used as seeds. Ultrasmall biocompatible polymer-coated nanocrystal with sizes between 15 and 110 nm could be prepared in a process that avoids any treatment with high shear forces or ultrasonication. The number of nanocrystals per seed, the size of the seeds, and the shell thickness can be independently adjusted. Single encapsulated nanocrystals in ultrasmall nanobeads as well as clusters of nanocrystals can be obtained. Polysorbat-80 was used as surfactant. It consists of poly(ethylene glycol) (PEG) chains, giving the particles outstanding biofunctional characteristics such as a minimization of unspecific interactions.
Collapse
Affiliation(s)
- Hauke Kloust
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
n-Butyl cyanoacrylate miniemulsion polymerization via the phase inversion composition method. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2011.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release 2011; 161:264-73. [PMID: 21872624 DOI: 10.1016/j.jconrel.2011.08.017] [Citation(s) in RCA: 456] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 01/16/2023]
Abstract
The central nervous system is well protected by the blood-brain barrier (BBB) which maintains its homeostasis. Due to this barrier many potential drugs for the treatment of diseases of the central nervous system (CNS) cannot reach the brain in sufficient concentrations. One possibility to deliver drugs to the CNS is the employment of polymeric nanoparticles. The ability of these carriers to overcome the BBB and to produce biologic effects on the CNS was shown in a number of studies. Over the past few years, progress in understanding of the mechanism of the nanoparticle uptake into the brain was made. This mechanism appears to be receptor-mediated endocytosis in brain capillary endothelial cells. Modification of the nanoparticle surface with covalently attached targeting ligands or by coating with certain surfactants enabling the adsorption of specific plasma proteins are necessary for this receptor-mediated uptake. The delivery of drugs, which usually are not able to cross the BBB, into the brain was confirmed by the biodistribution studies and pharmacological assays in rodents. Furthermore, the presence of nanoparticles in the brain parenchyma was visualized by electron microscopy. The intravenously administered biodegradable polymeric nanoparticles loaded with doxorubicin were successfully used for the treatment of experimental glioblastoma. These data, together with the possibility to employ nanoparticles for delivery of proteins and other macromolecules across the BBB, suggest that this technology holds great promise for non-invasive therapy of the CNS diseases.
Collapse
|
37
|
Wohlfart S, Khalansky AS, Gelperina S, Begley D, Kreuter J. Kinetics of transport of doxorubicin bound to nanoparticles across the blood–brain barrier. J Control Release 2011; 154:103-7. [DOI: 10.1016/j.jconrel.2011.05.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 05/04/2011] [Accepted: 05/09/2011] [Indexed: 11/17/2022]
|
38
|
|
39
|
Rojas S, Gispert JD, Martín R, Abad S, Menchón C, Pareto D, Víctor VM, Alvaro M, García H, Herance JR. Biodistribution of amino-functionalized diamond nanoparticles. In vivo studies based on 18F radionuclide emission. ACS NANO 2011; 5:5552-5559. [PMID: 21657210 DOI: 10.1021/nn200986z] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoparticles have been proposed for several biomedical applications; however, in vivo biodistribution studies to confirm their potential are scarce. Nanodiamonds are carbon nanoparticles that have been recently proposed as a promising biomaterial. In this study, we labeled nanodiamonds with (18)F to study their in vivo biodistribution by positron emission tomography. Moreover, the impact on the biodistribution of their kinetic particle size and of the surfactant agents has been evaluated. Radiolabeled diamond nanoparticles accumulated mainly in the lung, spleen, and liver and were excreted into the urinary tract. The addition of surfactant agents did not lead to significant changes in this pattern, with the exception of a slight reduction in the urinary excretion rate. On the other hand, after filtration of the radiolabeled diamond nanoparticles to remove those with a larger kinetic size, the uptake in the lung and spleen was completely inhibited and significantly reduced in the liver.
Collapse
Affiliation(s)
- Santiago Rojas
- Institut d'Alta Tecnologia-Parc de Recerca Biomèdica de Barcelona, CRC Corporació Sanitària, 08003 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Llabot JM, Salman H, Millotti G, Bernkop-Schnürch A, Allemandi D, Manuel Irache J. Bioadhesive properties of poly(anhydride) nanoparticles coated with different molecular weights chitosan. J Microencapsul 2011; 28:455-63. [DOI: 10.3109/02652048.2011.576787] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Xu N, Gu J, Zhu Y, Wen H, Ren Q, Chen J. Efficacy of intravenous amphotericin B-polybutylcyanoacrylate nanoparticles against cryptococcal meningitis in mice. Int J Nanomedicine 2011; 6:905-13. [PMID: 21720503 PMCID: PMC3124396 DOI: 10.2147/ijn.s17503] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Indexed: 11/28/2022] Open
Abstract
Amphotericin B deoxycholate (AmB), a classic antifungal drug, remains the initial treatment of choice for deep fungal infections, but it is not appropriate for treatment of cryptococcal meningitis due to its inability to pass through the blood–brain barrier (BBB). We examined the efficacy of amphotericin B-polybutylcyanoacrylate nanoparticles (AmB-PBCA-NPs) modified with polysorbate 80 that had a mean particle diameter less than 100 nanometers (69.0 ± 28.6 nm). AmB-PBCA-NPs were detected in the brain 30 minutes after systemic administration into BALB/c mice and had a higher concentration than systemically administered AmB liposome (AmB-L, P < 0.05); AmB was not detected in the brain. Following infection for 24 hours and then 7 days of treatment, the survival rate of mice in the AmB-PBCA-NP group (80%) was significantly higher than that of the AmB (0%) or AmB-L (60%) treatment groups. Fungal load was also lower when assessed by colony-forming unit counts obtained after plating infected brain tissue (P < 0.05). Our study indicates that AmB-PBCA-NPs with polysorbate 80 coating have the capacity to transport AmB across the BBB and is an efficient treatment against cryptococcal meningitis in a mouse model.
Collapse
Affiliation(s)
- Nan Xu
- Institute for Laser Medicine and Biophotonics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
Tian XH, Lin XN, Wei F, Feng W, Huang ZC, Wang P, Ren L, Diao Y. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int J Nanomedicine 2011; 6:445-52. [PMID: 21445277 PMCID: PMC3061435 DOI: 10.2147/ijn.s16570] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Polybutylcyanoacrylate (PBCA) nanoparticles coated with polysorbate-80 have been extensively proposed for delivering drugs into the animal brain and have shown great potential for therapeutic applications. In this study, we made an attempt to deliver the chemotherapeutic drug, temozolomide, into the brain by using PBCA nanoparticles. The physicochemical characteristics, in vitro release, and brain targeting ability of the drug-loaded nanoparticles were investigated. RESULTS Our results show that a significantly higher concentration of temozolomide in the form of polysorbate-80-coated PBCA nanoparticles was observed in the brain (P < 0.05) in comparison with the free drug. CONCLUSION This study indicates that polysorbate-80 coated PBCA nanoparticles could be a feasible carrier for temozolomide delivery to the brain. It is anticipated that the developed formulation may improve on targeted therapy for malignant brain tumors in the future.
Collapse
Affiliation(s)
- Xin-Hua Tian
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, Xiamen, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Poly(ε-caprolactone)-block-poly(ethyl ethylene phosphate) micelles for brain-targeting drug delivery: in vitro and in vivo valuation. Pharm Res 2010; 27:2657-69. [PMID: 20848303 DOI: 10.1007/s11095-010-0265-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 08/30/2010] [Indexed: 12/15/2022]
Abstract
PURPOSE The purpose of this work was to investigate the potential of poly(ε-caprolactone)-block-poly(ethyl ethylene phosphate) (PCL-PEEP) micelles for brain-targeting drug delivery. METHOD The coumarin-6-loaded PCL-PEEP micelles (CMs) were prepared and characterized. The cellular uptake of CMs was evaluated on in vitro model of brain-blood barrier (BBB), and the brain biodistribution of CMs in ICR mice was investigated. RESULTS PCL-PEEP could self-assemble into 20 nm micelles in water with the critical micelle concentration (CMC) 0.51 μg/ml and high coumarin-6 encapsulation efficiency (92.5 ± 0.7%), and the micelles were stable in 10% FBS with less than 25% leakage of incorporated coumarin-6 during 24 h incubation at 37°C. The cellular uptake of CMs by BBB model was significantly higher and more efficient than coumarin-6 solution (CS) at 50 ng/ml. Compared with CS, 2.6-fold of coumarin-6 was found in the brains of CM-treated mice, and C(max) of CMs was 4.74% of injected dose/g brain. The qualitative investigation on the brain distribution of CMs indicated that CMs were prone to accumulate in hippocampus and striatum. CONCLUSION These results suggest that PCL-PEEP micelles could be a promising brain-targeting drug delivery system with low toxicity.
Collapse
|
44
|
Wu M, Frochot C, Dellacherie E, Marie E. Well-Defined Poly(butyl cyanoacrylate) Nanoparticles via Miniemulsion Polymerization. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/masy.200950705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Cai L, Niu G, Hu Z, Jin W, Wang J, Sun L. Polybutylcyanoacrylate magnetic nanoparticles as carriers of adriamycin. J Drug Target 2009; 17:200-6. [DOI: 10.1080/10611860802650017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Wu M, Dellacherie E, Durand A, Marie E. Poly(n-butyl cyanoacrylate) nanoparticles via miniemulsion polymerization. 2. PEG-based surfactants. Colloids Surf B Biointerfaces 2009; 69:147-51. [DOI: 10.1016/j.colsurfb.2008.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/30/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
|
47
|
Andrieux K, Couvreur P. Polyalkylcyanoacrylate nanoparticles for delivery of drugs across the blood-brain barrier. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2009; 1:463-74. [DOI: 10.1002/wnan.5] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Debotton N, Giladi O, Parnes M, Benita S. Novel high-content paclitaxel palmitate nanospheres for improved cancer treatment. J Drug Deliv Sci Technol 2009. [DOI: 10.1016/s1773-2247(09)50052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Colloidal systems for CNS drug delivery. NANONEUROSCIENCE AND NANONEUROPHARMACOLOGY 2009; 180:35-69. [DOI: 10.1016/s0079-6123(08)80003-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
50
|
Orlacchio A, Bernardi G, Orlacchio A, Martino S. Patented therapeutic RNAi strategies for neurodegenerative diseases of the CNS. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.10.1161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|