1
|
Suaidi NA, Alshawsh MA, Hoe SZ, Mokhtar MH, Md Zin SR. Impact of xylene exposure during organogenesis on foeto-placental efficiency and foetal viability: Exploring its association with oxidative stress-induced inflammation and apoptosis in utero. Toxicol Ind Health 2024; 40:692-710. [PMID: 39308155 DOI: 10.1177/07482337241286569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The potential maternal and foetal toxicity resulting from exposure to xylene at or below the allowable limit of 100 ppm during gestation is not thoroughly studied. The aim of this study was to investigate maternal and foetal outcomes following prenatal exposure to xylene during organogenesis. Pregnant Sprague Dawley (SD) rats were administered intraperitoneal (IP) corn oil (vehicle), 100, 500, and 1000 parts per million (ppm) of xylene from gestational day (GD) 6 until GD17. Clinical signs, maternal weight gain, and food consumption were recorded daily. A caesarean hysterectomy was performed on GD21 to assess the reproductive and foetal outcomes. Exposure to 1000 ppm of xylene caused a significant decrease in the maternal body weight and food consumption, and an increase in intrauterine foetal deaths. Foetal assessment revealed a significant decrease in foetal weight in both male and female foetuses of female rats treated with 500 and 1000 ppm. Male placental weight was significantly decreased in all xylene-treated groups, while 1000 ppm xylene significantly decreased female placental weight. Histologically, marked uterine inflammatory lesions, fibrosis of the liver and renal tissues, as well as increased placental glycogen content were observed. Immunohistochemistry revealed a significant increase in lipid peroxidation and apoptotic markers. Thus, the foeto-maternal toxicities of xylene have been shown to be mediated by a systemic inflammatory response that exacerbates intrauterine oxidative stress and impairs foeto-placental transfer, leading to an increase in foetal mortality.
Collapse
Affiliation(s)
- Noor Asyikin Suaidi
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - See-Ziau Hoe
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Rosmani Md Zin
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Wang J, Zhou X, Han T, Zhang H. Epigenetic signatures of trophoblast lineage and their biological functions. Cells Dev 2024; 179:203934. [PMID: 38942294 DOI: 10.1016/j.cdev.2024.203934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
Trophoblasts play a crucial role in embryo implantation and in interacting with the maternal uterus. The trophoblast lineage develops into a substantial part of the placenta, a temporary extra-embryonic organ, capable of undergoing distinctive epigenetic events during development. The critical role of trophoblast-specific epigenetic signatures in regulating placental development has become known, significantly advancing our understanding of trophoblast identity and lineage development. Scientific efforts are revealing how trophoblast-specific epigenetic signatures mediate stage-specific gene regulatory programming during the development of the trophoblast lineage. These epigenetic signatures have a significant impact on blastocyst formation, placental development, as well as the growth and survival of embryos and fetuses. In evolution, DNA hypomethylation in the trophoblast lineage is conserved, and there is a significant disparity in the control of epigenetic dynamics and the landscape of genomic imprinting. Scientists have used murine and human multipotent trophoblast cells as in vitro models to recapitulate the essential epigenetic processes of placental development. Here, we review the epigenetic signatures of the trophoblast lineage and their biological functions to enhance our understanding of placental evolution, development, and function.
Collapse
Affiliation(s)
- Jianqi Wang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaobo Zhou
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Reproductive Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tingli Han
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China; The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Hua Zhang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China.
| |
Collapse
|
3
|
Kim E, Cai L, Choi H, Kim M, Hyun SH. Distinct properties of putative trophoblast stem cells established from somatic cell nuclear-transferred pig blastocysts. Biol Res 2024; 57:35. [PMID: 38812008 PMCID: PMC11137969 DOI: 10.1186/s40659-024-00516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Genetically modified pigs are considered ideal models for studying human diseases and potential sources for xenotransplantation research. However, the somatic cell nuclear transfer (SCNT) technique utilized to generate these cloned pig models has low efficiency, and fetal development is limited due to placental abnormalities. RESULTS In this study, we unprecedentedly established putative porcine trophoblast stem cells (TSCs) using SCNT and in vitro-fertilized (IVF) blastocysts through the activation of Wing-less/Integrated (Wnt) and epidermal growth factor (EGF) pathways, inhibition of transforming growth factor-β (TGFβ) and Rho-associated protein kinase (ROCK) pathways, and supplementation with ascorbic acid. We also compared the transcripts of putative TSCs originating from SCNT and IVF embryos and their differentiated lineages. A total of 19 porcine TSCs exhibiting typical characteristics were established from SCNT and IVF blastocysts (TSCsNT and TSCsIVF). Compared with the TSCsIVF, TSCsNT showed distinct expression patterns suggesting unique TSCsNT characteristics, including decreased mRNA expression of genes related to apposition, steroid hormone biosynthesis, angiopoiesis, and RNA stability. CONCLUSION This study provides valuable information and a powerful model for studying the abnormal development and dysfunction of trophoblasts and placentas in cloned pigs.
Collapse
Affiliation(s)
- Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, 28644, Republic of Korea.
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Lab. of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
4
|
Goissis MD, Cibelli JB. Early Cell Specification in Mammalian Fertilized and Somatic Cell Nuclear Transfer Embryos. Methods Mol Biol 2023; 2647:59-81. [PMID: 37041329 DOI: 10.1007/978-1-0716-3064-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Early cell specification in mammalian preimplantation embryos is an intricate cellular process that leads to coordinated spatial and temporal expression of specific genes. Proper segregation into the first two cell lineages, the inner cell mass (ICM) and the trophectoderm (TE), is imperative for developing the embryo proper and the placenta, respectively. Somatic cell nuclear transfer (SCNT) allows the formation of a blastocyst containing both ICM and TE from a differentiated cell nucleus, which means that this differentiated genome must be reprogrammed to a totipotent state. Although blastocysts can be generated efficiently through SCNT, the full-term development of SCNT embryos is impaired mostly due to placental defects. In this review, we examine the early cell fate decisions in fertilized embryos and compare them to observations in SCNT-derived embryos, in order to understand if these processes are affected by SCNT and could be responsible for the low success of reproductive cloning.
Collapse
Affiliation(s)
- Marcelo D Goissis
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil.
| | - Jose B Cibelli
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Malin K, Witkowska-Piłaszewicz O, Papis K. The many problems of somatic cell nuclear transfer in reproductive cloning of mammals. Theriogenology 2022; 189:246-254. [DOI: 10.1016/j.theriogenology.2022.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
|
6
|
Li Y, Sun Q. Epigenetic manipulation to improve mouse SCNT embryonic development. Front Genet 2022; 13:932867. [PMID: 36110221 PMCID: PMC9468881 DOI: 10.3389/fgene.2022.932867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Cloned mammals can be achieved through somatic cell nuclear transfer (SCNT), which involves reprogramming of differentiated somatic cells into a totipotent state. However, low cloning efficiency hampers its application severely. Cloned embryos have the same DNA as donor somatic cells. Therefore, incomplete epigenetic reprogramming accounts for low development of cloned embryos. In this review, we describe recent epigenetic barriers in SCNT embryos and strategies to correct these epigenetic defects and avoid the occurrence of abnormalities in cloned animals.
Collapse
Affiliation(s)
- Yamei Li
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Qiang Sun
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- *Correspondence: Qiang Sun,
| |
Collapse
|
7
|
Zhao Y, Bai D, Wu Y, Zhang D, Liu M, Tian Y, Lu J, Wang H, Gao S, Lu Z. Maternal Ezh1/2 deficiency in oocyte delays H3K27me2/3 restoration and impairs epiblast development responsible for embryonic sub-lethality in mouse. Development 2022; 149:dev200316. [PMID: 38771308 DOI: 10.1242/dev.200316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/23/2022] [Indexed: 05/22/2024]
Abstract
How maternal Ezh1 and Ezh2 function in H3K27 methylation in vivo in pre-implantation embryos and during embryonic development is not clear. Here, we have deleted Ezh1 and Ezh2 alone or simultaneously from mouse oocytes. H3K27me3 was absent in oocytes without Ezh2 alone, while both H3K27me2 and H3K27me3 were absent in Ezh1/Ezh2 (Ezh1/2) double knockout (KO) oocytes. The effects of Ezh1/2 maternal KO were inherited in zygotes and early embryos, in which restoration of H3K27me3 and H3K27me2 was delayed by the loss of Ezh2 alone or of both Ezh1 and Ezh2. However, the ablation of both Ezh1 and Ezh2, but not Ezh1 or Ezh2 alone, led to significantly decreased litter size due to growth retardation post-implantation. Maternal Ezh1/2 deficiency caused compromised H3K27me3 and pluripotent epiblast cells in late blastocysts, followed by defective embryonic development. By using RNA-seq, we examined crucial developmental genes in maternal Ezh1/2 KO embryos and identified 80 putatively imprinted genes. Maternal Ezh1/2-H3K27 methylation is inherited in offspring embryos and has a critical effect on fetal and placental development. Thus, this work sheds light on maternal epigenetic modifications during embryonic development.
Collapse
Affiliation(s)
- Yinan Zhao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Dandan Bai
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - You Wu
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dan Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Mengying Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Shaorong Gao
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
8
|
Wakayama S, Ito D, Hayashi E, Ishiuchi T, Wakayama T. Healthy cloned offspring derived from freeze-dried somatic cells. Nat Commun 2022; 13:3666. [PMID: 35790715 PMCID: PMC9256722 DOI: 10.1038/s41467-022-31216-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
Maintaining biodiversity is an essential task, but storing germ cells as genetic resources using liquid nitrogen is difficult, expensive, and easily disrupted during disasters. Our aim is to generate cloned mice from freeze-dried somatic cell nuclei, preserved at -30 °C for up to 9 months after freeze drying treatment. All somatic cells died after freeze drying, and nucleic DNA damage significantly increased. However, after nuclear transfer, we produced cloned blastocysts from freeze-dried somatic cells, and established nuclear transfer embryonic stem cell lines. Using these cells as nuclear donors for re-cloning, we obtained healthy cloned female and male mice with a success rate of 0.2-5.4%. Here, we show that freeze-dried somatic cells can produce healthy, fertile clones, suggesting that this technique may be important for the establishment of alternative, cheaper, and safer liquid nitrogen-free bio-banking solutions.
Collapse
Affiliation(s)
- Sayaka Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan. .,Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan.
| | - Daiyu Ito
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Erika Hayashi
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Takashi Ishiuchi
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan. .,Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan.
| |
Collapse
|
9
|
Xie Z, Zhang W, Zhang Y. Loss of Slc38a4 imprinting is a major cause of mouse placenta hyperplasia in somatic cell nuclear transferred embryos at late gestation. Cell Rep 2022; 38:110407. [PMID: 35196486 PMCID: PMC8919768 DOI: 10.1016/j.celrep.2022.110407] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/02/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Placenta hyperplasia is commonly observed in cloned animals and is believed to impede the proper development of cloned embryos. However, the mechanism underlying this phenomenon is largely unknown. Here, we show that placenta hyperplasia of cloned mouse embryos occurs in both middle and late gestation. Interestingly, restoring paternal-specific expression of an amino acid transporter Slc38a4, which loses maternal H3K27me3-dependent imprinting and becomes biallelically expressed in cloned placentae, rescues the overgrowth of cloned placentae at late gestation. Molecular analyses reveal that loss of Slc38a4 imprinting leads to over-activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway in cloned placentae, which is likely due to the increased amino acids transport by SLC38A4. Collectively, our study not only reveals loss of Slc38a4 imprinting is responsible for overgrowth of cloned placentae at late gestation but also suggests the underlying mechanism involves increased amino acid transport and over-activation of mTORC1.
Collapse
Affiliation(s)
- Zhenfei Xie
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Wenhao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Brachygnathia Inferior in Cloned Dogs Is Possibly Correlated with Variants of Wnt Signaling Pathway Initiators. Int J Mol Sci 2022; 23:ijms23010475. [PMID: 35008901 PMCID: PMC8745273 DOI: 10.3390/ijms23010475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Abnormalities in animals cloned via somatic cell nuclear transfer (SCNT) have been reported. In this study, to produce bomb-sniffing dogs, we successfully cloned four healthy dogs through SCNT using the same donor genome from the skin of a male German shepherd old dog. Veterinary diagnosis (X-ray/3D-CT imaging) revealed that two cloned dogs showed normal phenotypes, whereas the others showed abnormal shortening of the mandible (brachygnathia inferior) at 1 month after birth, even though they were cloned under the same conditions except for the oocyte source. Therefore, we aimed to determine the genetic cause of brachygnathia inferior in these cloned dogs. To determine the genetic defects related to brachygnathia inferior, we performed karyotyping and whole-genome sequencing (WGS) for identifying small genetic alterations in the genome, such as single-nucleotide variations or frameshifts. There were no chromosomal numerical abnormalities in all cloned dogs. However, WGS analysis revealed variants of Wnt signaling pathway initiators (WNT5B, DVL2, DACT1, ARRB2, FZD 4/8) and cadherin (CDH11, CDH1like) in cloned dogs with brachygnathia inferior. In conclusion, this study proposes that brachygnathia inferior in cloned dogs may be associated with variants in initiators and/or regulators of the Wnt/cadherin signaling pathway.
Collapse
|
11
|
Senft AD, Macfarlan TS. Transposable elements shape the evolution of mammalian development. Nat Rev Genet 2021; 22:691-711. [PMID: 34354263 DOI: 10.1038/s41576-021-00385-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Transposable elements (TEs) promote genetic innovation but also threaten genome stability. Despite multiple layers of host defence, TEs actively shape mammalian-specific developmental processes, particularly during pre-implantation and extra-embryonic development and at the maternal-fetal interface. Here, we review how TEs influence mammalian genomes both directly by providing the raw material for genetic change and indirectly via co-evolving TE-binding Krüppel-associated box zinc finger proteins (KRAB-ZFPs). Throughout mammalian evolution, individual activities of ancient TEs were co-opted to enable invasive placentation that characterizes live-born mammals. By contrast, the widespread activity of evolutionarily young TEs may reflect an ongoing co-evolution that continues to impact mammalian development.
Collapse
Affiliation(s)
- Anna D Senft
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA.
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Liu G, Zhang C, Wang Y, Dai G, Liu SQ, Wang W, Pan YH, Ding J, Li H. New exon and accelerated evolution of placental gene Nrk occurred in the ancestral lineage of placental mammals. Placenta 2021; 114:14-21. [PMID: 34418750 DOI: 10.1016/j.placenta.2021.08.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/20/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The chorioallantoic placenta is a specific organ for placental mammals. However, the adaptive events during its emergence are still poorly investigated. METHODS We scanned the chromosome X to detect the accelerated evolution in the ancestral lineage of placental mammals, and constructed 3D protein structure models of a candidate by homology modeling. RESULTS Eight branch-specific accelerated regions were identified. Five of these regions (P=5.61×10-11 ~ 9.03×10-8) are located in the five exons of Nik-related kinase (Nrk), which is essential in placenta development and fetoplacental induction of labor. Nrk belongs to the germinal center kinase-IV subfamily with the overall similar protein structure; however, a new exon emerged in ancestors of placental mammals and its sequence has been conserved since then. Structure modelling of NRK suggests that the accelerated exons and the placental-mammal-specific exon (as a new loop) could change the enzymatic activity and the structure of placental mammal NRK. DISCUSSION Since the new loop is surrounded by the accelerated protein regions, it is likely that the new loop occurred and shifted the function of NRK, and then the accelerated evolution of Nrk occurred to adapt the structure change caused by the new loop in the ancestral lineage of placental mammals. Overall, this work suggests that the fundamental process of placental development and fetoplacental induction of labor has been targeted by positive Darwinian selection.
Collapse
Affiliation(s)
- Guopeng Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Chunxiao Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yuting Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Guangyi Dai
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Shu-Qun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China
| | - Wenshuai Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Science, East China Normal University, Shanghai, 200062, China.
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| | - Haipeng Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
13
|
Sun J, Zheng W, Liu W, Kou X, Zhao Y, Liang Z, Wang L, Zhang Z, Xiao J, Gao R, Gao S, Jiang C. Differential Transcriptomes and Methylomes of Trophoblast Stem Cells From Naturally-Fertilized and Somatic Cell Nuclear-Transferred Embryos. Front Cell Dev Biol 2021; 9:664178. [PMID: 33869230 PMCID: PMC8047118 DOI: 10.3389/fcell.2021.664178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 12/05/2022] Open
Abstract
Trophoblast stem cells (TSCs) are critical to mammalian embryogenesis by providing the cell source of the placenta. TSCs can be derived from trophoblast cells. However, the efficiency of TSC derivation from somatic cell nuclear transfer (NT) blastocysts is low. The regulatory mechanisms underlying transcription dynamics and epigenetic landscape remodeling during TSC derivation remain elusive. Here, we derived TSCs from the blastocysts by natural fertilization (NF), NT, and a histone deacetylase inhibitor Scriptaid-treated NT (SNT). Profiling of the transcriptomes across the stages of TSC derivation revealed that fibroblast growth factor 4 (FGF4) treatment resulted in many differentially expressed genes (DEGs) at outgrowth and initiated transcription program for TSC formation. We identified 75 transcription factors (TFs) that are continuously upregulated during NF TSC derivation, whose transcription profiles can infer the time course of NF not NT TSC derivation. Most DEGs in NT outgrowth are rescued in SNT outgrowth. The correct time course of SNT TSC derivation is inferred accordingly. Moreover, these TFs comprise an interaction network important to TSC stemness. Profiling of DNA methylation dynamics showed an extremely low level before FGF4 treatment and gradual increases afterward. FGF4 treatment results in a distinct DNA methylation remodeling process committed to TSC formation. We further identified 1,293 CpG islands (CGIs) whose DNA methylation difference is more than 0.25 during NF TSC derivation. The majority of these CGIs become highly methylated upon FGF4 treatment and remain in high levels. This may create a barrier for lineage commitment to restrict embryonic development, and ensure TSC formation. There exist hundreds of aberrantly methylated CGIs during NT TSC derivation, most of which are corrected during SNT TSC derivation. More than half of the aberrantly methylated CGIs before NT TSC formation are inherited from the donor genome. In contrast, the aberrantly methylated CGIs upon TSC formation are mainly from the highly methylated CGIs induced by FGF4 treatment. Functional annotation indicates that the aberrantly highly methylated CGIs play a role in repressing placenta development genes, etc., related to post-implantation development and maintaining TSC pluripotency. Collectively, our findings provide novel insights into the transcription dynamics, DNA methylation remodeling, and the role of FGF4 during TSC derivation.
Collapse
Affiliation(s)
- Jin Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weisheng Zheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenqiang Liu
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Xiaochen Kou
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Yanhong Zhao
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Zehang Liang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lu Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zihao Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jing Xiao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Rui Gao
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Shaorong Gao
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Bian X, Liu J, Yang Q, Liu Y, Jia W, Zhang X, Li YX, Shao X, Wang YL. MicroRNA-210 regulates placental adaptation to maternal hypoxic stress during pregnancy†. Biol Reprod 2020; 104:418-429. [PMID: 33074310 DOI: 10.1093/biolre/ioaa187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
MicroRNA (miR)-210 is a well-known hypoxia-inducible small RNA. Increasing in vitro evidence demonstrates its involvement in regulating multiple behaviors of placental trophoblasts. However, direct in vivo evidence remains lacking. In the present study, we generated a miR-210-deficient mouse strain using CRISPR/Cas9 technology, in which miR-210 expression was markedly deficient in various tissues. Little influence on fertility rate and litter size was observed after the deletion of miR-210 in mice. Continuous exposure of pregnant mice to hypoxia (10.5% O2) from E6.5 to E10.5 or to E18.5 led to reduction in fetal weight, and such fetal weight loss was markedly worsened in miR-210-knockout dams. Analysis of the placental structure demonstrated the reduced expansion of placental spongiotrophoblast layer and hampered development of labyrinth fetal blood vessels in knockout mice compared to the wild-type controls upon hypoxia stimulation. The findings indicate that miR-210 participates in regulating placental adaptation to hypoxic stress during pregnancy.
Collapse
Affiliation(s)
- Xiaotao Bian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qian Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Yanlei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wentong Jia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yu-Xia Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Mouillet JF, Goff J, Sadovsky E, Sun H, Parks T, Chu T, Sadovsky Y. Transgenic expression of human C19MC miRNAs impacts placental morphogenesis. Placenta 2020; 101:208-214. [PMID: 33017713 DOI: 10.1016/j.placenta.2020.09.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/28/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The chromosome 19 miRNA cluster (C19MC) encodes a large family of microRNAs (miRNAs) that are abundantly expressed in the placenta of higher primates and also in certain cancers. In the placenta, miRNAs from this cluster account for nearly 40% of all miRNAs present in trophoblasts. However, the function of these miRNAs in the placenta remains poorly understood. Recent observations reveal a role for these miRNAs in cell migration, and suggest that they are involved in the development and function of the human placenta. Here, we examine the placenta in transgenic mice expressing the human C19MC miRNAs. METHODS We produced transgenic mice using pronuclear microinjection of a bacterial artificial chromosome plasmid carrying the entire human C19MC locus and derived a homozygous line using crossbreeding. We performed morphological characterization and profiled gene expression changes in the placentas of the transgenic mice. RESULTS C19MC transgenic mice delivered on time with no gross malformations. The placentas of transgenic mice expressed C19MC miRNAs and were larger than wild type placentas. Histologically, we found that the transgenic placenta exhibited projections of spongiotrophoblasts that penetrated deep into the labyrinth. Gene expression analysis revealed alterations in the expression of several genes involved in cell migration, with evidence of enhanced cell proliferation. DISCUSSION Mice that were humanized for transgenically overexpressed C19MC miRNAs exhibit enlarged placentas with aberrant delineation of cell layers. The observed phenotype and the related gene expression changes suggest disrupted migration of placental cell subpopulations.
Collapse
Affiliation(s)
- Jean-Francois Mouillet
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julie Goff
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elena Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Huijie Sun
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tony Parks
- Department of Laboratory Medicine and Pathobiology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Tianjiao Chu
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Konno S, Wakayama S, Ito D, Kazama K, Hirose N, Ooga M, Wakayama T. Removal of remodeling/reprogramming factors from oocytes and the impact on the full-term development of cloned embryos. Development 2020; 147:dev.190777. [PMID: 32665239 DOI: 10.1242/dev.190777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
The reason for the poor development of cloned embryos is not yet clear. Several reports have suggested that some nuclear remodeling/reprogramming factors (RRFs) are removed from oocytes at the time of enucleation, which might cause the low success rate of animal cloning. However, there is currently no method to manipulate the amount of RRFs in oocytes. Here, we describe techniques we have developed to gradually reduce RRFs in mouse oocytes by injecting somatic cell nuclei into oocytes. These injected nuclei were remodeled and reprogrammed using RRFs, and then RRFs were removed by subsequent deletion of somatic nuclei from oocytes. The size of the metaphase II spindle reduced immediately, but did recover when transferred into fresh oocytes. Though affected, the full-term developmental potential of these RRF-reduced oocytes with MII-spindle shrinkage was not lost after fertilization. When somatic cell nuclear transfer was performed, the successful generation of cloned mice was somewhat improved and abnormalities were reduced when oocytes with slightly reduced RRF levels were used. These results suggest that a change in RRFs in oocytes, as achieved by the method described in this paper or by enucleation, is important but not the main reason for the incomplete reprogramming of somatic cell nuclei.
Collapse
Affiliation(s)
- Shunsuke Konno
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Daiyu Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Kousuke Kazama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Naoki Hirose
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan .,Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| |
Collapse
|
17
|
Wang LY, Li ZK, Wang LB, Liu C, Sun XH, Feng GH, Wang JQ, Li YF, Qiao LY, Nie H, Jiang LY, Sun H, Xie YL, Ma SN, Wan HF, Lu FL, Li W, Zhou Q. Overcoming Intrinsic H3K27me3 Imprinting Barriers Improves Post-implantation Development after Somatic Cell Nuclear Transfer. Cell Stem Cell 2020; 27:315-325.e5. [PMID: 32559418 DOI: 10.1016/j.stem.2020.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/13/2020] [Accepted: 05/27/2020] [Indexed: 12/27/2022]
Abstract
Successful cloning by somatic cell nuclear transfer (SCNT) requires overcoming significant epigenetic barriers. Genomic imprinting is not generally regarded as such a barrier, although H3K27me3-dependent imprinting is differentially distributed in E6.5 epiblast and extraembryonic tissues. Here we report significant enhancement of SCNT efficiency by deriving somatic donor cells carrying simultaneous monoallelic deletion of four H3K27me3-imprinted genes from haploid mouse embryonic stem cells. Quadruple monoallelic deletion of Sfmbt2, Jade1, Gab1, and Smoc1 normalized H3K27me3-imprinted expression patterns and increased fibroblast cloning efficiency to 14% compared with a 0% birth rate from wild-type fibroblasts while preventing the placental and body overgrowth defects frequently observed in cloned animals. Sfmbt2 deletion was the most effective of the four individual gene deletions in improving SCNT. These results show that lack of H3K27me3 imprinting in somatic cells is an epigenetic barrier that impedes post-implantation development of SCNT embryos and can be overcome by monoallelic imprinting gene deletions in donor cells.
Collapse
Affiliation(s)
- Le-Yun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Kun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Bin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Han Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Gui-Hai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-Qiang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu-Fei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Lian-Yong Qiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hu Nie
- University of the Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Yuan Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hao Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya-Li Xie
- University of the Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si-Nan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hai-Feng Wan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Fa-Long Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
18
|
Loss of H3K27me3 imprinting in the Sfmbt2 miRNA cluster causes enlargement of cloned mouse placentas. Nat Commun 2020; 11:2150. [PMID: 32358519 PMCID: PMC7195362 DOI: 10.1038/s41467-020-16044-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 04/07/2020] [Indexed: 01/31/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) in mammals is an inefficient process that is frequently associated with abnormal phenotypes, especially in placentas. Recent studies demonstrated that mouse SCNT placentas completely lack histone methylation (H3K27me3)-dependent imprinting, but how it affects placental development remains unclear. Here, we provide evidence that the loss of H3K27me3 imprinting is responsible for abnormal placental enlargement and low birth rates following SCNT, through upregulation of imprinted miRNAs. When we restore the normal paternal expression of H3K27me3-dependent imprinted genes (Sfmbt2, Gab1, and Slc38a4) in SCNT placentas by maternal knockout, the placentas remain enlarged. Intriguingly, correcting the expression of clustered miRNAs within the Sfmbt2 gene ameliorates the placental phenotype. Importantly, their target genes, which are confirmed to cause SCNT-like placental histology, recover their expression level. The birth rates increase about twofold. Thus, we identify loss of H3K27me3 imprinting as an epigenetic error that compromises embryo development following SCNT. Somatic cell nuclear transfer (SCNT) frequently results in abnormal placenta development in cloned mice. Here the authors show that loss of histone methylation (H3K27me3) imprinting in clustered Sfmbt2 miRNAs contributes to SCNT placenta defect.
Collapse
|
19
|
Gouveia C, Huyser C, Egli D, Pepper MS. Lessons Learned from Somatic Cell Nuclear Transfer. Int J Mol Sci 2020; 21:E2314. [PMID: 32230814 PMCID: PMC7177533 DOI: 10.3390/ijms21072314] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) has been an area of interest in the field of stem cell research and regenerative medicine for the past 20 years. The main biological goal of SCNT is to reverse the differentiated state of a somatic cell, for the purpose of creating blastocysts from which embryonic stem cells (ESCs) can be derived for therapeutic cloning, or for the purpose of reproductive cloning. However, the consensus is that the low efficiency in creating normal viable offspring in animals by SCNT (1-5%) and the high number of abnormalities seen in these cloned animals is due to epigenetic reprogramming failure. In this review we provide an overview of the current literature on SCNT, focusing on protocol development, which includes early SCNT protocol deficiencies and optimizations along with donor cell type and cell cycle synchrony; epigenetic reprogramming in SCNT; current protocol optimizations such as nuclear reprogramming strategies that can be applied to improve epigenetic reprogramming by SCNT; applications of SCNT; the ethical and legal implications of SCNT in humans; and specific lessons learned for establishing an optimized SCNT protocol using a mouse model.
Collapse
Affiliation(s)
- Chantel Gouveia
- Institute for Cellular and Molecular Medicine, Department of Immunology and South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa;
- Department of Obstetrics and Gynaecology, Reproductive Biology Laboratory, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0002, South Africa;
| | - Carin Huyser
- Department of Obstetrics and Gynaecology, Reproductive Biology Laboratory, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0002, South Africa;
| | - Dieter Egli
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10027, USA;
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology and South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa;
| |
Collapse
|
20
|
Abstract
The mouse is the most extensively used mammalian laboratory species in biology and medicine because of the ready availability of a wide variety of defined genetic and gene-modified strains and abundant genetic information. Its small size and rapid generation turnover are also advantages compared with other experimental animals. Using these advantages, somatic cell nuclear transfer (SCNT) in mice has provided invaluable information on epigenetics related to SCNT technology and cloning, playing a leading role in relevant technical improvements. These improvements include treatment with histone deacetylase inhibitors, correction of Xist gene expression (controlling X chromosome inactivation), and removal of methylated histones from SCNT-generated embryos, which have proven to be effective for SCNT cloning of other species. However, even with the best combination of these treatments, the birth rate in cloned offspring is still lower than intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF). One remaining issue associated with SCNT is placental enlargement (hyperplasia) found in late pregnancy, but this abnormality might not be a major cause for the low efficiency of SCNT because many SCNT-derived embryos die before their placentas start to enlarge at midgestation (early postimplantation stage). It is known that, at this stage, undifferentiated trophoblast cells in the extraembryonic tissue of SCNT-derived embryos fail to proliferate. Understanding the molecular mechanisms is essential for further technical improvements of mouse SCNT, which might also provide clues for technical breakthroughs in mammalian SCNT and cloning in general.
Collapse
Affiliation(s)
- Atsuo Ogura
- RIKEN BioResource Research Center, Ibaraki, 305-0074, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan; RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan.
| |
Collapse
|
21
|
Wang C, Han X, Zhou Z, Uyunbilig B, Huang X, Li R, Li X. Wnt3a Activates the WNT-YAP/TAZ Pathway to Sustain CDX2 Expression in Bovine Trophoblast Stem Cells. DNA Cell Biol 2019; 38:410-422. [DOI: 10.1089/dna.2018.4458] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Chen Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestocks, Inner Mongolia University, Hohhot, China
| | - Xuejie Han
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestocks, Inner Mongolia University, Hohhot, China
| | - Zhengwei Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestocks, Inner Mongolia University, Hohhot, China
| | - Borjigin Uyunbilig
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestocks, Inner Mongolia University, Hohhot, China
| | - Xianghua Huang
- Department of Urology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Rongfeng Li
- State Key Laboratories of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xueling Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestocks, Inner Mongolia University, Hohhot, China
| |
Collapse
|
22
|
Natale BV, Mehta P, Vu P, Schweitzer C, Gustin K, Kotadia R, Natale DRC. Reduced Uteroplacental Perfusion Pressure (RUPP) causes altered trophoblast differentiation and pericyte reduction in the mouse placenta labyrinth. Sci Rep 2018; 8:17162. [PMID: 30464252 PMCID: PMC6249310 DOI: 10.1038/s41598-018-35606-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
This study characterized the effect of the reduced utero-placental perfusion pressure (RUPP) model of placental insufficiency on placental morphology and trophoblast differentiation at mid-late gestation (E14.5). Altered trophoblast proliferation, reduced syncytiotrophoblast gene expression, increased numbers of sinusoidal trophoblast giant cells, decreased Vegfa and decreased pericyte presence in the labyrinth were observed in addition to changes in maternal blood spaces, the fetal capillary network and reduced fetal weight. Further, the junctional zone was characterized by reduced spongiotrophoblast and glycogen trophoblast with increased trophoblast giant cells. Increased Hif-1α and TGF-β-3 in vivo with supporting hypoxia studies in trophoblast stem (TS) cells in vitro, support hypoxia as a contributing factor to the RUPP placenta phenotype. Together, this study identifies altered cell populations within the placenta that may contribute to the phenotype, and thus support the use of RUPP in the mouse as a model of placenta insufficiency. As such, this model in the mouse provides a valuable tool for understanding the phenotypes resulting from genetic manipulation of isolated cell populations to further understand the etiology of placenta insufficiency and fetal growth restriction. Further this study identifies a novel relationship between placental insufficiency and pericyte depletion in the labyrinth layer.
Collapse
Affiliation(s)
- Bryony V Natale
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Prutha Mehta
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Priscilla Vu
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christina Schweitzer
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Katarina Gustin
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ramie Kotadia
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - David R C Natale
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada.
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
23
|
Matoba S, Wang H, Jiang L, Lu F, Iwabuchi KA, Wu X, Inoue K, Yang L, Press W, Lee JT, Ogura A, Shen L, Zhang Y. Loss of H3K27me3 Imprinting in Somatic Cell Nuclear Transfer Embryos Disrupts Post-Implantation Development. Cell Stem Cell 2018; 23:343-354.e5. [PMID: 30033120 DOI: 10.1016/j.stem.2018.06.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/08/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022]
Abstract
Animal cloning can be achieved through somatic cell nuclear transfer (SCNT), although the live birth rate is relatively low. Recent studies have identified H3K9me3 in donor cells and abnormal Xist activation as epigenetic barriers that impede SCNT. Here we overcome these barriers using a combination of Xist knockout donor cells and overexpression of Kdm4 to achieve more than 20% efficiency of mouse SCNT. However, post-implantation defects and abnormal placentas were still observed, indicating that additional epigenetic barriers impede SCNT cloning. Comparative DNA methylome analysis of IVF and SCNT blastocysts identified abnormally methylated regions in SCNT embryos despite successful global reprogramming of the methylome. Strikingly, allelic transcriptomic and ChIP-seq analyses of pre-implantation SCNT embryos revealed complete loss of H3K27me3 imprinting, which may account for the postnatal developmental defects observed in SCNT embryos. Together, these results provide an efficient method for mouse cloning while paving the way for further improving SCNT efficiency.
Collapse
Affiliation(s)
- Shogo Matoba
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; RIKEN Bioresource Research Center, Tsukuba, Ibaraki 305-0074, Japan; Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Huihan Wang
- Life Sciences Institute and Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Lan Jiang
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Falong Lu
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kumiko A Iwabuchi
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoji Wu
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kimiko Inoue
- RIKEN Bioresource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Lin Yang
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - William Press
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Atsuo Ogura
- RIKEN Bioresource Research Center, Tsukuba, Ibaraki 305-0074, Japan; RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Li Shen
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Life Sciences Institute and Stem Cell Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yi Zhang
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Ao Z, Liu D, Zhao C, Yue Z, Shi J, Zhou R, Cai G, Zheng E, Li Z, Wu Z. Birth weight, umbilical and placental traits in relation to neonatal loss in cloned pigs. Placenta 2017; 57:94-101. [DOI: 10.1016/j.placenta.2017.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/23/2017] [Accepted: 06/14/2017] [Indexed: 12/16/2022]
|
25
|
Abnormal gene expression in regular and aggregated somatic cell nuclear transfer placentas. BMC Biotechnol 2017; 17:34. [PMID: 28347305 PMCID: PMC5368936 DOI: 10.1186/s12896-017-0355-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 03/18/2017] [Indexed: 12/30/2022] Open
Abstract
Background Placental defects in somatic cell nuclear transfer (SCNT) are a major cause of complications during pregnancy. One of the most critical factors for the success of SCNT is the successful epigenetic reprogramming of donor cells. Recently, it was reported that the placental weight in mice cloned with the aggregated SCNT method was significantly reduced. Here, we examine the profile of abnormal gene expression using microarray technology in both regular SCNT and aggregated SCNT placentas as well as in vivo fertilization placentas. One SCNT embryo was aggregated with two 2 to 4 -cell stage tetraploid embryos from B6D2F1 mice (C57BL/6 × DBA/2). Results In SCNT placentas, 206 (1.6%) of the 12,816 genes probed were either up-regulated or down-regulated by more than two-fold. However, 52 genes (0.4%) showed differential expression in aggregated SCNT placentas compared to that in controls. In comparison of both types of SCNT placentas with the controls, 33 (92%) out of 36 genes were found to be up-regulated (>2-fold) in SCNT placentas. Among 36 genes, 13 (36%) genes were up-regulated in the aggregated SCNT placentas. Eighty-five genes were down-regulated in SCNT placentas compared with the controls. However, only 9 (about 10.5%) genes were down-regulated in the aggregated SCNT placentas. Of the 34 genes known as imprinted genes, expression was lower in SCNT placentas than that in the controls. Thus, these genes may be the cause of placentomegaly in mice produced post SCNT. Conclusions These results suggest that placentomegaly in the SCNT placentas was probably caused by abnormal expression of multiple genes. Taken together, these results suggest that abnormal gene expression in cloned placentas was reduced in a genome-wide manner using the aggregation method with tetraploid embryos. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0355-4) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Czernik M, Toschi P, Zacchini F, Iuso D, Ptak GE. Deregulated Expression of Mitochondrial Proteins Mfn2 and Bcnl3L in Placentae from Sheep Somatic Cell Nuclear Transfer (SCNT) Conceptuses. PLoS One 2017; 12:e0169579. [PMID: 28076382 PMCID: PMC5226789 DOI: 10.1371/journal.pone.0169579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/18/2016] [Indexed: 12/28/2022] Open
Abstract
In various animal species, the main cause of pregnancy loss in conceptuses obtained by somatic cell nuclear transfer (SCNT) are placental abnormalities. Most abnormalities described in SCNT pregnancies (such as placentomegaly, reduced vascularisation, hypoplasia of trophoblastic epithelium) suggest that placental cell degeneration may be triggered by mitochondrial failure. We hypothesized that placental abnormalities of clones obtained by SCNT are related to mitochondrial dysfunction. To test this, early SCNT and control (CTR, from pregnancies obtained by in vitro fertilization) placentae were collected from pregnant ewes (at day 20 and 22 of gestation) and subjected to morphological, mRNA and protein analysis. Here, we demonstrated swollen and fragmented mitochondria and low expression of mitofusin 2 (Mfn2), the protein which plays a crucial role in mitochondrial functionality, in SCNT early placentae. Furthermore, reduced expression of the Bcnl3L/Nix protein, which plays a crucial role in selective elimination of damaged mitochondria, was observed and reflected by the accumulation of numerous damaged mitochondria in SCNT placental cells. Likely, this accumulation of damaged organelles led to uncontrolled apoptosis in SCNT placentae, as demonstrated by the high number of apoptotic bodies, fragmented cytoplasm, condensed chromatin, lack of integrity of the nuclear membrane and the perturbed mRNA expression of apoptotic genes (BCL2 and BAX). In conclusion, our data indicate that deregulated expression of Mfn2 and Bcnl3L is responsible for placental abnormalities in SCNT conceptuses. Our results suggest that some nuclear genes, that are involved in the regulation of mitochondrial function, do not work well and consequently this influence the function of mitochondria.
Collapse
Affiliation(s)
- Marta Czernik
- Faculty of Veterinary Medicine, Experimental Embryology, University of Teramo, Teramo, Italy
| | - Paola Toschi
- Faculty of Veterinary Medicine, Experimental Embryology, University of Teramo, Teramo, Italy
| | - Federica Zacchini
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Domenico Iuso
- Faculty of Veterinary Medicine, Experimental Embryology, University of Teramo, Teramo, Italy
| | - Grażyna Ewa Ptak
- Faculty of Veterinary Medicine, Experimental Embryology, University of Teramo, Teramo, Italy
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
- National Research Institute of Animal Production, Balice n/Krakow, Poland
- * E-mail:
| |
Collapse
|
27
|
Kalisch-Smith JI, Simmons DG, Dickinson H, Moritz KM. Review: Sexual dimorphism in the formation, function and adaptation of the placenta. Placenta 2016; 54:10-16. [PMID: 27979377 DOI: 10.1016/j.placenta.2016.12.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023]
Abstract
Exposure of the embryo or fetus to perturbations in utero can result in intrauterine growth restriction, a primary risk factor for the development of adult disease. However, despite similar exposures, males and females often have altered disease susceptibility or progression from different stages of life. Fetal growth is largely mediated by the placenta, which, like the fetus is genetically XX or XY. The placenta and its associated trophoblast lineages originate from the trophectoderm (TE) of the early embryo. Rodent models (rat, mouse, spiny mouse), have been used extensively to examine placenta development and these have demonstrated the growth trajectory of the placenta in females is generally slower compared to males, and also shows altered adaptive responses to stressful environments. These placental adaptations are likely to depend on the type of stressor, duration, severity and the window of exposure during development. Here we describe the divergent developmental pathways between the male and female placenta contributing to altered differentiation of the TE derived trophoblast subtypes, placental growth, and formation of the placental architecture. Our focus is primarily genetic or environmental perturbations in rodent models which show altered placental responsiveness between sexes. We suggest that perturbations during early placental development may have greater impact on viability and growth of the female fetus whilst those occurring later in gestation may preferentially affect the male fetus. This may be of great relevance to human pregnancies which result from assisted reproductive technologies or complications such as pre-eclampsia and diabetes.
Collapse
Affiliation(s)
- J I Kalisch-Smith
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - D G Simmons
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - H Dickinson
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Australia
| | - K M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Centre for Children's Health Research, The University of Queensland, South Brisbane, QLD, 4101, Australia.
| |
Collapse
|
28
|
Kim HR, Lee JE, Oqani RK, Kim SY, Wakayama T, Li C, Sa SJ, Woo JS, Jin DI. Aberrant Expression of TIMP-2 and PBEF Genes in the Placentae of Cloned Mice Due to Epigenetic Reprogramming Error. PLoS One 2016; 11:e0166241. [PMID: 27855185 PMCID: PMC5113924 DOI: 10.1371/journal.pone.0166241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/25/2016] [Indexed: 11/19/2022] Open
Abstract
Cloned mice derived from somatic or ES cells show placental overgrowth (placentomegaly) at term. We had previously analyzed cloned and normal mouse placentae by using two-dimensional gel electrophoresis and mass spectrometry to identify differential protein expression patterns. Cloned placentae showed upregulation of tissue inhibitor of metalloproteinase-2 (TIMP-2), which is involved in extracellular matrix degradation and tissue remodeling, and downregulation of pre-B cell colony enhancing factor 1 (PBEF), which inhibits apoptosis and induces spontaneous labor. Here, we used Western blotting to further analyze the protein expression levels of TIMP-2 and PBEF in cloned placentae derived from cumulus cells, TSA-treated cumulus cells, intracytoplasmic sperm injection (ICSI), and natural mating (NM control). Cloned and TSA-treated cloned placentae had higher expression levels of TIMP-2 compared with NM control and ICSI-derived placentae, and there was a positive association between TIMP-2 expression and the placental weight of cloned mouse concepti. Conversely, PBEF protein expression was significantly lower in cloned and ICSI placentae compared to NM controls. To examine whether the observed differences were due to abnormal gene expression caused by faulty epigenetic reprogramming in clones, we investigated DNA methylation and histone modification in the promoter regions of the genes encoding TIMP-2 and PBEF. Sodium bisulfite sequencing did not reveal any difference in DNA methylation between cloned and NM control placentae. However, ChIP assays revealed that the level of H3-K9/K14 acetylation at the TIMP-2 locus was higher in cloned placentae than in NM controls, whereas acetylation of the PBEF promoter was lower in cloned and ICSI placenta versus NM controls. These results suggest that cloned placentae appear to suffer from failure of histone modification-based reprogramming in these (and potentially other) developmentally important genes, leading to aberrant expression of their protein products. These changes are likely to be involved in generating the abnormalities seen in cloned mouse placentae, including enlargement and/or a lack of proper placental function.
Collapse
Affiliation(s)
- Hong Rye Kim
- Department of Animal Science & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Eun Lee
- Department of Animal Science & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Reza Kheirkhahi Oqani
- Department of Animal Science & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - So Yeon Kim
- Department of Animal Science & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi, Japan
| | - Chong Li
- School of Medicine, Tongi University, Shanghai, China
| | - Su Jin Sa
- Department of Animal Resource Development, National Institute of Animal Science, Cheonan, Republic of Korea
| | - Je Seok Woo
- Department of Animal Resource Development, National Institute of Animal Science, Cheonan, Republic of Korea
| | - Dong Il Jin
- Department of Animal Science & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
29
|
Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, Shimamoto S, Imamura T, Nakashima K, Saitou M, Hayashi K. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 2016; 539:299-303. [PMID: 27750280 DOI: 10.1038/nature20104] [Citation(s) in RCA: 381] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 09/22/2016] [Indexed: 01/12/2023]
Abstract
The female germ line undergoes a unique sequence of differentiation processes that confers totipotency to the egg. The reconstitution of these events in vitro using pluripotent stem cells is a key achievement in reproductive biology and regenerative medicine. Here we report successful reconstitution in vitro of the entire process of oogenesis from mouse pluripotent stem cells. Fully potent mature oocytes were generated in culture from embryonic stem cells and from induced pluripotent stem cells derived from both embryonic fibroblasts and adult tail tip fibroblasts. Moreover, pluripotent stem cell lines were re-derived from the eggs that were generated in vitro, thereby reconstituting the full female germline cycle in a dish. This culture system will provide a platform for elucidating the molecular mechanisms underlying totipotency and the production of oocytes of other mammalian species in culture.
Collapse
Affiliation(s)
- Orie Hikabe
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Nobuhiko Hamazaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Go Nagamatsu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yayoi Obata
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuji Hirao
- NARO Institute of Livestock and Grassland Science, Ikenodai 2, Tsukuba 305-0901, Japan
| | - Norio Hamada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - So Shimamoto
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.,JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.,JST, PRESTO, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
30
|
Wilmut I, Bai Y, Taylor J. Somatic cell nuclear transfer: origins, the present position and future opportunities. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140366. [PMID: 26416677 DOI: 10.1098/rstb.2014.0366] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Nuclear transfer that involves the transfer of the nucleus from a donor cell into an oocyte or early embryo from which the chromosomes have been removed was considered first as a means of assessing changes during development in the ability of the nucleus to control development. In mammals, development of embryos produced by nuclear transfer depends upon coordination of the cell cycles of donor and recipient cells. Our analysis of nuclear potential was completed in 1996 when a nucleus from an adult ewe mammary gland cell controlled development to term of Dolly the sheep. The new procedure has been used to target the first precise genetic modification into livestock; however, the greatest inheritance of the Dolly experiment was to make biologists think differently. If unknown factors in the recipient oocyte could reprogramme the nucleus to a stage very early in development then there must be other ways of making that change. Within 10 years, two laboratories working independently established protocols by which the introduction of selected transcription factors changes a small proportion of the treated cells to pluripotent stem cells. This ability to produce 'induced pluripotent stem cells' is providing revolutionary new opportunities in research and cell therapy.
Collapse
Affiliation(s)
- Ian Wilmut
- MRC Centre for Regenerative Medicine, University of Edinburgh, BioQuarter, 5, Little France Crescent, Edinburgh EH16 4UU, UK
| | - Yu Bai
- MRC Centre for Regenerative Medicine, University of Edinburgh, BioQuarter, 5, Little France Crescent, Edinburgh EH16 4UU, UK
| | - Jane Taylor
- MRC Centre for Regenerative Medicine, University of Edinburgh, BioQuarter, 5, Little France Crescent, Edinburgh EH16 4UU, UK
| |
Collapse
|
31
|
Mizutani E, Torikai K, Wakayama S, Nagatomo H, Ohinata Y, Kishigami S, Wakayama T. Generation of cloned mice and nuclear transfer embryonic stem cell lines from urine-derived cells. Sci Rep 2016; 6:23808. [PMID: 27033801 PMCID: PMC4817122 DOI: 10.1038/srep23808] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/15/2016] [Indexed: 11/24/2022] Open
Abstract
Cloning animals by nuclear transfer provides the opportunity to preserve endangered mammalian species. However, there are risks associated with the collection of donor cells from the body such as accidental injury to or death of the animal. Here, we report the production of cloned mice from urine-derived cells collected noninvasively. Most of the urine-derived cells survived and were available as donors for nuclear transfer without any pretreatment. After nuclear transfer, 38–77% of the reconstructed embryos developed to the morula/blastocyst, in which the cell numbers in the inner cell mass and trophectoderm were similar to those of controls. Male and female cloned mice were delivered from cloned embryos transferred to recipient females, and these cloned animals grew to adulthood and delivered pups naturally when mated with each other. The results suggest that these cloned mice had normal fertility. In additional experiments, 26 nuclear transfer embryonic stem cell lines were established from 108 cloned blastocysts derived from four mouse strains including inbreds and F1 hybrids with relatively high success rates. Thus, cells derived from urine, which can be collected noninvasively, may be used in the rescue of endangered mammalian species by using nuclear transfer without causing injury to the animal.
Collapse
Affiliation(s)
- Eiji Mizutani
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan.,Advanced Biotechnology Center, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Kohei Torikai
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Hiroaki Nagatomo
- COC Promotion Center, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Yasuhide Ohinata
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Satoshi Kishigami
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan.,Advanced Biotechnology Center, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| |
Collapse
|
32
|
Van Gronigen Caesar G, Dale JM, Osman EY, Garcia ML, Lorson CL, Schulz LC. Placental development in a mouse model of spinal muscular atrophy. Biochem Biophys Res Commun 2015; 470:82-87. [PMID: 26748185 DOI: 10.1016/j.bbrc.2015.12.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/22/2015] [Indexed: 01/30/2023]
Abstract
Spinal Muscular Atrophy (SMA) is an autosomal recessive disorder, leading to fatal loss of motor neurons. It is caused by loss of function of the SMN gene, which is expressed throughout the body, and there is increasing evidence of dysfunction in non-neuronal tissues. Birthweight is one of most powerful prognostic factors for infants born with SMA, and intrauterine growth restriction is common. In the SMNΔ7 mouse model of SMA, pups with the disease lived 25% longer when their mothers were fed a higher fat, "breeder" diet. The placenta is responsible for transport of nutrients from mother to fetus, and is a major determinant of fetal growth. Thus, the present study tested the hypothesis that placental development is impaired in SMNΔ7 conceptuses. Detailed morphological characterization revealed no defects in SMNΔ7 placental development, and expression of key transcription factors regulating mouse placental development was unaffected. The intrauterine growth restriction observed in SMA infants likely does not result from impaired placental development.
Collapse
Affiliation(s)
- Gerialisa Van Gronigen Caesar
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Jeffrey M Dale
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Erkan Y Osman
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Michael L Garcia
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Christian L Lorson
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA; Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Laura C Schulz
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
33
|
Muto M, Fujihara Y, Tobita T, Kiyozumi D, Ikawa M. Lentiviral Vector-Mediated Complementation Restored Fetal Viability but Not Placental Hyperplasia in Plac1-Deficient Mice. Biol Reprod 2015; 94:6. [PMID: 26586843 DOI: 10.1095/biolreprod.115.133454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/13/2015] [Indexed: 12/25/2022] Open
Abstract
The X-linked Plac1 gene is maternally expressed in trophoblast cells during placentation, and its disruption causes placental hyperplasia and intrauterine growth restriction. In contrast, Plac1 is also reported to be one of the upregulated genes in the hyperplastic placenta generated by nuclear transfer. However, the effect of overexpressed Plac1 on placental formation and function remained unaddressed. We complemented the Plac1 knockout placental dysfunction by lentiviral vector-mediated, placenta-specific Plac1 transgene expression. Whereas fetal development and the morphology of maternal blood sinuses in the labyrinth zone improved, placental hyperplasia remained, with an expanded the junctional zone that migrated and encroached into the labyrinth zone. Further experiments revealed that wild-type placenta with transgenically expressed Plac1 resulted in placental hyperplasia without the encroaching of the junctional zone. Our findings suggest that Plac1 is involved in trophoblast cell proliferation, differentiation, and migration. Its proper expression is required for normal placentation and fetal development.
Collapse
Affiliation(s)
- Masanaga Muto
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomohiro Tobita
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daiji Kiyozumi
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
34
|
Abd Ellah N, Taylor L, Troja W, Owens K, Ayres N, Pauletti G, Jones H. Development of Non-Viral, Trophoblast-Specific Gene Delivery for Placental Therapy. PLoS One 2015; 10:e0140879. [PMID: 26473479 PMCID: PMC4608830 DOI: 10.1371/journal.pone.0140879] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022] Open
Abstract
Low birth weight is associated with both short term problems and the fetal programming of adult onset diseases, including an increased risk of obesity, diabetes and cardiovascular disease. Placental insufficiency leading to intrauterine growth restriction (IUGR) contributes to the prevalence of diseases with developmental origins. Currently there are no therapies for IUGR or placental insufficiency. To address this and move towards development of an in utero therapy, we employ a nanostructure delivery system complexed with the IGF-1 gene to treat the placenta. IGF-1 is a growth factor critical to achieving appropriate placental and fetal growth. Delivery of genes to a model of human trophoblast and mouse placenta was achieved using a diblock copolymer (pHPMA-b-pDMAEMA) complexed to hIGF-1 plasmid DNA under the control of trophoblast-specific promoters (Cyp19a or PLAC1). Transfection efficiency of pEGFP-C1-containing nanocarriers in BeWo cells and non-trophoblast cells was visually assessed via fluorescence microscopy. In vivo transfection and functionality was assessed by direct placental-injection into a mouse model of IUGR. Complexes formed using pHPMA-b-pDMAEMA and CYP19a-923 or PLAC1-modified plasmids induce trophoblast-selective transgene expression in vitro, and placental injection of PLAC1-hIGF-1 produces measurable RNA expression and alleviates IUGR in our mouse model, consequently representing innovative building blocks towards human placental gene therapies.
Collapse
Affiliation(s)
- Noura Abd Ellah
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, United States of America
- Faculty of Pharmacy, Assiut University, 71515, Assiut, Arab Republic of Egypt
| | - Leeanne Taylor
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, United States of America
| | - Weston Troja
- Divisions of General and Thoracic Surgery and Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, United States of America
| | - Kathryn Owens
- Divisions of General and Thoracic Surgery and Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, United States of America
| | - Neil Ayres
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, United States of America
| | - Giovanni Pauletti
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, United States of America
| | - Helen Jones
- Divisions of General and Thoracic Surgery and Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ko YG, Hwang S, Kim SW, Kim H, Seong HH, Kim JH, Song Y, Yang BS, Song YM, Cho JH. Proteomic analysis of the extraembryonic tissues from cloned porcine fetus at day 35 of pregnancy. BMC Res Notes 2014; 7:861. [PMID: 25433481 PMCID: PMC4289280 DOI: 10.1186/1756-0500-7-861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 11/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Somatic cell cloning by nuclear transfer (SCNT) in pig is clearly of great benefit for basic research and biomedical applications. Even though cloned offspring have been successfully produced in pig, SCNT is struggling with the low efficiency. RESULTS In the present study, we investigated differentially expressed proteins of the extraembryonic tissue from pig SCNT fetus compared to control (normal) fetus. We obtained the extraembryonic tissue from embryos at day 35 of pregnancy and examined the protein expression profiles using two-dimensional electrophoresis (2-D) and Western blotting. The extraembryonic tissue of fetus in control pregnancy was compared to the extraembryonic tissue of SCNT fetus, which showed an abnormally small size and shape as well as exhibited abnormal placental morphology compared to control fetus. A proteomic analysis showed that the expression of 33 proteins was significantly increased or decreased in the extraembryonic tissue of SCNT fetus compared to control fetus. The differentially expressed proteins in the extraembryonic tissue of SCNT fetus included ATP or lipid binding proteins, antioxidant proteins, translation elongation factors, and transcription factors. Western blotting analysis indicated that antioxidant enzymes and anti-apoptotic proteins were down-regulated; however, the expression levels of apoptotic proteins, Bax and Hsp27, were increased in the extraembryonic tissue of SCNT fetus. Moreover, immunohistochemical analysis also showed that the expression of the catalase or GPX genes was decreased in the extraembryonic tissue with SCNT fetus compared to those with control fetus. In addition, we observed a significant decrease in DNA methytransferase1 (Dnmt1) expression in SCNT extraembryonic tissue, and the expression levels of Dnmt3a and Dnmt3b were abnormally higher in SCNT fetus compared to control fetus. Moreover, a marked increase in the frequency of TUNEL-positive cells was observed in the extraembryonic tissue in SCNT fetus. CONCLUSION These results demonstrated that pig SCNT fetus showed abnormal protein expression in the extraembryonic tissue, and extensive apoptosis occurred in the extraembryonic tissue of the SCNT fetus due to an increase in apoptotic protein expression or a decrease in antioxidant protein expression.
Collapse
Affiliation(s)
- Yeoung-Gyu Ko
- Animal Genetic Resources Station, National Institute of Animal Science, RDA, Namwon 590-832, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sim BW, Min KS. Production of cloned mice by aggregation of tetraploid embryo. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.948488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
37
|
Kim JS, Choi HW, Choi S, Do JT. Reprogrammed pluripotent stem cells from somatic cells. Int J Stem Cells 2014; 4:1-8. [PMID: 24298328 DOI: 10.15283/ijsc.2011.4.1.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2011] [Indexed: 02/04/2023] Open
Abstract
Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-like pluripotency by transferring somatic cell nuclei into oocytes, by cell fusion with pluripotent cells. Retroviral-mediated introduction of four factors, Oct4, Sox2, Klf4 and c-Myc can successfully reprogram somatic cells into ES cell-like pluripotent stem cells, known as induced pluripotent stem (iPS) cells. These cells closely resemble ES cells in gene expression pattern, cell biologic and phenotypic characteristics. However, to reach the eventual goal of clinical application, it is necessary to overcome the major drawbacks such as low reprogramming efficiency and genomic alterations due to viral integration. In this review, we discuss the current reprogramming techniques and mechanisms of nuclear reprogramming induced by transcription factor transduction.
Collapse
Affiliation(s)
- Jong Soo Kim
- Laboratory of Stem Cell and Developmental Biology, Department of Life Science, CHA University, Seoul, Korea
| | | | | | | |
Collapse
|
38
|
|
39
|
Hill JR. Incidence of abnormal offspring from cloning and other assisted reproductive technologies. Annu Rev Anim Biosci 2013; 2:307-21. [PMID: 25384145 DOI: 10.1146/annurev-animal-022513-114109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In animals produced by assisted reproductive technologies, two abnormal phenotypes have been characterized. Large offspring syndrome (LOS) occurs in offspring derived from in vitro cultured embryos, and the abnormal clone phenotype includes placental and fetal changes. LOS is readily apparent in ruminants, where a large calf or lamb derived from in vitro embryo production or cloning may weigh up to twice the expected body weight. The incidence of LOS varies widely between species. When similar embryo culture conditions are applied to nonruminant species, LOS either is not as dramatic or may even be unapparent. Coculture with serum and somatic cells was identified in the 1990s as a risk factor for abnormal development of ruminant pregnancies. Animals cloned from somatic cells may display a combination of fetal and placental abnormalities that are manifested at different stages of pregnancy and postnatally. In highly interventional technologies, such as nuclear transfer (cloning), the incidence of abnormal offspring continues to be a limiting factor to broader application of the technique. This review details the breadth of phenotypes found in nonviable pregnancies, together with the phenotypes of animals that survive the transition to extrauterine life. The focus is on animals produced using in vitro embryo culture and nuclear transfer in comparison to naturally occurring phenotypes.
Collapse
Affiliation(s)
- Jonathan R Hill
- School of Veterinary Science, University of Queensland, St. Lucia, Queensland 4072, Australia;
| |
Collapse
|
40
|
Latrunculin A treatment prevents abnormal chromosome segregation for successful development of cloned embryos. PLoS One 2013; 8:e78380. [PMID: 24205216 PMCID: PMC3813513 DOI: 10.1371/journal.pone.0078380] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/20/2013] [Indexed: 12/22/2022] Open
Abstract
Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene—essential for normal development but never before expressed in cloned embryos—was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning.
Collapse
|
41
|
Hirasawa R, Matoba S, Inoue K, Ogura A. Somatic donor cell type correlates with embryonic, but not extra-embryonic, gene expression in postimplantation cloned embryos. PLoS One 2013; 8:e76422. [PMID: 24146866 PMCID: PMC3797840 DOI: 10.1371/journal.pone.0076422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/23/2013] [Indexed: 11/19/2022] Open
Abstract
The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (P<1.0×10–26). In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1–5% per embryos transferred in our laboratory), because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT.
Collapse
Affiliation(s)
| | - Shogo Matoba
- RIKEN BioResouce Center, Tsukuba, Ibaraki, Japan
| | - Kimiko Inoue
- RIKEN BioResouce Center, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsuo Ogura
- RIKEN BioResouce Center, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
42
|
Electrical activation of rabbit oocytes increases fertilization and embryo development by intracytoplasmic sperm injection using sperm from deceased male. J Assist Reprod Genet 2013; 30:1605-10. [PMID: 24114632 DOI: 10.1007/s10815-013-0113-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022] Open
Abstract
PURPOSE We investigated the effect of electrical stimulation on rabbit oocyte activation using intracytoplasmic sperm injection (ICSI) to determine whether viable offspring can be produced from deceased rabbit sperm using ICSI. METHODS Sperm were collected from a heterozygote GFP male rabbit 5 h after sacrifice and cryopreserved in liquid nitrogen. Mature oocytes were fertilized using ICSI. A series of electrical pulse procedures were used to activate oocytes before and/or after ICSI. Following ICSI, zygotes were cultured in B2 medium for 4 days or transferred into the oviducts of recipient rabbits at the 2- or 4-cell stage. RESULTS The blastocyst formation rate was significantly greater in oocytes that received one or two pulses prior to ICSI compared to controls and other electrically stimulated groups. In the single pulse before ICSI group, 23 % of the blastocysts expressed GFP, which was significantly greater than all other groups. However, those that received treatment before and after, or just following ICSI, showed a significant decrease in embryo survival. Finally, embryos from the single pulse before ICSI group were transferred into recipient female rabbits and a full-term kit was successfully delivered. CONCLUSIONS One pulse of electrical stimulation prior to sperm injection was an effective method to activate rabbit oocytes for fertilization. Sperm collected from a deceased rabbit is able to produce viable embryos through ISCI that are capable of normal fetal and kit development.
Collapse
|
43
|
Okae H, Matoba S, Nagashima T, Mizutani E, Inoue K, Ogonuki N, Chiba H, Funayama R, Tanaka S, Yaegashi N, Nakayama K, Sasaki H, Ogura A, Arima T. RNA sequencing-based identification of aberrant imprinting in cloned mice. Hum Mol Genet 2013; 23:992-1001. [PMID: 24105465 DOI: 10.1093/hmg/ddt495] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Animals cloned by somatic cell nuclear transfer (SCNT) provide a unique model for understanding the mechanisms of nuclear epigenetic reprogramming to a state of totipotency. Though many phenotypic abnormalities have been demonstrated in cloned animals, the underlying mechanisms are not well understood. In this study, we performed transcriptome-wide allelic expression analyses in brain and placental tissues of cloned mice. We found that Gab1, Sfmbt2 and Slc38a4 showed loss of imprinting in all cloned mice analyzed, which might be involved in placentomegaly of cloned mice. These three genes did not require de novo DNA methylation in growing oocytes for the establishment of imprinting, implying the involvement of a de novo DNA methylation-independent mechanism. Loss of Dlk1-Dio3 imprinting was also observed in nearly half of cloned mouse embryos and showed a strong correlation with embryonic lethality. Our findings are essential to understand the underlying mechanisms of developmental abnormalities of cloned animals. We also emphasize that particular attention should be paid to specific imprinted genes for therapeutic and agricultural applications of SCNT.
Collapse
Affiliation(s)
- Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Diao YF, Naruse KJ, Han RX, Li XX, Oqani RK, Lin T, Jin DI. Treatment of fetal fibroblasts with DNA methylation inhibitors and/or histone deacetylase inhibitors improves the development of porcine nuclear transfer-derived embryos. Anim Reprod Sci 2013; 141:164-71. [DOI: 10.1016/j.anireprosci.2013.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/09/2013] [Accepted: 08/13/2013] [Indexed: 11/16/2022]
|
45
|
Successful serial recloning in the mouse over multiple generations. Cell Stem Cell 2013; 12:293-7. [PMID: 23472871 DOI: 10.1016/j.stem.2013.01.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/20/2012] [Accepted: 01/04/2013] [Indexed: 12/29/2022]
Abstract
Previous studies of serial cloning in animals showed a decrease in efficiency over repeated iterations and a failure in all species after a few generations. This limitation led to the suggestion that repeated recloning might be inherently impossible because of the accumulation of lethal genetic or epigenetic abnormalities. However, we have now succeeded in carrying out repeated recloning in the mouse through a somatic cell nuclear transfer method that includes a histone deacetylase inhibitor. The cloning efficiency did not decrease over 25 generations, and, to date, we have obtained more than 500 viable offspring from a single original donor mouse. The reprogramming efficiency also did not increase over repeated rounds of nuclear transfer, and we did not see the accumulation of reprogramming errors or clone-specific abnormalities. Therefore, our results show that repeated iterative recloning is possible and suggest that, with adequately efficient techniques, it may be possible to reclone animals indefinitely.
Collapse
|
46
|
Kishigami S, Lee AR, Wakayama T. Using somatic-cell nuclear transfer to study aging. Methods Mol Biol 2013; 1048:109-26. [PMID: 23929101 DOI: 10.1007/978-1-62703-556-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
In mammals, a diploid genome following fertilization of haploid cells, an egg, and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual's inevitable demise. Since it was first reported in 1997 that Dolly the sheep had been cloned, many mammalian species have been cloned successfully using somatic-cell nuclear transfer (SCNT). The success of SCNT in mammals enables us not only to reproduce offspring without germ cells, that is, to "passage" a unique diploid genome, but also to address valuable biological questions on development, nuclear reprogramming, and epigenetic memory. Successful cloning can also support epigenetic reprogramming where the aging clock is reset or reversed. Recent work using iPS cell technology has explored the practicality and led to the recapitulation of premature aging with iPSCs from progeroid laminopathies. As a result, reprogramming tools are also expected to contribute to studying biological age. However, the efficiency of animal cloning is still low in most cases and the mechanism of reprogramming in cloned embryos is still largely unclear. Here, based on recent advances, we describe an improved, more efficient mouse cloning protocol using histone deacetylase inhibitors (HDACis) and latrunculin A, which increases the success rates of producing cloned mice or establishing ES cells fivefold. This improved method of cloning will provide a strong tool to address many issues including biological aging more easily and with lower cost.
Collapse
Affiliation(s)
- Satoshi Kishigami
- Division of Biological Science, Graduate School of Biology-Oriented Science and Technology, KINKI University, Wakayama, Japan
| | | | | |
Collapse
|
47
|
Ogura A, Inoue K, Wakayama T. Recent advancements in cloning by somatic cell nuclear transfer. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110329. [PMID: 23166393 DOI: 10.1098/rstb.2011.0329] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.
Collapse
Affiliation(s)
- Atsuo Ogura
- RIKEN BioResource Center, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
48
|
Susiarjo M, Sasson I, Mesaros C, Bartolomei MS. Bisphenol a exposure disrupts genomic imprinting in the mouse. PLoS Genet 2013; 9:e1003401. [PMID: 23593014 PMCID: PMC3616904 DOI: 10.1371/journal.pgen.1003401] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 02/07/2013] [Indexed: 11/29/2022] Open
Abstract
Exposure to endocrine disruptors is associated with developmental defects. One compound of concern, to which humans are widely exposed, is bisphenol A (BPA). In model organisms, BPA exposure is linked to metabolic disorders, infertility, cancer, and behavior anomalies. Recently, BPA exposure has been linked to DNA methylation changes, indicating that epigenetic mechanisms may be relevant. We investigated effects of exposure on genomic imprinting in the mouse as imprinted genes are regulated by differential DNA methylation and aberrant imprinting disrupts fetal, placental, and postnatal development. Through allele-specific and quantitative real-time PCR analysis, we demonstrated that maternal BPA exposure during late stages of oocyte development and early stages of embryonic development significantly disrupted imprinted gene expression in embryonic day (E) 9.5 and 12.5 embryos and placentas. The affected genes included Snrpn, Ube3a, Igf2, Kcnq1ot1, Cdkn1c, and Ascl2; mutations and aberrant regulation of these genes are associated with imprinting disorders in humans. Furthermore, the majority of affected genes were expressed abnormally in the placenta. DNA methylation studies showed that BPA exposure significantly altered the methylation levels of differentially methylated regions (DMRs) including the Snrpn imprinting control region (ICR) and Igf2 DMR1. Moreover, exposure significantly reduced genome-wide methylation levels in the placenta, but not the embryo. Histological and immunohistochemical examinations revealed that these epigenetic defects were associated with abnormal placental development. In contrast to this early exposure paradigm, exposure outside of the epigenetic reprogramming window did not cause significant imprinting perturbations. Our data suggest that early exposure to common environmental compounds has the potential to disrupt fetal and postnatal health through epigenetic changes in the embryo and abnormal development of the placenta. BPA is a widely used compound to which humans are exposed, and recent studies have demonstrated the association between exposure and adverse developmental outcomes in both animal models and humans. Unfortunately, exact mechanisms of BPA–induced health abnormalities are unclear, and elucidation of these relevant biological pathways is critical for understanding the public health implication of exposure. Recently, increasing data have demonstrated the ability of BPA to induce changes in DNA methylation, suggesting that epigenetic mechanisms are relevant. In this work, we study effects of BPA exposure on expression and regulation of imprinted genes in the mouse. Imprinted genes are regulated by differential DNA methylation, and they play critical roles during fetal, placental, and postnatal development. We have found that fetal exposure to BPA at physiologically relevant doses alters expression and methylation status of imprinted genes in the mouse embryo and placenta, with the latter tissue exhibiting the more significant changes. Additionally, abnormal imprinting is associated with defective placental development. Our data demonstrate that BPA exposure may perturb fetal and postnatal health through epigenetic changes in the embryo as well as through alterations in placental development.
Collapse
Affiliation(s)
- Martha Susiarjo
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Center of Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Isaac Sasson
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Center of Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
49
|
Vaughan OR, Sferruzzi-Perri AN, Coan PM, Fowden AL. Environmental regulation of placental phenotype: implications for fetal growth. Reprod Fertil Dev 2012; 24:80-96. [PMID: 22394720 DOI: 10.1071/rd11909] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Environmental conditions during pregnancy determine birthweight, neonatal viability and adult phenotype in human and other animals. In part, these effects may be mediated by the placenta, the principal source of nutrients for fetal development. However, little is known about the environmental regulation of placental phenotype. Generally, placental weight is reduced during suboptimal conditions like maternal malnutrition or hypoxaemia but compensatory adaptations can occur in placental nutrient transport capacity to help maintain fetal growth. In vivo studies show that transplacental glucose and amino acid transfer adapt to the prevailing conditions induced by manipulating maternal calorie intake, dietary composition and hormone exposure. These adaptations are due to changes in placental morphology, metabolism and/or abundance of specific nutrient transporters. This review examines environmental programming of placental phenotype with particular emphasis on placental nutrient transport capacity and its implications for fetal growth, mainly in rodents. It also considers the systemic, cellular and molecular mechanisms involved in signalling environmental cues to the placenta. Ultimately, the ability of the placenta to balance the competing interests of mother and fetus in resource allocation may determine not only the success of pregnancy in producing viable neonates but also the long-term health of the offspring.
Collapse
Affiliation(s)
- O R Vaughan
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| | | | | | | |
Collapse
|
50
|
Hemberger M. Health during pregnancy and beyond: Fetal trophoblast cells as chief co-ordinators of intrauterine growth and reproductive success. Ann Med 2012; 44:325-37. [PMID: 22409432 DOI: 10.3109/07853890.2012.663930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Abstract Differentiation of extra-embryonic tissues and organs, notably the placenta, is vital for embryonic development and growth throughout gestation, starting from a few days after fertilization when the trophoblast cell lineage arises until parturition. In utero metabolic programming events may even extend the impact of placental function well into adulthood as they may predispose the offspring to common pathologies such as diabetes and cardiovascular disease. This review summarizes key steps that lead up to formation of a functional placenta. It highlights recent insights that have advanced our view of how early trophoblast expansion is achieved and how sufficient maternal blood supply to the developing fetus is secured. Exciting cumulative data have revealed the importance of a close cross-talk between the embryo proper and extra-embryonic trophoblast cells that involves extracellular matrix components in the establishment of a stem cell-like niche and proliferation compartment. Remarkably, placental function also relies on beneficial interactions between trophoblast cells and maternal immune cells at the implantation site. Our growing knowledge of the molecular mechanisms involved in trophoblast differentiation and function will help to devise informed approaches aimed at deciphering how placentation is controlled in humans as an essential process for reproductive success and long-term health.
Collapse
|