1
|
Greenblatt JF, Alberts BM, Krogan NJ. Discovery and significance of protein-protein interactions in health and disease. Cell 2024; 187:6501-6517. [PMID: 39547210 PMCID: PMC11874950 DOI: 10.1016/j.cell.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
The identification of individual protein-protein interactions (PPIs) began more than 40 years ago, using protein affinity chromatography and antibody co-immunoprecipitation. As new technologies emerged, analysis of PPIs increased to a genome-wide scale with the introduction of intracellular tagging methods, affinity purification (AP) followed by mass spectrometry (MS), and co-fractionation MS (CF-MS). Now, combining the resulting catalogs of interactions with complementary methods, including crosslinking MS (XL-MS) and cryogenic electron microscopy (cryo-EM), helps distinguish direct interactions from indirect ones within the same or between different protein complexes. These powerful approaches and the promise of artificial intelligence applications like AlphaFold herald a future where PPIs and protein complexes, including energy-driven protein machines, will be understood in exquisite detail, unlocking new insights in the contexts of both basic biology and disease.
Collapse
Affiliation(s)
- Jack F Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Bruce M Alberts
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| |
Collapse
|
2
|
He X, Yun MK, Li Z, Waddell M, Nourse A, Churion K, Kreuzer K, Byrd A, White S. Structural and functional insights into the interaction between the bacteriophage T4 DNA processing proteins gp32 and Dda. Nucleic Acids Res 2024; 52:12748-12762. [PMID: 39417586 PMCID: PMC11551737 DOI: 10.1093/nar/gkae910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Bacteriophage T4 is a classic model system for studying the mechanisms of DNA processing. A key protein in T4 DNA processing is the gp32 single-stranded DNA-binding protein. gp32 has two key functions: it binds cooperatively to single-stranded DNA (ssDNA) to protect it from nucleases and remove regions of secondary structure, and it recruits proteins to initiate DNA processes including replication and repair. Dda is a T4 helicase recruited by gp32, and we purified and crystallized a gp32-Dda-ssDNA complex. The low-resolution structure revealed how the C-terminus of gp32 engages Dda. Analytical ultracentrifugation analyses were consistent with the crystal structure. An optimal Dda binding peptide from the gp32 C-terminus was identified using surface plasmon resonance. The crystal structure of the Dda-peptide complex was consistent with the corresponding interaction in the gp32-Dda-ssDNA structure. A Dda-dependent DNA unwinding assay supported the structural conclusions and confirmed that the bound gp32 sequesters the ssDNA generated by Dda. The structure of the gp32-Dda-ssDNA complex, together with the known structure of the gp32 body, reveals the entire ssDNA binding surface of gp32. gp32-Dda-ssDNA complexes in the crystal are connected by the N-terminal region of one gp32 binding to an adjacent gp32, and this provides key insights into this interaction.
Collapse
Affiliation(s)
- Xiaoping He
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place MS311, Memphis, TN 38105, USA
| | - Mi-Kyung Yun
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, 262 Danny Thomas Place MS221, Memphis, TN 38105, USA
| | - Zhenmei Li
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place MS311, Memphis, TN 38105, USA
| | - M Brett Waddell
- Hartwell Center for Biotechnology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place MS1300, Memphis, TN 38105, USA
| | - Amanda Nourse
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place MS311, Memphis, TN 38105, USA
| | - Kelly A Churion
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place MS311, Memphis, TN 38105, USA
| | - Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Nanaline H. Duke Box 3711, Durham, NC 27710, USA
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W. Markham Street Slot 516, Little Rock, AR 72205, USA
| | - Stephen W White
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place MS311, Memphis, TN 38105, USA
| |
Collapse
|
3
|
Delaney K, Weiss N, Almouzni G. The cell-cycle choreography of H3 variants shapes the genome. Mol Cell 2023; 83:3773-3786. [PMID: 37734377 PMCID: PMC10621666 DOI: 10.1016/j.molcel.2023.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Histone variants provide versatility in the basic unit of chromatin, helping to define dynamic landscapes and cell fates. Maintaining genome integrity is paramount for the cell, and it is intimately linked with chromatin dynamics, assembly, and disassembly during DNA transactions such as replication, repair, recombination, and transcription. In this review, we focus on the family of H3 variants and their dynamics in space and time during the cell cycle. We review the distinct H3 variants' specific features along with their escort partners, the histone chaperones, compiled across different species to discuss their distinct importance considering evolution. We place H3 dynamics at different times during the cell cycle with the possible consequences for genome stability. Finally, we examine how their mutation and alteration impact disease. The emerging picture stresses key parameters in H3 dynamics to reflect on how when they are perturbed, they become a source of stress for genome integrity.
Collapse
Affiliation(s)
- Kamila Delaney
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Nicole Weiss
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
4
|
Park J, Youn HS, An JY, Lee Y, Eom SH, Wang J. Structure of New Binary and Ternary DNA Polymerase Complexes From Bacteriophage RB69. Front Mol Biosci 2021; 8:704813. [PMID: 34869578 PMCID: PMC8639217 DOI: 10.3389/fmolb.2021.704813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022] Open
Abstract
DNA polymerase plays a critical role in passing the genetic information of any living organism to its offspring. DNA polymerase from enterobacteria phage RB69 (RB69pol) has both polymerization and exonuclease activities and has been extensively studied as a model system for B-family DNA polymerases. Many binary and ternary complex structures of RB69pol are known, and they all contain a single polymerase-primer/template (P/T) DNA complex. Here, we report a crystal structure of the exonuclease-deficient RB69pol with the P/T duplex in a dimeric form at a resolution of 2.2 Å. The structure includes one new closed ternary complex with a single divalent metal ion bound and one new open binary complex in the pre-insertion state with a vacant dNTP-binding pocket. These complexes suggest that initial binding of the correct dNTP in the open state is much weaker than expected and that initial binding of the second divalent metal ion in the closed state is also much weaker than measured. Additional conformational changes are required to convert these complexes to high-affinity states. Thus, the measured affinities for the correct incoming dNTP and divalent metal ions are average values from many conformationally distinctive states. Our structure provides new insights into the order of the complex assembly involving two divalent metal ions. The biological relevance of specific interactions observed between one RB69pol and the P/T duplex bound to the second RB69pol observed within this dimeric complex is discussed.
Collapse
Affiliation(s)
- Jongseo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Steitz Center for Structural Biology, GIST, Gwangju, South Korea
| | - Hyung-Seop Youn
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Steitz Center for Structural Biology, GIST, Gwangju, South Korea.,BIO R&D Center, Ingredient Business Unit, Daesang Corporation, Gyeonggi-do, Korea
| | - Jun Yop An
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Steitz Center for Structural Biology, GIST, Gwangju, South Korea.,Virocure Inc., Seoul, Korea
| | - Youngjin Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Steitz Center for Structural Biology, GIST, Gwangju, South Korea.,Metabolic Regulation Research Center, Korea Research Institute of BIoscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Steitz Center for Structural Biology, GIST, Gwangju, South Korea.,Department of Chemistry, GIST, Gwangju, Korea
| | - Jimin Wang
- Steitz Center for Structural Biology, GIST, Gwangju, South Korea.,Department of Molecular Biophysics and Biochemistry, New Haven, CT, United States
| |
Collapse
|
5
|
Spinks RR, Spenkelink LM, Dixon NE, van Oijen AM. Single-Molecule Insights Into the Dynamics of Replicative Helicases. Front Mol Biosci 2021; 8:741718. [PMID: 34513934 PMCID: PMC8426354 DOI: 10.3389/fmolb.2021.741718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Helicases are molecular motors that translocate along single-stranded DNA and unwind duplex DNA. They rely on the consumption of chemical energy from nucleotide hydrolysis to drive their translocation. Specialized helicases play a critically important role in DNA replication by unwinding DNA at the front of the replication fork. The replicative helicases of the model systems bacteriophages T4 and T7, Escherichia coli and Saccharomyces cerevisiae have been extensively studied and characterized using biochemical methods. While powerful, their averaging over ensembles of molecules and reactions makes it challenging to uncover information related to intermediate states in the unwinding process and the dynamic helicase interactions within the replisome. Here, we describe single-molecule methods that have been developed in the last few decades and discuss the new details that these methods have revealed about replicative helicases. Applying methods such as FRET and optical and magnetic tweezers to individual helicases have made it possible to access the mechanistic aspects of unwinding. It is from these methods that we understand that the replicative helicases studied so far actively translocate and then passively unwind DNA, and that these hexameric enzymes must efficiently coordinate the stepping action of their subunits to achieve unwinding, where the size of each step is prone to variation. Single-molecule fluorescence microscopy methods have made it possible to visualize replicative helicases acting at replication forks and quantify their dynamics using multi-color colocalization, FRAP and FLIP. These fluorescence methods have made it possible to visualize helicases in replication initiation and dissect this intricate protein-assembly process. In a similar manner, single-molecule visualization of fluorescent replicative helicases acting in replication identified that, in contrast to the replicative polymerases, the helicase does not exchange. Instead, the replicative helicase acts as the stable component that serves to anchor the other replication factors to the replisome.
Collapse
Affiliation(s)
- Richard R Spinks
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
6
|
Abstract
I endeavor to share how various choices-some deliberate, some unconscious-and the unmistakable influence of many others shaped my scientific pursuits. I am fascinated by how two long-term, major streams of my research, DNA replication and purine biosynthesis, have merged with unexpected interconnections. If I have imparted to many of the talented individuals who have passed through my lab a degree of my passion for uncloaking the mysteries hidden in scientific research and an understanding of the honesty and rigor it demands and its impact on the world community, then my mentorship has been successful.
Collapse
Affiliation(s)
- Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| |
Collapse
|
7
|
Subramanian S, Gorday K, Marcus K, Orellana MR, Ren P, Luo XR, O'Donnell ME, Kuriyan J. Allosteric communication in DNA polymerase clamp loaders relies on a critical hydrogen-bonded junction. eLife 2021; 10:e66181. [PMID: 33847559 PMCID: PMC8121543 DOI: 10.7554/elife.66181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023] Open
Abstract
Clamp loaders are AAA+ ATPases that load sliding clamps onto DNA. We mapped the mutational sensitivity of the T4 bacteriophage sliding clamp and clamp loader by deep mutagenesis, and found that residues not involved in catalysis or binding display remarkable tolerance to mutation. An exception is a glutamine residue in the AAA+ module (Gln 118) that is not located at a catalytic or interfacial site. Gln 118 forms a hydrogen-bonded junction in a helical unit that we term the central coupler, because it connects the catalytic centers to DNA and the sliding clamp. A suppressor mutation indicates that hydrogen bonding in the junction is important, and molecular dynamics simulations reveal that it maintains rigidity in the central coupler. The glutamine-mediated junction is preserved in diverse AAA+ ATPases, suggesting that a connected network of hydrogen bonds that links ATP molecules is an essential aspect of allosteric communication in these proteins.
Collapse
Affiliation(s)
- Subu Subramanian
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Kent Gorday
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
| | - Kendra Marcus
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Matthew R Orellana
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Peter Ren
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Xiao Ran Luo
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
8
|
Nagata M, Ishino S, Yamagami T, Ishino Y. Replication protein A complex in Thermococcus kodakarensis interacts with DNA polymerases and helps their effective strand synthesis. Biosci Biotechnol Biochem 2019; 83:695-704. [DOI: 10.1080/09168451.2018.1559722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
Replication protein A (RPA) is an essential component of DNA metabolic processes. RPA binds to single-stranded DNA (ssDNA) and interacts with multiple DNA-binding proteins. In this study, we showed that two DNA polymerases, PolB and PolD, from the hyperthermophilic archaeon Thermococcus kodakarensis interact directly with RPA in vitro. RPA was expected to play a role in resolving the secondary structure, which may stop the DNA synthesis reaction, in the template ssDNA. Our in vitro DNA synthesis assay showed that the pausing was resolved by RPA for both PolB and PolD. These results supported the fact that RPA interacts with DNA polymerases as a member of the replisome and is involved in the normal progression of DNA replication forks.
Collapse
Affiliation(s)
- Mariko Nagata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Barry J, Wong ML, Alberts B. In vitro reconstitution of DNA replication initiated by genetic recombination: a T4 bacteriophage model for a type of DNA synthesis important for all cells. Mol Biol Cell 2018; 30:146-159. [PMID: 30403545 PMCID: PMC6337909 DOI: 10.1091/mbc.e18-06-0386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Using a mixture of 10 purified DNA replication and DNA recombination proteins encoded by the bacteriophage T4 genome, plus two homologous DNA molecules, we have reconstituted the genetic recombination–initiated pathway that initiates DNA replication forks at late times of T4 bacteriophage infection. Inside the cell, this recombination-dependent replication (RDR) is needed to produce the long concatemeric T4 DNA molecules that serve as substrates for packaging the shorter, genome-sized viral DNA into phage heads. The five T4 proteins that catalyze DNA synthesis on the leading strand, plus the proteins required for lagging-strand DNA synthesis, are essential for the reaction, as are a special mediator protein (gp59) and a Rad51/RecA analogue (the T4 UvsX strand-exchange protein). Related forms of RDR are widespread in living organisms—for example, they play critical roles in the homologous recombination events that can restore broken ends of the DNA double helix, restart broken DNA replication forks, and cross over chromatids during meiosis in eukaryotes. Those processes are considerably more complex, and the results presented here should be informative for dissecting their detailed mechanisms.
Collapse
Affiliation(s)
- Jack Barry
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158-2517
| | - Mei Lie Wong
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158-2517
| | - Bruce Alberts
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158-2517
| |
Collapse
|
10
|
Scherr MJ, Safaric B, Duderstadt KE. Noise in the Machine: Alternative Pathway Sampling is the Rule During DNA Replication. Bioessays 2017; 40. [PMID: 29282758 DOI: 10.1002/bies.201700159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/01/2017] [Indexed: 11/07/2022]
Abstract
The astonishing efficiency and accuracy of DNA replication has long suggested that refined rules enforce a single highly reproducible sequence of molecular events during the process. This view was solidified by early demonstrations that DNA unwinding and synthesis are coupled within a stable molecular factory, known as the replisome, which consists of conserved components that each play unique and complementary roles. However, recent single-molecule observations of replisome dynamics have begun to challenge this view, revealing that replication may not be defined by a uniform sequence of events. Instead, multiple exchange pathways, pauses, and DNA loop types appear to dominate replisome function. These observations suggest we must rethink our fundamental assumptions and acknowledge that each replication cycle may involve sampling of alternative, sometimes parallel, pathways. Here, we review our current mechanistic understanding of DNA replication while highlighting findings that exemplify multi-pathway aspects of replisome function and considering the broader implications.
Collapse
Affiliation(s)
- Matthias J Scherr
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Barbara Safaric
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Karl E Duderstadt
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany.,Physik Department, Technische Universität München, Garching, Germany
| |
Collapse
|
11
|
Lawrimore J, Friedman B, Doshi A, Bloom K. RotoStep: A Chromosome Dynamics Simulator Reveals Mechanisms of Loop Extrusion. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:101-109. [PMID: 29167283 DOI: 10.1101/sqb.2017.82.033696] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ChromoShake is a three-dimensional simulator designed to explore the range of configurational states a chromosome can adopt based on thermodynamic fluctuations of the polymer chain. Here, we refine ChromoShake to generate dynamic simulations of a DNA-based motor protein such as condensin walking along the chromatin substrate. We model walking as a rotation of DNA-binding heat-repeat proteins around one another. The simulation is applied to several configurations of DNA to reveal the consequences of mechanical stepping on taut chromatin under tension versus loop extrusion on single-tethered, floppy chromatin substrates. These simulations provide testable hypotheses for condensin and other DNA-based motors functioning along interphase chromosomes. Our model reveals a novel mechanism for condensin enrichment in the pericentromeric region of mitotic chromosomes. Increased condensin dwell time at centromeres results in a high density of pericentric loops that in turn provide substrate for additional condensin.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| | - Brandon Friedman
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| | - Ayush Doshi
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| |
Collapse
|
12
|
Benkovic SJ, Spiering MM. Understanding DNA replication by the bacteriophage T4 replisome. J Biol Chem 2017; 292:18434-18442. [PMID: 28972188 DOI: 10.1074/jbc.r117.811208] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The T4 replisome has provided a unique opportunity to investigate the intricacies of DNA replication. We present a comprehensive review of this system focusing on the following: its 8-protein composition, their individual and synergistic activities, and assembly in vitro and in vivo into a replisome capable of coordinated leading/lagging strand DNA synthesis. We conclude with a brief comparison with other replisomes with emphasis on how coordinated DNA replication is achieved.
Collapse
Affiliation(s)
- Stephen J Benkovic
- From the Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michelle M Spiering
- From the Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
13
|
The more the merrier: high-throughput single-molecule techniques. Biochem Soc Trans 2017; 45:759-769. [PMID: 28620037 DOI: 10.1042/bst20160137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/26/2017] [Accepted: 03/28/2017] [Indexed: 12/24/2022]
Abstract
The single-molecule approach seeks to understand molecular mechanisms by observing biomolecular processes at the level of individual molecules. These methods have led to a developing understanding that for many processes, a diversity of behaviours will be observed, representing a multitude of pathways. This realisation necessitates that an adequate number of observations are recorded to fully characterise this diversity. The requirement for large numbers of observations to adequately sample distributions, subpopulations, and rare events presents a significant challenge for single-molecule techniques, which by their nature do not typically provide very high throughput. This review will discuss many developing techniques which address this issue by combining nanolithographic approaches, such as zero-mode waveguides and DNA curtains, with single-molecule fluorescence microscopy, and by drastically increasing throughput of force-based approaches such as magnetic tweezers and laminar-flow techniques. These methods not only allow the collection of large volumes of single-molecule data in single experiments, but have also made improvements to ease-of-use, accessibility, and automation of data analysis.
Collapse
|
14
|
Abstract
It has been assumed that DNA synthesis by the leading- and lagging-strand polymerases in the replisome must be coordinated to avoid the formation of significant gaps in the nascent strands. Using real-time single-molecule analysis, we establish that leading- and lagging-strand DNA polymerases function independently within a single replisome. Although average rates of DNA synthesis on leading and lagging strands are similar, individual trajectories of both DNA polymerases display stochastically switchable rates of synthesis interspersed with distinct pauses. DNA unwinding by the replicative helicase may continue during such pauses, but a self-governing mechanism, where helicase speed is reduced by ∼80%, permits recoupling of polymerase to helicase. These features imply a more dynamic, kinetically discontinuous replication process, wherein contacts within the replisome are continually broken and reformed. We conclude that the stochastic behavior of replisome components ensures complete DNA duplication without requiring coordination of leading- and lagging-strand synthesis. PAPERCLIP.
Collapse
|
15
|
RNA primer-primase complexes serve as the signal for polymerase recycling and Okazaki fragment initiation in T4 phage DNA replication. Proc Natl Acad Sci U S A 2017; 114:5635-5640. [PMID: 28507156 DOI: 10.1073/pnas.1620459114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The opposite strand polarity of duplex DNA necessitates that the leading strand is replicated continuously whereas the lagging strand is replicated in discrete segments known as Okazaki fragments. The lagging-strand polymerase sometimes recycles to begin the synthesis of a new Okazaki fragment before finishing the previous fragment, creating a gap between the Okazaki fragments. The mechanism and signal that initiate this behavior-that is, the signaling mechanism-have not been definitively identified. We examined the role of RNA primer-primase complexes left on the lagging ssDNA from primer synthesis in initiating early lagging-strand polymerase recycling. We show for the T4 bacteriophage DNA replication system that primer-primase complexes have a residence time similar to the timescale of Okazaki fragment synthesis and the ability to block a holoenzyme synthesizing DNA and stimulate the dissociation of the holoenzyme to trigger polymerase recycling. The collision with primer-primase complexes triggering the early termination of Okazaki fragment synthesis has distinct advantages over those previously proposed because this signal requires no transmission to the lagging-strand polymerase through protein or DNA interactions, the mechanism for rapid dissociation of the holoenzyme is always collision, and no unique characteristics need to be assigned to either identical polymerase in the replisome. We have modeled repeated cycles of Okazaki fragment initiation using a collision with a completed Okazaki fragment or primer-primase complexes as the recycling mechanism. The results reproduce experimental data, providing insights into events related to Okazaki fragment initiation and the overall functioning of DNA replisomes.
Collapse
|
16
|
Duderstadt KE, Geertsema HJ, Stratmann SA, Punter CM, Kulczyk AW, Richardson CC, van Oijen AM. Simultaneous Real-Time Imaging of Leading and Lagging Strand Synthesis Reveals the Coordination Dynamics of Single Replisomes. Mol Cell 2016; 64:1035-1047. [PMID: 27889453 DOI: 10.1016/j.molcel.2016.10.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/18/2016] [Accepted: 10/20/2016] [Indexed: 11/16/2022]
Abstract
The molecular machinery responsible for DNA replication, the replisome, must efficiently coordinate DNA unwinding with priming and synthesis to complete duplication of both strands. Due to the anti-parallel nature of DNA, the leading strand is copied continuously, while the lagging strand is produced by repeated cycles of priming, DNA looping, and Okazaki-fragment synthesis. Here, we report a multidimensional single-molecule approach to visualize this coordination in the bacteriophage T7 replisome by simultaneously monitoring the kinetics of loop growth and leading-strand synthesis. We show that loops in the lagging strand predominantly occur during priming and only infrequently support subsequent Okazaki-fragment synthesis. Fluorescence imaging reveals polymerases remaining bound to the lagging strand behind the replication fork, consistent with Okazaki-fragment synthesis behind and independent of the replication complex. Individual replisomes display both looping and pausing during priming, reconciling divergent models for the regulation of primer synthesis and revealing an underlying plasticity in replisome operation.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Zernike Institute for Advanced Materials and Centre for Synthetic Biology, University of Groningen, 9700 AB Groningen, the Netherlands; Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Physik Department, Technische Universität München, 85748 Garching, Germany.
| | - Hylkje J Geertsema
- Zernike Institute for Advanced Materials and Centre for Synthetic Biology, University of Groningen, 9700 AB Groningen, the Netherlands
| | - Sarah A Stratmann
- Zernike Institute for Advanced Materials and Centre for Synthetic Biology, University of Groningen, 9700 AB Groningen, the Netherlands
| | - Christiaan M Punter
- Zernike Institute for Advanced Materials and Centre for Synthetic Biology, University of Groningen, 9700 AB Groningen, the Netherlands
| | - Arkadiusz W Kulczyk
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Charles C Richardson
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Antoine M van Oijen
- Zernike Institute for Advanced Materials and Centre for Synthetic Biology, University of Groningen, 9700 AB Groningen, the Netherlands; Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
17
|
Abstract
DNA replication in Escherichia coli initiates at oriC, the origin of replication and proceeds bidirectionally, resulting in two replication forks that travel in opposite directions from the origin. Here, we focus on events at the replication fork. The replication machinery (or replisome), first assembled on both forks at oriC, contains the DnaB helicase for strand separation, and the DNA polymerase III holoenzyme (Pol III HE) for DNA synthesis. DnaB interacts transiently with the DnaG primase for RNA priming on both strands. The Pol III HE is made up of three subassemblies: (i) the αɛθ core polymerase complex that is present in two (or three) copies to simultaneously copy both DNA strands, (ii) the β2 sliding clamp that interacts with the core polymerase to ensure its processivity, and (iii) the seven-subunit clamp loader complex that loads β2 onto primer-template junctions and interacts with the α polymerase subunit of the core and the DnaB helicase to organize the two (or three) core polymerases. Here, we review the structures of the enzymatic components of replisomes, and the protein-protein and protein-DNA interactions that ensure they remain intact while undergoing substantial dynamic changes as they function to copy both the leading and lagging strands simultaneously during coordinated replication.
Collapse
Affiliation(s)
- J S Lewis
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - S Jergic
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N E Dixon
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
18
|
Åberg C, Duderstadt KE, van Oijen AM. Stability versus exchange: a paradox in DNA replication. Nucleic Acids Res 2016; 44:4846-54. [PMID: 27112565 PMCID: PMC4889951 DOI: 10.1093/nar/gkw296] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/11/2016] [Indexed: 11/14/2022] Open
Abstract
Multi-component biological machines, comprising individual proteins with specialized functions, perform a variety of essential processes in cells. Once assembled, most such complexes are considered very stable, retaining individual constituents as long as required. However, rapid and frequent exchange of individual factors in a range of critical cellular assemblies, including DNA replication machineries, DNA transcription regulators and flagellar motors, has recently been observed. The high stability of a multi-protein complex may appear mutually exclusive with rapid subunit exchange. Here, we describe a multisite competitive exchange mechanism, based on simultaneous binding of a protein to multiple low-affinity sites. It explains how a component can be stably integrated into a complex in the absence of competing factors, while able to rapidly exchange in the presence of competing proteins. We provide a mathematical model for the mechanism and give analytical expressions for the stability of a pre-formed complex, in the absence and presence of competitors. Using typical binding kinetic parameters, we show that the mechanism is operational under physically realistic conditions. Thus, high stability and rapid exchange within a complex can be reconciled and this framework can be used to rationalize previous observations, qualitatively as well as quantitatively.
Collapse
Affiliation(s)
- Christoffer Åberg
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Karl E Duderstadt
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Antoine M van Oijen
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands School of Chemistry, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
19
|
Probing DNA interactions with proteins using a single-molecule toolbox: inside the cell, in a test tube and in a computer. Biochem Soc Trans 2016; 43:139-45. [PMID: 26020443 DOI: 10.1042/bst20140253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA-interacting proteins have roles in multiple processes, many operating as molecular machines which undergo dynamic meta-stable transitions to bring about their biological function. To fully understand this molecular heterogeneity, DNA and the proteins that bind to it must ideally be interrogated at a single molecule level in their native in vivo environments, in a time-resolved manner, fast enough to sample the molecular transitions across the free-energy landscape. Progress has been made over the past decade in utilizing cutting-edge tools of the physical sciences to address challenging biological questions concerning the function and modes of action of several different proteins which bind to DNA. These physiologically relevant assays are technically challenging but can be complemented by powerful and often more tractable in vitro experiments which confer advantages of the chemical environment with enhanced detection signal-to-noise of molecular signatures and transition events. In the present paper, we discuss a range of techniques we have developed to monitor DNA-protein interactions in vivo, in vitro and in silico. These include bespoke single-molecule fluorescence microscopy techniques to elucidate the architecture and dynamics of the bacterial replisome and the structural maintenance of bacterial chromosomes, as well as new computational tools to extract single-molecule molecular signatures from live cells to monitor stoichiometry, spatial localization and mobility in living cells. We also discuss recent developments from our laboratory made in vitro, complementing these in vivo studies, which combine optical and magnetic tweezers to manipulate and image single molecules of DNA, with and without bound protein, in a new super-resolution fluorescence microscope.
Collapse
|
20
|
Coordinated DNA Replication by the Bacteriophage T4 Replisome. Viruses 2015; 7:3186-200. [PMID: 26102578 PMCID: PMC4488733 DOI: 10.3390/v7062766] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 11/16/2022] Open
Abstract
The T4 bacteriophage encodes eight proteins, which are sufficient to carry out coordinated leading and lagging strand DNA synthesis. These purified proteins have been used to reconstitute DNA synthesis in vitro and are a well-characterized model system. Recent work on the T4 replisome has yielded more detailed insight into the dynamics and coordination of proteins at the replication fork. Since the leading and lagging strands are synthesized in opposite directions, coordination of DNA synthesis as well as priming and unwinding is accomplished by several protein complexes. These protein complexes serve to link catalytic activities and physically tether proteins to the replication fork. Essential to both leading and lagging strand synthesis is the formation of a holoenzyme complex composed of the polymerase and a processivity clamp. The two holoenzymes form a dimer allowing the lagging strand polymerase to be retained within the replisome after completion of each Okazaki fragment. The helicase and primase also form a complex known as the primosome, which unwinds the duplex DNA while also synthesizing primers on the lagging strand. Future studies will likely focus on defining the orientations and architecture of protein complexes at the replication fork.
Collapse
|
21
|
Abstract
I spent my childhood and adolescence in North and South Carolina, attended Duke University, and then entered Duke Medical School. One year in the laboratory of George Schwert in the biochemistry department kindled my interest in biochemistry. After one year of residency on the medical service of Duke Hospital, chaired by Eugene Stead, I joined the group of Arthur Kornberg at Stanford Medical School as a postdoctoral fellow. Two years later I accepted a faculty position at Harvard Medical School, where I remain today. During these 50 years, together with an outstanding group of students, postdoctoral fellows, and collaborators, I have pursued studies on DNA replication. I have experienced the excitement of discovering a number of important enzymes in DNA replication that, in turn, triggered an interest in the dynamics of a replisome. My associations with industry have been stimulating and fostered new friendships. I could not have chosen a better career.
Collapse
Affiliation(s)
- Charles C Richardson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
22
|
Bermek O, Willcox S, Griffith JD. DNA replication catalyzed by herpes simplex virus type 1 proteins reveals trombone loops at the fork. J Biol Chem 2014; 290:2539-45. [PMID: 25471368 DOI: 10.1074/jbc.m114.623009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Using purified replication factors encoded by herpes simplex virus type 1 and a 70-base minicircle template, we obtained robust DNA synthesis with leading strand products of >20,000 nucleotides and lagging strand fragments from 600 to 9,000 nucleotides as seen by alkaline gel electrophoresis. ICP8 was crucial for the synthesis on both strands. Visualization of the deproteinized products using electron microscopy revealed long, linear dsDNAs, and in 87%, one end, presumably the end with the 70-base circle, was single-stranded. The remaining 13% had multiple single-stranded segments separated by dsDNA segments 500 to 1,000 nucleotides in length located at one end. These features are diagnostic of the trombone mechanism of replication. Indeed, when the products were examined with the replication proteins bound, a dsDNA loop was frequently associated with the replication complex located at one end of the replicated DNA. Furthermore, the frequency of loops correlated with the fraction of DNA undergoing Okazaki fragment synthesis.
Collapse
Affiliation(s)
- Oya Bermek
- From the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295
| | - Smaranda Willcox
- From the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295
| | - Jack D Griffith
- From the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295
| |
Collapse
|
23
|
Abstract
A cell can be thought of as a highly sophisticated micro factory: in a pool of billions of molecules - metabolites, structural proteins, enzymes, oligonucleotides - multi-subunit complexes assemble to perform a large number of basic cellular tasks, such as DNA replication, RNA/protein synthesis or intracellular transport. By purifying single components and using them to reconstitute molecular processes in a test tube, researchers have gathered crucial knowledge about mechanistic, dynamic and structural properties of biochemical pathways. However, to sort this information into an accurate cellular road map, we need to understand reactions in their relevant context within the cellular hierarchy, which is at the individual molecule level within a crowded, cellular environment. Reactions occur in a stochastic fashion, have short-lived and not necessarily well-defined intermediates, and dynamically form functional entities. With the use of single-molecule techniques these steps can be followed and detailed kinetic information that otherwise would be hidden in ensemble averaging can be obtained. One of the first complex cellular tasks that have been studied at the single-molecule level is the replication of DNA. The replisome, the multi-protein machinery responsible for copying DNA, is built from a large number of proteins that function together in an intricate and efficient fashion allowing the complex to tolerate DNA damage, roadblocks or fluctuations in subunit concentration. In this review, we summarize advances in single-molecule studies, both in vitro and in vivo, that have contributed to our current knowledge of the mechanistic principles underlying DNA replication.
Collapse
Affiliation(s)
- S A Stratmann
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, The Netherlands.
| | | |
Collapse
|
24
|
Abstract
In the 1960s, I developed methods for directly visualizing DNA and DNA-protein complexes using an electron microscope. This made it possible to examine the shape of DNA and to visualize proteins as they fold and loop DNA. Early applications included the first visualization of true nucleosomes and linkers and the demonstration that repeating tracts of adenines can cause a curvature in DNA. The binding of DNA repair proteins, including p53 and BRCA2, has been visualized at three- and four-way junctions in DNA. The trombone model of DNA replication was directly verified, and the looping of DNA at telomeres was discovered.
Collapse
Affiliation(s)
- Jack D Griffith
- From the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295
| |
Collapse
|
25
|
Lenn T, Leake MC. Experimental approaches for addressing fundamental biological questions in living, functioning cells with single molecule precision. Open Biol 2013; 2:120090. [PMID: 22773951 PMCID: PMC3390795 DOI: 10.1098/rsob.120090] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/16/2012] [Indexed: 12/25/2022] Open
Abstract
In recent years, single molecule experimentation has allowed researchers to observe biological processes at the sensitivity level of single molecules in actual functioning, living cells, thereby allowing us to observe the molecular basis of the key mechanistic processes in question in a very direct way, rather than inferring these from ensemble average data gained from traditional molecular and biochemical techniques. In this short review, we demonstrate the impact that the application of single molecule bioscience experimentation has had on our understanding of various cellular systems and processes, and the potential that this approach has for the future to really address very challenging and fundamental questions in the life sciences.
Collapse
Affiliation(s)
- Tchern Lenn
- Lawrence Berkeley National Laboratory, Physical Biosciences Division, 1 Cyclotron Road, Berkeley, CA 94720 , USA
| | | |
Collapse
|
26
|
Chen D, Yue H, Spiering MM, Benkovic SJ. Insights into Okazaki fragment synthesis by the T4 replisome: the fate of lagging-strand holoenzyme components and their influence on Okazaki fragment size. J Biol Chem 2013; 288:20807-20816. [PMID: 23729670 DOI: 10.1074/jbc.m113.485961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we employed a circular replication substrate with a low priming site frequency (1 site/1.1 kb) to quantitatively examine the size distribution and formation pattern of Okazaki fragments. Replication reactions by the T4 replisome on this substrate yielded a patterned series of Okazaki fragments whose size distribution shifted through collision and signaling mechanisms as the gp44/62 clamp loader levels changed but was insensitive to changes in the gp43 polymerase concentration, as expected for a processive, recycled lagging-strand polymerase. In addition, we showed that only one gp45 clamp is continuously associated with the replisome and that no additional clamps accumulate on the DNA, providing further evidence that the clamp departs, whereas the polymerase is recycled upon completion of an Okazaki fragment synthesis cycle. We found no support for the participation of a third polymerase in Okazaki fragment synthesis.
Collapse
Affiliation(s)
- Danqi Chen
- From 414, Wartik Laboratories, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hongjun Yue
- From 414, Wartik Laboratories, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michelle M Spiering
- From 414, Wartik Laboratories, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Stephen J Benkovic
- From 414, Wartik Laboratories, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802.
| |
Collapse
|
27
|
Lopez-Vernaza MA, Leach DRF. WITHDRAWN: Symmetries and Asymmetries Associated with Non-Random Segregation of Sister DNA Strands in Escherichia coli. Semin Cell Dev Biol 2013:S1084-9521(13)00077-3. [PMID: 23692810 DOI: 10.1016/j.semcdb.2013.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/06/2013] [Indexed: 11/19/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.semcdb.2013.05.010. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Manuel A Lopez-Vernaza
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JR, United Kingdom
| | | |
Collapse
|
28
|
Lopez-Vernaza MA, Leach DRF. Symmetries and asymmetries associated with non-random segregation of sister DNA strands in Escherichia coli. Semin Cell Dev Biol 2013; 24:610-7. [PMID: 23685127 DOI: 10.1016/j.semcdb.2013.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The successful inheritance of genetic information across generations is a complex process requiring replication of the genome and its faithful segregation into two daughter cells. At each replication cycle there is a risk that new DNA strands incorporate genetic changes caused by miscopying of parental information. By contrast the parental strands retain the original information. This raises the intriguing possibility that specific cell lineages might inherit "immortal" parental DNA strands via non-random segregation. If so, this requires an understanding of the mechanisms of non-random segregation. Here, we review several aspects of asymmetry in the very symmetrical cell, Escherichia coli, in the interest of exploring the potential basis for non-random segregation of leading- and lagging-strand replicated chromosome arms. These considerations lead us to propose a model for DNA replication that integrates chromosome segregation and genomic localisation with non-random strand segregation.
Collapse
Affiliation(s)
- Manuel A Lopez-Vernaza
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | |
Collapse
|
29
|
Abstract
Cellular DNA replication requires efficient copying of the double-stranded chromosomal DNA. The leading strand is elongated continuously in the direction of fork opening, whereas the lagging strand is made discontinuously in the opposite direction. The lagging strand needs to be processed to form a functional DNA segment. Genetic analyses and reconstitution experiments identified proteins and multiple pathways responsible for maturation of the lagging strand. In both prokaryotes and eukaryotes the lagging-strand fragments are initiated by RNA primers, which are removed by a joining mechanism involving strand displacement of the primer into a flap, flap removal, and then ligation. Although the prokaryotic fragments are ~1200 nucleotides long, the eukaryotic fragments are much shorter, with lengths determined by nucleosome periodicity. The prokaryotic joining mechanism is simple and efficient. The eukaryotic maturation mechanism involves many enzymes, possibly three pathways, and regulation that can shift from high efficiency to high fidelity.
Collapse
|
30
|
Abstract
Bacterial replicases are complex, tripartite replicative machines. They contain a polymerase, polymerase III (Pol III), a β₂ processivity factor, and a DnaX complex ATPase that loads β₂ onto DNA and chaperones Pol III onto the newly loaded β₂. Bacterial replicases are highly processive, yet cycle rapidly during Okazaki fragment synthesis in a regulated way. Many bacteria encode both a full-length τ and a shorter γ form of DnaX by a variety of mechanisms. γ appears to be uniquely placed in a single position relative to two τ protomers in a pentameric ring. The polymerase catalytic subunit of Pol III, α, contains a PHP domain that not only binds to a prototypical ε Mg²⁺-dependent exonuclease, but also contains a second Zn²⁺-dependent proofreading exonuclease, at least in some bacteria. This review focuses on a critical evaluation of recent literature and concepts pertaining to the above issues and suggests specific areas that require further investigation.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| |
Collapse
|
31
|
Dohrmann PR, Manhart CM, Downey CD, McHenry CS. The rate of polymerase release upon filling the gap between Okazaki fragments is inadequate to support cycling during lagging strand synthesis. J Mol Biol 2011; 414:15-27. [PMID: 21986197 DOI: 10.1016/j.jmb.2011.09.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/16/2011] [Accepted: 09/24/2011] [Indexed: 10/17/2022]
Abstract
Upon completion of synthesis of an Okazaki fragment, the lagging strand replicase must recycle to the next primer at the replication fork in under 0.1 s to sustain the physiological rate of DNA synthesis. We tested the collision model that posits that cycling is triggered by the polymerase encountering the 5'-end of the preceding Okazaki fragment. Probing with surface plasmon resonance, DNA polymerase III holoenzyme initiation complexes were formed on an immobilized gapped template. Initiation complexes exhibit a half-life of dissociation of approximately 15 min. Reduction in gap size to 1 nt increased the rate of dissociation 2.5-fold, and complete filling of the gap increased the off-rate an additional 3-fold (t(1/2)~2 min). An exogenous primed template and ATP accelerated dissociation an additional 4-fold in a reaction that required complete filling of the gap. Neither a 5'-triphosphate nor a 5'-RNA terminated oligonucleotide downstream of the polymerase accelerated dissociation further. Thus, the rate of polymerase release upon gap completion and collision with a downstream Okazaki fragment is 1000-fold too slow to support an adequate rate of cycling and likely provides a backup mechanism to enable polymerase release when the other cycling signals are absent. Kinetic measurements indicate that addition of the last nucleotide to fill the gap is not the rate-limiting step for polymerase release and cycling. Modest (approximately 7 nt) strand displacement is observed after the gap between model Okazaki fragments is filled. To determine the identity of the protein that senses gap filling to modulate affinity of the replicase for the template, we performed photo-cross-linking experiments with highly reactive and non-chemoselective diazirines. Only the α subunit cross-linked, indicating that it serves as the sensor.
Collapse
Affiliation(s)
- Paul R Dohrmann
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
32
|
Marceau AH, Bahng S, Massoni SC, George NP, Sandler SJ, Marians KJ, Keck JL. Structure of the SSB-DNA polymerase III interface and its role in DNA replication. EMBO J 2011; 30:4236-47. [PMID: 21857649 PMCID: PMC3199393 DOI: 10.1038/emboj.2011.305] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 07/29/2011] [Indexed: 11/09/2022] Open
Abstract
Interactions between single-stranded DNA-binding proteins (SSBs) and the DNA replication machinery are found in all organisms, but the roles of these contacts remain poorly defined. In Escherichia coli, SSB's association with the χ subunit of the DNA polymerase III holoenzyme has been proposed to confer stability to the replisome and to aid delivery of primers to the lagging-strand DNA polymerase. Here, the SSB-binding site on χ is identified crystallographically and biochemical and cellular studies delineate the consequences of destabilizing the χ/SSB interface. An essential role for the χ/SSB interaction in lagging-strand primer utilization is not supported. However, sequence changes in χ that block complex formation with SSB lead to salt-dependent uncoupling of leading- and lagging-strand DNA synthesis and to a surprising obstruction of the leading-strand DNA polymerase in vitro, pointing to roles for the χ/SSB complex in replisome establishment and maintenance. Destabilization of the χ/SSB complex in vivo produces cells with temperature-dependent cell cycle defects that appear to arise from replisome instability.
Collapse
Affiliation(s)
- Aimee H Marceau
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1532, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Bustamante C, Cheng W, Mejia YX, Meija YX. Revisiting the central dogma one molecule at a time. Cell 2011; 144:480-97. [PMID: 21335233 PMCID: PMC3063003 DOI: 10.1016/j.cell.2011.01.033] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/21/2011] [Accepted: 01/26/2011] [Indexed: 12/24/2022]
Abstract
The faithful relay and timely expression of genetic information depend on specialized molecular machines, many of which function as nucleic acid translocases. The emergence over the last decade of single-molecule fluorescence detection and manipulation techniques with nm and Å resolution and their application to the study of nucleic acid translocases are painting an increasingly sharp picture of the inner workings of these machines, the dynamics and coordination of their moving parts, their thermodynamic efficiency, and the nature of their transient intermediates. Here we present an overview of the main results arrived at by the application of single-molecule methods to the study of the main machines of the central dogma.
Collapse
Affiliation(s)
- Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, 94720, USA.
| | | | | | | |
Collapse
|
35
|
Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange. Proc Natl Acad Sci U S A 2011; 108:3584-9. [PMID: 21245349 DOI: 10.1073/pnas.1018824108] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A complete understanding of the molecular mechanisms underlying the functioning of large, multiprotein complexes requires experimental tools capable of simultaneously visualizing molecular architecture and enzymatic activity in real time. We developed a novel single-molecule assay that combines the flow-stretching of individual DNA molecules to measure the activity of the DNA-replication machinery with the visualization of fluorescently labeled DNA polymerases at the replication fork. By correlating polymerase stoichiometry with DNA synthesis of T7 bacteriophage replisomes, we are able to quantitatively describe the mechanism of polymerase exchange. We find that even at relatively modest polymerase concentration (∼2 nM), soluble polymerases are recruited to an actively synthesizing replisome, dramatically increasing local polymerase concentration. These excess polymerases remain passively associated with the replisome through electrostatic interactions with the T7 helicase for ∼50 s until a stochastic and transient dissociation of the synthesizing polymerase from the primer-template allows for a polymerase exchange event to occur.
Collapse
|
36
|
Balakrishnan L, Bambara RA. Eukaryotic lagging strand DNA replication employs a multi-pathway mechanism that protects genome integrity. J Biol Chem 2010; 286:6865-70. [PMID: 21177245 DOI: 10.1074/jbc.r110.209502] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic nuclear DNA replication, one strand of DNA is synthesized continuously, but the other is made as Okazaki fragments that are later joined. Discontinuous synthesis is inherently more complex, and fragmented intermediates create risks for disruptions of genome integrity. Genetic analyses and biochemical reconstitutions indicate that several parallel pathways evolved to ensure that the fragments are made and joined with integrity. An RNA primer is removed from each fragment before joining by a process involving polymerase-dependent displacement into a single-stranded flap. Evidence in vitro suggests that, with most fragments, short flaps are displaced and efficiently cleaved. Some flaps can become long, but these are also removed to allow joining. Rarely, a flap can form structure, necessitating displacement of the entire fragment. There is now evidence that post-translational protein modification regulates the flow through the pathways to favor protection of genomic information in regions of actively transcribed chromatin.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
37
|
Sherwood R, Takahashi TS, Jallepalli PV. Sister acts: coordinating DNA replication and cohesion establishment. Genes Dev 2010; 24:2723-31. [PMID: 21159813 PMCID: PMC3003188 DOI: 10.1101/gad.1976710] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ring-shaped cohesin complex links sister chromatids and plays crucial roles in homologous recombination and mitotic chromosome segregation. In cycling cells, cohesin's ability to generate cohesive linkages is restricted to S phase and depends on loading and establishment factors that are intimately connected to DNA replication. Here we review how cohesin is regulated by the replication machinery, as well as recent evidence that cohesin itself influences how chromosomes are replicated.
Collapse
Affiliation(s)
- Rebecca Sherwood
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Tatsuro S. Takahashi
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka Osaka 560-0043, Japan
| | - Prasad V. Jallepalli
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
38
|
Abstract
Replication of DNA is carried out by the replisome, a multiprotein complex responsible for the unwinding of parental DNA and the synthesis of DNA on each of the two DNA strands. The impressive speed and processivity with which the replisome duplicates DNA are a result of a set of tightly regulated interactions between the replication proteins. The transient nature of these protein interactions makes it challenging to study the dynamics of the replisome by ensemble-averaging techniques. This review describes single-molecule methods that allow the study of individual replication proteins and their functioning within the replisome. The ability to mechanically manipulate individual DNA molecules and record the dynamic behavior of the replisome while it duplicates DNA has led to an improved understanding of the molecular mechanisms underlying DNA replication.
Collapse
Affiliation(s)
- Antoine M van Oijen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
39
|
Caron PR, Grossman L. Involvement of a cryptic ATPase activity of UvrB and its proteolysis product, UvrB* in DNA repair. Nucleic Acids Res 2010; 16:9651-62. [PMID: 16617484 PMCID: PMC338770 DOI: 10.1093/nar/16.20.9651] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The incision of damaged DNA by the Escherichia coli UvrABC endonuclease requires ATP hydrolysis. Although the deduced sequence of the UvrB protein suggests a putative ATP binding site, no nucleoside triphosphatase activity is demonstrable with the purified UvrB protein. The UvrB protein is specifically proteolyzed in E. coli cell extracts to yield a 70 kD fragment, referred to as UvrB*, which has been purified and is shown to possess a single-strand DNA dependent ATPase activity. Substrate specificity and kinetic analyses of UvrB* catalyzed nucleotide hydrolysis indicate that the stimulation in DNA dependent ATPase activity following formation of the UvrAB complex results from the activation of the normally sequestered UvrB associated ATPase. Using nucleotide analogues, it can be shown that this activity is essential to the DNA incision reaction carried out by the UvrABC complex.
Collapse
Affiliation(s)
- P R Caron
- Department of Biochemistry, The Johns Hopkins University, School of Hygiene and Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
40
|
Nelson SW, Benkovic SJ. Response of the bacteriophage T4 replisome to noncoding lesions and regression of a stalled replication fork. J Mol Biol 2010; 401:743-56. [PMID: 20600127 DOI: 10.1016/j.jmb.2010.06.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/13/2010] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
Abstract
DNA is constantly damaged by endogenous and exogenous agents. The resulting DNA lesions have the potential to halt the progression of the replisome, possibly leading to replication fork collapse. Here, we examine the effect of a noncoding DNA lesion in either leading strand template or lagging strand template on the bacteriophage T4 replisome. A damaged base in the lagging strand template does not affect the progression of the replication fork. Instead, the stalled lagging strand polymerase recycles from the lesion and initiates the synthesis of a new Okazaki fragment upstream of the damaged base. In contrast, when the replisome encounters a blocking lesion in the leading strand template, the replication fork only travels approximately 1 kb beyond the point of the DNA lesion before complete replication fork collapse. The primosome and the lagging strand polymerase remain active during this period, and an Okazaki fragment is synthesized beyond the point of the leading strand lesion. There is no evidence for a new priming event on the leading strand template. Instead, the DNA structure that is produced by the stalled replication fork is a substrate for the DNA repair helicase UvsW. UvsW catalyzes the regression of a stalled replication fork into a "chicken-foot" structure that has been postulated to be an intermediate in an error-free lesion bypass pathway.
Collapse
Affiliation(s)
- Scott W Nelson
- Department of Biochemistry, 4112 Molecular Biology Building, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|
41
|
Abstract
In DNA replication, the antiparallel nature of the parental duplex imposes certain constraints on the activity of the DNA polymerases that synthesize new DNA. The leading-strand polymerase advances in a continuous fashion, but the lagging-strand polymerase is forced to restart at short intervals. In several prokaryotic systems studied so far, this problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki fragment synthesis. The timing of Okazaki fragment synthesis and loop formation is determined by a subtle interplay of enzymatic activities at the fork. Recent developments in single-molecule techniques have enabled the direct observation of these processes and have greatly contributed to a better understanding of the dynamic nature of the replication fork. Here, we will review recent experimental advances, present the current models, and discuss some of the exciting developments in the field.
Collapse
Affiliation(s)
- Samir M. Hamdan
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Antoine M. van Oijen
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
42
|
Reyes-Lamothe R, Sherratt DJ, Leake MC. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 2010; 328:498-501. [PMID: 20413500 PMCID: PMC2859602 DOI: 10.1126/science.1185757] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The multiprotein replisome complex that replicates DNA has been extensively characterized in vitro, but its composition and architecture in vivo is unknown. Using millisecond single-molecule fluorescence microscopy in living cells expressing fluorescent derivatives of replisome components, we have examined replisome stoichiometry and architecture. Active Escherichia coli replisomes contain three molecules of the replicative polymerase, rather than the historically accepted two. These are associated with three molecules of tau, a clamp loader component that trimerizes polymerase. Only two of the three sliding clamps are always associated with the core replisome. Single-strand binding protein has a broader spatial distribution than the core components, with 5 to 11 tetramers per replisome. This in vivo technique could provide single-molecule insight into other molecular machines.
Collapse
Affiliation(s)
| | | | - Mark C. Leake
- Department of Biochemistry, University of Oxford, UK
- Department of Physics, University of Oxford, UK
| |
Collapse
|
43
|
Abstract
Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis at the DNA-replication fork. The length of individual DNA molecules is used to measure the activity of single replisomes engaged in coordinated DNA replication. First, a tethered-particle technique is used to visualize the formation and release of replication loops. Second, a fluorescence imaging method provides a direct readout of replication rates and processivities from individual replisomes. The ability to directly observe transient reaction intermediates and characterize heterogeneous behavior makes these single-molecule approaches important new additions to the tools available to study DNA replication.
Collapse
Affiliation(s)
- Nathan A Tanner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
44
|
Coordinating DNA replication by means of priming loop and differential synthesis rate. Nature 2009; 462:940-3. [PMID: 19924126 DOI: 10.1038/nature08611] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 10/26/2009] [Indexed: 11/08/2022]
Abstract
Genomic DNA is replicated by two DNA polymerase molecules, one of which works in close association with the helicase to copy the leading-strand template in a continuous manner while the second copies the already unwound lagging-strand template in a discontinuous manner through the synthesis of Okazaki fragments. Considering that the lagging-strand polymerase has to recycle after the completion of every Okazaki fragment through the slow steps of primer synthesis and hand-off to the polymerase, it is not understood how the two strands are synthesized with the same net rate. Here we show, using the T7 replication proteins, that RNA primers are made 'on the fly' during ongoing DNA synthesis and that the leading-strand T7 replisome does not pause during primer synthesis, contrary to previous reports. Instead, the leading-strand polymerase remains limited by the speed of the helicase; it therefore synthesizes DNA more slowly than the lagging-strand polymerase. We show that the primase-helicase T7 gp4 maintains contact with the priming sequence during ongoing DNA synthesis; the nascent lagging-strand template therefore organizes into a priming loop that keeps the primer in physical proximity to the replication complex. Our findings provide three synergistic mechanisms of coordination: first, primers are made concomitantly with DNA synthesis; second, the priming loop ensures efficient primer use and hand-off to the polymerase; and third, the lagging-strand polymerase copies DNA faster, which allows it to keep up with leading-strand DNA synthesis overall.
Collapse
|
45
|
Perumal SK, Yue H, Hu Z, Spiering MM, Benkovic SJ. Single-molecule studies of DNA replisome function. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1094-112. [PMID: 19665592 DOI: 10.1016/j.bbapap.2009.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/08/2009] [Accepted: 07/28/2009] [Indexed: 11/16/2022]
Abstract
Fast and accurate replication of DNA is accomplished by the interactions of multiple proteins in the dynamic DNA replisome. The DNA replisome effectively coordinates the leading and lagging strand synthesis of DNA. These complex, yet elegantly organized, molecular machines have been studied extensively by kinetic and structural methods to provide an in-depth understanding of the mechanism of DNA replication. Owing to averaging of observables, unique dynamic information of the biochemical pathways and reactions is concealed in conventional ensemble methods. However, recent advances in the rapidly expanding field of single-molecule analyses to study single biomolecules offer opportunities to probe and understand the dynamic processes involved in large biomolecular complexes such as replisomes. This review will focus on the recent developments in the biochemistry and biophysics of DNA replication employing single-molecule techniques and the insights provided by these methods towards a better understanding of the intricate mechanisms of DNA replication.
Collapse
Affiliation(s)
- Senthil K Perumal
- 414 Wartik Laboratory, Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
Replisomes are the protein assemblies that replicate DNA. They function as molecular motors to catalyze template-mediated polymerization of nucleotides, unwinding of DNA, the synthesis of RNA primers, and the assembly of proteins on DNA. The replisome of bacteriophage T7 contains a minimum of proteins, thus facilitating its study. This review describes the molecular motors and coordination of their activities, with emphasis on the T7 replisome. Nucleotide selection, movement of the polymerase, binding of the processivity factor, unwinding of DNA, and RNA primer synthesis all require conformational changes and protein contacts. Lagging-strand synthesis is mediated via a replication loop whose formation and resolution is dictated by switches to yield Okazaki fragments of discrete size. Both strands are synthesized at identical rates, controlled by a molecular brake that halts leading-strand synthesis during primer synthesis. The helicase serves as a reservoir for polymerases that can initiate DNA synthesis at the replication fork. We comment on the differences in other systems where applicable.
Collapse
Affiliation(s)
- Samir M Hamdan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
47
|
Hamdan SM, Loparo JJ, Takahashi M, Richardson CC, van Oijen AM. Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis. Nature 2008; 457:336-9. [PMID: 19029884 DOI: 10.1038/nature07512] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 10/03/2008] [Indexed: 11/09/2022]
Abstract
In all organisms, the protein machinery responsible for the replication of DNA, the replisome, is faced with a directionality problem. The antiparallel nature of duplex DNA permits the leading-strand polymerase to advance in a continuous fashion, but forces the lagging-strand polymerase to synthesize in the opposite direction. By extending RNA primers, the lagging-strand polymerase restarts at short intervals and produces Okazaki fragments. At least in prokaryotic systems, this directionality problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki fragment synthesis. Here we use single-molecule techniques to visualize, in real time, the formation and release of replication loops by individual replisomes of bacteriophage T7 supporting coordinated DNA replication. Analysis of the distributions of loop sizes and lag times between loops reveals that initiation of primer synthesis and the completion of an Okazaki fragment each serve as a trigger for loop release. The presence of two triggers may represent a fail-safe mechanism ensuring the timely reset of the replisome after the synthesis of every Okazaki fragment.
Collapse
Affiliation(s)
- Samir M Hamdan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
48
|
Spiering MM, Nelson SW, Benkovic SJ. Repetitive lagging strand DNA synthesis by the bacteriophage T4 replisome. MOLECULAR BIOSYSTEMS 2008; 4:1070-4. [PMID: 18931782 DOI: 10.1039/b812163j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our studies on the T4 replisome build on the seminal work from the Alberts laboratory. They discovered essentially all the proteins that constitute the T4 replisome, isolated them, and measured their enzymatic activities. Ultimately, in brilliant experiments they reconstituted in vitro a functioning replisome and in the absence of structural information created a mosaic as to how such a machine might be assembled. Their consideration of the problem of continuous leading strand synthesis opposing discontinuous lagging strand synthesis led to their imaginative proposal of the trombone model, an illustration that graces all textbooks of biochemistry. Our subsequent work deepens their findings through experiments that focus on defining the kinetics, structural elements, and protein-protein contacts essential for replisome assembly and function. In this highlight we address when Okazaki primer synthesis is initiated and how the primer is captured by a recycling lagging strand polymerase--problems that the Alberts laboratory likewise found mysterious and significant for all replisomes.
Collapse
Affiliation(s)
- Michelle M Spiering
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
49
|
Stefanovic D, Kusic J, Divac A, Tomic B. Formation of noncanonical DNA structures mediated by human ORC4, a protein component of the origin recognition complex. Biochemistry 2008; 47:8760-7. [PMID: 18652488 DOI: 10.1021/bi800684f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many genomic sequences, DNA replication origins included, contain specific structural motifs prone to alternative base pairing. Structural rearrangements of DNA require specific environmental conditions and could be favored by chemical agents or proteins. To improve our understanding of alternative conformations of origins and the manner in which they form, we have investigated the effect of DNA-binding, AAA+ protein human ORC4 on single-stranded origin DNA or various oligonucleotides. Here we demonstrate that human ORC4 stimulated formation of inter- and intramolecular T.A.T triplexes and created novel structures, such as homoadenine duplexes. Adenine-based structures were held together by Hoogsteen hydrogen bonds, as demonstrated on 7-deaza-dAMP- or dAMP-containing substrates, and characterized by increased thermal stability. Adenine pairing occurred only in the presence of human ORC4, in a neutral buffer supplemented with ATP and Mg (2+) ions. The protein mutant that could not bind ATP was inactive in this reaction. Since the action of human ORC4 could be biologically important, its potential impact on DNA replication is discussed.
Collapse
Affiliation(s)
- Dragana Stefanovic
- Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia.
| | | | | | | |
Collapse
|
50
|
Nelson SW, Kumar R, Benkovic SJ. RNA primer handoff in bacteriophage T4 DNA replication: the role of single-stranded DNA-binding protein and polymerase accessory proteins. J Biol Chem 2008; 283:22838-46. [PMID: 18511422 DOI: 10.1074/jbc.m802762200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In T4 phage, coordinated leading and lagging strand DNA synthesis is carried out by an eight-protein complex termed the replisome. The control of lagging strand DNA synthesis depends on a highly dynamic replisome with several proteins entering and leaving during DNA replication. Here we examine the role of single-stranded binding protein (gp32) in the repetitive cycles of lagging strand synthesis. Removal of the protein-interacting domain of gp32 results in a reduction in the number of primers synthesized and in the efficiency of primer transfer to the polymerase. We find that the primase protein is moderately processive, and this processivity depends on the presence of full-length gp32 at the replication fork. Surprisingly, we find that an increase in the efficiency of primer transfer to the clamp protein correlates with a decrease in the dissociation rate of the primase from the replisome. These findings result in a revised model of lagging strand DNA synthesis where the primase remains as part of the replisome after each successful cycle of Okazaki fragment synthesis. A delay in primer transfer results in an increased probability of the primase dissociating from the replication fork. The interplay between gp32, primase, clamp, and clamp loader dictates the rate and efficiency of primer synthesis, polymerase recycling, and primer transfer to the polymerase.
Collapse
Affiliation(s)
- Scott W Nelson
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|