1
|
Pal R. Rheology of high internal phase ratio emulsions and foams. Adv Colloid Interface Sci 2025; 339:103426. [PMID: 39938157 DOI: 10.1016/j.cis.2025.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/28/2024] [Accepted: 02/01/2025] [Indexed: 02/14/2025]
Abstract
A comprehensive review of the rheology and related phenomena of high internal phase ratio emulsions (referred to as HIPREs) and foams is presented. Emulsions and foams with Brownian and non-Brownian inclusions (droplets/bubbles) are considered. The topics covered are osmotic pressure, modelling and experiments of the rheology of HIPREs/foams, time-dependent rheology (thixotropy/rheopexy), normal stresses, shear banding and slip effects in flow of HIPREs/foams, influence of solid particle stabilizers (Pickering emulsion/foam), and finally pipe rheology and flow of HIPREs/foams. This is the first review article that covers all aspects of the rheology of HIPREs/foams. The theoretical and empirical models describing the osmotic pressure and rheology (yield stress, storage modulus, viscosity, etc.) of HIPREs/foams are presented and their limitations pointed out. The contributions of entropic effects in the rheology of HIPREs/foams consisting of Brownian inclusions (droplets/bubbles) are given special consideration. The key experimental studies available in the literature are reviewed including measurements of yield stress, storage modulus, and viscosity of HIPREs/foams. Comparisons of experimental data with the theoretical and semi-theoretical models are made and the limitations of the models are identified. Experimental studies elaborating special effects in HIPREs/foams rheology such as thixotropy, rheopexy, normal stresses in fixed shear strain and steady shear, shear banding in thixotropic HIPREs/foams, and slip effects are also reviewed. The effects of average size and size distribution of inclusions (droplets/bubbles) on the rheology of HIPREs/foams are evaluated. The rheology of Pickering HIPREs/foams stabilized with solid nanoparticles at the interface is reviewed and compared with the rheology of surfactant-stabilized systems. Finally, the experimental work published on the pipe flow of HIPREs/foams and its connection to rheology is presented and discussed. The gaps in the existing knowledge of the rheology of HIPREs/foams are identified and future research directions in the area are given.
Collapse
Affiliation(s)
- Rajinder Pal
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
2
|
Zopf SF, Cruz RES, Kekedjian C, Ping L, Ferrer JMM, Aquino JPS, Xie R, Ling X, Boley JW. Self-Catalyzed Chemically Coalescing Liquid Metal Emulsions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413116. [PMID: 40285615 DOI: 10.1002/advs.202413116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/26/2025] [Indexed: 04/29/2025]
Abstract
Gallium-based liquid metal alloys (GaLMAs) have widespread applications ranging from soft electronics, energy devices, and catalysis. GaLMAs can be transformed into liquid metal emulsions (LMEs) to modify their rheology for facile patterning, processing, and material integration for GaLMA-based device fabrication. One drawback of using LMEs is reduced electrical conductivity owing to the oxides that form on the surface of dispersed liquid metal droplets. LMEs thus need to be activated by coalescing liquid metal droplets into an electrically conductive network, which usually involves techniques that subject the LME to harsh conditions. This study presents a way to coalesce these droplets through a chemical reaction at mild temperatures (T ∼ 80 °C). Chemical activation is enabled by adding halide compounds into the emulsion that chemically etch the oxide skin on the surface of dispersed droplets of eutectic gallium indium (eGaIn). LMEs synthesized with halide activators can achieve electrical conductivities close to bulk liquid metal (2.4 × 104 S cm-1) after being heated. 3D printable chemically coalescing LME ink formulations are optimized by systematically exploring halide activator type and concentration, along with mixing conditions, while maximizing for electrical conductivity, shape retention, and compatibility with direct ink writing (DIW). The utility of this ink is demonstrated in a hybrid 3D printing process to create a battery-integrated light emitting diode array, followed by a nondestructive low temperature heat activation that produces a functional device.
Collapse
Affiliation(s)
- Stephanie F Zopf
- Department of Mechanical Engineering, Boston University, 730 Commonwealth Avenue, Boston, MA, 02215, USA
| | - Ramón E Sánchez Cruz
- Department of Mechanical Engineering, Boston University, 730 Commonwealth Avenue, Boston, MA, 02215, USA
| | - Chloe Kekedjian
- Department of Materials Science, Boston University, 730 Commonwealth Avenue, Boston, MA, 02215, USA
| | - Lu Ping
- Department of Materials Science, Boston University, 730 Commonwealth Avenue, Boston, MA, 02215, USA
| | - Javier M Morales Ferrer
- Department of Mechanical Engineering, Boston University, 730 Commonwealth Avenue, Boston, MA, 02215, USA
| | - Jean Paul Soto Aquino
- Department of Mechanical Engineering, Boston University, 730 Commonwealth Avenue, Boston, MA, 02215, USA
| | - Rongxuan Xie
- Department of Materials Science, Boston University, 730 Commonwealth Avenue, Boston, MA, 02215, USA
| | - Xi Ling
- Department of Materials Science, Boston University, 730 Commonwealth Avenue, Boston, MA, 02215, USA
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, USA
| | - J William Boley
- Department of Mechanical Engineering, Boston University, 730 Commonwealth Avenue, Boston, MA, 02215, USA
- Department of Materials Science, Boston University, 730 Commonwealth Avenue, Boston, MA, 02215, USA
| |
Collapse
|
3
|
Renggli D, Doyle PS. Thermogelation of nanoemulsions stabilized by a commercial pea protein isolate: high-pressure homogenization defines gel strength. SOFT MATTER 2025; 21:652-669. [PMID: 39751842 PMCID: PMC11698122 DOI: 10.1039/d4sm00687a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
The impact of animal-based food production on climate change drives the development of plant-based alternatives. We demonstrate the use of colloidal thermogelation on a real nanoemulsion system to create structured gels that could be of interest for thermo-mechanical processing of next-generation plant-based food applications. We use a commercial pea protein isolate (PPI) without further purification to stabilize a 20 vol% peanut oil-in-water nanoemulsion at pH = 7 by high-pressure homogenization (HPH) and demonstrate the temperature induced gelation behavior of the nanoemulsion as a function of the HPH processing parameters. Bright-field and laser scanning confocal fluorescence microscopy reveals a diverse microstructure of the aqueous PPI dispersions, with a large amount of insoluble protein particles, cell-wall debris particles, and lipid inclusions. Sedimentation of particulates is prevented by HPH treatment and leads to a loss of the dispersion's thermogelation properties. The non-gelling PPI dispersion stabilizes nanoemulsions and the insoluble components of the PPI dispersions persist throughout the HPH processing. We perform a systematic rheological investigation of the effect of HPH processing on thermogelation and demonstrate that the number of HPH passes n and HPH pressure P control the average nanoemulsion droplet size measured by DLS at a 90° scattering angle. We show that the droplet size defines the final gel strength with a strong inverse dependence of the elastic modulus on droplet size. Furthermore, processing can lead to heterogeneously structured gels that yield over a large strain amplitude range.
Collapse
Affiliation(s)
- Damian Renggli
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Migliozzi S, He Y, Parhizkar M, Lan Y, Angeli P. Pickering emulsions for stimuli-responsive transdermal drug delivery: effect of rheology and microstructure on performance. SOFT MATTER 2024; 20:8621-8637. [PMID: 39431994 DOI: 10.1039/d4sm00993b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
This work investigates the design of stimuli-responsive Pickering emulsions (PEs) for transdermal drug delivery applications, by exploring the impact of stabilising microgels size and interactions on their rheological and release properties. Temperature-responsive poly(N-isopropylacrylamide) microgels modified with 1-benzyl-3-vinylimidazolium bromide (pNIPAM-co-BVI) are synthesized in varying sizes and used to stabilise jojoba oil-in-water concentrated emulsions. The results reveals two distinct behaviours: for small microgels (∼300 nm), the PEs exhibit a smooth, uniform structure characterised by a mild yield stress, characteristic of soft glassy systems. Conversely, larger microgels (∼800 nm) induce droplet clustering, resulting in increased elasticity and a more complex yielding process. Interestingly, transdermal delivery tests demonstrate that microstructure, rather than bulk rheology, governs sustained drug release. The release process can be modelled as diffusion-controlled transport through a porous medium with random traps. At room temperature, the trap size corresponds to the droplet size, and the release time scales with the total dispersed phases volume fraction. However, at physiological temperature (37 °C), above the volume-phase transition temperature of the microgels, the release time increases significantly. The trap size approaches the microgel size, suggesting that microgel porosity becomes the dominant factor controlling drug release. Overall, the results highlight the critical role of microstructure design in optimising stimuli-responsive PEs for controlled transdermal drug delivery.
Collapse
Affiliation(s)
- Simona Migliozzi
- Department of Chemical Engineering, University College London, London, UK.
| | - Yiting He
- Department of Chemical Engineering, University College London, London, UK.
- Centre for Nature Inspired Engineering, University College London, London, UK
| | | | - Yang Lan
- Department of Chemical Engineering, University College London, London, UK.
- Centre for Nature Inspired Engineering, University College London, London, UK
| | - Panagiota Angeli
- Department of Chemical Engineering, University College London, London, UK.
| |
Collapse
|
5
|
Ilyina SO, Gorbunova IY, Makarova VV, Kerber ML, Ilyin SO. Self-Lubricating and Shape-Stable Phase-Change Materials Based on Epoxy Resin and Vegetable Oils. Polymers (Basel) 2023; 15:4026. [PMID: 37836075 PMCID: PMC10575338 DOI: 10.3390/polym15194026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Palm or coconut oil is capable of dissolving in a mixture of bisphenol A-based epoxy resin and a high-temperature hardener (4,4'-diaminodiphenyl sulfone) when heated and then forms a dispersed phase as a result of cross-linking and molecular weight growth of the epoxy medium. Achieving the temporary miscibility between the curing epoxy matrix and the vegetable oil allows a uniform distribution of vegetable oil droplets in the epoxy medium. This novel approach to creating a dispersed phase-change material made a cured epoxy polymer containing up to 20% oil. The miscibility of epoxy resin and oil was studied by laser interferometry, and phase state diagrams of binary mixtures were calculated according to theory and experiments. A weak effect of oil on the viscosity and kinetics of the epoxy resin curing was demonstrated by rotational rheometry. According to differential scanning calorimetry and dynamic mechanical analysis, the oil plasticizes the epoxy matrix slightly, expanding its glass transition region towards low temperatures and reducing its elastic modulus. In the cured epoxy matrix, oil droplets have a diameter of 3-14 µm and are incapable of complete crystallization due to their multi-component chemical composition and non-disappeared limited miscibility. The obtained phase-change materials have relatively low specific energy capacity but can be used alternatively as self-lubricating low-noise materials due to dispersed oil, high stiffness, and reduced friction coefficient. Palm oil crystallizes more readily, better matching the creation of phase-change materials, whereas coconut oil crystallization is more suppressed, making it better for reducing the friction coefficient of the oil-containing material.
Collapse
Affiliation(s)
- Svetlana O. Ilyina
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia
- Department of Plastics Processing Technology, D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Irina Y. Gorbunova
- Department of Plastics Processing Technology, D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Veronika V. Makarova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia
| | - Michael L. Kerber
- Department of Plastics Processing Technology, D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Sergey O. Ilyin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia
| |
Collapse
|
6
|
Kim GW, Yun S, Jang J, Lee JB, Kim SY. Enhanced stability, formulations, and rheological properties of nanoemulsions produced with microfludization for eco-friendly process. J Colloid Interface Sci 2023; 646:311-319. [PMID: 37201459 DOI: 10.1016/j.jcis.2023.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
HYPOTHESIS Eco-friendly processes that are emerging around the world require mass production of low-energy, low-cost nanoemulsions. The process involving the high-concentrated nanoemulsions and diluting them with a large amount of solvent can certainly save the cost; however, not much detailed research has been conducted on the stability mechanism and rheological characteristics of high-concentrated nanoemulsions. EXPERIMENTS In this study, we produced nanoemulsions via the microfluidization (MF) process, comparing their dispersion stability and rheological characteristics with macroemulsions across various oil and surfactant concentrations. Droplet mobility and dispersion stability depended on these concentrations, with Asakura-Osawa-type attractive depletion considering interparticle interaction's role in stability changes. We investigated nanoemulsions' long-term stability based on turbidity and droplet size changes over four weeks, proposing a stability diagram showing four different states depending on emulsification conditions. FINDINGS We explored the microstructure of emulsions under varying mixing conditions, observing their effects on droplet mobility and rheological properties. We monitored changes in rheology, turbidity, and droplet size over 4 weeks, establishing stability diagrams for macro- and nanoemulsions. The stability diagrams revealed that the stability of emulsions are sensitively dependent on the droplet size, concentrations, surfactant cocentrations and the strcture of coexistent phases in case of macroscopic segregation are significantly different depending on the droplet sizes. We identified their respective stability mechanisms and discovered the relationship between stability and rheological properties for highly concentrated nanoemulsion.
Collapse
Affiliation(s)
- Geon Woong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seunghan Yun
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihui Jang
- Cosmax R&I Center, Building E, Pangyo Innovalley, 255 Pangyo-ro, Bundang-gu, Seongnam 13486, Korea
| | - Jun Bae Lee
- Cosmax R&I Center, Building E, Pangyo Innovalley, 255 Pangyo-ro, Bundang-gu, Seongnam 13486, Korea
| | - So Youn Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Pasquet M, Galvani N, Requier A, Cohen-Addad S, Höhler R, Pitois O, Rio E, Salonen A, Langevin D. Coarsening transitions of wet liquid foams under microgravity conditions. SOFT MATTER 2023; 19:6267-6279. [PMID: 37551883 DOI: 10.1039/d3sm00535f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
We report foam coarsening studies which were performed in the International Space Station (ISS) to suppress drainage due to gravity. Foams and bubbly liquids with controlled liquid fractions ϕ between 15 and 50% were investigated to study the transition between bubble growth laws previously reported near the dry limit ϕ → 0 and the dilute limit ϕ → 1 (Ostwald ripening). We determined the coarsening rates for the driest foams and the bubbly liquids, they are in close agreement with theoretical predictions. We observe a sharp cross-over between the respective laws at a critical value ϕ*. At liquid fractions beyond this transition, neighboring bubbles are no longer all in contact, like at a jamming transition. Remarkably ϕ* is significantly larger than the random close packing volume fraction of the bubbles ϕrcp which was determined independently. We attribute the differences between ϕ* and ϕrcp to a weakly adhesive bubble interaction that we have studied in complementary ground-based experiments.
Collapse
Affiliation(s)
- Marina Pasquet
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.
| | - Nicolo Galvani
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
- Université Gustave Eiffel, ENPC, CNRS, Laboratoire Navier, 5 Bd Descartes, Champs-sur-Marne, F-77454 Marne-la-Vallée cedex 2, France
| | - Alice Requier
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.
| | - Sylvie Cohen-Addad
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
- Université Gustave Eiffel, 5 Bd Descartes, Champs-sur-Marne, F-77454 Marne-la-Vallée cedex 2, France
| | - Reinhard Höhler
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
- Université Gustave Eiffel, 5 Bd Descartes, Champs-sur-Marne, F-77454 Marne-la-Vallée cedex 2, France
| | - Olivier Pitois
- Université Gustave Eiffel, ENPC, CNRS, Laboratoire Navier, 5 Bd Descartes, Champs-sur-Marne, F-77454 Marne-la-Vallée cedex 2, France
| | - Emmanuelle Rio
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.
| | - Anniina Salonen
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.
| | - Dominique Langevin
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.
| |
Collapse
|
8
|
Abbasian Chaleshtari Z, Salimi-Kenari H, Foudazi R. Glassy and compressed nanoemulsions stabilized with sodium dodecyl sulfate in the presence of poly(ethylene glycol)-diacrylate. SOFT MATTER 2023; 19:5989-6004. [PMID: 37497795 DOI: 10.1039/d3sm00349c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The rheology of concentrated nanoemulsions is critical for their formulation in various applications, such as pharmaceuticals, foods, cosmetics, and templating advanced materials. The rheological properties of nanoemulsions depend on interdroplet interactions, Laplace pressure, dispersed phase volume fraction, and continuous phase properties. The interdroplet forces can be tuned by background electrolytes (i.e., charge screening), surfactant type, the excess surfactant micelle concentration, and depletant molecules such as polymer chains. In the current research, we study the effect of varying the content of poly(ethylene glycol)-diacrylate (PEGDA) on the interfacial tension of the water-oil phase and rheological properties of concentrated nanoemulsions with 50% and 60% volume fractions. Sodium dodecyl sulfate (SDS) is used as the ionic surfactant. The final concentrated nanoemulsions are repulsive according to overall interaction potentials and are in the glass and compressed states based on the effective volume fraction estimation. They contain nearly same SDS concentration on the droplet surface and also in the bulk, but a different amount of PEGDA. The scaled rheological properties of the glassy nanoemulsions show a higher dependency on the PEGDA content and the possible effect of polymer-surfactant complexations compared to those of the compressed ones. This dependency is more pronounced in small strain amplitudes but not in large strains in the non-linear regime. These results provide insights into formulating concentrated nanoemulsions with controlled rheology for expanded application areas.
Collapse
Affiliation(s)
| | - Hamed Salimi-Kenari
- Faculty of Engineering & Technology, University of Mazandaran, Babolsar, Iran
| | - Reza Foudazi
- School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
9
|
Xu Y, Mason TG. Jamming and depletion in extremely bidisperse mixtures of microscale emulsions and nanoemulsions. SCIENCE ADVANCES 2023; 9:eadh3715. [PMID: 37379378 DOI: 10.1126/sciadv.adh3715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
While much attention has been given to jamming of granular and colloidal particles having monomodal size distributions, jamming of systems having more complex size distributions remains an interesting direction. We create concentrated, disordered binary mixtures of size-fractionated nanoscale and microscale oil-in-water emulsions, which are stabilized by the same common ionic surfactant, and measure the optical transport properties, microscale droplet dynamics, and mechanical shear rheological properties of these mixtures over a wide range of relative and total droplet volume fractions. Simple effective medium theories do not explain all of our observations. Instead, we show that our measurements are consistent with more complex collective behavior in extremely bidisperse systems, involving an effective continuous phase that governs nanodroplet jamming, as well as depletion attractions between microscale droplets induced by nanoscale droplets.
Collapse
Affiliation(s)
- Yixuan Xu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas G Mason
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Langevin D. Recent Advances on Emulsion and Foam Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3821-3828. [PMID: 36880680 DOI: 10.1021/acs.langmuir.2c03423] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this perspective paper, we highlight the numerous open problems in the topic of stability of emulsions and foams, focusing on the simplest case of dispersions stabilized by surfactants. There are three main destabilization processes, gravity induced evolution, Ostwald ripening, and drops or bubble coalescence, which are analyzed separately. The discussion is restricted to the case of Newtonian fluids, deprived of microstructure, except for the presence of micelles. Thanks to continuing efforts and recent breakthroughs, we show that the understanding of emulsion and foam stability is progressing. Many problems are still open, however, and much work remains to be done along the lines outlined in the paper.
Collapse
Affiliation(s)
- Dominique Langevin
- Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Saclay, 91405 Orsay, France
| |
Collapse
|
11
|
Lin J, Tang ZS, Brennan CS, Chandrapala J, Gao W, Han Z, Zeng XA. Thermomechanically micronized sugar beet pulp: Emulsification performance and the contribution of soluble elements and insoluble fibrous particles. Food Res Int 2023; 165:112467. [PMID: 36869480 DOI: 10.1016/j.foodres.2023.112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/04/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
In this work, thermomechanically micronized sugar beet pulp (MSBP), a micron-scaled plant-based byproduct comprised of soluble elements (∼40 wt%) and insoluble fibrous particles (IFPs, ∼60 wt%), was used as a sole stabilizer for oil-in-water emulsion fabrication. The influence of emulsification parameters on the emulsifying properties of MSBP was investigated, including emulsification techniques, MSBP concentration, and oil weight fraction. High-speed shearing (M1), ultrasonication (M2), and microfludization (M3) were used to fabricate oil-in-water emulsions (20% oil) with 0.60 wt% MSBP as stabilizer, in which the d4,3 value was 68.3, 31.5, and 18.2 μm, respectively. Emulsions fabricated by M2 and M3 (higher energy input) were more stable than M1 (lower energy input) during long-term storage (30 days) as no significant increase of d4,3. As compared to M1, the adsorption ratio of IFPs and protein was increased from ∼0.46 and ∼0.34 to ∼0.88 and ∼0.55 by M3. Fabricated by M3, the creaming behavior of emulsions was completely inhibited with 1.00 wt% MSBP (20% oil) and 40% oil (0.60 wt% MSBP), showing a flocculated state and could be disturbed by sodium dodecyl sulfate. The gel-like network formed by IFPs could be strengthened after storage as both viscosity and module were significantly increased. During emulsification, the co-stabilization effect of the soluble elements and IFPs enabled a compact and hybrid coverage onto the droplet surface, which acted as a physical barrier to endow the emulsion with robust steric repulsion. Altogether, these findings suggested the feasibility of using plant-based byproducts as oil-in-water emulsion stabilizers.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong-Sheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Charles S Brennan
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Jayani Chandrapala
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Wenhong Gao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong Han
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China.
| |
Collapse
|
12
|
Xu Y, Mason TG. Complex optical transport, dynamics, and rheology of intermediately attractive emulsions. Sci Rep 2023; 13:1791. [PMID: 36720895 PMCID: PMC9889356 DOI: 10.1038/s41598-023-28308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/17/2023] [Indexed: 02/02/2023] Open
Abstract
Introducing short-range attractions in Brownian systems of monodisperse colloidal spheres can substantially impact their structures and consequently their optical transport and rheological properties. Here, for size-fractionated colloidal emulsions, we show that imposing an intermediate strength of attraction, well above but not much larger than thermal energy ([Formula: see text] [Formula: see text], through micellar depletion leads to a striking notch in the measured inverse mean free path of optical transport, [Formula: see text], as a function of droplet volume fraction, [Formula: see text]. This notch, which appears between the hard-sphere glass transition, [Formula: see text], and maximal random jamming, [Formula: see text], implies the existence of a greater population of compact dense clusters of droplets, as compared to tenuous networks of droplets in strongly attractive emulsion gels. We extend a prior decorated core-shell network model for strongly attractive colloidal systems to include dense non-percolating clusters that do not contribute to shear rigidity. By constraining this extended model using the measured [Formula: see text], we improve and expand the microrheological interpretation of diffusing wave spectroscopy (DWS) experiments made on attractive colloidal systems. Our measurements and modeling demonstrate richness and complexity in optical transport and shear rheological properties of dense, disordered colloidal systems having short-range intermediate attractions between moderately attractive glasses and strongly attractive gels.
Collapse
Affiliation(s)
- Yixuan Xu
- grid.19006.3e0000 0000 9632 6718Department of Materials Science and Engineering, University of California- Los Angeles, Los Angeles, CA 90095 USA
| | - Thomas G. Mason
- grid.19006.3e0000 0000 9632 6718Department of Chemistry and Biochemistry, University of California- Los Angeles, Los Angeles, CA 90095 USA ,grid.19006.3e0000 0000 9632 6718Department of Physics and Astronomy, University of California- Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
13
|
Xie D, Jiang Y. The mediated rheological properties of emulsions stabilized by thread-like mesoporous silica nanoparticles in combination with CTAB. SOFT MATTER 2022; 18:7782-7793. [PMID: 36178243 DOI: 10.1039/d2sm01064j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The combination of hydrophilic particles and surfactants provides a simple method to stabilize Pickering emulsions. The type and concentration of the particles and surfactants play important roles in the microstructure and rheological properties of the resulting emulsions. Herein, stable n-octane-in-water Pickering emulsions with tunable rheological properties were prepared using thread-like mesoporous silica nanoparticles (TMSNPs) and cetyltrimethylammonium bromide (CTAB) as emulsifiers. The CTAB concentration (CCTAB) highly affected the properties of emulsions, which were divided into three regions according to the results of large-amplitude oscillatory shear responses. In the low CCTAB range (0.03 mmol L-1 ≤ CCTAB ≤ 0.1 mmol L-1), the emulsions gelled with a high storage modulus . With CCTAB increasing, the value of emulsions, measured by the small-amplitude oscillatory shear, decreased from approximately 1000 Pa at 0.03 mmol L-1 to 100 Pa at 0.3 mmol L-1 and then to 40 Pa at 3 mmol L-1. A three-dimensional percolation structure formed by cross-linking of TMSNPs in the emulsion continuous phase was observed via cryo-SEM in the low CCTAB range but not in the intermediate and high CCTAB ranges. The mechanisms showing the synergistic stability and rheological properties of these emulsions were investigated. It is attributed to the unique morphology of TMSNPs and the competitive adsorption of CTAB molecules at the oil-water interface and on the nanoparticle surface in different CCTAB ranges. Moreover, owing to the porosity and hydrogen-bonding interactions between the TMSNPs and the confinement effect of the flocculated oil droplets, the viscoelasticity of the emulsions could be mediated by adding a trace amount of acid/base. This study provides a new strategy to regulate the rheological properties of emulsions. It also expands the Pickering emulsion systems with tunable rheological properties.
Collapse
Affiliation(s)
- Danhua Xie
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, College of Chemistry and Materials, Ningde Normal University, Ningde 352100, Fujian, China.
| | - Yulong Jiang
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, College of Chemistry and Materials, Ningde Normal University, Ningde 352100, Fujian, China.
| |
Collapse
|
14
|
Sridharan S, Meinders MB, Sagis LM, Bitter JH, Nikiforidis CV. Starch controls brittleness in emulsion-gels stabilized by pea flour. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Dong J, Turci F, Jack RL, Faers M, Royall CP. Direct Imaging of Contacts and Forces in Colloidal Gels. J Chem Phys 2022; 156:214907. [DOI: 10.1063/5.0089276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Colloidal dispersions are prized as model systems to understand basic properties of materials, and are central to a wide range of industries from cosmetics to foods to agrichemicals. Among the key developments in using colloids to address challenges in condensed matter is to resolve the particle coordinates in 3D, allowing a level of analysis usually only possible in computer simulation. However in amorphous materials, relating mechanical properties, and failure in particular to microscopic structure remains problematic. Here we address this challenge by studying the contacts and the forces between particles, as well as their positions. To do so, we use a colloidal model system (an emulsion) in which the interparticle forces and local stress can be linked to the microscopic structure. We demonstrate the potential of our method to reveal insights into the failure mechanisms of soft amorphous solids by determining local stress in a colloidal gel. In particular, we identify "force chains" of load--bearing droplets, and local stress anisotropy, and investigate their connection with locally rigid packings of the droplets.
Collapse
Affiliation(s)
- Jun Dong
- University of Bristol, United Kingdom
| | | | - Robert L. Jack
- DAMTP, University of Cambridge Department of Applied Mathematics and Theoretical Physics, United Kingdom
| | | | | |
Collapse
|
16
|
Kibbelaar HV, Dekker RI, Morcy A, Kegel WK, Velikov KP, Bonn D. Ethyl cellulose nanoparticles as stabilizers for Pickering emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Ferreiro-Córdova C, Foffi G, Pitois O, Guidolin C, Schneider M, Salonen A. Stiffening colloidal gels by solid inclusions. SOFT MATTER 2022; 18:2842-2850. [PMID: 35343992 DOI: 10.1039/d1sm01555a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The elastic properties of a soft matter material can be greatly altered by the presence of solid inclusions whose microscopic properties, such as their size and interactions, can have a dramatic effect. In order to shed light on these effects we use extensive rheology computer simulations to investigate colloidal gels with solid inclusions of different sizes. We show that the elastic properties vary in a highly non-trivial way as a consequence of the interactions between the gel backbone and the inclusions. In particular, we show that the key aspects are the presence of the gel backbone and its mechanical alteration originating from the inclusions. To confirm our observations and their generality, we performed experiments on an emulsion that presents strong analogies with colloidal gels and confirms the trends observed in the simulations.
Collapse
Affiliation(s)
- Claudia Ferreiro-Córdova
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Querétaro, Querétaro, 76130, Mexico
| | - Giuseppe Foffi
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.
| | - Olivier Pitois
- Université Gustave Eiffel, Ecole des Ponts ParisTech, CNRS, Laboratoire Navier, F-77447 Marne-la-Vallée, France
| | - Chiara Guidolin
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.
| | - Maxime Schneider
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.
| | - Anniina Salonen
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.
| |
Collapse
|
18
|
Tajima C, Inasawa S. Effects of liquid–liquid interfaces on flow of oil-in-water emulsions in a capillary tube. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Parajuli S, Ureña-Benavides EE. Fundamental aspects of nanocellulose stabilized Pickering emulsions and foams. Adv Colloid Interface Sci 2022; 299:102530. [PMID: 34610863 DOI: 10.1016/j.cis.2021.102530] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 11/26/2022]
Abstract
Nanocelluloses in recent years have garnered a lot of attention for their use as stabilizers of liquid-liquid and gas-liquid interfaces. Both cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) have been used extensively in multiple studies to prepare emulsions and foams. However, there is limited literature available that systematically discusses the mechanisms that affect the ability of nanocelluloses (modified and unmodified) to stabilize different types of interfaces. This review briefly discusses key factors that affect the stability of Pickering emulsions and foams and provides a detailed and systematic analysis of the current state knowledge on factors affecting the stabilization of liquid-liquid and gas-liquid interfaces by nanocelluloses. The review also discusses the effect of nanocellulose surface modifications on mechanisms driving the Pickering stabilization of these interfaces.
Collapse
|
20
|
Qian X, Peng G, Ge L, Wu D. Water-in-water Pickering emulsions stabilized by the starch nanocrystals with various surface modifications. J Colloid Interface Sci 2021; 607:1613-1624. [PMID: 34592548 DOI: 10.1016/j.jcis.2021.09.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022]
Abstract
HYPOTHESIS Using the platelet-like starch nanocrystals (SNCs) to stabilize emulsions is attractive because as-prepared emulsions have promising applications in cosmetics and food fields. Limited studies mainly focus on the oil-in-water system, and another important system, the water-in-water emulsions stabilized by SNCs, has not yet been unveiled. EXPERIMENTS Two surface modification strategies, crosslinking and acetylation, were applied to tune surface property and aggregation of SNCs, and a common all-aqueous system (dextran/poly(ethylene glycol)) was used here as template. The viscoelasticity and morphology of emulsions were studied in terms of the SNC loadings and polymer ratios. FINDINGS Crosslinking results in aggregation of SNCs, and the particle size increases (from 110 nm to 370 nm) with increased levels of substitution. This favors improving emulsifying ability of particles. Acetylation decreases the particle size (∼90 nm) and weakens the affinity of SNCs to the two aqueous phases, improving the emulsifying efficiency of SNCs. More intriguingly, the two emulsion systems show different phase inversion behaviors. The depletion-stabilization mechanism for the cross-linked SNCs and the diffusion-controlled mechanism for the acetylated SNCs are proposed using the emulsion viscoelasticity as probe. This study makes a comprehensive insight into the regulation of water-in-water emulsion morphology and types with the platelet-like SNCs.
Collapse
Affiliation(s)
- Xiaoli Qian
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Guangni Peng
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Lingling Ge
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China; Provincial Key Laboratories of Environmental Engineering & Materials, Yangzhou, Jiangsu Province 225002, PR China.
| |
Collapse
|
21
|
Fuhrmann PL, Breunig S, Sala G, Sagis L, Stieger M, Scholten E. Rheological behaviour of attractive emulsions differing in droplet-droplet interaction strength. J Colloid Interface Sci 2021; 607:389-400. [PMID: 34509113 DOI: 10.1016/j.jcis.2021.08.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
HYPOTHESIS We hypothesise that interaction strength between oil droplets determine the rheological properties of oil-in-water (O/W) emulsions by simultaneous formation and break-up of bonds between droplets. Using small (SAOS) and large (LAOS) amplitude oscillatory shear measurements, we aim to distinguish different classes of emulsions based on the specific microstructural evolution of the emulsions. EXPERIMENTS Concentrated O/W emulsions differing in droplet-droplet interaction strength were obtained. Different interaction strength was obtained using different types of interactions; (a) electrostatic attraction, (b) salt bridging, or (c) crosslinking. FINDINGS In line with our hypothesis, different rheological events in emulsions depend on the droplet-droplet interaction strength. Strong interactions lead to monotonous yielding, and droplets undergo jamming or densification to provide strain hardening and gel-like behaviour. Emulsions with weak interactions exhibit two-step yielding (SAOS) and continuous yielding in LAOS; indicating a soft-glassy material. In emulsions above maximum packing, and with weak interactions the rheology is controlled by cluster/cage breaking, and transient formation of new clusters. For medium-strength interactions, two-step yielding was reduced, and apparent stain-hardening occurred. The probability of two distinct time scales of yielding is hindered by stronger interactions and jamming. Overall, in concentrated emulsions, yielding is determined by network rupture and reformation, cluster rearrangement and -breaking, which in turn is influenced by interaction type and strength. We present a more differentiated categorisation of emulsions based on interaction strength.
Collapse
Affiliation(s)
- Philipp L Fuhrmann
- TiFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands; Physics and Physical Chemistry of Foods, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Swantje Breunig
- Physics and Physical Chemistry of Foods, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Guido Sala
- Physics and Physical Chemistry of Foods, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Leonard Sagis
- Physics and Physical Chemistry of Foods, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Markus Stieger
- TiFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands; Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Food Quality and Design Group, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Elke Scholten
- TiFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands; Physics and Physical Chemistry of Foods, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
22
|
Bournigault-Nuquet A, Couderc S, Bibette J, Baudry J. Patterning of a Drying Emulsion Film. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8924-8928. [PMID: 34279958 DOI: 10.1021/acs.langmuir.1c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stabilizing layers of colloidal dispersions or emulsions to obtain homogeneous films is a real challenge. We describe here a new kind of instability in drying films of emulsions: during evaporation of the internal phase, cracks appear between the droplets that create aggregates according to a regular pattern. We show that this pattern only appears if the emulsion is adhesive, i.e., if droplets stick together. The pattern exhibits a characteristic length which depends on the adhesion strength and film thickness. These experimental results support a model where this instability is due to the gel structure and elastic properties of adhesive emulsions. Understanding this phenomenon will allow us to get a homogeneous film or to control it to get structured materials.
Collapse
Affiliation(s)
- Aurore Bournigault-Nuquet
- Laboratoire Colloïdes et Matériaux Divisés, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
- CHANEL Parfums Beauté, 8 rue du Cheval Blanc, 93500 Pantin, France
| | - Sandrine Couderc
- CHANEL Parfums Beauté, 8 rue du Cheval Blanc, 93500 Pantin, France
| | - Jérôme Bibette
- Laboratoire Colloïdes et Matériaux Divisés, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| | - Jean Baudry
- Laboratoire Colloïdes et Matériaux Divisés, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| |
Collapse
|
23
|
Gorbacheva SN, Ilyin SO. Structure, rheology and possible application of water-in-oil emulsions stabilized by asphaltenes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126442] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Kim HS, Xu Y, Scheffold F, Mason TG. Self-motion and heterogeneous droplet dynamics in moderately attractive dense emulsions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:175101. [PMID: 33513598 DOI: 10.1088/1361-648x/abe157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
We show that diffusing wave spectroscopy (DWS) is sensitive to the presence of a moderate short-range attraction between droplets in uniform fractionated colloidal emulsions near and below the jamming point associated with monodisperse hard spheres. This moderate interdroplet attraction, induced by micellar depletion, has an energy of about ∼2.4kBT, only somewhat larger than thermal energy. Although changes in the mean free path of optical transport caused by this moderate depletion attraction are small, DWS clearly reveals an additional secondary decay-to-plateau in the intensity autocorrelation function at long times that is not present when droplet interactions are nearly hard. We hypothesize that this secondary decay-to-plateau does not reflect the average self-motion of individual droplets experiencing Brownian excitations, but instead results from heterogeneous dynamics involving a sub-population of droplets that still experience bound motion yet with significantly larger displacements than the average. By effectively removing the contribution of this secondary decay-to-plateau, which is linked to greater local heterogeneity in droplet structure caused by the moderate attraction, we obtain self-motion mean square displacements (MSDs) of droplets that reflect only the initial primary decay-to-plateau. Moreover, we show that droplet self-motion primary plateau MSDs can be interpreted using the generalized Stokes-Einstein relation of passive microrheology, yielding quantitative agreement with plateau elastic shear moduli measured mechanically.
Collapse
Affiliation(s)
- Ha Seong Kim
- Department of Chemistry and Biochemistry, University of California- Los Angeles, Los Angeles, CA 90095, United States of America
| | - Yixuan Xu
- Department of Materials Science and Engineering, University of California- Los Angeles, Los Angeles, CA 90095, United States of America
| | - Frank Scheffold
- Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Thomas G Mason
- Department of Chemistry and Biochemistry, University of California- Los Angeles, Los Angeles, CA 90095, United States of America
- Department of Physics and Astronomy, University of California- Los Angeles, Los Angeles, CA 90095, United States of America
| |
Collapse
|
25
|
Stability and rheology of canola protein isolate-stabilized concentrated oil-in-water emulsions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106399] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Lu Y, Li J, Ge L, Xie W, Wu D. Pickering emulsion stabilized with fibrous nanocelluloses: Insight into fiber flexibility-emulsifying capacity relations. Carbohydr Polym 2021; 255:117483. [DOI: 10.1016/j.carbpol.2020.117483] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
|
27
|
Cao R, Kumar D, Dinsmore AD. Vesicle-Based Gel via Polyelectrolyte-Induced Adhesion: Structure, Rheology, and Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1714-1724. [PMID: 33513022 DOI: 10.1021/acs.langmuir.0c02921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We describe an experimental study of soft solids composed of micron-scale lipid bilayer vesicles that adhere to one another through electrostatic attraction to an oppositely charged polymer (PDADMAC). As the polymer concentration was increased, we found a fluid phase, a solid gel phase, and a gel composed of internally reorganized vesicles. Optical microscopy images showed a nearly close-packed structure of adhered vesicles that retained their closed-cell morphology. Shear rheology measurements showed that the gel phase is a solid with a modulus at the Pa scale and with linear response up to 70% strain. We found that the modulus depends on the energy per area of membrane-membrane adhesion but does not depend on the vesicle size. We further found that the gels survived osmotic stress or dilution of the adhering polymer but could be rapidly disrupted in response to the addition of strongly binding silica nanoparticles. These results demonstrate the potential for cell-sized lipid vesicles to form a solid platform that maintains the responsive properties of the membranes. Such materials may find applications as triggerable, protective coatings of delicate surfaces.
Collapse
Affiliation(s)
- Rui Cao
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Deepak Kumar
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anthony D Dinsmore
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
28
|
Shahbazi M, Jäger H. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges. ACS APPLIED BIO MATERIALS 2021; 4:325-369. [PMID: 35014287 DOI: 10.1021/acsabm.0c01379] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three-dimensional (3D) printing is a revolutionary additive manufacturing technique that allows rapid prototyping of objects with intricate architectures. This Review covers the recent state-of-the-art of biopolymers (protein and carbohydrate-based materials) application in pharmaceutical, bioengineering, and food printing and main reinforcement approaches of biomacromolecular structure for the development of 3D constructs. Some perspectives and main important limitations with the biomaterials utilization for advanced 3D printing procedures are also provided. Because of the improved the ink's flow behavior and enhance the mechanical strength of resulting printed architectures, biopolymers are the most used materials for 3D printing applications. Biobased polymers by taking advantage of modifying the ink viscosity could improve the resolution of deposited layers, printing precision, and consequently, develop well-defined geometries. In this regard, the rheological properties of printable biopolymeric-based inks and factors affecting ink flow behavior related to structural properties of printed constructs are discussed. On the basis of successful applications of biopolymers in 3D printing, it is suggested that other biomacromolecules and nanoparticles combined with the matrix can be introduced into the ink dispersions to enhance the multifunctionality of 3D structures. Furthermore, tuning the biopolymer's structural properties offers the most common and essential approach to attain the printed architectures with precisely tailored geometry. We finish the Review by giving a viewpoint of the upcoming 3D printing process and recognize some of the existing bottlenecks facing the blossoming 3D pharmaceutical, bioengineering, and food printing applications.
Collapse
Affiliation(s)
- Mahdiyar Shahbazi
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
29
|
Abbasian Chaleshtari Z, Salimi-Kenari H, Foudazi R. Interdroplet Interactions and Rheology of Concentrated Nanoemulsions for Templating Porous Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:76-89. [PMID: 33337881 DOI: 10.1021/acs.langmuir.0c02366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the current study, we investigate the colloidal behavior of nanoemulsions over a wide range of oil volume fractions (φ) from dilute to concentrated regime. The dilute system contains 25% silicone oil dispersed in the aqueous phase consisting of poly(ethylene glycol)-diacrylate (PEGDA) and sodium dodecyl sulfate (SDS), which is concentrated through evaporation of water at two different rates at ambient temperature. The rheological studies show that the liquid-like nanoemulsions transform into viscoelastic gels at a volume fraction of ∼30%. The plateau storage modulus of the nanoemulsions increases in the semidilute systems (φ below 45%) and then decreases steadily with increasing φ up to 60%. Dependency of the modulus on the evaporation rate can be observed in the rheological results. According to the rheological results and the overall pairwise interactions estimated between droplets, we propose two regimes of colloidal interactions. In the semidilute regime, the attractive gelation occurs due to considerable short-range attractive depletion induced by the PEGDA oligomer and SDS micelles. In the concentrated regime, the gel weakens by increasing φ mainly due to the structural stabilization barrier from a high concentration of micelles. The PEGDA in the continuous phase of the nanoemulsions can be crosslinked through photopolymerization, resulting in nanoporous PEGDA hydrogels upon removal of oil droplets. We study the water uptake of the nanoporous hydrogels prepared from the nanoemulsion templates at φ = 60%. The hydrogel obtained from the nanoemulsion with fast evaporation rate shows higher water uptake than that obtained from the slowly concentrated nanoemulsion. The tunable viscoelastic behavior of concentrated nanoemulsions as well as the resulting nanoporous hydrogels offers a new platform to design the soft materials for a wide range of applications.
Collapse
Affiliation(s)
- Zahra Abbasian Chaleshtari
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | - Hamed Salimi-Kenari
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico 88003, United States
- Faculty of Engineering & Technology, University of Mazandaran, Babolsar 47416-13534, Iran
| | - Reza Foudazi
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico 88003, United States
| |
Collapse
|
30
|
Xu Y, Scheffold F, Mason TG. Diffusing wave microrheology of strongly attractive dense emulsions. Phys Rev E 2020; 102:062610. [PMID: 33466019 DOI: 10.1103/physreve.102.062610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/30/2020] [Indexed: 11/07/2022]
Abstract
We advance the microrheological interpretation of optical diffusing wave spectroscopy (DWS) measurements of strongly attractive emulsions at dense droplet volume fractions, ϕ. Beyond accounting for collective scattering, we show that measuring the mean free path of optical transport over a wide range of ϕ is necessary to quantify the effective size of the DWS probes, which we infer to be local dense clusters of droplets through a decorated core-shell network model. This approach yields microrheological elastic shear moduli that are in quantitative agreement with mechanical rheometry.
Collapse
Affiliation(s)
- Yixuan Xu
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA
| | - Frank Scheffold
- Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Thomas G Mason
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA and Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
31
|
|
32
|
|
33
|
Starch nanocrystals as the particle emulsifier to stabilize caprylic/capric triglycerides-in-water emulsions. Carbohydr Polym 2020; 245:116561. [PMID: 32718647 DOI: 10.1016/j.carbpol.2020.116561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 11/20/2022]
Abstract
Starch nanocrystals (SNCs) grafted with octenyl succinic anhydride (OSA) were used to stabilize caprylic/capric triglycerides (GTCC)-in-water emulsions. The morphology and viscoelasticity of emulsions were studied in terms of particle loadings and degrees of substitution (DSs). It is found that the emulsifying capacities of SNCs increase with increased DSs. Both the pristine SNC and modified ones can be well used to stabilize emulsions, whereas the emulsification follows different mechanisms. The platelet-like structure of SNCs, together with its improved amphiphilicity after surface treatments, are important to the formation and evolution of droplet clusters. The deformation and relaxation of those clusters result in weak flow overshoots and strong thixotropy in different shear flow fields, which favor storage and applications of GTCC-in-water emulsions as hydrocolloids. The mechanisms were then discussed in terms of rigidity of SNC and relaxations of clusters. This work proposes a promising application of SNC in food and cosmetic industries.
Collapse
|
34
|
Two step yielding in soft materials. Adv Colloid Interface Sci 2020; 282:102179. [PMID: 32622151 DOI: 10.1016/j.cis.2020.102179] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022]
Abstract
A review is presented on the topic of two-step yielding observed in complex fluids that cover a broad variety of materials ranging from colloidal gels, attractive glasses, emulsions, suspensions, and several commercial paste-like materials. The common features in various systems displaying two-step yielding behavior are the presence of two characteristic forces between the interacting particles or two varying representative length or time scales. This focused review aims to provide physical insights, mechanistic understanding of the two-step yielding and other associated rheological consequences of this nonlinear behavior. A discussion is provided on the microstructural details with an overview of different experimental systems exhibiting double-yielding studied so far highlighting the similarities and differences among them. Particularly, the effects of continuous phase properties, dispersed particle phase factors (size, shape, softness and surface charge) and external force field (electric, magnetic, thermal and shear flows) on two-step yielding are considered.
Collapse
|
35
|
Lee JY, Sung M, Seo H, Park YJ, Lee JB, Shin SS, Lee Y, Shin K, Kim JW. Temperature-responsive interdrop association of condensed attractive nanoemulsions. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Golovkova I, Montel L, Wandersman E, Bertrand T, Prevost AM, Pontani LL. Depletion attraction impairs the plasticity of emulsions flowing in a constriction. SOFT MATTER 2020; 16:3294-3302. [PMID: 32173724 DOI: 10.1039/c9sm02343g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We study the elasto-plastic behavior of dense attractive emulsions under a mechanical perturbation. The attraction is introduced through non-specific depletion interactions between the droplets and is controlled by changing the concentration of surfactant micelles in the continuous phase. We find that such attractive forces are not sufficient to induce any measurable modification on the scalings between the local packing fraction and the deformation of the droplets. However, when the emulsions are flowed through 2D microfluidic constrictions, we uncover a measurable effect of attraction on their elasto-plastic response. Indeed, we measure higher levels of deformation inside the constriction for attractive droplets. In addition, we show that these measurements correlate with droplet rearrangements that are spatially delayed in the constriction for higher attraction forces.
Collapse
Affiliation(s)
- Iaroslava Golovkova
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France.
| | - Lorraine Montel
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France.
| | - Elie Wandersman
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France.
| | - Thibault Bertrand
- Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Alexis Michel Prevost
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France.
| | - Lea-Laetitia Pontani
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France.
| |
Collapse
|
37
|
Qian X, Lu Y, Xie W, Wu D. Viscoelasticity of olive oil/water Pickering emulsions stabilized with starch nanocrystals. Carbohydr Polym 2020; 230:115575. [DOI: 10.1016/j.carbpol.2019.115575] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 02/02/2023]
|
38
|
Patel A, Mohanan A, Ghosh S. Effect of protein type, concentration and oil droplet size on the formation of repulsively jammed elastic nanoemulsion gels. SOFT MATTER 2019; 15:9762-9775. [PMID: 31742298 DOI: 10.1039/c9sm01650c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rheology of sodium caseinate (SC) and whey protein isolate (WPI)-stabilized nanoemulsions (NEs) was investigated as a function of protein (1-5 wt%) and oil (30 and 40 wt%) concentration and storage time. For SC NEs, gel strength increased with an increase in protein and oil concentration and a decrease in droplet size and below a critical size transformed into a strong elastic gel that did not flow under gravity. Surprisingly, WPI NEs, although stable and had similar droplet size to SC NEs, did not form elastic gels. The stability of the NEs was studied for 3 months, and no significant change was observed. Considerable higher storage modulus (G') of SC NEs compared to WPI NEs was attributed to an increased effective droplet volume fraction (φeff) due to a thicker steric barrier of SC compared to WPI. The DLVO interdroplet potential was used to calculate the thickness of the charge cloud at an overall repulsive interaction of 1 kBT, which was added to the steric barrier to calculate the effective droplet size and φeff. At the highest φeff (0.79) for 5% SC NEs with 40% oil, the nanodroplets and associated repulsive barrier randomly jammed, leading to the formation of a strong elastic gel. For WPI NEs, maximum φeff was 0.57, leading to a lack of jamming and viscous fluid-like behaviour. Re-plotting G' with φeff for SC NEs with different protein concentration showed a linear trend followed by a rapid increase in G' at a critical φeff, confirming the transition from weak glassy region to strong randomly jammed structure. SC-stabilized repulsively jammed NE-gels could be used as a novel soft material where a lower oil volume fraction and long-term stability is required.
Collapse
Affiliation(s)
- Aakash Patel
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | | | | |
Collapse
|
39
|
Yoon J, Scheffold F, Ahn KH. Colloidal dynamics and elasticity of dense wax particle suspensions over a wide range of volume fractions when tuning the softness by temperature. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
|
41
|
Hao B, Yu W. A New Solid-like State for Liquid/Liquid/Particle Mixtures with Bicontinuous Morphology of Concentrated Emulsion and Concentrated Suspension. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9529-9537. [PMID: 31251879 DOI: 10.1021/acs.langmuir.9b01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Research in exploring the microstructures of the ternary liquid/liquid/particle mixture is still a challenging task due to the complex interface properties and compositions of each phase. In this work, we report a new kind of solid-like state for ternary mixtures after the addition of a surfactant, which has the bicontinuous morphology of two phases, that is, the concentrated emulsion and the concentrated noncolloidal suspension. The bicontinuous morphology was justified by optical microscopy and the unique two-step yielding behavior under large oscillatory shear flow, which has the yielding character of a noncolloidal suspension at smaller strain and that of a concentrated emulsion at larger strain. A phase diagram is constructed from the rheological measurements and morphological observations. The boundaries of the new solid-like state can be well predicted from three basic requirements on the glass forming or jamming conditions in the aqueous noncolloidal suspension phase, the aqueous emulsion phase, and the whole ternary mixture.
Collapse
Affiliation(s)
- Bonan Hao
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| |
Collapse
|
42
|
Hashemnejad SM, Badruddoza AZM, Zarket B, Ricardo Castaneda C, Doyle PS. Thermoresponsive nanoemulsion-based gel synthesized through a low-energy process. Nat Commun 2019; 10:2749. [PMID: 31227703 PMCID: PMC6588569 DOI: 10.1038/s41467-019-10749-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/28/2019] [Indexed: 01/09/2023] Open
Abstract
Thermoresponsive nanoemulsions find utility in applications ranging from food to pharmaceuticals to consumer products. Prior systems have found limited translation to applications due to cytotoxicity of the compositions and/or difficulties in scaling-up the process. Here, we report a route to thermally gel an oil-in-water nanoemulsion using a small amount of FDA-approved amphiphilic triblock Pluronic copolymers which act as gelling agents. At ambient temperature the suspension displays liquid-like behavior, and quickly becomes an elastic gel at elevated temperatures. We propose a gelation mechanism triggered by synergistic action of thermally-induced adsorption of Pluronic copolymers onto the droplet interface and an increased micelle concentration in the aqueous solution. We demonstrate that the system's properties can be tuned via many factors and report their rheological properties. The nanoemulsions are prepared using a low-energy process which offers an efficient route to scale-up. The nanoemulsion formulations are well-suited for use in cosmetics and pharmaceutical applications.
Collapse
Affiliation(s)
- Seyed Meysam Hashemnejad
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Abu Zayed Md Badruddoza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Brady Zarket
- L'Oréal Research and Innovation, Clark, NJ, 07066, USA
| | - Carlos Ricardo Castaneda
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| |
Collapse
|
43
|
Role of particles in the rheology of solid-stabilized high internal phase emulsions. J Colloid Interface Sci 2019; 540:197-206. [DOI: 10.1016/j.jcis.2018.12.098] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022]
|
44
|
Azizian P, Azarmanesh M, Dejam M, Mohammadi M, Shamsi M, Sanati-Nezhad A, Mohamad AA. Electrohydrodynamic formation of single and double emulsions for low interfacial tension multiphase systems within microfluidics. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.11.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Wei Y, Sun C, Dai L, Mao L, Yuan F, Gao Y. Novel Bilayer Emulsions Costabilized by Zein Colloidal Particles and Propylene Glycol Alginate. 2. Influence of Environmental Stresses on Stability and Rheological Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1209-1221. [PMID: 30571105 DOI: 10.1021/acs.jafc.8b04994] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Novel bilayer emulsions co-stabilized by zein colloidal particles (ZCPs) and propylene glycol alginate (PGA) were designed to overcome some limitations of conventional emulsions or Pickering emulsions. The bilayer emulsions of various concentrations of PGA (0.01-1.50%, w/v) and different incorporation sequences of ZCPs and PGA (ZCPs/PGA and PGA/ZCPs) were fabricated using the layer by layer (LBL) electrostatic deposition technique. Influence of environmental stresses (pH 2.5-8.5; temperature 60-80 °C ; ionic strength 0-100 mM NaCl) was focused on the stability and rheological properties of the novel bilayer emulsions. In comparison to the Pickering emulsion stabilized by ZCPs alone, bilayer emulsions exhibited improved stability and unique rheological characteristics under environmental stresses. The microstructure of well-defined spheres existing a branchlike network was observed in bilayer emulsions by TEM. A comprehensive evaluation was made of the physical characteristics and stimuli-responsive behavior of bilayer emulsions. The result provided meaningful information for understanding the changing mechanism of rheology of bilayer emulsions under environmental stresses.
Collapse
Affiliation(s)
- Yang Wei
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Box 112, No. 17 Qinghua East Road , Beijing 100083 , People's Republic of China
| | - Cuixia Sun
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Box 112, No. 17 Qinghua East Road , Beijing 100083 , People's Republic of China
| | - Lei Dai
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Box 112, No. 17 Qinghua East Road , Beijing 100083 , People's Republic of China
| | - Like Mao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Box 112, No. 17 Qinghua East Road , Beijing 100083 , People's Republic of China
| | - Fang Yuan
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Box 112, No. 17 Qinghua East Road , Beijing 100083 , People's Republic of China
| | - Yanxiang Gao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Box 112, No. 17 Qinghua East Road , Beijing 100083 , People's Republic of China
| |
Collapse
|
46
|
Mohamed LA, Dyab AKF, Taha F. Non-aqueous castor oil-in-glycerin-in-castor oil double (o/o/o) Pickering emulsions: physico-chemical characterization and in vitro release study. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1554491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lamiaa A. Mohamed
- Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Amro K. F. Dyab
- Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Fouad Taha
- Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| |
Collapse
|
47
|
Pandey A, Derakhshandeh M, Kedzior SA, Pilapil B, Shomrat N, Segal-Peretz T, Bryant SL, Trifkovic M. Role of interparticle interactions on microstructural and rheological properties of cellulose nanocrystal stabilized emulsions. J Colloid Interface Sci 2018; 532:808-818. [DOI: 10.1016/j.jcis.2018.08.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 11/28/2022]
|
48
|
Pradilla D, Barrera A, Sætran MG, Sørland G, Alvarez O. Mechanisms of Physical Stabilization of Concentrated Water-In-Oil Emulsions Probed by Pulse Field Gradient Nuclear Magnetic Resonance and Rheology through a Multiscale Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9489-9499. [PMID: 30016868 DOI: 10.1021/acs.langmuir.8b01393] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The long-term physical stability of surfactant-stabilized (Span 80 and Tween 20) concentrated water-in-mineral oil (W/O) emulsions in the presence of an electrolyte (NaCl) was studied. Pulse field gradient NMR and rheology (bulk and interfacial) were used to probe the response at the macroscopic, microscopic, and molecular levels, rendering a multiscale approach. The results show that: (1) Emulsions prepared with NaCl exhibit higher values of the elastic shear modulus ( Gwith NaCl' > Gwithout NaCl') even after ∼20 days. (2) The stabilization effect of salt against the coarsening of droplets is not due to the differences in droplet size (and thus G') or the energy incorporated through emulsification. (3) NaCl relaxes the liquid-liquid interface via a salting-in effect, which results in a lower interfacial shear elasticity ( Gwith NaCls' < Gwithout NaCls') and a higher resistance to coarsening events because of the changes in the adsorption density of the layer.
Collapse
Affiliation(s)
- Diego Pradilla
- Grupo de Diseño de Producto y de Proceso (GDPP), Departamento de Ingeniería Química , Universidad de los Andes , Carrera 1 este No. 18A-12, Edificio Mario Laserna, Piso 7 , Bogotá 110111 , Colombia
| | - Ana Barrera
- Grupo de Diseño de Producto y de Proceso (GDPP), Departamento de Ingeniería Química , Universidad de los Andes , Carrera 1 este No. 18A-12, Edificio Mario Laserna, Piso 7 , Bogotá 110111 , Colombia
| | - May Grete Sætran
- Ugelstad Laboratory, Department of Chemical Engineering , The Norwegian University of Science and Technology (NTNU) , Trondheim 7491 , Norway
| | - Geir Sørland
- Ugelstad Laboratory, Department of Chemical Engineering , The Norwegian University of Science and Technology (NTNU) , Trondheim 7491 , Norway
| | - Oscar Alvarez
- Grupo de Diseño de Producto y de Proceso (GDPP), Departamento de Ingeniería Química , Universidad de los Andes , Carrera 1 este No. 18A-12, Edificio Mario Laserna, Piso 7 , Bogotá 110111 , Colombia
| |
Collapse
|
49
|
Dagois-Bohy S, Somfai E, Tighe BP, van Hecke M. Softening and yielding of soft glassy materials. SOFT MATTER 2017; 13:9036-9045. [PMID: 29177346 DOI: 10.1039/c7sm01846k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Solids deform and fluids flow, but soft glassy materials, such as emulsions, foams, suspensions, and pastes, exhibit an intricate mix of solid- and liquid-like behavior. While much progress has been made to understand their elastic (small strain) and flow (infinite strain) properties, such understanding is lacking for the softening and yielding phenomena that connect these asymptotic regimes. Here we present a comprehensive framework for softening and yielding of soft glassy materials, based on extensive numerical simulations of oscillatory rheological tests, and show that two distinct scenarios unfold depending on the material's packing density. For dense systems, there is a single, pressure-independent strain where the elastic modulus drops and the particle motion becomes diffusive. In contrast, for weakly jammed systems, a two-step process arises: at an intermediate softening strain, the elastic and loss moduli both drop down and then reach a new plateau value, whereas the particle motion becomes diffusive at the distinctly larger yield strain. We show that softening is associated with an extensive number of microscopic contact changes leading to a non-analytic rheological signature. Moreover, the scaling of the softening strain with pressure suggest the existence of a novel pressure scale above which softening and yielding coincide, and we verify the existence of this crossover scale numerically. Our findings thus evidence the existence of two distinct classes of soft glassy materials - jamming dominated and dense - and show how these can be distinguished by their rheological fingerprint.
Collapse
Affiliation(s)
- Simon Dagois-Bohy
- Huygens-Kamerlingh Onnes Lab, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
50
|
Letteri RA, Santa Chalarca CF, Bai Y, Hayward RC, Emrick T. Forming Sticky Droplets from Slippery Polymer Zwitterions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702921. [PMID: 28833762 DOI: 10.1002/adma.201702921] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 06/07/2023]
Abstract
Polymer zwitterions are generally regarded as hydrophilic and repellant or "slippery" materials. Here, a case is described in which the polymer zwitterion structure is tailored to decrease water solubility, stabilize emulsion droplets, and promote interdroplet adhesion. Harnessing the upper critical solution temperature of sulfonium- and ammonium-based polymer zwitterions in water, adhesive droplets are prepared by adding organic solvent to an aqueous polymer solution at elevated temperature, followed by agitation to induce emulsification. Droplet aggregation is observed as the mixture cools. Variation of salt concentration, temperature, polymer concentration, and polymer structure modulates these interdroplet interactions, resulting in distinct changes in emulsion stability and fluidity. Under attractive conditions, emulsions encapsulating 50-75% oil undergo gelation. By contrast, emulsions prepared under conditions where droplets are nonadhesive remain fluid and, for oil fractions exceeding 0.6, coalescence is observed. The uniquely reactive nature of the selected zwitterions allows their in situ modification and affords a route to chemically trigger deaggregation and droplet dispersion. Finally, experiments performed in a microfluidic device, in which droplets are formed under conditions that either promote or suppress adhesion, confirm the salt-responsive character of these emulsions and the persistence of adhesive interdroplet interactions under flow.
Collapse
Affiliation(s)
- Rachel A Letteri
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA
| | - Cristiam F Santa Chalarca
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA
| | - Ying Bai
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA
| | - Ryan C Hayward
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA
| | - Todd Emrick
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA
| |
Collapse
|