1
|
Sheng H, Ai C, Yang C, Zhu C, Meng Z, Wu F, Wang X, Dou D, Morris PF, Zhang X. A conserved oomycete effector RxLR23 triggers plant defense responses by targeting ERD15La to release NbNAC68. Nat Commun 2024; 15:6336. [PMID: 39068146 PMCID: PMC11283518 DOI: 10.1038/s41467-024-50782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Oomycete pathogens deliver many effectors to enhance virulence or suppress plant immunity. Plant immune networks are interconnected, in which a few effectors can trigger a strong defense response when recognized by immunity-related proteins. How effectors activate plant defense response remains poorly understood. Here we report Phytophthora capsici effector RxLR23KM can induce plant cell death and plant immunity. RxLR23KM specifically binds to ERD15La, a regulator of abscisic acid and salicylic acid pathway, and the binding intensity depends on the amino acid residues (K93 and M320). NbNAC68, a downstream protein of ERD15La, can stimulate plant immunity that is compromised after binding with ERD15La. Silencing of NbNAC68 substantially prevents the activation of plant defense response. RxLR23KM binds to ERD15La, releasing NbNAC68 to activate plant immunity. These findings highlight a strategy of plant defense response that ERD15La as a central regulator coordinates RxLR23KM to regulate NbNAC68-triggered plant immunity.
Collapse
Affiliation(s)
- Hui Sheng
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Congcong Ai
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Cancan Yang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Chunyuan Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhe Meng
- College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodan Wang
- College of Plant Protection, China Agricultural University, 100083, Beijing, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Paul F Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43043, USA
| | - Xiuguo Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
2
|
Li X, Tao N, Xu B, Xu J, Yang Z, Jiang C, Zhou Y, Deng M, Lv J, Zhao K. Establishment and application of a root wounding-immersion method for efficient virus-induced gene silencing in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1336726. [PMID: 38708388 PMCID: PMC11066161 DOI: 10.3389/fpls.2024.1336726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/15/2024] [Indexed: 05/07/2024]
Abstract
In the post-genomic era, virus-induced gene silencing (VIGS) has played an important role in research on reverse genetics in plants. Commonly used Agrobacterium-mediated VIGS inoculation methods include stem scratching, leaf infiltration, use of agrodrench, and air-brush spraying. In this study, we developed a root wounding-immersion method in which 1/3 of the plant root (length) was cut and immersed in a tobacco rattle virus (TRV)1:TRV2 mixed solution for 30 min. We optimized the procedure in Nicotiana benthamiana and successfully silenced N. benthamiana, tomato (Solanum lycopersicum), pepper (Capsicum annuum L.), eggplant (Solanum melongena), and Arabidopsis thaliana phytoene desaturase (PDS), and we observed the movement of green fluorescent protein (GFP) from the roots to the stem and leaves. The silencing rate of PDS in N. benthamiana and tomato was 95-100%. In addition, we successfully silenced two disease-resistance genes, SITL5 and SITL6, to decrease disease resistance in tomatoes (CLN2037E). The root wounding-immersion method can be used to inoculate large batches of plants in a short time and with high efficiency, and fresh bacterial infusions can be reused several times. The most important aspect of the root wounding-immersion method is its application to plant species susceptible to root inoculation, as well as its ability to inoculate seedlings from early growth stages. This method offers a means to conduct large-scale functional genome screening in plants.
Collapse
Affiliation(s)
- Xinyun Li
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Na Tao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Bin Xu
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Junqiang Xu
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhengan Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Caiqian Jiang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ying Zhou
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Minghua Deng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Junheng Lv
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Kai Zhao
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
3
|
van Griethuysen PA, Redeker KR, MacFarlane SA, Neilson R, Hartley SE. Virus-induced changes in root volatiles attract soil nematode vectors to infected plants. THE NEW PHYTOLOGIST 2024; 241:2275-2286. [PMID: 38327027 DOI: 10.1111/nph.19518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/28/2023] [Indexed: 02/09/2024]
Abstract
Plant-derived volatiles mediate interactions among plants, pathogenic viruses, and viral vectors. These volatile-dependent mechanisms have not been previously demonstrated belowground, despite their likely significant role in soil ecology and agricultural pest impacts. We investigated how the plant virus, tobacco rattle virus (TRV), attracts soil nematode vectors to infected plants. We infected Nicotiana benthamiana with TRV and compared root growth relative to that of uninfected plants. We tested whether TRV-infected N. benthamiana was more attractive to nematodes 7 d post infection and identified a compound critical to attraction. We also infected N. benthamiana with mutated TRV strains to identify virus genes involved in vector nematode attraction. Virus titre and associated impacts on root morphology were greatest 7 d post infection. Tobacco rattle virus infection enhanced 2-ethyl-1-hexanol production. Nematode chemotaxis and 2-ethyl-1-hexanol production correlated strongly with viral load. Uninfected plants were more attractive to nematodes after the addition of 2-ethyl-1-hexanol than were untreated plants. Mutation of TRV RNA2-encoded genes reduced the production of 2-ethyl-1-hexanol and nematode attraction. For the first time, this demonstrates that virus-driven alterations in root volatile emissions lead to increased chemotaxis of the virus's nematode vector, a finding with implications for sustainable management of both nematodes and viral pathogens in agricultural systems.
Collapse
Affiliation(s)
| | - Kelly R Redeker
- Department of Biology, University of York, Heslington, York, YO1 5DD, UK
| | - Stuart A MacFarlane
- Cell and Molecular Sciences Department, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Roy Neilson
- Ecological Sciences Department, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Sue E Hartley
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
4
|
Devran Z, Özalp T, Studholme DJ, Tör M. Mapping of the gene in tomato conferring resistance to root-knot nematodes at high soil temperature. FRONTIERS IN PLANT SCIENCE 2023; 14:1267399. [PMID: 37900746 PMCID: PMC10602802 DOI: 10.3389/fpls.2023.1267399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023]
Abstract
Root-knot nematodes (RKNs, Meloidogyne spp.) can cause severe yield losses in tomatoes. The Mi-1.2 gene in tomato confers resistance to the Meloidogyne species M. incognita, M. arenaria and M. javanica, which are prevalent in tomato growing areas. However, this resistance breaks down at high soil temperatures (>28°C). Therefore, it is imperative that new resistance sources are identified and incorporated into commercial breeding programmes. We identified a tomato line, MT12, that does not have Mi-1.2 but provides resistance to M. incognita at 32°C soil temperature. An F2 mapping population was generated by crossing the resistant line with a susceptible line, MT17; the segregation ratio showed that the resistance is conferred by a single dominant gene, designated RRKN1 (Resistance to Root-Knot Nematode 1). The RRKN1 gene was mapped using 111 Kompetitive Allele Specific PCR (KASP) markers and characterized. Linkage analysis showed that RRKN1 is located on chromosome 6 and flanking markers placed the locus within a 270 kb interval. These newly developed markers can help pyramiding R-genes and generating new tomato varieties resistant to RKNs at high soil temperatures.
Collapse
Affiliation(s)
- Zübeyir Devran
- Department of Plant Protection, Faculty of Agriculture Akdeniz University, Antalya, Türkiye
| | - Tevfik Özalp
- Department of Entomology, Directorate of Plant Protection Research Institute, Bornova, İzmir, Türkiye
| | | | - Mahmut Tör
- Department of Biological Sciences, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
5
|
Wang Y, Durairaj J, Suárez Duran HG, van Velzen R, Flokova K, Liao C, Chojnacka A, MacFarlane S, Schranz ME, Medema MH, van Dijk ADJ, Dong L, Bouwmeester HJ. The tomato cytochrome P450 CYP712G1 catalyses the double oxidation of orobanchol en route to the rhizosphere signalling strigolactone, solanacol. THE NEW PHYTOLOGIST 2022; 235:1884-1899. [PMID: 35612785 PMCID: PMC9542622 DOI: 10.1111/nph.18272] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Strigolactones (SLs) are rhizosphere signalling molecules and phytohormones. The biosynthetic pathway of SLs in tomato has been partially elucidated, but the structural diversity in tomato SLs predicts that additional biosynthetic steps are required. Here, root RNA-seq data and co-expression analysis were used for SL biosynthetic gene discovery. This strategy resulted in a candidate gene list containing several cytochrome P450s. Heterologous expression in Nicotiana benthamiana and yeast showed that one of these, CYP712G1, can catalyse the double oxidation of orobanchol, resulting in the formation of three didehydro-orobanchol (DDH) isomers. Virus-induced gene silencing and heterologous expression in yeast showed that one of these DDH isomers is converted to solanacol, one of the most abundant SLs in tomato root exudate. Protein modelling and substrate docking analysis suggest that hydroxy-orbanchol is the likely intermediate in the conversion from orobanchol to the DDH isomers. Phylogenetic analysis demonstrated the occurrence of CYP712G1 homologues in the Eudicots only, which fits with the reports on DDH isomers in that clade. Protein modelling and orobanchol docking of the putative tobacco CYP712G1 homologue suggest that it can convert orobanchol to similar DDH isomers as tomato.
Collapse
Affiliation(s)
- Yanting Wang
- Plant Hormone Biology Group, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamthe Netherlands
| | - Janani Durairaj
- Bioinformatics GroupWageningen University6708PBWageningenthe Netherlands
| | | | - Robin van Velzen
- Biosystematics GroupWageningen University6708PBWageningenthe Netherlands
| | - Kristyna Flokova
- Plant Hormone Biology Group, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamthe Netherlands
| | - Che‐Yang Liao
- Plant Hormone Biology Group, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamthe Netherlands
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht University3584 CHUtrechtthe Netherlands
| | - Aleksandra Chojnacka
- Plant Hormone Biology Group, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamthe Netherlands
| | - Stuart MacFarlane
- Cell and Molecular Sciencesthe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - M. Eric Schranz
- Biosystematics GroupWageningen University6708PBWageningenthe Netherlands
| | - Marnix H. Medema
- Bioinformatics GroupWageningen University6708PBWageningenthe Netherlands
| | | | - Lemeng Dong
- Plant Hormone Biology Group, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamthe Netherlands
| | - Harro J. Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamthe Netherlands
| |
Collapse
|
6
|
Akbar S, Wei Y, Zhang MQ. RNA Interference: Promising Approach to Combat Plant Viruses. Int J Mol Sci 2022; 23:ijms23105312. [PMID: 35628126 PMCID: PMC9142109 DOI: 10.3390/ijms23105312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Plant viruses are devastating plant pathogens that severely affect crop yield and quality. Plants have developed multiple lines of defense systems to combat viral infection. Gene silencing/RNA interference is the key defense system in plants that inhibits the virulence and multiplication of pathogens. The general mechanism of RNAi involves (i) the transcription and cleavage of dsRNA into small RNA molecules, such as microRNA (miRNA), or small interfering RNA (siRNA), (ii) the loading of siRNA/miRNA into an RNA Induced Silencing Complex (RISC), (iii) complementary base pairing between siRNA/miRNA with a targeted gene, and (iv) the cleavage or repression of a target gene with an Argonaute (AGO) protein. This natural RNAi pathway could introduce transgenes targeting various viral genes to induce gene silencing. Different RNAi pathways are reported for the artificial silencing of viral genes. These include Host-Induced Gene Silencing (HIGS), Virus-Induced Gene Silencing (VIGS), and Spray-Induced Gene Silencing (SIGS). There are significant limitations in HIGS and VIGS technology, such as lengthy and time-consuming processes, off-target effects, and public concerns regarding genetically modified (GM) transgenic plants. Here, we provide in-depth knowledge regarding SIGS, which efficiently provides RNAi resistance development against targeted genes without the need for GM transgenic plants. We give an overview of the defense system of plants against viral infection, including a detailed mechanism of RNAi, small RNA molecules and their types, and various kinds of RNAi pathways. This review will describe how RNA interference provides the antiviral defense, recent improvements, and their limitations.
Collapse
Affiliation(s)
- Sehrish Akbar
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (Y.W.)
| | - Yao Wei
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (Y.W.)
| | - Mu-Qing Zhang
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (Y.W.)
- IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, USA
- Correspondence: or
| |
Collapse
|
7
|
Panwar V, Kanyuka K. Virus-Induced Gene Silencing in Wheat and Related Monocot Species. Methods Mol Biol 2022; 2408:95-107. [PMID: 35325418 DOI: 10.1007/978-1-0716-1875-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Advances made in genome sequencing projects and structural genomics are generating large repertoire of candidate genes in plants associated with specific agronomic traits. Rapid and high-throughput functional genomics approaches are therefore needed to validate the biological function of these genes especially for agronomically important crops beyond the few model plant species. This can be achieved by utilizing available gene knockout or transgenic methodologies, but these can take considerable time and effort particularly in crops with large and complex genomes such as wheat. Therefore, any tool that expedites the validation of gene function is of particular benefit especially in cereal crop plants that are genetically difficult to transform. One such reverse genetics tool is virus-induced gene silencing (VIGS) which relies on the plants' natural antiviral RNA silencing defence mechanism. VIGS is used to downregulate target gene expression in a transient manner which persists long enough to determine its effect on a specific trait. VIGS based on Barley stripe mosaic virus (BSMV) is rapid, powerful, efficient, and relatively inexpensive tool for the analysis of gene function in cereal species. Here we present detailed protocols for BSMV-mediated VIGS for robust gene silencing in bread wheat and related species.
Collapse
Affiliation(s)
- Vinay Panwar
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Kostya Kanyuka
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK.
| |
Collapse
|
8
|
Bradamante G, Mittelsten Scheid O, Incarbone M. Under siege: virus control in plant meristems and progeny. THE PLANT CELL 2021; 33:2523-2537. [PMID: 34015140 PMCID: PMC8408453 DOI: 10.1093/plcell/koab140] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/14/2021] [Indexed: 05/29/2023]
Abstract
In the arms race between plants and viruses, two frontiers have been utilized for decades to combat viral infections in agriculture. First, many pathogenic viruses are excluded from plant meristems, which allows the regeneration of virus-free plant material by tissue culture. Second, vertical transmission of viruses to the host progeny is often inefficient, thereby reducing the danger of viral transmission through seeds. Numerous reports point to the existence of tightly linked meristematic and transgenerational antiviral barriers that remain poorly understood. In this review, we summarize the current understanding of the molecular mechanisms that exclude viruses from plant stem cells and progeny. We also discuss the evidence connecting viral invasion of meristematic cells and the ability of plants to recover from acute infections. Research spanning decades performed on a variety of virus/host combinations has made clear that, beside morphological barriers, RNA interference (RNAi) plays a crucial role in preventing-or allowing-meristem invasion and vertical transmission. How a virus interacts with plant RNAi pathways in the meristem has profound effects on its symptomatology, persistence, replication rates, and, ultimately, entry into the host progeny.
Collapse
Affiliation(s)
- Gabriele Bradamante
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Marco Incarbone
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
9
|
Khakhar A, Voytas DF. RNA Viral Vectors for Accelerating Plant Synthetic Biology. FRONTIERS IN PLANT SCIENCE 2021; 12:668580. [PMID: 34249040 PMCID: PMC8261061 DOI: 10.3389/fpls.2021.668580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/19/2021] [Indexed: 05/03/2023]
Abstract
The tools of synthetic biology have enormous potential to help us uncover the fundamental mechanisms controlling development and metabolism in plants. However, their effective utilization typically requires transgenesis, which is plagued by long timescales and high costs. In this review we explore how transgenesis can be minimized by delivering foreign genetic material to plants with systemically mobile and persistent vectors based on RNA viruses. We examine the progress that has been made thus far and highlight the hurdles that need to be overcome and some potential strategies to do so. We conclude with a discussion of biocontainment mechanisms to ensure these vectors can be used safely as well as how these vectors might expand the accessibility of plant synthetic biology techniques. RNA vectors stand poised to revolutionize plant synthetic biology by making genetic manipulation of plants cheaper and easier to deploy, as well as by accelerating experimental timescales from years to weeks.
Collapse
Affiliation(s)
- Arjun Khakhar
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, United States
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, United States
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
10
|
Yang X, Ye J, Niu F, Feng Y, Song X. Identification and verification of genes related to pollen development and male sterility induced by high temperature in the thermo-sensitive genic male sterile wheat line. PLANTA 2021; 253:83. [PMID: 33770279 DOI: 10.1007/s00425-021-03601-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Bioinformatic analysis identified the function of genes regulating wheat fertility. Barley stripe mosaic virus-induced gene silencing verified that the genes TaMut11 and TaSF3 are involved in pollen development and related to fertility conversion. Environment-sensitive genic male sterility is of vital importance to hybrid vigor in crop production and breeding. Therefore, it is meaningful to study the function of the genes related to pollen development and male sterility, which is still not fully understand currently. In this study, YanZhan 4110S, a new thermo-sensitive genic male sterility wheat line, and its near-isogenic line YanZhan 4110 were analyzed. Through comparative transcriptome basic bioinformatics and weighted gene co-expression network to further identify some hub genes, the genes TaMut11 and TaSF3 associated with pollen development and male sterility induced by high-temperature were identified in YanZhan 4110S. Further verification through barley stripe mosaic virus-induced gene silencing elucidated that the silencing of TaMut11 and TaSF3 caused pollen abortion, finally resulting in the declination of fertility. These findings provided data on the abortive mechanism in environment-sensitive genic male sterility wheat.
Collapse
Affiliation(s)
- Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiali Ye
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yi Feng
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Jiang Z, Zhao Q, Bai R, Yu R, Diao P, Yan T, Duan H, Ma X, Zhou Z, Fan Y, Wuriyanghan H. Host sunflower-induced silencing of parasitism-related genes confers resistance to invading Orobanche cumana. PLANT PHYSIOLOGY 2021; 185:424-440. [PMID: 33721890 PMCID: PMC8133596 DOI: 10.1093/plphys/kiaa018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/08/2020] [Indexed: 05/04/2023]
Abstract
Orobanche cumana is a holoparasitic plant that attaches to host-plant roots and seriously reduces the yield of sunflower (Helianthus annuus L.). Effective control methods are lacking with only a few known sources of genetic resistance. In this study, a seed-soak agroinoculation (SSA) method was established, and recombinant tobacco rattle virus vectors were constructed to express RNA interference (RNAi) inducers to cause virus-induced gene silencing (VIGS) in sunflower. A host target gene HaTubulin was systemically silenced in both leaf and root tissues by the SSA-VIGS approach. Trans-species silencing of O. cumana genes were confirmed for 10 out of 11 target genes with silencing efficiency of 23.43%-92.67%. Knockdown of target OcQR1, OcCKX5, and OcWRI1 genes reduced the haustoria number, and silencing of OcEXPA6 caused further phenotypic abnormalities such as shorter tubercles and necrosis. Overexpression of OcEXPA6 caused retarded root growth in alfalfa (Medicago sativa). The results demonstrate that these genes play an important role in the processes of O. cumana parasitism. High-throughput small RNA (sRNA) sequencing and bioinformatics analyses unveiled the distinct features of target gene-derived siRNAs in O. cumana such as siRNA transitivity, strand polarity, hotspot region, and 21/22-nt siRNA predominance, the latter of which was confirmed by Northern blot experiments. The possible RNAi mechanism is also discussed by analyzing RNAi machinery genes in O. cumana. Taken together, we established an efficient host-induced gene silencing technology for both functional genetics studies and potential control of O. cumana. The ease and effectiveness of this strategy could potentially be useful for other species provided they are amenable to SSA.
Collapse
Affiliation(s)
- Zhengqiang Jiang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Qiqi Zhao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Runyao Bai
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Pengfei Diao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Ting Yan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Huimin Duan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Xuesong Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Yanyan Fan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
- Author for communication:
| |
Collapse
|
12
|
A Biolistic-Mediated Virus-Induced Gene Silencing in Apocynaceae to Map Biosynthetic Pathways of Alkaloids. Methods Mol Biol 2021; 2172:93-110. [PMID: 32557364 DOI: 10.1007/978-1-0716-0751-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Monoterpene indole alkaloids (MIAs) are specialized metabolites synthesized in many plants of the Apocynaceae family including Catharanthus roseus and Rauvolfia sp. MIAs are part of the chemical arsenal that plants evolved to face pet and herbivore attacks, and their high biological activities also confer pharmaceutical properties exploited in human pharmacopeia. Developing robust and straightforward tools to elucidate each step of MIA biosynthetic pathways thus constitutes a prerequisite to the understanding of Apocynaceae defense mechanisms and to the exploitation of MIA cytotoxicity through their production by metabolic engineering. While protocols of virus-induced gene silencing (VIGS) based on Agrobacterium-based transformation have emerged, the recalcitrance of Apocynaceae to this type of transformation prompted us to develop an universal procedure of VIGS vector inoculation. Such procedure relies on the delivery of the transforming plasmids through a particle bombardment performed using a biolistic device and offers the possibility to overcome host specificity to silence genes in any plant species. Using silencing of geissoschizine oxidase as an example, we described the main steps of this biolistic mediated VIGS in C. roseus and R. tetraphylla.
Collapse
|
13
|
Tan Y, Bukys A, Molnár A, Hudson A. Rapid, high efficiency virus-mediated mutant complementation and gene silencing in Antirrhinum. PLANT METHODS 2020; 16:145. [PMID: 33117430 PMCID: PMC7590601 DOI: 10.1186/s13007-020-00683-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/07/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Antirrhinum (snapdragon) species are models for genetic and evolutionary research but recalcitrant to genetic transformation, limiting use of transgenic methods for functional genomics. Transient gene expression from viral vectors and virus-induced gene silencing (VIGS) offer transformation-free alternatives. Here we investigate the utility of Tobacco rattle virus (TRV) for homologous gene expression in Antirrhinum and VIGS in Antirrhinum and its relative Misopates. RESULTS A. majus proved highly susceptible to systemic TRV infection. TRV carrying part of the Phytoene Desaturase (PDS) gene triggered efficient PDS silencing, visible as tissue bleaching, providing a reporter for the extent and location of VIGS. VIGS was initiated most frequently in young seedlings, persisted into inflorescences and flowers and was not significantly affected by the orientation of the homologous sequence within the TRV genome. Its utility was further demonstrated by reducing expression of two developmental regulators that act either in the protoderm of young leaf primordia or in developing flowers. The effects of co-silencing PDS and the trichome-suppressing Hairy (H) gene from the same TRV genome showed that tissue bleaching provides a useful marker for VIGS of a second target gene acting in a different cell layer. The ability of TRV-encoded H protein to complement the h mutant phenotype was also tested. TRV carrying the native H coding sequence with PDS to report infection failed to complement h mutations and triggered VIGS of H in wild-type plants. However, a sequence with 43% synonymous substitutions encoding H protein, was able to complement the h mutant phenotype when expressed without a PDS VIGS reporter. CONCLUSIONS We demonstrate an effective method for VIGS in the model genus Antirrhinum and its relative Misopates that works in vegetative and reproductive tissues. We also show that TRV can be used for complementation of a loss-of-function mutation in Antirrhinum. These methods make rapid tests of gene function possible in these species, which are difficult to transform genetically, and opens up the possibility of using additional cell biological and biochemical techniques that depend on transgene expression.
Collapse
Affiliation(s)
- Ying Tan
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF UK
- College of Life Sciences, Hunan Normal University, 136 Lushan Road, Changsha, 410006 China
| | - Alfredas Bukys
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Attila Molnár
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Andrew Hudson
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF UK
| |
Collapse
|
14
|
Abstract
Virus-induced gene silencing (VIGS) is a favorable method to study gene function by posttranscriptional gene silencing in plants. Here we describe a methodology of graft-accelerated VIGS in rose aimed at obtaining posttranscriptional gene silencing in the flower. The resulting phenotype can be observed within 5-6 weeks post infiltration. By using this method, we successfully silenced the expression of several genes involved in processes such as scent production, petal coloration, or flower architecture. We showed that graft-accelerated VIGS was faster, more efficient, and more convenient than conventional methods previously developed in rose such as agroinfiltration of young plantlets and in vitro cultured tissues or seeds.
Collapse
|
15
|
Virus-Induced Flowering by Apple Latent Spherical Virus Vector: Effective Use to Accelerate Breeding of Grapevine. Viruses 2020; 12:v12010070. [PMID: 31936111 PMCID: PMC7019355 DOI: 10.3390/v12010070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 01/23/2023] Open
Abstract
Apple latent spherical virus (ALSV) was successfully used in promoting flowering (virus-induced flowering, VIF) in apple and pear seedlings. In this paper, we report the use of ALSV vectors for VIF in seedlings and in vitro cultures of grapevine. After adjusting experimental conditions for biolistic inoculation of virus RNA, ALSV efficiently infected not only progeny seedlings of Vitis spp. ‘Koshu,’ but also in vitro cultures of V. vinifera ‘Neo Muscat’ without inducing viral symptoms. The grapevine seedlings and in vitro cultures inoculated with an ALSV vector expressing the ‘florigen’ gene (Arabidopsis Flowering locus T, AtFT) started to set floral buds 20–30 days after inoculation. This VIF technology was successfully used to promote flowering and produce grapes with viable seeds in in vitro cultures of F1 hybrids from crosses between V. ficifolia and V. vinifera and made it possible to analyze the quality of fruits within a year after germination. High-temperature (37 °C) treatment of ALSV-infected grapevine disabled virus movement to newly growing tissue to obtain ALSV-free shoots. Thus, the VIF using ALSV vectors can be used to shorten the generation time of grapevine seedlings and accelerate breeding of grapevines with desired traits.
Collapse
|
16
|
Zhu F, Che Y, Xu F, Zhou Y, Qian K, Liao Y, Ji Z. Simultaneous silencing of two target genes using virus-induced gene silencing technology in Nicotiana benthamiana. Z NATURFORSCH C 2019; 74:151-159. [PMID: 30667369 DOI: 10.1515/znc-2018-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 12/30/2018] [Indexed: 11/15/2022]
Abstract
Virus-induced gene silencing (VIGS) is an effective strategy for rapid gene function analysis. It is well established that the NAC transcription factor and salicylic acid (SA) signal pathway play essential roles in response to biotic stresses. However, simultaneous silencing of two target genes using VIGS in plants has been rarely reported. Therefore, in this report, we performed VIGS to silence simultaneously the SA-binding protein 2 (NbSABP2) and NbNAC1 in Nicotiana benthamiana to investigate the gene silencing efficiency of simultaneous silencing of two genes. We first cloned the full-length NbNAC1 gene, and the characterization of NbNAC1 was also analysed. Overlap extension polymerase chain reaction (PCR) analysis showed that the combination of NbSABP2 and NbNAC1 was successfully amplified. Bacteria liquid PCR confirmed that the combination of NbSABP2 and NbNAC1 was successfully inserted into the tobacco rattle virus vector. The results showed that the leaves from the NbSABP2 and NbNAC1 gene-silenced plants collapsed slightly, with browning at the base of petiole or veina. Quantitative real-time PCR results showed that the expression of NbSABP2 and NbNAC1 were significantly reduced in 12 days post silenced plants after tobacco rattle virus infiltration compared with the control plants. Overall, our results suggest that VIGS can be used to silence simultaneously two target genes.
Collapse
Affiliation(s)
- Feng Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yanping Che
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fei Xu
- Applied Biotechnology Center, Wuhan Institute of Bioengineering, Wuhan 430415, China
| | - Yangkai Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yonghui Liao
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhaolin Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
17
|
Bortolamiol-Bécet D, Monsion B, Chapuis S, Hleibieh K, Scheidecker D, Alioua A, Bogaert F, Revers F, Brault V, Ziegler-Graff V. Phloem-Triggered Virus-Induced Gene Silencing Using a Recombinant Polerovirus. Front Microbiol 2018; 9:2449. [PMID: 30405546 PMCID: PMC6206295 DOI: 10.3389/fmicb.2018.02449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 01/22/2023] Open
Abstract
The phloem-limited poleroviruses infect Arabidopsis thaliana without causing noticeable disease symptoms. In order to facilitate visual infection identification, we developed virus-induced gene silencing (VIGS) vectors derived from Turnip yellows virus (TuYV). Short sequences from the host gene AtCHLI1 required for chlorophyll biosynthesis [42 nucleotides in sense or antisense orientation or as an inverted-repeat (IR), or an 81 nucleotide sense fragment] were inserted into the 3' non-coding region of the TuYV genome to screen for the most efficient and robust silencing vector. All recombinant viruses produced a clear vein chlorosis phenotype on infected Arabidopsis plants due to the expression inhibition of the AtCHLI1 gene. The introduction of a sense-oriented sequence into TuYV genome resulted in a virus exhibiting a more sustainable chlorosis than the virus containing an IR of the same length. This observation was correlated with a higher stability of the sense sequence insertion in the viral genome. In order to evaluate the impact of the TuYV silencing suppressor P0 in the VIGS mechanism a P0 knock-out mutation was introduced into the recombinant TuYV viruses. They induced a similar but milder vein clearing phenotype due to lower viral accumulation. This indicates that P0 does not hinder the performances of the TuYV silencing effect and confirms that in the viral infection context, P0 has no major impact on the production, propagation and action of the short distance silencing signal in phloem cells. Finally, we showed that TuYV can be used to strongly silence the phloem specific AtRTM1 gene. The TuYV-derived VIGS vectors therefore represent powerful tools to easily detect and monitor TuYV in infected plants and conduct functional analysis of phloem-restricted genes. Moreover this example indicates the potential of poleroviruses for use in functional genomic studies of agronomic plants.
Collapse
Affiliation(s)
- Diane Bortolamiol-Bécet
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France.,Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire CNRS-UPR 9002, Université de Strasbourg, Strasbourg, France
| | - Baptiste Monsion
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France.,UMR1161 Virologie, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Sophie Chapuis
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Kamal Hleibieh
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Danièle Scheidecker
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Abdelmalek Alioua
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Florent Bogaert
- SVQV, INRA UMR 1131, Université de Strasbourg, Colmar, France
| | - Frédéric Revers
- BFP, INRA UMR 1332, Univ. Bordeaux, Villenave d'Ornon, France.,BIOGECO, INRA UMR 1202, Univ. Bordeaux, Pessac, France
| | | | - Véronique Ziegler-Graff
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
18
|
Zhang J, Wang F, Zhang C, Zhang J, Chen Y, Liu G, Zhao Y, Hao F, Zhang J. A novel VIGS method by agroinoculation of cotton seeds and application for elucidating functions of GhBI-1 in salt-stress response. PLANT CELL REPORTS 2018; 37:1091-1100. [PMID: 29868984 DOI: 10.1007/s00299-018-2294-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/10/2018] [Indexed: 05/21/2023]
Abstract
A VIGS method by agroinoculation of cotton seeds was developed for gene silencing in young seedlings and roots, and applied in functional analysis of GhBI-1 in response to salt stress. Virus-induced gene silencing (VIGS) has been widely used to investigate the functions of genes expressed in mature leaves, but not yet in young seedlings or roots of cotton (Gossypium hirsutum L.). Here, we developed a simple and effective VIGS method for silencing genes in young cotton seedlings and roots by soaking naked seeds in Agrobacterium cultures carrying tobacco rattle virus (TRV)-VIGS vectors. When the naked seeds were soaked in Agrobacterium cultures with an OD600 of 1.5 for 90 min, it was optimal for silencing genes effectively in young seedlings as clear photo-bleaching phenotype in the newly emerging leaves of pTRV:GhCLA1 seedlings were observed at 12-14 days post inoculation. Silencing of GhPGF (cotton pigment gland formation) by this method resulted in a 90% decrease in transcript abundances of the gene in roots at the early development stage. We further used the tool to investigate function of GhBI-1 (cotton Bax inhibitor-1) gene in response to salt stress and demonstrated that GhBI-1 might play a protective role under salt stress by suppressing stress-induced cell death in cotton. Our results showed that the newly established VIGS method is a powerful tool for elucidating functions of genes in cotton, especially the genes expressed in young seedlings and roots.
Collapse
Affiliation(s)
- Jingxia Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Furong Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chuanyun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Junhao Zhang
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Guodong Liu
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yanxiu Zhao
- College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Fushun Hao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Science, Henan University, Kaifeng, 475004, China.
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- College of Life Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
19
|
Sarpagan bridge enzyme has substrate-controlled cyclization and aromatization modes. Nat Chem Biol 2018; 14:760-763. [PMID: 29942076 PMCID: PMC6054303 DOI: 10.1038/s41589-018-0078-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/11/2018] [Indexed: 12/05/2022]
Abstract
Cyclization reactions that create complex polycyclic scaffolds are hallmarks of alkaloid biosynthetic pathways. We present the discovery of three homologous cytochromes P450 from three monoterpene indole alkaloid-producing plants (Rauwolfia serpentina, Gelsemium sempervirens and Catharanthus roseus) that provide entry into two distinct alkaloid classes, the sarpagans and the β-carbolines. Our results highlight how a common enzymatic mechanism, guided by related but structurally distinct substrates, leads to either cyclization or aromatization.
Collapse
|
20
|
Yan H, Shi S, Ma N, Cao X, Zhang H, Qiu X, Wang Q, Jian H, Zhou N, Zhang Z, Tang K. Graft-accelerated virus-induced gene silencing facilitates functional genomics in rose flowers. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:34-44. [PMID: 28895654 DOI: 10.1111/jipb.12599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/10/2017] [Indexed: 05/02/2023]
Abstract
Rose has emerged as a model ornamental plant for studies of flower development, senescence, and morphology, as well as the metabolism of floral fragrances and colors. Virus-induced gene silencing (VIGS) has long been used in functional genomics studies of rose by vacuum infiltration of cuttings or seedlings with an Agrobacterium suspension carrying TRV-derived vectors. However, VIGS in rose flowers remains a challenge because of its low efficiency and long time to establish silencing. Here we present a novel and rapid VIGS method that can be used to analyze gene function in rose, called 'graft-accelerated VIGS', where axillary sprouts are cut from the rose plant and vacuum infiltrated with Agrobacterium. The inoculated scions are then grafted back onto the plants to flower and silencing phenotypes can be observed within 5 weeks, post-infiltration. Using this new method, we successfully silenced expression of the RhDFR1, RhAG, and RhNUDX1 in rose flowers, and affected their color, petal number, as well as fragrance, respectively. This grafting method will facilitate high-throughput functional analysis of genes in rose flowers. Importantly, it may also be applied to other woody species that are not currently amenable to VIGS by conventional leaf or plantlet/seedling infiltration methods.
Collapse
Affiliation(s)
- Huijun Yan
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, 650205 Kunming, China
| | - Shaochuan Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Xiaoqian Cao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Hao Zhang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, 650205 Kunming, China
| | - Xianqin Qiu
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, 650205 Kunming, China
| | - Qigang Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, 650205 Kunming, China
| | - Hongying Jian
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, 650205 Kunming, China
| | - Ningning Zhou
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, 650205 Kunming, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Kaixue Tang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, 650205 Kunming, China
| |
Collapse
|
21
|
Lentz EM, Kuon JE, Alder A, Mangel N, Zainuddin IM, McCallum EJ, Anjanappa RB, Gruissem W, Vanderschuren H. Cassava geminivirus agroclones for virus-induced gene silencing in cassava leaves and roots. PLANT METHODS 2018; 14:73. [PMID: 30154909 PMCID: PMC6109987 DOI: 10.1186/s13007-018-0340-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/16/2018] [Indexed: 05/08/2023]
Abstract
AIM We report the construction of a Virus-Induced Gene Silencing (VIGS) vector and an agroinoculation protocol for gene silencing in cassava (Manihot esculenta Crantz) leaves and roots. The African cassava mosaic virus isolate from Nigeria (ACMV-[NOg]), which was initially cloned in a binary vector for agroinoculation assays, was modified for application as VIGS vector. The functionality of the VIGS vector was validated in Nicotiana benthamiana and subsequently applied in wild-type and transgenic cassava plants expressing the uidA gene under the control of the CaMV 35S promoter in order to facilitate the visualization of gene silencing in root tissues. VIGS vectors were targeted to the Mg2+-chelatase gene in wild type plants and both the coding and promoter sequences of the 35S::uidA transgene in transgenic plants to induce silencing. We established an efficient agro-inoculation method with the hyper-virulent Agrobacterium tumefaciens strain AGL1, which allows high virus infection rates. The method can be used as a low-cost and rapid high-throughput evaluation of gene function in cassava leaves, fibrous roots and storage roots. BACKGROUND VIGS is a powerful tool to trigger transient sequence-specific gene silencing in planta. Gene silencing in different organs of cassava plants, including leaves, fibrous and storage roots, is useful for the analysis of gene function. RESULTS We developed an African cassava mosaic virus-based VIGS vector as well as a rapid and efficient agro-inoculation protocol to inoculate cassava plants. The VIGS vector was validated by targeting endogenous genes from Nicotiana benthamiana and cassava as well as the uidA marker gene in transgenic cassava for visualization of gene silencing in cassava leaves and roots. CONCLUSIONS The African cassava mosaic virus-based VIGS vector allows efficient and cost-effective inoculation of cassava for high-throughput analysis of gene function in cassava leaves and roots.
Collapse
Affiliation(s)
- Ezequiel Matias Lentz
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Joel-Elias Kuon
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Adrian Alder
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Nathalie Mangel
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Ima M. Zainuddin
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Emily Jane McCallum
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Ravi Bodampalli Anjanappa
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Hervé Vanderschuren
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
- Plant Genetics Lab, TERRA Research and Teaching Centre, Gembloux Agro BioTech, University of Liège, Gembloux, Belgium
| |
Collapse
|
22
|
Cheng C, Gao J, Ma N. Investigation of Petal Senescence by TRV-Mediated Virus-Induced Gene Silencing in Rose. Methods Mol Biol 2018; 1744:49-63. [PMID: 29392655 DOI: 10.1007/978-1-4939-7672-0_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The classic reverse genetic screening, such as EMS-induced or T-DNA-mediated mutation, is a powerful tool to identify senescence-related genes in many model plants. For most non-model plants, however, this strategy is hard to achieve. Even for model plants, construction of a mutant library is usually labor and time-consuming. Virus-induced gene silencing (VIGS) provides an alternative to characterize gene function in a wide spectrum of plants through transient gene expression. To date, more than a dozen of VIGS vector systems have been developed from different RNA and DNA viruses, while Tobacco rattle virus (TRV) system might be one of the most used due to its wide host range and ease of use. Here, we describe a modified TRV vector, TRV-GFP, in which a green fluorescent protein (GFP) is fused to 3'-end of the coat protein (CP) gene in the TRV2 vector. Since the GFP-tagged CP protein could be traced under UV light in planta, identification of TRV-GFP-infected plants is easy. Application of this system in identifying genes regulating petal senescence in rose is described.
Collapse
Affiliation(s)
- Chenxia Cheng
- Department of Ornamental Horticulture, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing, China
| | - Junping Gao
- Department of Ornamental Horticulture, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing, China
| | - Nan Ma
- Department of Ornamental Horticulture, China Agricultural University, Beijing, China. .,Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing, China.
| |
Collapse
|
23
|
Gama F, Saavedra T, Dandlen S, de Varennes A, Correia PJ, Pestana M, Nolasco G. Silencing of the FRO1 gene and its effects on iron partition in Nicotiana benthamiana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:111-118. [PMID: 28285085 DOI: 10.1016/j.plaphy.2017.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 05/01/2023]
Abstract
To evaluate the dynamic role of the ferric-chelate reductase enzyme (FCR) and to identify possible pathways of regulation of its activity in different plant organs an investigation was conducted by virus-induced gene silencing (VIGS) using tobacco rattle virus (TRV) to silence the ferric reductase oxidase gene (FRO1) that encodes the FCR enzyme. Half of Nicotiana benthamiana plants received the VIGS vector and the rest remained as control. Four treatments were imposed: two levels of Fe in the nutrient solution (0 or 2.5 μM of Fe), each one with silenced or non-silenced (VIGS-0; VIGS-2.5) plants. Plants grown without iron (0; VIGS-0) developed typical symptoms of iron deficiency in the youngest leaves. To prove that FRO1 silencing had occurred, resupply of Fe (R) was done by adding 2.5 μM of Fe to the nutrient solution in a subset of chlorotic plants (0-R; VIGS-R). Twelve days after resupply, 0-R plants had recovered from Fe deficiency while plants containing the VIGS vector (VIGS-R) remained chlorotic and both FRO1 gene expression and FCR activity were considerably reduced, consequently preventing Fe uptake. With the VIGS technique we were able to silence the FRO1 gene in N. benthamiana and point out its importance in chlorophyll synthesis and Fe partition.
Collapse
Affiliation(s)
- Florinda Gama
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal.
| | - Teresa Saavedra
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Susana Dandlen
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Amarilis de Varennes
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Pedro J Correia
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Maribela Pestana
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Gustavo Nolasco
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
24
|
Ross-Elliott TJ, Jensen KH, Haaning KS, Wager BM, Knoblauch J, Howell AH, Mullendore DL, Monteith AG, Paultre D, Yan D, Otero S, Bourdon M, Sager R, Lee JY, Helariutta Y, Knoblauch M, Oparka KJ. Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. eLife 2017; 6. [PMID: 28230527 PMCID: PMC5365319 DOI: 10.7554/elife.24125] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/17/2017] [Indexed: 02/05/2023] Open
Abstract
In plants, a complex mixture of solutes and macromolecules is transported by the phloem. Here, we examined how solutes and macromolecules are separated when they exit the phloem during the unloading process. We used a combination of approaches (non-invasive imaging, 3D-electron microscopy, and mathematical modelling) to show that phloem unloading of solutes in Arabidopsis roots occurs through plasmodesmata by a combination of mass flow and diffusion (convective phloem unloading). During unloading, solutes and proteins are diverted into the phloem-pole pericycle, a tissue connected to the protophloem by a unique class of ‘funnel plasmodesmata’. While solutes are unloaded without restriction, large proteins are released through funnel plasmodesmata in discrete pulses, a phenomenon we refer to as ‘batch unloading’. Unlike solutes, these proteins remain restricted to the phloem-pole pericycle. Our data demonstrate a major role for the phloem-pole pericycle in regulating phloem unloading in roots. DOI:http://dx.doi.org/10.7554/eLife.24125.001 A mechanism called photosynthesis allows plants to use energy from sunlight to make sugars from carbon dioxide gas and water. These sugars can then be used as fuel, or as building blocks for wood and other plant structures. Every part of the plant requires sugars, but most photosynthesis happens in the leaves and stems, so the sugars need to be able to move around the plant to wherever they are needed. Phloem tubes form a network that transports sugar, proteins and other molecules around the plant within a fluid known as sap. Because this network is so extensive, it is very difficult to study, which has left researchers with major questions about how it works. For example, it is not clear how the sugar and other molecules leave the phloem when they reach their destination. Ross-Elliot et al. used a combination of microscopy and mathematical modeling to investigate how sugars and other molecules leave the phloem in the roots of a plant called Arabidopsis thaliana. The experiments show that these molecules move directly into cells within a neighboring tissue called the phloem-pole pericycle via pores known as funnel plasmodesmata. Ross-Elliot et al. incorporated the experimental data into a mathematical model of phloem unloading. This model suggests that sugars and other small molecules move freely through the funnel plasmodesmata, but large proteins pass through these pores in pulses. Future challenges include finding out exactly how plants control phloem unloading and to investigate whether it is possible to modify the delivery of specific molecules to particular parts of the plant. DOI:http://dx.doi.org/10.7554/eLife.24125.002
Collapse
Affiliation(s)
| | - Kaare H Jensen
- Department of Physics, Technical University of Denmark, Lyngby, Denmark
| | - Katrine S Haaning
- Department of Physics, Technical University of Denmark, Lyngby, Denmark
| | - Brittney M Wager
- School of Biological Sciences, Washington State University, Pullman, United States
| | - Jan Knoblauch
- School of Biological Sciences, Washington State University, Pullman, United States
| | - Alexander H Howell
- School of Biological Sciences, Washington State University, Pullman, United States
| | - Daniel L Mullendore
- School of Biological Sciences, Washington State University, Pullman, United States
| | - Alexander G Monteith
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, United Kingdom
| | - Danae Paultre
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Dawei Yan
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Sofia Otero
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Matthieu Bourdon
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Ross Sager
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, United States
| | - Jung-Youn Lee
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, United States
| | - Ykä Helariutta
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, United States
| | - Karl J Oparka
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Abstract
Virus-Induced Gene Silencing (VIGS) creates a natural antiviral defense in plants. However, it has been also a powerful tool for endogenous gene silencing in dicot and monocot plants by exploitation of recombinant viruses, harboring silencing inducing sequences. The Barley Stripe Mosaic Virus (BSMV) based VIGS system is an efficient and rapid RNAi approach that is routinely applied in functional genomics studies of cereals. We present here a protocol for BSMV VIGS application in barley based on mechanical inoculation of the plants with in vitro transcribed recombinant BSMV RNAs as the silencing triggers.
Collapse
|
26
|
Andika IB, Kondo H, Sun L. Interplays between Soil-Borne Plant Viruses and RNA Silencing-Mediated Antiviral Defense in Roots. Front Microbiol 2016; 7:1458. [PMID: 27695446 PMCID: PMC5023674 DOI: 10.3389/fmicb.2016.01458] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/31/2016] [Indexed: 12/18/2022] Open
Abstract
Although the majority of plant viruses are transmitted by arthropod vectors and invade the host plants through the aerial parts, there is a considerable number of plant viruses that infect roots via soil-inhabiting vectors such as plasmodiophorids, chytrids, and nematodes. These soil-borne viruses belong to diverse families, and many of them cause serious diseases in major crop plants. Thus, roots are important organs for the life cycle of many viruses. Compared to shoots, roots have a distinct metabolism and particular physiological characteristics due to the differences in development, cell composition, gene expression patterns, and surrounding environmental conditions. RNA silencing is an important innate defense mechanism to combat virus infection in plants, but the specific information on the activities and molecular mechanism of RNA silencing-mediated viral defense in root tissue is still limited. In this review, we summarize and discuss the current knowledge regarding RNA silencing aspects of the interactions between soil-borne viruses and host plants. Overall, research evidence suggests that soil-borne viruses have evolved to adapt to the distinct mechanism of antiviral RNA silencing in roots.
Collapse
Affiliation(s)
- Ida Bagus Andika
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama UniversityKurashiki, Japan
| | - Hideki Kondo
- Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama UniversityKurashiki, Japan
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| |
Collapse
|
27
|
Paultre DSG, Gustin MP, Molnar A, Oparka KJ. Lost in Transit: Long-Distance Trafficking and Phloem Unloading of Protein Signals in Arabidopsis Homografts. THE PLANT CELL 2016; 28:2016-2025. [PMID: 27600534 PMCID: PMC5059797 DOI: 10.1105/tpc.16.00249] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/16/2016] [Accepted: 09/01/2016] [Indexed: 05/18/2023]
Abstract
In addition to moving sugars and nutrients, the phloem transports many macromolecules. While grafting and aphid stylectomy experiments have identified many macromolecules that move in the phloem, the functional significance of phloem transport of these remains unclear. To gain insight into protein trafficking, we micrografted Arabidopsis thaliana scions expressing GFP-tagged chloroplast transit peptides under the 35S promoter onto nontransgenic rootstocks. We found that plastids in the root tip became fluorescent 10 d after grafting. We obtained identical results with the companion cell-specific promoter SUC2 and with signals that target proteins to peroxisomes, actin, and the nucleus. We were unable to detect the respective mRNAs in the rootstock, indicating extensive movement of proteins in the phloem. Outward movement from the root protophloem was restricted to the pericycle-endodermis boundary, identifying plasmodesmata at this interface as control points in the exchange of macromolecules between stele and cortex. Intriguingly, signals directing proteins to the endoplasmic reticulum and Golgi apparatus from membrane-bound ribosomes were not translocated to the root. It appears that many organelle-targeting sequences are insufficient to prevent the loss of their proteins into the translocation stream. Thus, nonspecific loss of proteins from companion cells to sieve elements may explain the plethora of macromolecules identified in phloem sap.
Collapse
Affiliation(s)
| | - Marie-Paule Gustin
- Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 69008 Lyon, France
| | - Attila Molnar
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom
| | - Karl J Oparka
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom
| |
Collapse
|
28
|
Chantreau M, Chabbert B, Billiard S, Hawkins S, Neutelings G. Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1312-24. [PMID: 25688574 DOI: 10.1111/pbi.12350] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 01/05/2015] [Accepted: 01/08/2015] [Indexed: 05/08/2023]
Abstract
Flax (Linum usitatissimum) bast fibres are located in the stem cortex where they play an important role in mechanical support. They contain high amounts of cellulose and so are used for linen textiles and in the composite industry. In this study, we screened the annotated flax genome and identified 14 distinct cellulose synthase (CESA) genes using orthologous sequences previously identified. Transcriptomics of 'primary cell wall' and 'secondary cell wall' flax CESA genes showed that some were preferentially expressed in different organs and stem tissues providing clues as to their biological role(s) in planta. The development for the first time in flax of a virus-induced gene silencing (VIGS) approach was used to functionally evaluate the biological role of different CESA genes in stem tissues. Quantification of transcript accumulation showed that in many cases, silencing not only affected targeted CESA clades, but also had an impact on other CESA genes. Whatever the targeted clade, inactivation by VIGS affected plant growth. In contrast, only clade 1- and clade 6-targeted plants showed modifications in outer-stem tissue organization and secondary cell wall formation. In these plants, bast fibre number and structure were severely impacted, suggesting that the targeted genes may play an important role in the establishment of the fibre cell wall. Our results provide new fundamental information about cellulose biosynthesis in flax that should facilitate future plant improvement/engineering.
Collapse
Affiliation(s)
- Maxime Chantreau
- UMR INRA 1281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Université Lille Nord de France Lille 1, Villeneuve d'Ascq, France
| | - Brigitte Chabbert
- INRA, UMR 614 Fractionnement des AgroRessources et Environnement, Reims, France
- UMR 614 Fractionnement des AgroRessources et Environnement, Université de Reims Champagne-Ardenne, Reims, France
| | - Sylvain Billiard
- UMR CNRS 8198 Laboratoire de Génétique & Evolution des Populations Végétales, Université Lille Nord de France Lille 1, Villeneuve d'Ascq, France
| | - Simon Hawkins
- UMR INRA 1281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Université Lille Nord de France Lille 1, Villeneuve d'Ascq, France
| | - Godfrey Neutelings
- UMR INRA 1281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Université Lille Nord de France Lille 1, Villeneuve d'Ascq, France
| |
Collapse
|
29
|
Strategies for altering plant traits using virus-induced gene silencing technologies. Methods Mol Biol 2015; 1287:25-41. [PMID: 25740354 DOI: 10.1007/978-1-4939-2453-0_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The rapid progress in genome sequencing and transcriptome analysis in model and crop plants has made possible the identification of a vast number of genes potentially associated with economically important complex traits. The ultimate goal is to assign functions to these genes by using forward and reverse genetic screens. Plant viruses have been developed for virus-induced gene silencing (VIGS) to generate rapid gene knockdown phenotypes in numerous plant species. To fulfill its potential for high-throughput phenomics, it is of prime importance to ensure that parameters conditioning the VIGS response, i.e., plant-virus interactions and associated loss-of-function screens, are "fit for purpose" and optimized to unequivocally conclude the role of a gene of interest in relation to a given trait. This chapter will review and discuss the different strategies used for the development of VIGS-based phenomics in model and crop species.
Collapse
|
30
|
Downie HF, Adu MO, Schmidt S, Otten W, Dupuy LX, White PJ, Valentine TA. Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. PLANT, CELL & ENVIRONMENT 2015; 38:1213-32. [PMID: 25211059 DOI: 10.1111/pce.12448] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/02/2014] [Accepted: 08/25/2014] [Indexed: 05/19/2023]
Abstract
The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions.
Collapse
Affiliation(s)
- H F Downie
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - M O Adu
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - S Schmidt
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
| | - W Otten
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
| | - L X Dupuy
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - P J White
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
- King Saud University, Riyadh, Saudi Arabia
| | - T A Valentine
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| |
Collapse
|
31
|
Rodrigues KB, Orílio AF, Blawid R, Melo FL, Nagata T. Subcellular localization of p29, a putative movement protein of pepper ringspot virus. Arch Virol 2015; 160:359-64. [PMID: 25267177 DOI: 10.1007/s00705-014-2237-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/18/2014] [Indexed: 01/09/2023]
Abstract
Pepper ringspot virus (PepRSV) is a member of the genus Tobravirus. It possesses a bipartite single-strand RNA genome in a positive-sense polarity. The p29 protein is encoded by RNA 1 and is presumed to be the movement protein (MP) of this virus. In this study, the intracellular distribution of the p29 protein was analyzed by confocal microscopy. Transient expression of the PepRSV p29 protein fused to green fluorescent protein was observed as punctate spots localized next to the cell wall. This protein partially co-localized with the eCFP-tagged tobacco mosaic virus 30K MP, which is known to associate with plasmodesmata. This result suggests that the p29 protein is most probably the movement protein for PepRSV.
Collapse
Affiliation(s)
- Kelly B Rodrigues
- Department of Cellular Biology, Post-graduation course of Molecular Biology, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | | | | | | | | |
Collapse
|
32
|
Development of new potato virus X-based vectors for gene over-expression and gene silencing assay. Virus Res 2014; 191:62-9. [DOI: 10.1016/j.virusres.2014.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 11/19/2022]
|
33
|
Ramegowda V, Mysore KS, Senthil-Kumar M. Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants. FRONTIERS IN PLANT SCIENCE 2014; 5:323. [PMID: 25071806 PMCID: PMC4085877 DOI: 10.3389/fpls.2014.00323] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/19/2014] [Indexed: 05/03/2023]
Abstract
Virus-induced gene silencing (VIGS) is an effective tool for gene function analysis in plants. Over the last decade, VIGS has been successfully used as both a forward and reverse genetics technique for gene function analysis in various model plants, as well as crop plants. With the increased identification of differentially expressed genes under various abiotic stresses through high-throughput transcript profiling, the application of VIGS is expected to be important in the future for functional characterization of a large number of genes. In the recent past, VIGS was proven to be an elegant tool for functional characterization of genes associated with abiotic stress responses. In this review, we provide an overview of how VIGS is used in different crop species to characterize genes associated with drought-, salt-, oxidative- and nutrient-deficiency-stresses. We describe the examples from studies where abiotic stress related genes are characterized using VIGS. In addition, we describe the major advantages of VIGS over other currently available functional genomics tools. We also summarize the recent improvements, limitations and future prospects of using VIGS as a tool for studying plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Venkategowda Ramegowda
- Department of Crop Physiology, University of Agricultural Sciences, GKVKBangalore, India
| | | | | |
Collapse
|
34
|
Liou MR, Huang YW, Hu CC, Lin NS, Hsu YH. A dual gene-silencing vector system for monocot and dicot plants. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:330-43. [PMID: 24283212 DOI: 10.1111/pbi.12140] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/18/2013] [Accepted: 10/14/2013] [Indexed: 05/16/2023]
Abstract
Plant virus-based gene-silencing vectors have been extensively and successfully used to elucidate functional genomics in plants. However, only limited virus-induced gene-silencing (VIGS) vectors can be used in both monocot and dicot plants. Here, we established a dual gene-silencing vector system based on Bamboo mosaic virus (BaMV) and its satellite RNA (satBaMV). Both BaMV and satBaMV vectors could effectively silence endogenous genes in Nicotiana benthamiana and Brachypodium distachyon. The satBaMV vector could also silence the green fluorescent protein (GFP) transgene in GFP transgenic N. benthamiana. GFP transgenic plants co-agro-inoculated with BaMV and satBaMV vectors carrying sulphur and GFP genes, respectively, could simultaneously silence both genes. Moreover, the silenced plants could still survive with the silencing of genes essential for plant development such as heat-shock protein 90 (Hsp90) and Hsp70. In addition, the satBaMV- but not BaMV-based vector could enhance gene-silencing efficiency in newly emerging leaves of N. benthamiana deficient in RNA-dependant RNA polymerase 6. The dual gene-silencing vector system of BaMV and satBaMV provides a novel tool for comparative functional studies in monocot and dicot plants.
Collapse
Affiliation(s)
- Ming-Ru Liou
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
35
|
King SR, McLellan H, Boevink PC, Armstrong MR, Bukharova T, Sukarta O, Win J, Kamoun S, Birch PR, Banfield MJ. Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKK ε to suppress plant immune signaling. THE PLANT CELL 2014; 26:1345-59. [PMID: 24632534 PMCID: PMC4001388 DOI: 10.1105/tpc.113.120055] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/24/2014] [Accepted: 02/19/2014] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase cascades are key players in plant immune signaling pathways, transducing the perception of invading pathogens into effective defense responses. Plant pathogenic oomycetes, such as the Irish potato famine pathogen Phytophthora infestans, deliver RXLR effector proteins to plant cells to modulate host immune signaling and promote colonization. Our understanding of the molecular mechanisms by which these effectors act in plant cells is limited. Here, we report that the P. infestans RXLR effector PexRD2 interacts with the kinase domain of MAPKKKε, a positive regulator of cell death associated with plant immunity. Expression of PexRD2 or silencing MAPKKKε in Nicotiana benthamiana enhances susceptibility to P. infestans. We show that PexRD2 perturbs signaling pathways triggered by or dependent on MAPKKKε. By contrast, homologs of PexRD2 from P. infestans had reduced or no interaction with MAPKKKε and did not promote disease susceptibility. Structure-led mutagenesis identified PexRD2 variants that do not interact with MAPKKKε and fail to support enhanced pathogen growth or perturb MAPKKKε signaling pathways. Our findings provide evidence that P. infestans RXLR effector PexRD2 has evolved to interact with a specific host MAPKKK to perturb plant immunity-related signaling.
Collapse
Affiliation(s)
- Stuart R.F. King
- Department of Biological Chemistry, John Innes Centre,
Norwich NR4 7UH, United Kingdom
| | - Hazel McLellan
- Division of Plant Sciences, University of Dundee (at
James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Petra C. Boevink
- Cell and Molecular Sciences, James Hutton Institute,
Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Miles R. Armstrong
- Division of Plant Sciences, University of Dundee (at
James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Tatyana Bukharova
- Division of Plant Sciences, University of Dundee (at
James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Octavina Sukarta
- Division of Plant Sciences, University of Dundee (at
James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Joe Win
- The Sainsbury Laboratory, Norwich NR4 7UH, United
Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich NR4 7UH, United
Kingdom
| | - Paul R.J. Birch
- Division of Plant Sciences, University of Dundee (at
James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute,
Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre,
Norwich NR4 7UH, United Kingdom
- Address correspondence to
| |
Collapse
|
36
|
Sha A, Zhao J, Yin K, Tang Y, Wang Y, Wei X, Hong Y, Liu Y. Virus-based microRNA silencing in plants. PLANT PHYSIOLOGY 2014; 164:36-47. [PMID: 24296072 PMCID: PMC3875814 DOI: 10.1104/pp.113.231100] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/30/2013] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) play pivotal roles in various biological processes across kingdoms. Many plant miRNAs have been experimentally identified or predicted by bioinformatics mining of small RNA databases. However, the functions of these miRNAs remain largely unknown due to the lack of effective genetic tools. Here, we report a virus-based microRNA silencing (VbMS) system that can be used for functional analysis of plant miRNAs. VbMS is performed through tobacco rattle virus-based expression of miRNA target mimics to silence endogenous miRNAs. VbMS of either miR172 or miR165/166 caused developmental defects in Nicotiana benthamiana. VbMS of miR319 reduced the complexity of tomato (Solanum lycopersicum) compound leaves. These results demonstrate that tobacco rattle virus-based VbMS is a powerful tool to silence endogenous miRNAs and to dissect their functions in different plant species.
Collapse
Affiliation(s)
| | | | | | | | - Yan Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (A.S., J.Z., K.Y., Y.T., Y.W., X.W., Y.L.)
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China (A.S.); and
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (Y.H.)
| | - Xiang Wei
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (A.S., J.Z., K.Y., Y.T., Y.W., X.W., Y.L.)
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China (A.S.); and
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (Y.H.)
| | - Yiguo Hong
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (A.S., J.Z., K.Y., Y.T., Y.W., X.W., Y.L.)
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China (A.S.); and
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (Y.H.)
| | | |
Collapse
|
37
|
Abstract
Virus-induced gene silencing (VIGS) is a technology that exploits an RNA-mediated antiviral defense mechanism and which has great potential for use in plant reverse genetics. Recently, whole-genome studies and gene sequencing in plants have produced a massive amount of sequence information. A major challenge for plant biologists is to convert this sequence information into functional information. In this study, we demonstrate that VIGS can be used to determine gene functions in strawberry and that it is a powerful new tool for studying fruit ripening. The ABA synthetic gene FaNCED1, which can promote strawberry fruit ripening, was used as the reporter gene. In this chapter, we describe the use of TRV-mediated VIGS in strawberry fruit.
Collapse
|
38
|
Deng X, Kelloniemi J, Haikonen T, Vuorinen AL, Elomaa P, Teeri TH, Valkonen JPT. Modification of Tobacco rattle virus RNA1 to serve as a VIGS vector reveals that the 29K movement protein is an RNA silencing suppressor of the virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:503-14. [PMID: 23360458 DOI: 10.1094/mpmi-12-12-0280-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Tobacco rattle virus (TRV) has a bipartite, positive-sense single-stranded RNA genome and is widely used for virus-induced gene silencing (VIGS) in plants. RNA1 of TRV that lacks the gene for the cysteine-rich 16K silencing-suppression protein infects plants systemically in the absence of RNA2. Here, we attempted to engineer RNA1 for use as a VIGS vector by inserting heterologous gene fragments to replace 16K. The RNA1 vector systemically silenced the phytoene desaturase (PDS) gene, although less efficiently than when the original VIGS vector system was used, which consists of wild-type RNA1 and engineered RNA2 carrying the heterologous gene. Infectious RNA1 mutants with a dysfunctional 16K suppressed silencing and enhanced transgene expression in green fluorescent protein-transgenic Nicotiana benthamiana following inoculation by agroinfiltration, unlike mutants that also lacked 29K, a movement protein (MP) gene. The 30K MP gene of Tobacco mosaic virus complemented in cis the movement defect but not the silencing suppression functions of TRV 29K. Silencing suppression by 29K occurred in the context of RNA1 replication but not in an agroinfiltration assay which tested 29K alone for suppression of sense-mediated silencing. Both 29K and 16K were needed to avoid necrotic symptoms in RNA1-infected N. benthamiana. The results shed new light on virulence factors of TRV.
Collapse
Affiliation(s)
- Xianbao Deng
- Department of Agricultural Sciences, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
39
|
Sahu PP, Puranik S, Khan M, Prasad M. Recent advances in tomato functional genomics: utilization of VIGS. PROTOPLASMA 2012; 249:1017-27. [PMID: 22669349 DOI: 10.1007/s00709-012-0421-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/17/2012] [Indexed: 05/07/2023]
Abstract
Tomato unquestionably occupies a significant position in world vegetable production owing to its world-wide consumption. The tomato genome sequencing efforts being recently concluded, it becomes more imperative to recognize important functional genes from this treasure of generated information for improving tomato yield. While much progress has been made in conventional tomato breeding, post-transcriptional gene silencing (PTGS) offers an alternative approach for advancement of tomato functional genomics. In particular, virus-induced gene silencing (VIGS) is increasingly being used as rapid, reliable, and lucrative screening strategy to elucidate gene function. In this review, we focus on the recent advancement made through exploiting the potential of this technique for manipulating different agronomically important traits in tomato by discussing several case studies.
Collapse
Affiliation(s)
- Pranav Pankaj Sahu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India
| | | | | | | |
Collapse
|
40
|
Qu J, Ye J, Geng YF, Sun YW, Gao SQ, Zhang BP, Chen W, Chua NH. Dissecting functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced gene silencing. PLANT PHYSIOLOGY 2012; 160:738-48. [PMID: 22837356 PMCID: PMC3461552 DOI: 10.1104/pp.112.198564] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/23/2012] [Indexed: 05/18/2023]
Abstract
Most of the world's natural fiber comes from cotton (Gossypium spp.), which is an important crop worldwide. Characterizing genes that regulate cotton yield and fiber quality is expected to benefit the sustainable production of natural fiber. Although a huge number of expressed sequence tag sequences are now available in the public database, large-scale gene function analysis has been hampered by the low-efficiency process of generating transgenic cotton plants. Tobacco rattle virus (TRV) has recently been reported to trigger virus-induced gene silencing (VIGS) in cotton leaves. Here, we extended the utility of this method by showing that TRV-VIGS can operate in reproductive organs as well. We used this method to investigate the function of KATANIN and WRINKLED1 in cotton plant development. Cotton plants with suppressed KATANIN expression produced shorter fibers and elevated weight ratio of seed oil to endosperm. By contrast, silencing of WRINKLED1 expression resulted in increased fiber length but reduced oil seed content, suggesting the possibility to increase fiber length by repartitioning carbon flow. Our results provide evidence that the TRV-VIGS system can be used for rapid functional analysis of genes involved in cotton fiber development.
Collapse
|
41
|
Yan HX, Fu DQ, Zhu BZ, Liu HP, Shen XY, Luo YB. Sprout vacuum-infiltration: a simple and efficient agroinoculation method for virus-induced gene silencing in diverse solanaceous species. PLANT CELL REPORTS 2012; 31:1713-1722. [PMID: 22717672 DOI: 10.1007/s00299-012-1285-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/12/2012] [Accepted: 05/04/2012] [Indexed: 05/27/2023]
Abstract
UNLABELLED Virus-induced gene silencing (VIGS) is a robust technique for identifying the functions of plant genes. Tobacco rattle virus (TRV)-mediated VIGS has been commonly used in many plants. In order to overcome the limitations of existing agroinoculation methods, we report an easy and effective method of agroinoculation for virus-induced gene silencing-sprout vacuum-infiltration (SVI). Using sprout vacuum-infiltration, we have successfully silenced the expression of phytoene desaturase and Mg-protoporphyrin chelatase genes in four important solanaceous crops, including tomato, eggplant, pepper, and Nicotiana benthamiana. The gene-silenced phenotypes are conspicuous in 1-week-old plants. The method is simple, low cost and rapid compared to other techniques such as leaf infiltration or agrodrench. It may be more practical for studying gene function in the early stages of plant growth. An important aspect of SVI is that it will be used for high-throughput VIGS screens in the future. SVI will be an effective tool to overcome the limitations of current inoculation methods and to facilitate large-scale VIGS analysis of cDNA libraries. KEY MESSAGE SVI is a simple, low cost agroinoculation method for VIGS. It is practical for studying the function of genes expressed in early stages of plant growth and high-throughput VIGS screens.
Collapse
Affiliation(s)
- Hua-xue Yan
- Laboratory of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua Donglu Road, HaiDian District, Beijing, 100083, China
| | | | | | | | | | | |
Collapse
|
42
|
Liu H, Fu D, Zhu B, Yan H, Shen X, Zuo J, Zhu Y, Luo Y. Virus-induced gene silencing in eggplant (Solanum melongena). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:422-429. [PMID: 22268843 DOI: 10.1111/j.1744-7909.2012.01102.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Eggplant (Solanum melongena) is an economically important vegetable requiring investigation into its various genomic functions. The current limitation in the investigation of genomic function in eggplant is the lack of effective tools available for conducting functional assays. Virus-induced gene silencing (VIGS) has played a critical role in the functional genetic analyses. In this paper, TRV-mediated VIGS was successfully elicited in eggplant. We first cloned the CDS sequence of PDS (PHYTOENE DESATURASE) in eggplant and then silenced the PDS gene. Photo-bleaching was shown on the newly-developed leaves four weeks after agroinoculation, indicating that VIGS can be used to silence genes in eggplant. To further illustrate the reliability of VIGS in eggplant, we selected Chl H, Su and CLA1 as reporters to elicit VIGS using the high-pressure spray method. Suppression of Chl H and Su led to yellow leaves, while the depletion of CLA1 resulted in albino. In conclusion, four genes, PDS, Chl H, Su (Sulfur), CLA1, were down-regulated significantly by VIGS, indicating that the VIGS system can be successfully applied in eggplant and is a reliable tool for the study of gene function.
Collapse
Affiliation(s)
- Haiping Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Larsen JS, Curtis WR. RNA viral vectors for improved Agrobacterium-mediated transient expression of heterologous proteins in Nicotiana benthamiana cell suspensions and hairy roots. BMC Biotechnol 2012; 12:21. [PMID: 22559055 PMCID: PMC3403893 DOI: 10.1186/1472-6750-12-21] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/06/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Plant cell suspensions and hairy root cultures represent scalable protein expression platforms. Low protein product titers have thus far limited the application of transient protein expression in these hosts. The objective of this work was to overcome this limitation by harnessing A. tumefaciens to deliver replicating and non-replicating RNA viral vectors in plant tissue co-cultures. RESULTS Replicating vectors derived from Potato virus X (PVX) and Tobacco rattle virus (TRV) were modified to contain the reporter gene β-glucuronidase (GUS) with a plant intron to prevent bacterial expression. In cell suspensions, a minimal PVX vector retaining only the viral RNA polymerase gene yielded 6.6-fold more GUS than an analogous full-length PVX vector. Transient co-expression of the minimal PVX vector with P19 of Tomato bushy stunt virus or HC-Pro of Tobacco etch virus to suppress post-transcriptional gene silencing increased GUS expression by 44 and 83%, respectively. A non-replicating vector containing a leader sequence from Cowpea mosaic virus (CPMV-HT) modified for enhanced translation led to 70% higher transient GUS expression than a control treatment. In hairy roots, a TRV vector capable of systemic movement increased GUS accumulation by 150-fold relative to the analogous PVX vector. Histochemical staining for GUS in TRV-infected hairy roots revealed the capacity for achieving even higher productivity per unit biomass. CONCLUSIONS For the first time, replicating PVX vectors and a non-replicating CPMV-HT vector were successfully applied toward transient heterologous protein expression in cell suspensions. A replicating TRV vector achieved transient GUS expression levels in hairy roots more than an order of magnitude higher than the highest level previously reported with a viral vector delivered by A. tumefaciens.
Collapse
Affiliation(s)
- Jeffrey S Larsen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Wayne R Curtis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
44
|
Huang C, Qian Y, Li Z, Zhou X. Virus-induced gene silencing and its application in plant functional genomics. SCIENCE CHINA-LIFE SCIENCES 2012; 55:99-108. [PMID: 22415680 DOI: 10.1007/s11427-012-4280-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 12/13/2011] [Indexed: 12/13/2022]
Abstract
Virus-induced gene silencing is regarded as a powerful and efficient tool for the analysis of gene function in plants because it is simple, rapid and transformation-free. It has been used to perform both forward and reverse genetics to identify plant functional genes. Many viruses have been developed into virus-induced gene silencing vectors and gene functions involved in development, biotic and abiotic stresses, metabolism, and cellular signaling have been reported. In this review, we discuss the development and application of virus-induced gene silencing in plant functional genomics.
Collapse
Affiliation(s)
- Changjun Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | | | | |
Collapse
|
45
|
GAO Y, ZHANG YL, ZHANG XF, HAN CG, YU JL, LI DW. Development and Optimization of Tobacco necrosis virus A Induced Gene Silencing in Nicotiana benthamiana*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Virus-induced gene silencing (VIGS) of genes expressed in root, leaf, and meiotic tissues of wheat. Funct Integr Genomics 2011; 12:143-56. [DOI: 10.1007/s10142-011-0245-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 01/23/2023]
|
47
|
Senthil-Kumar M, Mysore KS. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:797-806. [PMID: 21265998 DOI: 10.1111/j.1467-7652.2011.00589.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Virus-induced gene silencing (VIGS) is one of the commonly used RNA silencing methods in plant functional genomics. It is widely known that VIGS can occur for about 3 weeks. A few reports show that duration of VIGS can be prolonged for up to 3 months. Increasing the duration of endogenous gene silencing and developing a method for nonintegration-based persistent VIGS in progeny seedlings will widen the application of VIGS. We used three marker genes that provoke visible phenotypes in plants upon silencing to study persistence and transmittance of VIGS to progeny in two plant species, Nicotiana benthamiana and tomato. We used a Tobacco rattle virus (TRV)-based VIGS vector and showed that the duration of gene silencing by VIGS can occur for more than 2 years and that TRV is necessary for longer duration VIGS. Also, inoculation of TRV-VIGS constructs by both Agrodrench and leaf infiltration greatly increased the effectiveness and duration of VIGS. Our results also showed transmittance of VIGS to progeny seedlings via seeds. A longer silencing period will facilitate detailed study of target genes in plant development and stress tolerance. Further, the transmittance of VIGS to progeny will be useful in studying the effect of gene silencing in young seedlings. Our results provide a new dimension for the application of VIGS in plants.
Collapse
|
48
|
Abstract
Virus-induced gene silencing (VIGS) is a technology that exploits an RNA-mediated antivirus defense mechanism in plants and has been shown to have great potential in plant reverse genetics. When the virus vector carries sequences of plant genes, virus infection triggers VIGS that results in the degradation of endogenous mRNAs homologous to the plant genes. The system is well established in Nicotiana benthamiana and several reliable VIGS vectors have been developed for other plant species including important agricultural crops. Here, we describe the use of VIGS technology to determine gene function and plant virus vectors for induction of VIGS in plants.
Collapse
|
49
|
Benkovics AH, Nyikó T, Mérai Z, Silhavy D, Bisztray GD. Functional analysis of the grapevine paralogs of the SMG7 NMD factor using a heterolog VIGS-based gene depletion-complementation system. PLANT MOLECULAR BIOLOGY 2011; 75:277-90. [PMID: 21234790 DOI: 10.1007/s11103-010-9726-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 12/24/2010] [Indexed: 05/23/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control system that identifies and eliminates transcripts having a premature translation termination codon (PTC). NMD is also involved in the control of several wild-type mRNAs. The NMD core machinery consists of three highly conserved NMD factors (UPF1, UPF2 and UPF3) and at least one less conserved 14-3-3-like domain containing protein (SMG7). A PTC is identified by UPF factors, and then SMG7 triggers rapid transcript decay. UPF factors are generally encoded by a single gene, whereas SMG7 has duplicated several times during evolution. Recently it was reported that the plant SMG7 is autoregulated through NMD and that SMG7 has two relatively divergent paralogs in dicots, SMG7 and SMG7L. In mammals all three SMG7 related genes (SMG5, SMG6 and SMG7) are essential in NMD, so we hypothesized that in plants the SMG7 and SMG7L duplicates may also play distinct roles in NMD. To test this possibility, we have analyzed the evolution and the function of plant SMG7 homologs. We show that SMG7L is not required for plant NMD. Interestingly, we found that the grapevine and poplar genomes contain two quite divergent SMG7 paralogs which may have derived from an ancient duplication event. Using heterolog depletion/complementation assays we demonstrate that both grapevine SMG7 copies retained the complete NMD activity and both of them are under NMD control, whilst SMG7L has lost NMD activity and NMD control.
Collapse
|
50
|
Lacomme C. Milestones in the development and applications of plant virus vector as gene silencing platforms. Curr Top Microbiol Immunol 2011; 375:89-105. [PMID: 22033699 DOI: 10.1007/82_2011_186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the main post-genomics challenges facing scientists remains the identification of gene function in a large number of plant species. Plant viruses offer great potential in linking genes to phenotypes through epigenetic expression or knockdown of selected genes. The past decade has seen the development and ever increasing applications of a gene knockdown technique termed virus-induced gene silencing (VIGS). VIGS recapitulates an RNA-mediated antiviral defense mechanism, mediating a homology-based post-transcriptional degradation of selected plant RNAs, leading to a loss-of-function phenotype. Due to its rapidity and increasing number of virus vectors developed as gene silencing platforms, VIGS has become a powerful technology to determine the function of genes in an increasing number of crop species, where the routinely available transgenesis or mutagenesis approaches are often not amenable to large genomes and complex genetic backgrounds.
Collapse
Affiliation(s)
- Christophe Lacomme
- Virology and Zoology Section, Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh, EH12 9FJ, UK,
| |
Collapse
|