1
|
Bi H, Liu Z, Liu S, Qiao W, Zhang K, Zhao M, Wang D. Genome-wide analysis of wheat xyloglucan endotransglucosylase/hydrolase (XTH) gene family revealed TaXTH17 involved in abiotic stress responses. BMC PLANT BIOLOGY 2024; 24:640. [PMID: 38971763 PMCID: PMC11227136 DOI: 10.1186/s12870-024-05370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Environmental stresses, including high salinity and drought, severely diminish wheat yield and quality globally. The xyloglucan endotransglucosylase/hydrolase (XTH) family represents a class of cell wall-modifying enzymes and plays important roles in plants growth, development and stress adaptation. However, systematic analyses of XTH family genes and their functions under salt and drought stresses have not been undertaken in wheat. RESULTS In this study, we identified a total of 135 XTH genes in wheat, which were clustered into three evolutionary groups. These TaXTHs were unevenly distributed on 21 chromosomes of wheat with a majority of TaXTHs located on homelogous groups 2, 3 and 7. Gene duplication analysis revealed that segmental and tandem duplication were the main reasons for the expansion of XTH family in wheat. Interaction network predictions indicated that TaXTHs could interact with multiple proteins, including three kinases, one methyltransferase and one gibberellin-regulated protein. The promoters of the TaXTH genes harbored various cis-acting elements related to stress and hormone responses. RNA-seq data analyses showed that some TaXTH genes were induced by salt and drought stresses. Furthermore, we verified that TaXTH17 was induced by abiotic stresses and phytohormone treatments, and demonstrated that TaXTH17 was localized in the secretory pathway and cell wall. Functional analyses conducted in heterologous expression systems and in wheat established that TaXTH17 plays a negative role in plant resistance to salt and drought. CONCLUSIONS We identified 135 XTH genes in wheat and conducted comprehensive analyses of their phylogenetic relationships, gene structures, conserved motifs, gene duplication events, chromosome locations, interaction networks, cis-acting elements and gene expression patterns. Furthermore, we provided solid evidence supporting the notion that TaXTH17 plays a negative role in plant resistance to salt and drought stresses. Collectively, our results provide valuable insights into understanding wheat XTHs, particularly their involvement in plant stress responses, and establish a foundation for further functional and mechanistic studies of TaXTHs.
Collapse
Affiliation(s)
- Huihui Bi
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Crop Drought Resistance Research of Hebei Province, Dry Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, 053000, China
| | - Zeliang Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shanshan Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenchen Qiao
- Key Laboratory of Crop Drought Resistance Research of Hebei Province, Dry Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, 053000, China
| | - Kunpu Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Minghui Zhao
- Key Laboratory of Crop Drought Resistance Research of Hebei Province, Dry Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, 053000, China.
| | - Daowen Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
Li Z, Zhang Y, Ding CH, Chen Y, Wang H, Zhang J, Ying S, Wang M, Zhang R, Liu J, Xie Y, Tang T, Diao H, Ye L, Zhuang Y, Teng W, Zhang B, Huang L, Tong Y, Zhang W, Li G, Benhamed M, Dong Z, Gou JY, Zhang Y. LHP1-mediated epigenetic buffering of subgenome diversity and defense responses confers genome plasticity and adaptability in allopolyploid wheat. Nat Commun 2023; 14:7538. [PMID: 37985755 PMCID: PMC10661560 DOI: 10.1038/s41467-023-43178-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Polyploidization is a major driver of genome diversification and environmental adaptation. However, the merger of different genomes may result in genomic conflicts, raising a major question regarding how genetic diversity is interpreted and regulated to enable environmental plasticity. By analyzing the genome-wide binding of 191 trans-factors in allopolyploid wheat, we identified like heterochromatin protein 1 (LHP1) as a master regulator of subgenome-diversified genes. Transcriptomic and epigenomic analyses of LHP1 mutants reveal its role in buffering the expression of subgenome-diversified defense genes by controlling H3K27me3 homeostasis. Stripe rust infection releases latent subgenomic variations by eliminating H3K27me3-related repression. The simultaneous inactivation of LHP1 homoeologs by CRISPR-Cas9 confers robust stripe rust resistance in wheat seedlings. The conditional repression of subgenome-diversified defenses ensures developmental plasticity to external changes, while also promoting neutral-to-non-neutral selection transitions and adaptive evolution. These findings establish an LHP1-mediated buffering system at the intersection of genotypes, environments, and phenotypes in polyploid wheat. Manipulating the epigenetic buffering capacity offers a tool to harness cryptic subgenomic variations for crop improvement.
Collapse
Affiliation(s)
- Zijuan Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuyun Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Ci-Hang Ding
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, 510006, Guangzhou, China
| | - Haoyu Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
- Henan University, School of Life Science, 457000, Kaifeng, Henan, China
| | - Jinyu Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Songbei Ying
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Meiyue Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Rongzhi Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Ministry of Agriculture, Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Jinan, China
- National Engineering Research Center for Wheat and Maize, Jinan, Shandong, China
| | - Jinyi Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Yilin Xie
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Tengfei Tang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
- Henan University, School of Life Science, 457000, Kaifeng, Henan, China
| | - Huishan Diao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Luhuan Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
| | - Yili Zhuang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
| | - Wan Teng
- University of the Chinese Academy of Sciences, 100049, Beijing, China
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bo Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Wenjiang, Chengdu, China
| | - Yiping Tong
- University of the Chinese Academy of Sciences, 100049, Beijing, China
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, 210095, Nanjing, Jiangsu, China
| | - Genying Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Ministry of Agriculture, Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Jinan, China
- National Engineering Research Center for Wheat and Maize, Jinan, Shandong, China
| | - Moussa Benhamed
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), F-75006, Paris, France.
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, 510006, Guangzhou, China.
| | - Jin-Ying Gou
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China.
| |
Collapse
|
3
|
Ke W, Xing J, Chen Z, Zhao Y, Xu W, Tian L, Guo J, Xie X, Du D, Wang Z, Li Y, Xu J, Xin M, Guo W, Hu Z, Su Z, Liu J, Peng H, Yao Y, Sun Q, Ni Z. The TaTCP4/10-B1 cascade regulates awn elongation in wheat (Triticum aestivum L.). PLANT COMMUNICATIONS 2023:100590. [PMID: 36919240 PMCID: PMC10363512 DOI: 10.1016/j.xplc.2023.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Awns are important morphological markers for wheat and exert a strong physiological effect on wheat yield. The awn elongation suppressor B1 has recently been cloned through association and linkage analysis in wheat. However, the mechanism of awn inhibition centered around B1 remains to be clarified. Here, we identified an allelic variant in the coding region of B1 through analysis of re-sequencing data; this variant causes an amino acid substitution and premature termination, resulting in a long-awn phenotype. Transcriptome analysis indicated that B1 inhibited awn elongation by impeding cytokinin- and auxin-promoted cell division. Moreover, B1 directly repressed the expression of TaRAE2 and TaLks2, whose orthologs have been reported to promote awn development in rice or barley. More importantly, we found that TaTCP4 and TaTCP10 synergistically inhibited the expression of B1, and a G-to-A mutation in the B1 promoter attenuated its inhibition by TaTCP4/10. Taken together, our results reveal novel mechanisms of awn development and provide genetic resources for trait improvement in wheat.
Collapse
Affiliation(s)
- Wensheng Ke
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jiewen Xing
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaoyan Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weiya Xu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lulu Tian
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinquan Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Dejie Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yufeng Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jin Xu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhenqi Su
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
El-Esawi MA, Elashtokhy MMA, Shamseldin SAM, El-Ballat EM, Zayed EM, Heikal YM. Analysis of Genetic Diversity and Phylogenetic Relationships of Wheat ( Triticum aestivum L.) Genotypes Using Phenological, Molecular and DNA Barcoding Markers. Genes (Basel) 2022; 14:34. [PMID: 36672774 PMCID: PMC9858705 DOI: 10.3390/genes14010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
Wheat (Triticum aestivum L.) is a key food crop, accounting for approximately 765 million tons produced worldwide. The present study evaluated 16 wheat genotypes using 19 morphological and phenological traits, 16 molecular markers (Inter Simple Sequence Repeats and Start Codon Targeted; ISSR and SCoT) and rbcL and matK plastid gene barcoding. The 16 wheat genotypes showed significant genetic variation using the markers assayed. Cell plot of phenological parameters revealed significant differences among the 16-day-old seedlings of wheat genotypes at Z1.1 growth stage. Collectively, W2 genotype had the lowest shoot length (SL), length of first internodes (LFI) and leaf area (LA) values, while W8 genotype had the highest diameter of first internode (DFI) and LA values. Furthermore, W7 genotype had the maximum plant biomass (PB) and leaf width (LW) values. Geometric models grouped wheat kernels into "rounded" and "nearly elongated". Estimates of heritability (H2) for these morphological characters ranged from 4.93 to 100%. The highest H2 values were recorded for root number (RN) (100%) followed by SL (88.72%), LFI (88.30%), LA (87.76%) and Feret diameter (86.68%), while the lowest H2 value was recorded for DFI (4.93%). Furthermore, highly significant genotypic and phenotypic correlations were also observed among those traits. Reproducible fingerprinting profiles and high levels of polymorphism (PPB%) of SCoT (95.46%) and ISSR (82.41%) were recorded, indicating that they are effective tools for detecting genetic variation levels among wheat genotypes. The informativeness of markers were measured through estimation of polymorphic information content (PIC), resolving power (RP) and marker index (MI). The RP and PPB% of SCoT were significantly higher compared to those of ISSR. Comparatively, the two molecular markers were effective for studying genetic diversity among wheat genotypes, but SCoT markers were more informative. Moreover, based on the two chloroplast DNA regions (rbcL and matK), MatK was found to be more reliable for differentiating among T. aestivum genotypes. Taken together, using all the studied attributes, a clear taxonomic relationship can be used to identify T. aestivum species and improve their pragmatic production and development.
Collapse
Affiliation(s)
| | | | - Sahar A. M. Shamseldin
- Botany Department, Women ’s College for Arts, Science and Education, Ain Shams University, Cairo 11566, Egypt
| | - Enas M. El-Ballat
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ehab M. Zayed
- Cell Study Research Department, Field Crops Research Institute Agricultural Research Center, Giza 12619, Egypt
| | - Yasmin M. Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
5
|
Zheng M, Li J, Zeng C, Liu X, Chu W, Lin J, Wang F, Wang W, Guo W, Xin M, Yao Y, Peng H, Ni Z, Sun Q, Hu Z. Subgenome-biased expression and functional diversification of a Na +/H + antiporter homoeologs in salt tolerance of polyploid wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1072009. [PMID: 36570929 PMCID: PMC9768589 DOI: 10.3389/fpls.2022.1072009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Common wheat (Triticum aestivum, BBAADD) is an allohexaploid species combines the D genome from Ae. tauschii and with the AB genomes from tetraploid wheat (Triticum turgidum). Compared with tetraploid wheat, hexaploid wheat has wide-ranging adaptability to environmental adversity such as salt stress. However, little is known about the molecular basis underlying this trait. The plasma membrane Na+/H+ transporter Salt Overly Sensitive 1 (SOS1) is a key determinant of salt tolerance in plants. Here we show that the upregulation of TaSOS1 expression is positively correlated with salt tolerance variation in polyploid wheat. Furthermore, both transcriptional analysis and GUS staining on transgenic plants indicated TaSOS1-A and TaSOS1-B exhibited higher basal expression in roots and leaves in normal conditions and further up-regulated under salt stress; while TaSOS1-D showed markedly lower expression in roots and leaves under normal conditions, but significant up-regulated in roots but not leaves under salt stress. Moreover, transgenic studies in Arabidopsis demonstrate that three TaSOS1 homoeologs display different contribution to salt tolerance and TaSOS1-D plays the prominent role in salt stress. Our findings provide insights into the subgenomic homoeologs variation potential to broad adaptability of natural polyploidy wheat, which might effective for genetic improvement of salinity tolerance in wheat and other crops.
Collapse
Affiliation(s)
- Mei Zheng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jinpeng Li
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chaowu Zeng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- Institute of Crop Sciences, Xinjiang Academy of Agricultural Sciences, Urumuqi, China
| | - Xingbei Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Wei Chu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jingchen Lin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Fengzhi Wang
- Hebei Key Laboratory of Crop Salt-alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou Academy of Agriculture and Forestry Science, Cangzhou, China
| | - Weiwei Wang
- Hebei Key Laboratory of Crop Salt-alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou Academy of Agriculture and Forestry Science, Cangzhou, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Dreni L, Ferrándiz C. Tracing the Evolution of the SEPALLATA Subfamily across Angiosperms Associated with Neo- and Sub-Functionalization for Reproductive and Agronomically Relevant Traits. PLANTS (BASEL, SWITZERLAND) 2022; 11:2934. [PMID: 36365387 PMCID: PMC9656651 DOI: 10.3390/plants11212934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
SEPALLATA transcription factors (SEP TFs) have been extensively studied in angiosperms as pivotal components of virtually all the MADS-box tetrameric complex master regulators of floral organ identities. However, there are published reports that suggest that some SEP members also regulate earlier reproductive events, such as inflorescence meristem determinacy and inflorescence architecture, with potential for application in breeding programs in crops. The SEP subfamily underwent a quite complex pattern of duplications during the radiation of the angiosperms. Taking advantage of the many whole genomic sequences now available, we present a revised and expanded SEP phylogeny and link it to the known functions of previously characterized genes. This snapshot supports the evidence that the major SEP3 clade is highly specialized for the specification of the three innermost floral whorls, while its sister LOFSEP clade is functionally more versatile and has been recruited for diverse roles, such as the regulation of extra-floral bract formation and inflorescence determinacy and shape. This larger pool of angiosperm SEP genes confirms previous evidence that their evolution was driven by whole-genome duplications rather than small-scale duplication events. Our work may help to identify those SEP lineages that are the best candidates for the improvement of inflorescence traits, even in far distantly related crops.
Collapse
|
7
|
Mei F, Chen B, Du L, Li S, Zhu D, Chen N, Zhang Y, Li F, Wang Z, Cheng X, Ding L, Kang Z, Mao H. A gain-of-function allele of a DREB transcription factor gene ameliorates drought tolerance in wheat. THE PLANT CELL 2022; 34:4472-4494. [PMID: 35959993 PMCID: PMC9614454 DOI: 10.1093/plcell/koac248] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/04/2022] [Indexed: 05/13/2023]
Abstract
Drought is a major environmental factor limiting wheat production worldwide. However, the genetic components underlying wheat drought tolerance are largely unknown. Here, we identify a DREB transcription factor gene (TaDTG6-B) by genome-wide association study that is tightly associated with drought tolerance in wheat. Candidate gene association analysis revealed that a 26-bp deletion in the TaDTG6-B coding region induces a gain-of-function for TaDTG6-BDel574, which exhibits stronger transcriptional activation, protein interactions, and binding activity to dehydration-responsive elements (DRE)/CRT cis-elements than the TaDTG6-BIn574 encoded by the allele lacking the deletion, thus conferring greater drought tolerance in wheat seedlings harboring this variant. Knockdown of TaDTG6-BDel574 transcripts attenuated drought tolerance in transgenic wheat, whereas its overexpression resulted in enhanced drought tolerance without accompanying phenotypic abnormalities. Furthermore, the introgression of the TaDTG6-BDel574 elite allele into drought-sensitive cultivars improved their drought tolerance, thus providing a valuable genetic resource for wheat breeding. We also identified 268 putative target genes that are directly bound and transcriptionally regulated by TaDTG6-BDel574. Further analysis showed that TaDTG6-BDel574 positively regulates TaPIF1 transcription to enhance wheat drought tolerance. These results describe the genetic basis and accompanying mechanism driving phenotypic variation in wheat drought tolerance, and provide a novel genetic resource for crop breeding programs.
Collapse
Affiliation(s)
- Fangming Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shumin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dehe Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhongxue Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinxiu Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Pioneering Innovation Center for Wheat Stress Tolerance Improvement, Yangling, Shaanxi 712100, China
- Yangling Seed Industry Innovation Center, Yangling, Shaanxi 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Pioneering Innovation Center for Wheat Stress Tolerance Improvement, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Lu Y, Ha M, Li X, Wang J, Mo R, Zhang A. Distribution, expression of hexaploid wheat Fes1s and functional characterization of two TaFes1As in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1037989. [PMID: 36325559 PMCID: PMC9621618 DOI: 10.3389/fpls.2022.1037989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Hexaploid wheat is a major food crop and is sensitive to heat stress. It is necessary to discover genes related to thermotolerance in wheat. Fes1s is a class of nucleotide exchange factor of heat shock protein 70s, proven to be participated in heat response in human, yeast, and Arabidopsis. However, little is known about Fes1s in hexaploid wheat. In this study, we identified nine Fes1s in hexaploid wheat (TaFes1s) and found that they present as three triads. A phylogenetic relationship analysis revealed that these Fes1s grouped into Fes1A, Fes1B and Fes1C subclades, and Fes1As and Fes1Bs were divergent in monocots, but possibly not in dicots. The sequences, gene structures and protein motifs of TaFes1s homoeologues within a triad were highly conserved. Through cis-elements analysis including heat shock elements, and miRNA targets prediction, we found that regulation of three TaFes1s homoeologues may be different, while the expression patterns of three homoeologues were similar. The expression levels of TaFes1As were higher than those of TaFes1Bs and TaFes1Cs, and based on these expressions, TaFes1As were chosen for functional characterization. Intriguingly, neither TaFes1A-5A nor TaFes1A-5D could not rescue the thermotolerance defect of Arabidopsis fes1a mutants at seedling stage, but in the transgenic plants seed germination was accelerated under normal and heat stress condition. The functional characterization indicated that roles of Fes1As would be different in Arabidopsis and hexaploid wheat, and function retention of TaFes1As may occur during wheat evolution. In conclusion, our study comprehensively characterized the distribution and expression of Fes1s in hexaploid wheat and found that two TaFes1As could accelerate seed germination under normal and heat stress condition.
Collapse
Affiliation(s)
- Yunze Lu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Mingran Ha
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Xinming Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Junzhe Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Ruirui Mo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Aihua Zhang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
9
|
Nyamesorto B, Zhang H, Rouse M, Wang M, Chen X, Huang L. A transcriptomic-guided strategy used in identification of a wheat rust pathogen target and modification of the target enhanced host resistance to rust pathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:962973. [PMID: 36119617 PMCID: PMC9478542 DOI: 10.3389/fpls.2022.962973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 05/27/2023]
Abstract
Transcriptional reprogramming is an essential feature of plant immunity and is governed by transcription factors (TFs) and co-regulatory proteins associated with discrete transcriptional complexes. On the other hand, effector proteins from pathogens have been shown to hijack these vast repertoires of plant TFs. Our current knowledge of host genes' role (including TFs) involved in pathogen colonization is based on research employing model plants such as Arabidopsis and rice with minimal efforts in wheat rust interactions. In this study, we begun the research by identifying wheat genes that benefit rust pathogens during infection and editing those genes to provide wheat with passive resistance to rust. We identified the wheat MYC4 transcription factor (TF) located on chromosome 1B (TaMYC4-1B) as a rust pathogen target. The gene was upregulated only in susceptible lines in the presence of the pathogens. Down-regulation of TaMYC4-1B using barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) in the susceptible cultivar Chinese Spring enhanced its resistance to the stem rust pathogen. Knockout of the TaMYC4-1BL in Cadenza rendered new resistance to races of stem, leaf, and stripe rust pathogens. We developed new germplasm in wheat via modifications of the wheat TaMYC4-1BL transcription factor.
Collapse
Affiliation(s)
- Bernard Nyamesorto
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Hongtao Zhang
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Matthew Rouse
- USDA-ARS, Cereal Disease Laboratory, Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, United State Department of Agriculture-Agriculture Research Service, Pullman, WA, United States
| | - Li Huang
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
10
|
Flavonoid Biosynthesis Genes in Triticum aestivum L.: Methylation Patterns in Cis-Regulatory Regions of the Duplicated CHI and F3H Genes. Biomolecules 2022; 12:biom12050689. [PMID: 35625617 PMCID: PMC9138379 DOI: 10.3390/biom12050689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Flavonoids are a diverse group of secondary plant metabolites that play an important role in the regulation of plant development and protection against stressors. The biosynthesis of flavonoids occurs through the activity of several enzymes, including chalcone isomerase (CHI) and flavanone 3-hydroxylase (F3H). A functional divergence between some copies of the structural TaCHI and TaF3H genes was previously shown in the allohexaploid bread wheat Triticum aestivum L. (BBAADD genome). We hypothesized that the specific nature of TaCHI and TaF3H expression may be induced by the methylation of the promoter. It was found that the predicted position of CpG islands in the promoter regions of the analyzed genes and the actual location of methylation sites did not match. We found for the first time that differences in the methylation status could affect the expression of TaCHI copies, but not the expression of TaF3Hs. At the same time, we revealed significant differences in the structure of the promoters of only the TaF3H genes, while the TaCHI promoters were highly homologous. We assume that the promoter structure in TaF3Hs primarily affects the change in the nature of gene expression. The data obtained are important for understanding the mechanisms that regulate the synthesis of flavonoids in allopolyploid wheat and show that differences in the structure of promoters have a key effect on gene expression.
Collapse
|
11
|
Kumar A, Kumar S, Venkatesh K, Singh NK, Mandal PK, Sinha SK. Physio-molecular traits of contrasting bread wheat genotypes associated with 15N influx exhibiting homeolog expression bias in nitrate transporter genes under different external nitrate concentrations. PLANTA 2022; 255:104. [PMID: 35416522 DOI: 10.1007/s00425-022-03890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The high affinity nitrate transport system is a potential target for improving nitrogen use efficiency of bread wheat growing either under optimal or limiting nitrate concentration. Nitrate uptake is one of the most important traits to take into account to improve nitrogen use efficiency in wheat (Triticum aestivum L.). In this study, we aimed to gain an insight into the regulation of NO3- -uptake and translocation systems in two contrasting wheat genotypes [K9107(K9) vs. Choti Lerma (CL)]. Different conditions, such as NO3--uptake rates, soil-types, N-free solid external media, and external NO3- levels at the seedling stage, were considered. We also studied the contribution of homeolog expression of five genes encoding two nitrate transporters in the root tissue, along with their overall transcript expression levels relative to specific external nitrate availability. We observed that K9107 had a higher 15N influx than Choti Lerma under both limiting as well as optimum external N conditions in vermiculite-perlite (i.e., N-free solid) medium, with the improved translocation efficiency in Choti Lerma. However, in different soil types, different levels of 15N-enrichment in both the genotypes were found. Our results also demonstrated that the partitioning of dry matter in root and shoot was different under these growing conditions. Moreover, K9107 showed significantly higher relative expression of TaNRT2.1 at the lowest and TaNPF6.1 and TaNPF6.2 at the highest external nitrate concentrations. We also observed genotype-specific and nitrate starvation-dependent homeolog expression bias in all five nitrate transporter genes. Our data suggest that K9107 had a higher NO3- influx capacity, involving different nitrate transporters, than Choti Lerma at the seedling stage.
Collapse
Affiliation(s)
- Amresh Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Sarvendra Kumar
- Department of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Karnam Venkatesh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Nagendra Kumar Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Pranab Kumar Mandal
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Subodh Kumar Sinha
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
12
|
Lu Y, Zhao P, Zhang A, Wang J, Ha M. Genome-Wide Analysis of HSP70s in Hexaploid Wheat: Tandem Duplication, Heat Response, and Regulation. Cells 2022; 11:cells11050818. [PMID: 35269442 PMCID: PMC8909476 DOI: 10.3390/cells11050818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
HSP70s play crucial roles in plant growth and development, as well as in stress response. Knowledge of the distribution and heat response of HSP70s is important to understand heat adaptation and facilitate thermotolerance improvement in wheat. In this study, we comprehensively analyzed the distribution of HSP70s in hexaploid wheat (TaHSP70s) and its relatives, and we found an obvious expansion of TaHSP70s in the D genome of hexaploid wheat. Meanwhile, a large portion of tandem duplication events occurred in hexaploid wheat. Among the 84 identified TaHSP70s, more than 64% were present as homeologs. The expression profiles of TaHSP70s in triads tended to be expressed more in non-stressful and heat stress conditions. Intriguingly, many TaHSP70s were especially heat responsive. Tandem duplicated TaHSP70s also participated in heat response and growth development. Further HSE analysis revealed divergent distribution of HSEs in the promoter regions of TaHSP70 homeologs, which suggested a distinct heat regulatory mechanism. Our results indicated that the heat response of TaHSP70s may experience a different regulation, and this regulation, together with the expression of tandem duplicated TaHSP70s, may help hexaploid wheat to adapt to heat conditions.
Collapse
Affiliation(s)
- Yunze Lu
- Soil Pollution and Ecological Restoration Center, School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (A.Z.); (M.H.)
- Correspondence:
| | - Peng Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Z.); (J.W.)
| | - Aihua Zhang
- Soil Pollution and Ecological Restoration Center, School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (A.Z.); (M.H.)
| | - Junzhe Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Z.); (J.W.)
| | - Mingran Ha
- Soil Pollution and Ecological Restoration Center, School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (A.Z.); (M.H.)
| |
Collapse
|
13
|
Thakur RK, Prasad P, Bhardwaj SC, Gangwar OP, Kumar S. Epigenetics of wheat-rust interaction: an update. PLANTA 2022; 255:50. [PMID: 35084577 DOI: 10.1007/s00425-022-03829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The outcome of different host-pathogen interactions is influenced by both genetic and epigenetic systems, which determine the response of plants to pathogens and vice versa. This review highlights key molecular mechanisms and conceptual advances involved in epigenetic research and the progress made in epigenetics of wheat-rust interactions. Epigenetics implies the heritable changes in the way of gene expression as a consequence of the modification of DNA bases, histone proteins, and/or non-coding-RNA biogenesis without disturbing the underlying nucleotide sequence. The changes occurring between DNA and its surrounding chromatin without altering its DNA sequence and leading to significant changes in the genome of any organism are called epigenetic changes. Epigenetics has already been used successfully to explain the mechanism of human pathogens and in the identification of pathogen-induced modifications within various host plants. Wheat rusts are one of the most vital fungal diseases throughout the major wheat-growing areas of the world. The epigenome in plant pathogens causing diseases such as wheat rusts is mysterious. The investigations of host and pathogen epigenetics in the wheat rusts system can offer a piece of suitable evidence for elucidation of the molecular basis of host-pathogen interaction. Besides, the information on the epigenetic regulation of the genes involved in resistance or pathogenicity will provide better insights into the complex resistance signaling pathways and could provide answers to certain key questions, such as whether epigenetic regulation of certain genes is imparting resistance to host in response of certain pathogen elicitors or not. In the last few years, there has been an upsurge in research on the host as well as pathogen epigenetics and its outcome in plant-pathogen interactions. This review summarizes the progress made in the areas related to the epigenetic control of host-pathogen interaction with particular emphasis on wheat rusts.
Collapse
Affiliation(s)
- Rajni Kant Thakur
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India.
| | - S C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India.
| | - O P Gangwar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| |
Collapse
|
14
|
Kong X, Wang F, Geng S, Guan J, Tao S, Jia M, Sun G, Wang Z, Wang K, Ye X, Ma J, Liu D, Wei Y, Zheng Y, Fu X, Mao L, Lan X, Li A. The wheat AGL6-like MADS-box gene is a master regulator for floral organ identity and a target for spikelet meristem development manipulation. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:75-88. [PMID: 34487615 PMCID: PMC8710900 DOI: 10.1111/pbi.13696] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/22/2021] [Indexed: 05/13/2023]
Abstract
The AGAMOUS-LIKE6 (AGL6)-like genes are ancient MADS-box genes and are functionally studied in a few model plants. The knowledge of these genes in wheat remains limited. Here, by studying a 'double homoeolog mutant' of the AGL6 gene in tetraploid wheat, we showed that AGL6 was required for the development of all four whorls of floral organs with dosage-dependent effect on floret fertility. Yeast two-hybrid analyses detected interactions of AGL6 with all classes of MADS-box proteins in the ABCDE model for floral organ development. AGL6 was found to interact with several additional proteins, including the G protein β and γ (DEP1) subunits. Analysis of the DEP1-B mutant showed a significant reduction in spikelet number per spike in tetraploid wheat, while overexpression of AGL6 in common wheat increased the spikelet number per spike and hence the grain number per spike. RNA-seq analysis identified the regulation of several meristem activity genes by AGL6, such as FUL2 and TaMADS55. Our work therefore extensively updated the wheat ABCDE model and proposed an alternative approach to improve wheat grain yield by manipulating the AGL6 gene.
Collapse
Affiliation(s)
- Xingchen Kong
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Fang Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Shuaifeng Geng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jiantao Guan
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Shu Tao
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Meiling Jia
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Guoliang Sun
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Zhenyu Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Ke Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xingguo Ye
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jian Ma
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Dengcai Liu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yuming Wei
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Youliang Zheng
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xiujin Lan
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Aili Li
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
15
|
Alternative Splicing of TaGS3 Differentially Regulates Grain Weight and Size in Bread Wheat. Int J Mol Sci 2021; 22:ijms222111692. [PMID: 34769129 PMCID: PMC8584009 DOI: 10.3390/ijms222111692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
The heterotrimeric G-protein mediates growth and development by perceiving and transmitting signals in multiple organisms. Alternative splicing (AS), a vital process for regulating gene expression at the post-transcriptional level, plays a significant role in plant adaptation and evolution. Here, we identified five splicing variants of Gγ subunit gene TaGS3 (TaGS3.1 to TaGS3.5), which showed expression divergence during wheat polyploidization, and differential function in grain weight and size determination. TaGS3.1 overexpression significantly reduced grain weight by 5.89% and grain length by 5.04%, while TaGS3.2–3.4 overexpression did not significantly alter grain size compared to wild type. Overexpressing TaGS3.5 significantly increased the grain weight by 5.70% and grain length by 4.30%. Biochemical assays revealed that TaGS3 isoforms (TaGS3.1–3.4) with an intact OSR domain interact with WGB1 to form active Gβγ heterodimers that further interact with WGA1 to form inactive Gαβγ heterotrimers. Truncated isoforms TaGS3.2–3.4 , which lack the C-terminal Cys-rich region but have enhanced binding affinity to WGB1, antagonistically compete with TaGS3.1 to bind WGB1, while TaGS3.5 with an incomplete OSR domain does not interact with WGB1. Taking these observations together, we proposed that TaGS3 differentially regulates grain size via AS, providing a strategy by which the grain size is fine-tuned and regulated at the post-transcriptional level.
Collapse
|
16
|
Tapia RR, Barbey CR, Chandra S, Folta KM, Whitaker VM, Lee S. Evolution of the MLO gene families in octoploid strawberry (Fragaria ×ananassa) and progenitor diploid species identified potential genes for strawberry powdery mildew resistance. HORTICULTURE RESEARCH 2021; 8:153. [PMID: 34193853 PMCID: PMC8245633 DOI: 10.1038/s41438-021-00587-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Powdery mildew (PM) caused by Podosphaera aphanis is a major fungal disease of cultivated strawberry. Mildew Resistance Locus O (MLO) is a gene family described for having conserved seven-transmembrane domains. Induced loss-of-function in specific MLO genes can confer durable and broad resistance against PM pathogens. However, the genomic structure and potential role of MLO genes for PM resistance have not been characterized yet in the octoploid cultivated strawberry. In the present study, MLO gene families were characterized in four diploid progenitor species (Fragaria vesca, F. iinumae, F. viridis, and F. nipponica) and octoploid cultivated (Fragaria ×ananassa) strawberry, and potential sources of MLO-mediated susceptibility were identified. Twenty MLO sequences were identified in F. vesca and 68 identified in F. ×ananassa. Phylogenetic analysis divided diploid and octoploid strawberry MLO genes into eight different clades, in which three FveMLO (MLO10, MLO17, and MLO20) and their twelve orthologs of FaMLO were grouped together with functionally characterized MLO genes conferring PM susceptibility. Copy number variations revealed differences in MLO composition among homoeologous chromosomes, supporting the distinct origin of each subgenome during the evolution of octoploid strawberry. Dissecting genomic sequence and structural variations in candidate FaMLO genes revealed their potential role associated with genetic controls and functionality in strawberry against PM pathogen. Furthermore, the gene expression profiling and RNAi silencing of putative FaMLO genes in response to the pathogen indicate the function in PM resistance. These results are a critical first step in understanding the function of strawberry MLO genes and will facilitate further genetic studies of PM resistance in cultivated strawberry.
Collapse
Affiliation(s)
- Ronald R Tapia
- Department of Horticultural Sciences, University of Florida, IFAS Gulf Coast Research and Education Center, Wimauma, FL, 33598, USA
| | - Christopher R Barbey
- Department of Horticultural Sciences, University of Florida, 1301 Fifield Hall, PO Box 110690, Gainesville, FL, 32611, USA
| | - Saket Chandra
- Department of Horticultural Sciences, University of Florida, IFAS Gulf Coast Research and Education Center, Wimauma, FL, 33598, USA
| | - Kevin M Folta
- Department of Horticultural Sciences, University of Florida, 1301 Fifield Hall, PO Box 110690, Gainesville, FL, 32611, USA
| | - Vance M Whitaker
- Department of Horticultural Sciences, University of Florida, IFAS Gulf Coast Research and Education Center, Wimauma, FL, 33598, USA
| | - Seonghee Lee
- Department of Horticultural Sciences, University of Florida, IFAS Gulf Coast Research and Education Center, Wimauma, FL, 33598, USA.
| |
Collapse
|
17
|
Shimizu KK, Copetti D, Okada M, Wicker T, Tameshige T, Hatakeyama M, Shimizu-Inatsugi R, Aquino C, Nishimura K, Kobayashi F, Murata K, Kuo T, Delorean E, Poland J, Haberer G, Spannagl M, Mayer KFX, Gutierrez-Gonzalez J, Muehlbauer GJ, Monat C, Himmelbach A, Padmarasu S, Mascher M, Walkowiak S, Nakazaki T, Ban T, Kawaura K, Tsuji H, Pozniak C, Stein N, Sese J, Nasuda S, Handa H. De Novo Genome Assembly of the Japanese Wheat Cultivar Norin 61 Highlights Functional Variation in Flowering Time and Fusarium-Resistant Genes in East Asian Genotypes. PLANT & CELL PHYSIOLOGY 2021; 62:8-27. [PMID: 33244607 PMCID: PMC7991897 DOI: 10.1093/pcp/pcaa152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 05/08/2023]
Abstract
Bread wheat is a major crop that has long been the focus of basic and breeding research. Assembly of its genome has been difficult because of its large size and allohexaploid nature (AABBDD genome). Following the first reported assembly of the genome of the experimental strain Chinese Spring (CS), the 10+ Wheat Genomes Project was launched to produce multiple assemblies of worldwide modern cultivars. The only Asian cultivar in the project is Norin 61, a representative Japanese cultivar adapted to grow across a broad latitudinal range, mostly characterized by a wet climate and a short growing season. Here, we characterize the key aspects of its chromosome-scale genome assembly spanning 15 Gb with a raw scaffold N50 of 22 Mb. Analysis of the repetitive elements identified chromosomal regions unique to Norin 61 that encompass a tandem array of the pathogenesis-related 13 family. We report novel copy-number variations in the B homeolog of the florigen gene FT1/VRN3, pseudogenization of its D homeolog and the association of its A homeologous alleles with the spring/winter growth habit. Furthermore, the Norin 61 genome carries typical East Asian functional variants different from CS, ranging from a single nucleotide to multi-Mb scale. Examples of such variation are the Fhb1 locus, which confers Fusarium head-blight resistance, Ppd-D1a, which confers early flowering, Glu-D1f for Asian noodle quality and Rht-D1b, which introduced semi-dwarfism during the green revolution. The adoption of Norin 61 as a reference assembly for functional and evolutionary studies will enable comprehensive characterization of the underexploited Asian bread wheat diversity.
Collapse
Affiliation(s)
- Kentaro K Shimizu
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Dario Copetti
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Environmental Systems Science, Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Moeko Okada
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Kazusa Nishimura
- Graduate School of Agriculture, Kyoto University, Kizugawa, Japan
| | - Fuminori Kobayashi
- Division of Basic Research, Institute of Crop Science, NARO, Tsukuba, Japan
| | - Kazuki Murata
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tony Kuo
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- University of Guelph, Centre for Biodiversity Genomics, Guelph, ON, Canada
| | - Emily Delorean
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Georg Haberer
- Helmholtz Zentrum München—Research Center for Environmental Health, Neuherberg, Germany
| | - Manuel Spannagl
- Helmholtz Zentrum München—Research Center for Environmental Health, Neuherberg, Germany
| | - Klaus F X Mayer
- Helmholtz Zentrum München—Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences, Technical University Munich, Weihenstephan, Germany
| | | | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA
| | - Cecile Monat
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Sean Walkowiak
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Canadian Grain Commission, Grain Research Laboratory, Winnipeg, MB, Canada
| | - Tetsuya Nakazaki
- Graduate School of Agriculture, Kyoto University, Kizugawa, Japan
| | - Tomohiro Ban
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Curtis Pozniak
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Department of Crop Science, Center of Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Jun Sese
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- Humanome Lab, Inc, Tokyo, Japan
| | - Shuhei Nasuda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hirokazu Handa
- Division of Basic Research, Institute of Crop Science, NARO, Tsukuba, Japan
- Laboratoty of Plant Breeding, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
18
|
Zhao N, Dong Q, Nadon BD, Ding X, Wang X, Dong Y, Liu B, Jackson SA, Xu C. Evolution of Homeologous Gene Expression in Polyploid Wheat. Genes (Basel) 2020; 11:genes11121401. [PMID: 33255795 PMCID: PMC7759873 DOI: 10.3390/genes11121401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 11/17/2022] Open
Abstract
Polyploidization has played a prominent role in the evolutionary history of plants. Two recent and sequential allopolyploidization events have resulted in the formation of wheat species with different ploidies, and which provide a model to study the effects of polyploidization on the evolution of gene expression. In this study, we identified differentially expressed genes (DEGs) between four BBAA tetraploid wheats of three different ploidy backgrounds. DEGs were found to be unevenly distributed among functional categories and duplication modes. We observed more DEGs in the extracted tetraploid wheat (ETW) than in natural tetraploid wheats (TD and TTR13) as compared to a synthetic tetraploid (AT2). Furthermore, DEGs showed higher Ka/Ks ratios than those that did not show expression changes (non-DEGs) between genotypes, indicating DEGs and non-DEGs experienced different selection pressures. For A-B homeolog pairs with DEGs, most of them had only one differentially expressed copy, however, when both copies of a homeolog pair were DEGs, the A and B copies were more likely to be regulated to the same direction. Our results suggest that both cis- and inter-subgenome trans-regulatory changes are important drivers in the evolution of homeologous gene expression in polyploid wheat, with ploidy playing a significant role in the process.
Collapse
Affiliation(s)
- Na Zhao
- Department of Agronomy, Jilin Agricultural University, Changchun 130118, China;
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA;
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Q.D.); (X.W.); (Y.D.); (B.L.)
| | - Brian D. Nadon
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA;
| | - Xiaoyang Ding
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Xutong Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Q.D.); (X.W.); (Y.D.); (B.L.)
| | - Yuzhu Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Q.D.); (X.W.); (Y.D.); (B.L.)
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Q.D.); (X.W.); (Y.D.); (B.L.)
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA;
- Bayer Crop Science, Chesterfield, MO 63017, USA
- Correspondence: or (S.A.J.); (C.X.); Tel.: +86-0431-8509-9367 (C.X.)
| | - Chunming Xu
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA;
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Q.D.); (X.W.); (Y.D.); (B.L.)
- Correspondence: or (S.A.J.); (C.X.); Tel.: +86-0431-8509-9367 (C.X.)
| |
Collapse
|
19
|
Wang M, Zhang P, Liu Q, Li G, Di D, Xia G, Kronzucker HJ, Fang S, Chu J, Shi W. TaANR1-TaBG1 and TaWabi5-TaNRT2s/NARs Link ABA Metabolism and Nitrate Acquisition in Wheat Roots. PLANT PHYSIOLOGY 2020; 182:1440-1453. [PMID: 31937682 PMCID: PMC7054875 DOI: 10.1104/pp.19.01482] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/09/2020] [Indexed: 05/19/2023]
Abstract
Nitrate is the preferred form of nitrogen for most plants, acting both as a nutrient and a signaling molecule. However, the components and regulatory factors governing nitrate uptake in bread wheat (Triticum aestivum), one of the world's most important crop species, have remained unclear, largely due to the complexity of its hexaploid genome. Here, based on recently released whole-genome information for bread wheat, the high-affinity nitrate transporter2 (NRT2) and the nitrate-assimilation-related (NAR) gene family are characterized. We show that abscisic acid (ABA)- Glc ester deconjugation is stimulated in bread wheat roots by nitrate resupply following nitrate withdrawal, leading to enhanced root-tissue ABA accumulation, and that this enhancement, in turn, affects the expression of root-type NRT2/NAR genes. TaANR1 is shown to regulate nitrate-mediated ABA accumulation by directly activating TaBG1, while TaWabi5 is involved in ABA-mediated NO3 - induction of NRT2/NAR genes. Building on previous evidence establishing ABA involvement in the developmental response to high-nitrate stress, our study suggests that ABA also contributes to the optimization of nitrate uptake by regulating the expression of NRT2/NAR genes under limited nitrate supply, offering a new target for improvement of nitrate absorption in crops.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
| | - Pengli Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
| | - Qian Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, P.R. China
| | - Herbert J Kronzucker
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Shuang Fang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
| |
Collapse
|
20
|
Wang Z, Zhao FY, Tang MQ, Chen T, Bao LL, Cao J, Li YL, Yang YH, Zhu KM, Liu S, Tan XL. BnaMPK6 is a determinant of quantitative disease resistance against Sclerotinia sclerotiorum in oilseed rape. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110362. [PMID: 31928657 DOI: 10.1016/j.plantsci.2019.110362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Sclerotinia sclerotiorum causes a devastating disease in oilseed rape (Brassica napus), resulting in major economic losses. Resistance response of B. napus against S. sclerotiorum exhibits a typical quantitative disease resistance (QDR) characteristic, but the molecular determinants of this QDR are largely unknown. In this study, we isolated a B. napus mitogen-activated protein kinase gene, BnaMPK6, and found that BnaMPK6 expression is highly responsive to infection by S. sclerotiorum and treatment with salicylic acid (SA) or jasmonic acid (JA). Moreover, overexpression (OE) of BnaMPK6 significantly enhances resistance to S. sclerotiorum, whereas RNAi in BnaMPK6 significantly reduces this resistance. These results showed that BnaMPK6 plays an important role in defense to S. sclerotiorum. Furthermore, expression of defense genes associated with SA-, JA- and ethylene (ET)-mediated signaling was investigated in BnaMPK6-RNAi, WT and BnaMPK6-OE plants after S. sclerotiorum infection, and consequently, it was indicated that the activation of ET signaling by BnaMPK6 may play a role in the defense. Further, four BnaMPK6-encoding homologous loci were mapped in the B. napus genome. Using the allele analysis and expression analysis on the four loci, we demonstrated that the locus BnaA03.MPK6 makes an important contribution to QDR against S. sclerotiorum. Our data indicated that BnaMPK6 is a previously unknown determinant of QDR against S. sclerotiorum in B. napus.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China
| | - Feng-Yun Zhao
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China
| | - Min-Qiang Tang
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Ting Chen
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China
| | - Ling-Li Bao
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China
| | - Jun Cao
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China
| | - Yu-Long Li
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China
| | - Yan-Hua Yang
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China
| | - Ke-Ming Zhu
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China
| | - Shengyi Liu
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China.
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China.
| |
Collapse
|
21
|
Pan Q, Zhu B, Zhang D, Tong C, Ge X, Liu S, Li Z. Gene Expression Changes During the Allo-/Deallopolyploidization Process of Brassica napus. Front Genet 2020; 10:1279. [PMID: 31921314 PMCID: PMC6931035 DOI: 10.3389/fgene.2019.01279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/21/2019] [Indexed: 11/21/2022] Open
Abstract
Gene expression changes due to allopolyploidization have been extensively studied in plants over the past few decades. Nearly all these studies focused on comparing the changes before and after genome merger. In this study, we used the uniquely restituted Brassica rapa (RBR, AeAe, 2n = 20) obtained from Brassica napus (AnAnCnCn, 2n = 38) to analyze the gene expression changes and its potential mechanism during the process of allo-/deallopolyploidization. RNA-seq-based transcriptome profiling identified a large number of differentially expressed genes (DEGs) between RBR and natural B. rapa (ArAr), suggesting potential effects of allopolyploidization/domestication of AA component of B. napus at the tetrapolyploid level. Meanwhile, it was revealed that up to 20% of gene expressions were immediately altered when compared with those in the An-subgenome. Interestingly, one fifth of these changes are in fact indicative of the recovery of antecedent gene expression alternations occurring since the origin of B. napus and showed association with homoeologous expression bias between An and Cn subgenomes. Enrichment of distinct gene ontology (GO) categories of the above sets of genes further indicated potential functional cooperation of the An and Cn subgenome of B. napus. Whole genome methylation analysis revealed a small number of DEGs were identified in the differentially methylated regions.
Collapse
Affiliation(s)
- Qi Pan
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Zhu
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dawei Zhang
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaobo Tong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Ma J, Deng S, Jia Z, Sang Z, Zhu Z, Zhou C, Ma L, Chen F. Conservation and divergence of ancestral AGAMOUS/SEEDSTICK subfamily genes from the basal angiosperm Magnolia wufengensis. TREE PHYSIOLOGY 2020; 40:90-107. [PMID: 31553477 DOI: 10.1093/treephys/tpz091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
AGAMOUS/SEEDSTICK (AG/STK) subfamily genes play crucial roles in the reproductive development of plants. However, most of our current knowledge of AG/STK subfamily genes is restricted to core eudicots and grasses, and the knowledge of ancestral exon-intron structures, expression patterns, protein-protein interaction patterns and functions of AG/STK subfamily genes remains unclear. To determine these, we isolated AG/STK subfamily genes (MawuAG1, MawuAG2 and MawuSTK) from a woody basal angiosperm Magnolia wufengensis (Magnoliaceae). MawuSTK arose from the gene duplication event occurring before the diversification of extant angiosperms, and MawuAG1 and MawuAG2 may result from a gene duplication event occurring before the divergence of Magnoliaceae and Lauraceae. Gene duplication led to apparent diversification in their expression and interaction patterns. It revealed that expression in both stamens and carpels likely represents the ancestral expression profiles of AG lineage genes, and expression of STK-like genes in stamens may have been lost soon after the appearance of the STK lineage. Moreover, AG/STK subfamily proteins may have immediately established interactions with the SEPALLATA (SEP) subfamily proteins following the emergence of the SEP subfamily; however, their interactions with the APETALA1/FRUITFULL subfamily proteins or themselves differ from those found in monocots and basal and core eudicots. MawuAG1 plays highly conserved roles in the determinacy of stamen, carpel and ovule identity, while gene duplication contributed to the functional diversification of MawuAG2 and MawuSTK. In addition, we investigated the evolutionary history of exon-intron structural changes of the AG/STK subfamily, and a novel splice-acceptor mode (GUU-AU) and the convergent evolution of N-terminal extension in the euAG and PLE subclades were revealed for the first time. These results further advance our understanding of ancestral AG/STK subfamily genes in terms of phylogeny, exon-intron structures, expression and interaction patterns, and functions, and provide strong evidence for the significance of gene duplication in the expansion and evolution of the AG/STK subfamily.
Collapse
Affiliation(s)
- Jiang Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Shixin Deng
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Zhongkui Jia
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Ziyang Sang
- Forestry Bureau of Wufeng County, Yichang, 443002, Hubei Province, PR China
| | - Zhonglong Zhu
- Wufeng Bo Ling Magnolia Wufengensis Technology Development Co., Ltd, Yichang, 443002, Hubei Province, PR China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang 443002, PR China
| | - Lvyi Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Faju Chen
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang 443002, PR China
| |
Collapse
|
23
|
Schilling S, Kennedy A, Pan S, Jermiin LS, Melzer R. Genome-wide analysis of MIKC-type MADS-box genes in wheat: pervasive duplications, functional conservation and putative neofunctionalization. THE NEW PHYTOLOGIST 2020; 225:511-529. [PMID: 31418861 DOI: 10.1111/nph.16122] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/06/2019] [Indexed: 05/21/2023]
Abstract
Wheat (Triticum aestivum) is one of the most important crops worldwide. Given a growing global population coupled with increasingly challenging cultivation conditions, facilitating wheat breeding by fine-tuning important traits is of great importance. MADS-box genes are prime candidates for this, as they are involved in virtually all aspects of plant development. Here, we present a detailed overview of phylogeny and expression of 201 wheat MIKC-type MADS-box genes. Homoeolog retention is significantly above the average genome-wide retention rate for wheat genes, indicating that many MIKC-type homoeologs are functionally important and not redundant. Gene expression is generally in agreement with the expected subfamily-specific expression pattern, indicating broad conservation of function of MIKC-type genes during wheat evolution. We also found extensive expansion of some MIKC-type subfamilies, especially those potentially involved in adaptation to different environmental conditions like flowering time genes. Duplications are especially prominent in distal telomeric regions. A number of MIKC-type genes show novel expression patterns and respond, for example, to biotic stress, pointing towards neofunctionalization. We speculate that conserved, duplicated and neofunctionalized MIKC-type genes may have played an important role in the adaptation of wheat to a diversity of conditions, hence contributing to the importance of wheat as a global staple food.
Collapse
Affiliation(s)
- Susanne Schilling
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Alice Kennedy
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Sirui Pan
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Lars S Jermiin
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Rainer Melzer
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Mohan A, Dhaliwal AK, Nagarajan R, Gill KS. Molecular Characterization of Auxin Efflux Carrier- ABCB1 in hexaploid wheat. Sci Rep 2019; 9:17327. [PMID: 31757978 PMCID: PMC6874703 DOI: 10.1038/s41598-019-51482-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/29/2019] [Indexed: 11/09/2022] Open
Abstract
Auxin is an important phytohormone that regulates response, differentiation, and development of plant cell, tissue, and organs. Along with its local production, long-distance transport coordinated by the efflux/influx membrane transporters is instrumental in plant development and architecture. In the present study, we cloned and characterized a wheat (Triticum aestivum) auxin efflux carrier ABCB1. The TaABCB1 was physically localized to the proximal 15% of the short arm of wheat homoeologous group 7 chromosomes. Size of the Chinese spring (CS) homoeologs genomic copies ranged from 5.3–6.2 kb with the 7A copy being the largest due to novel insertions in its third intron. The three homoeologous copies share 95–97% sequence similarity at the nucleotide, 98–99% amino acid, and overall Q-score of 0.98 at 3-D structure level. Though detected in all analyzed tissues, TaABCB1 predominantly expressed in the meristematic tissues likely due to the presence of meristem-specific activation regulatory element identified in the promoter region. RNAi plants of TaABCB1 gene resulted in reduced plant height and increased seed width. Promoter analysis revealed several responsive elements detected in the promoter region including that for different hormones as auxin, gibberellic acid, jasmonic acid and abscisic acid, light, and circadian regulated elements.
Collapse
Affiliation(s)
- Amita Mohan
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Amandeep K Dhaliwal
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Ragupathi Nagarajan
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Kulvinder S Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
25
|
Peng LN, Xu YQ, Wang X, Feng X, Zhao QQ, Feng SS, Zhao ZY, Hu BZ, Li FL. Overexpression of paralogues of the wheat expansin gene TaEXPA8 improves low-temperature tolerance in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:1119-1131. [PMID: 31192523 DOI: 10.1111/plb.13018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/06/2019] [Indexed: 05/24/2023]
Abstract
Low temperature is one of the important factors limiting wheat yield in cold regions. Expansins are nonenzymatic proteins that loosen cell walls and play important roles in diverse biological processes related to cell wall modification, including development and stress tolerance. Many studies have shown that expansins are involved in resistance to various abiotic stresses, such as heat and drought. However, the role of expansins in response to low-temperature stress remains unclear. Based on our previous transcriptome data of a winter wheat cultivar Dongnongdongmai 2 (DN2), we found that one of the expansin genes, TaEXPA8, was significantly induced by low temperature, indicating a role for TaEXPA8 in cold resistance. In this study, the paralogous TaEXPA8 genes TaEXPA8-A, TaEXPA8-B and TaEXPA8-D were cloned by RT-PCR. These three genes were then transformed into Arabidopsis by the floral dip method. Expression patterns of TaEXPA8 genes in different tissues and in response to several abiotic stresses and hormones were detected by quantitative real-time PCR (qRT-PCR). The results showed that TaEXPA8-A and TaEXPA8-B were expressed mainly in roots, while TaEXPA8-D was expressed predominantly in flowers. TaEXPA8 genes were induced by low-temperature and drought. The overexpression of TaEXPA8-B and TaEXPA8-D enhanced low-temperature resistance and had increased superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activity and soluble protein, MDA and proline content. In summary, our study suggested that the expansins TaEXPA8-B and TaEXPA8-D are involved in the response to low temperature and possibly play a role in cold resistance by activating the protective enzyme system.
Collapse
Affiliation(s)
- L N Peng
- College of Life Science, Northeast Agricultural Univerisity, Harbin, China
| | - Y Q Xu
- College of Life Science, Northeast Agricultural Univerisity, Harbin, China
| | - X Wang
- College of Life Science, Northeast Agricultural Univerisity, Harbin, China
| | - X Feng
- College of Life Science, Northeast Agricultural Univerisity, Harbin, China
| | - Q Q Zhao
- College of Life Science, Northeast Agricultural Univerisity, Harbin, China
| | - S S Feng
- College of Life Science, Northeast Agricultural Univerisity, Harbin, China
| | - Z Y Zhao
- College of Life Science, Northeast Agricultural Univerisity, Harbin, China
| | - B Z Hu
- Harbin University, Harbin, China
| | - F L Li
- College of Life Science, Northeast Agricultural Univerisity, Harbin, China
| |
Collapse
|
26
|
Zhang X, Wei X, Wang M, Zhu X, Zhao Y, Wei F, Xia Z. Overexpression of NtabDOG1L promotes plant growth and enhances drought tolerance in Nicotiana tabacum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110186. [PMID: 31481202 DOI: 10.1016/j.plantsci.2019.110186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 05/02/2023]
Abstract
Drought is one of the major environmental stresses limiting crop growth and production. It is very important to exploit and utilize drought-tolerance genes to improve crop drought-resistance. In this study, we identified two homoeologs of a Nicotiana tabacum (Ntab) DELAY OF GERMINATION (DOG) 1 like gene, named as NtabDOG1L-T and NtabDOG1L-S, respectively. The NtabDOG1L genes were preferentially expressed in roots and their expression levels were induced by polyethylene glycol, high salt, cold, and abscisic acid treatments. Subcellular localization results indicated that NtabDOG1L-T was localized in the nucleus, cytoplasm and cell membrane. Overexpression of NtabDOG1L-T in tobacco resulted in roots growth enhancement in transgenic plants. Furthermore, overexpression of NtabDOG1L-T enhanced drought stress tolerance in transgenic tobacco. The transgenic tobacco lines exhibited lower leaf water loss and electrolyte leakage, lower content of malondialdehyde and reactive oxygen species (ROS), and higher antioxidant enzymes activities after drought treatment when compared with wild type (WT) plants. In addition, the expression levels of several genes encoding key antioxidant enzymes and drought-related proteins were higher in the transgenic plants than in the WT plants under drought stress. Taken together, our results showed that NtabDOG1L functions as a novel regulator that improves plant growth and drought tolerance in tobacco.
Collapse
Affiliation(s)
- Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xing Wei
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Meiping Wang
- Library of Henan Agricultural University, Zhengzhou 450002, China
| | - Xianfeng Zhu
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yue Zhao
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Fengjie Wei
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; Henan Institute of Tobacco Science, Zhengzhou 450002, China.
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
27
|
Ali Z, Raza Q, Atif RM, Aslam U, Ajmal M, Chung G. Genetic and Molecular Control of Floral Organ Identity in Cereals. Int J Mol Sci 2019; 20:E2743. [PMID: 31167420 PMCID: PMC6600504 DOI: 10.3390/ijms20112743] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Grasses represent a major family of monocots comprising mostly cereals. When compared to their eudicot counterparts, cereals show a remarkable morphological diversity. Understanding the molecular basis of floral organ identity and inflorescence development is crucial to gain insight into the grain development for yield improvement purposes in cereals, however, the exact genetic mechanism of floral organogenesis remains elusive due to their complex inflorescence architecture. Extensive molecular analyses of Arabidopsis and other plant genera and species have established the ABCDE floral organ identity model. According to this model, hierarchical combinatorial activities of A, B, C, D, and E classes of homeotic genes regulate the identity of different floral organs with partial conservation and partial diversification between eudicots and cereals. Here, we review the developmental role of A, B, C, D, and E gene classes and explore the recent advances in understanding the floral development and subsequent organ specification in major cereals with reference to model plants. Furthermore, we discuss the evolutionary relationships among known floral organ identity genes. This comparative overview of floral developmental genes and associated regulatory factors, within and between species, will provide a thorough understanding of underlying complex genetic and molecular control of flower development and floral organ identity, which can be helpful to devise innovative strategies for grain yield improvement in cereals.
Collapse
Affiliation(s)
- Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Sharif University of Agriculture, Multan 66000, Pakistan.
| | - Qasim Raza
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku 39020, Pakistan.
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Usman Aslam
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Ajmal
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea.
| |
Collapse
|
28
|
Liu M, Fu Q, Ma Z, Sun W, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H. Genome-wide investigation of the MADS gene family and dehulling genes in tartary buckwheat (Fagopyrum tataricum). PLANTA 2019; 249:1301-1318. [PMID: 30617544 DOI: 10.1007/s00425-019-03089-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 05/23/2023]
Abstract
Genome-wide identification, expression analysis and potential functional characterization of previously uncharacterized MADS family of tartary buckwheat, emphasized the importance of this gene family in plant growth and development. The MADS transcription factor is a key regulatory factor in the development of most plants. The MADS gene in plants controls all aspects of tissue and organ growth and reproduction and can be used to regulate plant seed cracking. However, there has been little research on the MADS genes of tartary buckwheat (Fagopyrum tataricum), which is an important edible and medicinal crop. The recently published whole genome sequence of tartary buckwheat allows us to study the tissue and expression profiles of the MADS gene in tartary buckwheat at a genome-wide level. In this study, 65 MADS genes of tartary buckwheat were identified and renamed according to the chromosomal distribution of the FtMADS genes. Here, we provide a complete overview of the gene structure, gene expression, genomic mapping, protein motif organization, and phylogenetic relationships of each member of the gene family. According to the phylogenetic relationship of MADS genes, the transcription factor family was divided into two subfamilies, the M subfamily (28 genes) and the MIKC subfamily (37 genes). The results showed that the FtMADS genes belonged to related sister pairs and the chromosomal map showed that the replication of FtMADSs was related to the replication of chromosome blocks. In different tissues and at different fruit development stages, the FtMADS genes obtained by real-time quantitative PCR (RT-qPCR) showed obvious expression patterns. A comprehensive analysis of the MADS genes in tartary buckwheat was conducted. Through systematic analysis, the potential genes that may regulate the growth and development of tartary buckwheat and the genes that may regulate the easy dehulling of tartary buckwheat fruit were screened, which laid a solid foundation for improving the quality of tartary buckwheat.
Collapse
Affiliation(s)
- Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Qiankun Fu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zhaotang Ma
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Li Huang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, China.
| |
Collapse
|
29
|
Strygina KV, Khlestkina EK. Myc-like transcriptional factors in wheat: structural and functional organization of the subfamily I members. BMC PLANT BIOLOGY 2019; 19:50. [PMID: 30813892 PMCID: PMC6393960 DOI: 10.1186/s12870-019-1639-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Myc-like regulatory factors carrying the basic helix-loop-helix (bHLH) domain belong to a large superfamily of transcriptional factors (TFs) present in all eukaryotic kingdoms. In plants, the representatives of this superfamily regulate diverse biological processes including growth and development as well as response to various stresses. As members of the regulatory MBW complexes, they participate in biosynthesis of flavonoids. In wheat, only one member (TaMyc1) of the Myc-like TFs family has been studied, while structural and functional organization of further members remained uncharacterized. From two Myc-subfamilies described recently in the genomes of Triticeae tribe species, we investigated thoroughly the members of the subfamily I which includes the TaMyc1 gene. RESULTS Comparison of the promoter regions of the Myc subfamily I members in wheat suggested their division into two groups (likely homoeologous sets): TaMyc-1 (TaMyc-A1/TaMyc1, TaMyc-B1, TaMyc-D1) and TaMyc-2 (TaMyc-A2 and TaMyc-D2). It was demonstrated that the TaMyc-D1 copy has lost its functionality due to the frame shift mutation. The study of functional features of the other four copies suggested some of them to be involved in the biosynthesis of anthocyanins. In particular, TaMyc-B1 is assumed to be a co-regulator of the gene TaC1-A1 (encoding R2R3-Myb factor) in the MBW regulatory complex activating anthocyanin synthesis in wheat coleoptile. The mRNA levels of the TaMyc-A1, TaMyc-B1, TaMyc-A2 and TaMyc-D2 genes increased significantly in wheat seedlings exposed to osmotic stress. Salinity stress induced expression of TaMyc-B1 and TaMyc-A2, while TaMyc-A1 was repressed. CONCLUSIONS The features of the structural and functional organization of the members of subfamily I of Myc-like TFs in wheat were determined. Myc-like co-regulator (TaMyc-B1) of anthocyanin synthesis in wheat coleoptile was described for the first time. The Myc-encoding genes presumably involved in response to drought and salinity were determined in wheat. The results obtained are important for further manipulations with Myc genes, aimed on increasing wheat adaptability.
Collapse
Affiliation(s)
- Ksenia V. Strygina
- Siberian Branch of the Russian Academy of Sciences, Institute of Cytology and Genetics, Lavrentjeva Ave. 10, Novosibirsk, 630090 Russia
| | - Elena K. Khlestkina
- Siberian Branch of the Russian Academy of Sciences, Institute of Cytology and Genetics, Lavrentjeva Ave. 10, Novosibirsk, 630090 Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya Str., 42-44, St. Petersburg, 190000 Russia
| |
Collapse
|
30
|
Zhang R, Geng S, Qin Z, Tang Z, Liu C, Liu D, Song G, Li Y, Zhang S, Li W, Gao J, Han X, Li G. The genome-wide transcriptional consequences of the nullisomic-tetrasomic stocks for homoeologous group 7 in bread wheat. BMC Genomics 2019; 20:29. [PMID: 30630423 PMCID: PMC6327598 DOI: 10.1186/s12864-018-5421-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/27/2018] [Indexed: 11/16/2022] Open
Abstract
Background Hexaploid bread wheat (Triticum aestivum L) arose by two polyploidisation events from three diploid species with homoeologous genomes. Nullisomic-tetrasomic (nulli-tetra or NT) lines are aneuploid wheat plants lacking two and adding two of six homoeologous chromosomes. These plants can grow normally, but with significantly morphological variations because the adding two chromosomes or the remaining four chromosomes compensate for those absent. Despite these interesting phenomena, detailed molecular mechanisms underlying dosage deletion and compensation in these useful genetic materials have not been determined. Results By sequencing the transcriptomes of leaves in two-week-old seedlings, we showed that the profiles of differentially expressed genes between NT stocks for homoeologous group 7 and the parent hexaploid Chinese Spring (CS) occurred throughout the whole genome with a subgenome and chromosome preference. The deletion effect of nulli-chromosomes was compensated partly by the tetra-chromosomes via the dose level of expressed genes, according to the types of homoeologous genes. The functions of differentially regulated genes primarily focused on carbon metabolic process, photosynthesis process, hormone metabolism, and responding to stimulus, and etc., which might be related to the defective phenotypes that included reductions in plant height, flag leaf length, spikelet number, and kernels per spike. Conclusions The perturbation of the expression levels of transcriptional genes among the NT stocks for homoeologous group 7 demonstrated the gene dosage effect of the subgenome at the genome-wide level. The gene dosage deletion and compensation can be used as a model to elucidate the functions of the subgenomes in modern polyploid plants. Electronic supplementary material The online version of this article (10.1186/s12864-018-5421-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rongzhi Zhang
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China.
| | - Shuaifeng Geng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhengrui Qin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zongxiang Tang
- Agronomy College, Sichuan Agricultural University, Wenjiang, Chengdu, 610054, China
| | - Cheng Liu
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Dongfeng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guoqi Song
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Yulian Li
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Shujuan Zhang
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Wei Li
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Jie Gao
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Xiaodong Han
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Genying Li
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China.
| |
Collapse
|
31
|
Zhao J, Zhai Z, Li Y, Geng S, Song G, Guan J, Jia M, Wang F, Sun G, Feng N, Kong X, Chen L, Mao L, Li A. Genome-Wide Identification and Expression Profiling of the TCP Family Genes in Spike and Grain Development of Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1282. [PMID: 30298074 PMCID: PMC6160802 DOI: 10.3389/fpls.2018.01282] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/16/2018] [Indexed: 05/24/2023]
Abstract
The TCP family genes are plant-specific transcription factors and play important roles in plant development. TCPs have been evolutionarily and functionally studied in several plants. Although common wheat (Triticum aestivum L.) is a major staple crop worldwide, no systematic analysis of TCPs in this important crop has been conducted. Here, we performed a genome-wide survey in wheat and found 66 TCP genes that belonged to 22 homoeologous groups. We then mapped these genes on wheat chromosomes and found that several TCP genes were duplicated in wheat including the ortholog of the maize TEOSINTE BRANCHED 1. Expression study using both RT-PCR and in situ hybridization assay showed that most wheat TCP genes were expressed throughout development of young spike and immature seed. Cis-acting element survey along promoter regions suggests that subfunctionalization may have occurred for homoeologous genes. Moreover, protein-protein interaction experiments of three TCP proteins showed that they can form either homodimers or heterodimers. Finally, we characterized two TaTCP9 mutants from tetraploid wheat. Each of these two mutant lines contained a premature stop codon in the A subgenome homoeolog that was dominantly expressed over the B subgenome homoeolog. We observed that mutation caused increased spike and grain lengths. Together, our analysis of the wheat TCP gene family provides a start point for further functional study of these important transcription factors in wheat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Long Mao
- *Correspondence: Long Mao, Aili Li,
| | - Aili Li
- *Correspondence: Long Mao, Aili Li,
| |
Collapse
|
32
|
Liao WY, Lin LF, Lin MD, Hsieh SC, Li AYS, Tsay YS, Chou ML. Overexpression of Lilium formosanumMADS-box ( LFMADS) Causing Floral Defects While Promoting Flowering in Arabidopsis thaliana, Whereas Only Affecting Floral Transition Time in Nicotiana tabacum. Int J Mol Sci 2018; 19:E2217. [PMID: 30060634 PMCID: PMC6121541 DOI: 10.3390/ijms19082217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 01/04/2023] Open
Abstract
The Formosa lily (Lilium formosanum) is one of the most common horticultural species in Taiwan. To explore gene regulation involved in this species, we used transcriptome analysis to generate PH-FB (mixed floral buds) and PH-LF (mature leaves) datasets. Combination of the PH-FB and PH-LF constructed a de novo assembly of the ALL dataset, including 18,041 contigs and 23,807 unigenes by Nr, GO, COG, and KEGG databases. The differential gene expression (DGE) analysis revealed 9937 genes were upregulated while 10,383 genes were downregulated in the developing floral buds compared to mature leaves. Seven putative genes (LFMADS1 to 7) encoding floral organ identity proteins were selected for further analysis. LFMADS1-6 genes were specifically expressed in the floral organ, while LFMADS7 in the floral buds and mature leaves. Phylogenetic analysis revealed that LFMADS1-3 is classified into B-class, LFMADS4 into C-class, LFMADS5 into D-class, and LFMADS6-7 into E-class, respectively. LFMADS-GFP fusion proteins appeared to localize in the nucleus, supporting their roles as transcription factors (TFs). Overexpression of the LFMADS2, LFMADS4, and LFMADS6 genes in Arabidopsis resulted in early flowering and floral defect, however, only early flowering in transgenic tobacco was observed. Highly expressed floral integrator genes, including AtFT, AtLFY, and AtFUL in transgenic Arabidopsis and NtFUL and NtSOC1 in transgenic tobacco, resulted in early flowering phenotype through qRT-PCR analysis. Yeast two-hybrid analysis suggested that LFMADSs may form higher order complexes with the B-, C-, D, and/or E-class proteins to determine the floral organ identity. Furthermore, E-class LFMADS proteins may function as a glue to mediate and strengthen the protein-protein interactions. Therefore, our de novo datasets would provide information for investigating other differentially expressed candidate transcripts. In addition, functional conservation of LFMADSs appears to be vital in floral transition and floral organ identity.
Collapse
Affiliation(s)
- Wan-Yu Liao
- Institute of Medical Sciences, Tzu-Chi University, Hualien 97004, Taiwan.
| | - Lee-Fong Lin
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan.
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan.
| | - Sheng-Che Hsieh
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan.
| | - Althea Yi-Shan Li
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan.
| | - Yueh-Shiah Tsay
- Division of Crop Improvement, Hualien District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Hualien 97365, Taiwan.
| | - Ming-Lun Chou
- Institute of Medical Sciences, Tzu-Chi University, Hualien 97004, Taiwan.
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan.
| |
Collapse
|
33
|
Callens C, Tucker MR, Zhang D, Wilson ZA. Dissecting the role of MADS-box genes in monocot floral development and diversity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2435-2459. [PMID: 29718461 DOI: 10.1093/jxb/ery086] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/16/2018] [Indexed: 05/05/2023]
Abstract
Many monocot plants have high social and economic value. These include grasses such as rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare), which produce soft commodities for many food and beverage industries, and ornamental flowers such ase lily (Lilium longiflorum) and orchid (Oncidium Gower Ramsey), which represent an important component of international flower markets. There is constant pressure to improve the development and diversity of these species, with a significant emphasis on flower development, and this is particularly relevant considering the impact of changing environments on reproduction and thus yield. MADS-box proteins are a family of transcription factors that contain a conserved 60 amino acid MADS-box motif. In plants, attention has been devoted to characterization of this family due to their roles in inflorescence and flower development, which holds promise for the modification of floral architecture for plant breeding. This has been explored in diverse angiosperms, but particularly the dicot model Arabidopsis thaliana. The focus of this review is on the less well characterized roles of the MADS-box proteins in monocot flower development and how changes in MADS-box proteins throughout evolution may have contributed to creating a diverse range of flowers. Examining these changes within the monocots can identify the importance of certain genes and pinpoint those which might be useful in future crop improvement and breeding strategies.
Collapse
Affiliation(s)
- Cindy Callens
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Dabing Zhang
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| |
Collapse
|
34
|
Ding M, Chen ZJ. Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:37-48. [PMID: 29502038 PMCID: PMC6058195 DOI: 10.1016/j.pbi.2018.02.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 05/19/2023]
Abstract
Polyploidy or whole genome duplication (WGD) is a prominent feature for genome evolution of some animals and all flowering plants, including many important crops such as wheat, cotton, and canola. In autopolyploids, genome duplication often perturbs dosage regulation on biological networks. In allopolyploids, interspecific hybridization could induce genetic and epigenetic changes, the effects of which could be amplified by genome doubling (ploidy changes). Albeit the importance of genetic changes, some epigenetic changes can be stabilized and transmitted as epialleles into the progeny, which are subject to natural selection, adaptation, and domestication. Here we review recent advances for general and specific roles of epigenetic changes in the evolution of flowering plants and domestication of agricultural crops.
Collapse
Affiliation(s)
- Mingquan Ding
- Departments of Molecular Biosciences and Integrative Biology, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Departments of Molecular Biosciences and Integrative Biology, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
35
|
Yan L, Liu Z, Xu H, Zhang X, Zhao A, Liang F, Xin M, Peng H, Yao Y, Sun Q, Ni Z. Transcriptome analysis reveals potential mechanisms for different grain size between natural and resynthesized allohexaploid wheats with near-identical AABB genomes. BMC PLANT BIOLOGY 2018; 18:28. [PMID: 29402221 PMCID: PMC5799976 DOI: 10.1186/s12870-018-1248-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/24/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Common wheat is a typical allohexaploid species (AABBDD) derived from the interspecific crossing between allotetraploid wheat (AABB) and Aegilops tauschii (DD). Wide variation in grain size and shape observed among Aegilops tauschii can be retained in synthetic allohexaploid wheats, but the underlying mechanism remains enigmatic. Here, the natural and resynthesized allohexaploid wheats with near-identical AB genomes and different D genomes (TAA10 and XX329) were employed for analysis. RESULTS Significant differences in grain size and weight between TAA10 and XX329 were observed at the early stages of development, which could be mainly attributed to the higher growth rates of the pericarp and endosperm cells in XX329 compared to TAA10. Furthermore, comparative transcriptome analysis identified that 8891 of 69,711 unigenes (12.75%) were differentially expressed between grains at 6 days after pollination (DAP) of TAA10 and XX329, including 5314 up-regulated and 3577 down-regulated genes in XX329 compared to TAA10. The MapMan functional annotation and enrichment analysis revealed that the differentially expressed genes were significantly enriched in categories of cell wall, carbohydrate and hormone metabolism. Notably, consistent with the up-regulation of sucrose synthase genes in resynthesized relative to natural allohexaploid wheat, the resynthesized allohexaploid wheat accumulated much higher contents of glucose and fructose in 6-DAP grains than those of the natural allohexaploid wheat. CONCLUSIONS These data indicated that the genetic variation of the D genome induced drastic alterations of gene expression in grains of the natural and resynthesized allohexaploid wheats, which may contribute to the observed differences in grain size and weight.
Collapse
Affiliation(s)
- Lei Yan
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Zhenshan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Huanwen Xu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Xiaoping Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Aiju Zhao
- Hebei Crop Genetic Breeding Laboratory Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035 China
| | - Fei Liang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
36
|
Wang T, Huang D, Chen B, Mao N, Qiao Y, Ji M. Differential expression of photosynthesis-related genes in pentaploid interspecific hybrid and its decaploid of Fragaria spp. Genes Genomics 2018; 40:321-331. [DOI: 10.1007/s13258-018-0647-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/04/2018] [Indexed: 12/26/2022]
|
37
|
Zhao Y, Cheng X, Liu X, Wu H, Bi H, Xu H. The Wheat MYB Transcription Factor TaMYB 31 Is Involved in Drought Stress Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1426. [PMID: 30323824 PMCID: PMC6172359 DOI: 10.3389/fpls.2018.01426] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/07/2018] [Indexed: 05/18/2023]
Abstract
Drought is one of the major environmental stresses limiting crop growth and production. MYB family transcription factors play crucial roles in response to abiotic stresses. Previous studies found that TaMYB31 is transcriptionally induced by drought stress. However, the biological functions of TaMYB31 in drought stress responses remained unknown. In this study, three TaMYB31 homoeologous genes from hexaploid wheat, designated TaMYB31-A, TaMYB31-B, and TaMYB31-D, were cloned and characterized. Expression analysis showed that TaMYB31 genes have different tissue expression patterns, and TaMYB31-B has relatively high expression levels in most tested tissues. All the three homoeologs were up-regulated by polyethylene glycol (PEG) 6000 and abscisic acid (ABA) treatments. Subcellular localization analyses revealed that TaMYB31 is localized to the nucleus. Ectopic expression of the TaMYB31-B gene in Arabidopsis affected plants growth and enhanced drought tolerance. In addition, seed germination and seedling root growth of TaMYB31-B transgenic plants were more sensitive to exogenous ABA treatment compared to wild type control. RNA-seq analysis indicated that TaMYB31 functions through up-regulation of wax biosynthesis genes and drought-responsive genes. These results provide evidence that TaMYB31 acts as a positive regulator of drought resistance, and justify its potential application in genetic modification of crop drought tolerance.
Collapse
Affiliation(s)
- Yue Zhao
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiyong Cheng
- College of Agronomy/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Xiaodan Liu
- College of Agronomy/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Huifang Wu
- College of Agronomy/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Huihui Bi
- College of Agronomy/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Huihui Bi
| | - Haixia Xu
- College of Agronomy/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Haixia Xu
| |
Collapse
|
38
|
Lloyd A, Blary A, Charif D, Charpentier C, Tran J, Balzergue S, Delannoy E, Rigaill G, Jenczewski E. Homoeologous exchanges cause extensive dosage-dependent gene expression changes in an allopolyploid crop. THE NEW PHYTOLOGIST 2018; 217:367-377. [PMID: 29034956 DOI: 10.1111/nph.14836] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 08/02/2017] [Indexed: 05/22/2023]
Abstract
Structural variation is a major source of genetic diversity and an important substrate for selection. In allopolyploids, homoeologous exchanges (i.e. between the constituent subgenomes) are a very frequent type of structural variant. However, their direct impact on gene content and gene expression had not been determined. Here, we used a tissue-specific mRNA-Seq dataset to measure the consequences of homoeologous exchanges (HE) on gene expression in Brassica napus, a representative allotetraploid crop. We demonstrate that expression changes are proportional to the change in gene copy number triggered by the HEs. Thus, when homoeologous gene pairs have unbalanced transcriptional contributions before the HE, duplication of one copy does not accurately compensate for loss of the other and combined homoeologue expression also changes. These effects are, however, mitigated over time. This study sheds light on the origins, timing and functional consequences of homeologous exchanges in allopolyploids. It demonstrates that the interplay between new structural variation and the resulting impacts on gene expression, influences allopolyploid genome evolution.
Collapse
Affiliation(s)
- Andrew Lloyd
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| | - Aurélien Blary
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| | - Delphine Charif
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| | - Catherine Charpentier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| | - Joseph Tran
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Sandrine Balzergue
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, Beaucouzé cedex, 49071, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Guillem Rigaill
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), Université d'Evry Val d'Essonne, UMR CNRS 8071, ENSIIE, USC INRA, Évry Cedex, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| |
Collapse
|
39
|
Zhao C, Li H, Zhang W, Wang H, Xu A, Tian J, Zou J, Taylor DC, Zhang M. BnDGAT1s Function Similarly in Oil Deposition and Are Expressed with Uniform Patterns in Tissues of Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 8:2205. [PMID: 29312429 PMCID: PMC5744481 DOI: 10.3389/fpls.2017.02205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/14/2017] [Indexed: 05/03/2023]
Abstract
As an allotetraploid oilcrop, Brassica napus contains four duplicated Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) genes, which catalyze one of the rate-limiting steps in triacylglycerol (TAG) biosynthesis in plants. While all four BnDGAT1s have been expressed functionally in yeast, their expression patterns in different germplasms and tissues and also consequent contribution to seed oil accumulation in planta remain to be elucidated. In this study, the coding regions of the four BnDGAT1s were expressed in an Arabidopsis dgat1 mutant. All four BnDGAT1s showed similar effects on oil content and fatty acid composition, a result which is different from that observed in previous studies of their expression in yeast. Expression patterns of BnDGAT1s were analyzed in developing seeds of 34 B. napus inbred lines and in different tissues of 14 lines. Different expression patterns were observed for the four BnDGAT1s, which suggests that they express independently or randomly in different germplasm sources. Higher expression of BnDGAT1s was correlated with higher seed oil content lines. Tissue-specific analyses showed that the BnDGAT1s were expressed in a uniform pattern in different tissues. Our results suggest that it is important to maintain expression of the four BnDGAT1s for maximum return on oil content.
Collapse
Affiliation(s)
- Cuizhu Zhao
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Huan Li
- College of Agronomy, Northwest A&F University, Yangling, China
| | | | - Hailan Wang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Aixia Xu
- College of Agronomy, Northwest A&F University, Yangling, China
| | | | - Jitao Zou
- National Research Council of Canada, Saskatoon, SK, Canada
| | | | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
40
|
Kiseleva AA, Potokina EK, Salina EA. Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines. BMC PLANT BIOLOGY 2017; 17:172. [PMID: 29143607 PMCID: PMC5688470 DOI: 10.1186/s12870-017-1126-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND Photoperiod insensitive Ppd-1a alleles determine early flowering of wheat. Increased expression of homoeologous Ppd-D1a and Ppd-A1a result from deletions in the promoter region, and elevated expression of Ppd-B1a is determined by an increased copy number. RESULTS In this study, using bread wheat cultivars Sonora and PSL2, which contrast in flowering time, and near-isogenic lines resulting from their cross, "Ppd-m" and "Ppd-w" with Ppd-B1a introgressed from Sonora, we investigated the putative factors that influence Ppd-B1a expression. By analyzing the Ppd-B1a three distinct copies, we identified an indel and the two SNPs, which distinguished the investigated allele from other alleles with a copy number variation. We studied the expression of the Ppd-A1, Ppd-B1a, and Ppd-D1 genes along with genes that are involved in light perception (PhyA, PhyB, PhyC) and the flowering initiation (Vrn-1, TaFT1) and discussed their interactions. Expression of Ppd-B1a in the "Ppd-m" line, which flowered four days earlier than "Ppd-w", was significantly higher. We found PhyC to be up-regulated in lines with Ppd-B1a alleles. Expression of PhyC was higher in "Ppd-m". Microsatellite genotyping demonstrated that in the line "Ppd-m", there is an introgression in the pericentromeric region of chromosome 5B from the early flowering parental Sonora, while the "Ppd-w" does not have this introgression. FHY3/FAR1 is known to be located in this region. Expression of the transcription factor FHY3/FAR1 was higher in the "Ppd-m" line than in "Ppd-w", suggesting that FHY3/FAR1 is important for the wheat flowering time and may cause earlier flowering of "Ppd-m" as compared to "Ppd-w". CONCLUSIONS We propose that there is a positive bidirectional regulation of Ppd-B1a and PhyC with an FHY3/FAR1 contribution. The bidirectional regulation can be proposed for Ppd-A1a and Ppd-D1a. Using in silico analysis, we demonstrated that the specificity of the Ppd-B1 regulation compared to that of homoeologous genes involves not only a copy number variation but also distinct regulatory elements.
Collapse
Affiliation(s)
- Antonina A Kiseleva
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, Russian Federation, 630090.
| | - Elena K Potokina
- N.I. Vavilov Research Institute of Plant Genetic Resources, B.Morskaya Street 42-44, St. Petersburg, Russian Federation, 190000
| | - Elena A Salina
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, Russian Federation, 630090
| |
Collapse
|
41
|
Han H, Wang H, Han Y, Hu Z, Xin M, Peng H, Yao Y, Sun Q, Ni Z. Altered expression of the TaRSL2 gene contributed to variation in root hair length during allopolyploid wheat evolution. PLANTA 2017; 246:1019-1028. [PMID: 28770336 DOI: 10.1007/s00425-017-2735-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/03/2017] [Indexed: 05/16/2023]
Abstract
Altered expression of the TaRSL2 gene was positively correlated with variation in root hair length during allopolyploid wheat evolution, and overexpression of TaRSL2 in Arabidopsis increases root hair length. Root hairs aid nutrient and water uptake and anchor the plant in the soil. Allopolyploid wheats display significant growth vigor in terms of root hair length compared to their diploid progenitors, but little is known about the molecular basis of variation in root hair length during wheat allopolyploidization. Here, we isolated three orthologs of the Arabidopsis root hair gene ROOT HAIR DEFECTIVE SIX-LIKE 2 (AtRSL2) in allohexaploid wheat, designated TaRSL2-4A, TaRSL2-4B and TaRSL2-4D. The deduced polypeptides of these three TaRSL2 homoeologous genes shared high similarity, and a conserved basic helix-loop-helix (bHLH) domain was present in their C-terminal regions. Notably, the expression of TaRSL2 was positively correlated with root hair length of wheat accessions with different ploidy levels. Moreover, ectopic overexpression of TaRSL2-4D in Arabidopsis could increase root hair length. We found that the transcript levels of TaRSL2 homoeologous genes dynamically changed during allopolyploid wheat evolution, implicating the complexity of the underlying molecular mechanism. Collectively, we propose that altered expression of the TaRSL2 gene contributed to variation in root hair length in allopolyploid wheats.
Collapse
Affiliation(s)
- Haiming Han
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huifang Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yao Han
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
42
|
Wang J, Tang M, Chen S, Zheng X, Mo H, Li S, Wang Z, Zhu K, Ding L, Liu S, Li Y, Tan X. Down-regulation of BnDA1, whose gene locus is associated with the seeds weight, improves the seeds weight and organ size in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1024-1033. [PMID: 28097785 PMCID: PMC5506660 DOI: 10.1111/pbi.12696] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 05/03/2023]
Abstract
Brassica napus L. is an important oil crop worldwide and is the main raw material for biofuel. Seed weight and seed size are the main contributors to seed yield. DA1 (DA means big in Chinese) is an ubiquitin receptor and negatively regulates seed size. Down-regulation of AtDA1 in Arabidopsis leads to larger seeds and organs by increasing cell proliferation in integuments. In this study, BnDA1 was down-regulated in B. napus by over expressed of AtDA1R358K , which is a functional deficiency of DA1 with an arginine-to-lysine mutation at the 358th amino acid. The results showed that the biomass and size of the seeds, cotyledons, leaves, flowers and siliques of transgenic plants all increased significantly. In particular, the 1000 seed weight increased 21.23% and the seed yield per plant increased 13.22% in field condition. The transgenic plants had no negative traits related to yield. The candidate gene association analysis demonstrated that the BnDA1 locus was contributed to the seeds weight. Therefore, our study showed that regulation of DA1 in B. napus can increase the seed yield and biomass, and DA1 is a promising target for crop improvement.
Collapse
Affiliation(s)
- Jie‐Li Wang
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Min‐Qiang Tang
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Sheng Chen
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | | | - Hui‐Xian Mo
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology (IGDB)Chinese Academy of Sciences (CAS)BeijingChina
| | - Sheng‐Jun Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology (IGDB)Chinese Academy of Sciences (CAS)BeijingChina
| | - Zheng Wang
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Ke‐Ming Zhu
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Li‐Na Ding
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Sheng‐Yi Liu
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Yun‐Hai Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology (IGDB)Chinese Academy of Sciences (CAS)BeijingChina
| | - Xiao‐Li Tan
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| |
Collapse
|
43
|
Zhang W, Fan X, Gao Y, Liu L, Sun L, Su Q, Han J, Zhang N, Cui F, Ji J, Tong Y, Li J. Chromatin modification contributes to the expression divergence of three TaGS2 homoeologs in hexaploid wheat. Sci Rep 2017; 7:44677. [PMID: 28300215 PMCID: PMC5353557 DOI: 10.1038/srep44677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/13/2017] [Indexed: 01/05/2023] Open
Abstract
Plastic glutamine synthetase (GS2) is responsible for ammonium assimilation. The reason that TaGS2 homoeologs in hexaploid wheat experience different selection pressures in the breeding process remains unclear. TaGS2 were minimally expressed in roots but predominantly expressed in leaves, and TaGS2-B had higher expression than TaGS2-A and TaGS2-D. ChIP assays revealed that the activation of TaGS2-B expression in leaves was correlated with increased H3K4 trimethylation. The transcriptional silencing of TaGS2 in roots was correlated with greater cytosine methylation and less H3K4 trimethylation. Micrococcal nuclease and DNase I accessibility experiments indicated that the promoter region was more resistant to digestion in roots than leaves, which indicated that the closed nucleosome conformation of the promoter region was important to the transcription initiation for the spatial-temporal expression of TaGS2. In contrast, the transcribed regions possess different nuclease accessibilities of three TaGS2 homoeologs in the same tissue, suggesting that nucleosome conformation of the transcribed region was part of the fine adjustment of TaGS2 homoeologs. This study provides evidence that histone modification, DNA methylation and nuclease accessibility coordinated the control of the transcription of TaGS2 homoeologs. Our results provided important evidence that TaGS2-B experienced the strongest selection pressures during the breeding process.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yingjie Gao
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang 050024, China
| | - Lei Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijing Sun
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050035, China
| | - Qiannan Su
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fa Cui
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Junming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
44
|
Zhao Y, Tian X, Li Y, Zhang L, Guan P, Kou X, Wang X, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Peng H. Molecular and Functional Characterization of Wheat ARGOS Genes Influencing Plant Growth and Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:170. [PMID: 28228774 PMCID: PMC5296299 DOI: 10.3389/fpls.2017.00170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/27/2017] [Indexed: 05/19/2023]
Abstract
Auxin Regulated Gene involved in Organ Size (ARGOS) is significantly and positively associated with organ size and is involved in abiotic stress responses in plants. However, no studies on wheat ARGOS genes have been reported to date. In the present study, three TaARGOS homoeologous genes were isolated and located on chromosomes 4A, 4B, and 4D of bread wheat, all of which are highly conserved in wheat and its wild relatives. Comparisons of gene expression in different tissues demonstrated that the TaARGOSs were mainly expressed in the stem. Furthermore, the TaARGOS transcripts were significantly induced by drought, salinity, and various phytohormones. Transient expression of the TaARGOS-D protein in wheat protoplasts showed that TaARGOS-D localized to the endoplasmic reticulum. Moreover, overexpression of TaARGOS-D in Arabidopsis resulted in an enhanced germination rate, larger rosette diameter, increased rosette leaf area, and higher silique number than in wild-type (WT) plants. The roles of TaARGOS-D in the control of plant growth were further studied via RNA-seq, and it was found that 105 genes were differentially expressed; most of these genes were involved in 'developmental processes.' Interestingly, we also found that overexpression of TaARGOS-D in Arabidopsis improved drought and salinity tolerance and insensitivity to ABA relative to that in WT plants. Taken together, these results demonstrate that the TaARGOSs are involved in seed germination, seedling growth, and abiotic stress tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural UniversityBeijing, China
| |
Collapse
|
45
|
Ta KN, Adam H, Staedler YM, Schönenberger J, Harrop T, Tregear J, Do NV, Gantet P, Ghesquière A, Jouannic S. Differences in meristem size and expression of branching genes are associated with variation in panicle phenotype in wild and domesticated African rice. EvoDevo 2017; 8:2. [PMID: 28149498 PMCID: PMC5273837 DOI: 10.1186/s13227-017-0065-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/14/2017] [Indexed: 11/15/2022] Open
Abstract
Background
The African rice Oryza glaberrima was domesticated from its wild relative Oryza barthii about 3000 years ago. During the domestication process, panicle complexity changed from a panicle with low complexity in O. barthii, to a highly branched panicle carrying more seeds in O. glaberrima. To understand the basis of this differential panicle development between the two species, we conducted morphological and molecular analyses of early panicle development. Results Using X-ray tomography, we analyzed the morphological basis of early developmental stages of panicle development. We uncovered evidence for a wider rachis meristem in O. glaberrima than in O. barthii. At the molecular level, spatial and temporal expression profiles of orthologs of O. sativa genes related to meristem activity and meristem fate control were obtained using in situ hybridization and qRT-PCR. Despite highly conserved spatial expression patterns between O. glaberrima and O. barthii, differences in the expression levels of these early acting genes were detected. Conclusion The higher complexity of the O. glaberrima panicle compared to that of its wild relative O. barthii is associated with a wider rachis meristem and a modification of expression of branching-related genes. Our study indicates that the expression of genes in the miR156/miR529/SPL and TAW1 pathways, along with that of their target genes, is altered from the unbranched stage of development. This suggests that differences in panicle complexity between the two African rice species result from early alterations to gene expression during reproductive development. Electronic supplementary material The online version of this article (doi:10.1186/s13227-017-0065-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- K N Ta
- UMR DIADE, IRD, 911, Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.,LMI RICE, IRD, USTH, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Pham Van Dong Road, Hanoi, Vietnam
| | - H Adam
- UMR DIADE, IRD, 911, Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Y M Staedler
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, Austria
| | - J Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, Austria
| | - T Harrop
- UMR DIADE, IRD, 911, Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - J Tregear
- UMR DIADE, IRD, 911, Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - N V Do
- LMI RICE, IRD, USTH, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Pham Van Dong Road, Hanoi, Vietnam
| | - P Gantet
- LMI RICE, IRD, USTH, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Pham Van Dong Road, Hanoi, Vietnam.,UMR DIADE, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.,Department of Biotechnology-Pharmacology, University of Science and Technology of Hanoi (USTH), 18 Hoang Quoc Viet Road, Hanoi, Vietnam
| | - A Ghesquière
- UMR DIADE, IRD, 911, Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - S Jouannic
- UMR DIADE, IRD, 911, Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.,LMI RICE, IRD, USTH, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Pham Van Dong Road, Hanoi, Vietnam
| |
Collapse
|
46
|
Soltis DE, Visger CJ, Marchant DB, Soltis PS. Polyploidy: Pitfalls and paths to a paradigm. AMERICAN JOURNAL OF BOTANY 2016; 103:1146-66. [PMID: 27234228 DOI: 10.3732/ajb.1500501] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/25/2016] [Indexed: 05/22/2023]
Abstract
Investigators have long searched for a polyploidy paradigm-rules or principles that might be common following polyploidization (whole-genome duplication, WGD). Here we attempt to integrate what is known across the more thoroughly investigated polyploid systems on topics ranging from genetics to ecology. We found that while certain rules may govern gene retention and loss, systems vary in the prevalence of gene silencing vs. homeolog loss, chromosomal change, the presence of a dominant genome (in allopolyploids), and the relative importance of hybridization vs. genome doubling per se. In some lineages, aspects of polyploidization are repeated across multiple origins, but in other species multiple origins behave more stochastically in terms of genetic and phenotypic change. Our investigation also reveals that the path to synthesis is hindered by numerous gaps in our knowledge of even the best-known systems. Particularly concerning is the absence of linkage between genotype and phenotype. Moreover, most recent studies have focused on the genetic and genomic attributes of polyploidy, but rarely is there an ecological or physiological context. To promote a path to a polyploidy paradigm (or paradigms), we propose a major community goal over the next 10-20 yr to fill the gaps in our knowledge of well-studied polyploids. Before a meaningful synthesis is possible, more complete data sets are needed for comparison-systems that include comparable genetic, genomic, chromosomal, proteomic, as well as morphological, physiological, and ecological data. Also needed are more natural evolutionary model systems, as most of what we know about polyploidy continues to come from a few crop and genetic models, systems that often lack the ecological context inherent in natural systems and necessary for understanding the drivers of biodiversity.
Collapse
Affiliation(s)
- Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA Genetics Institute, University of Florida, Gainesville, Florida 32608 USA
| | - Clayton J Visger
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - D Blaine Marchant
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Genetics Institute, University of Florida, Gainesville, Florida 32608 USA
| |
Collapse
|
47
|
Springer NM, Lisch D, Li Q. Creating Order from Chaos: Epigenome Dynamics in Plants with Complex Genomes. THE PLANT CELL 2016; 28:314-25. [PMID: 26869701 PMCID: PMC4790878 DOI: 10.1105/tpc.15.00911] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/10/2016] [Indexed: 05/02/2023]
Abstract
Flowering plants have strikingly distinct genomes, although they contain a similar suite of expressed genes. The diversity of genome structures and organization is largely due to variation in transposable elements (TEs) and whole-genome duplication (WGD) events. We review evidence that chromatin modifications and epigenetic regulation are intimately associated with TEs and likely play a role in mediating the effects of WGDs. We hypothesize that the current structure of a genome is the result of various TE bursts and WGDs and it is likely that the silencing mechanisms and the chromatin structure of a genome have been shaped by these events. This suggests that the specific mechanisms targeting chromatin modifications and epigenomic patterns may vary among different species. Many crop species have likely evolved chromatin-based mechanisms to tolerate silenced TEs near actively expressed genes. These interactions of heterochromatin and euchromatin are likely to have important roles in modulating gene expression and variability within species.
Collapse
Affiliation(s)
- Nathan M Springer
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota 55108
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Qing Li
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota 55108
| |
Collapse
|
48
|
Han Y, Xin M, Huang K, Xu Y, Liu Z, Hu Z, Yao Y, Peng H, Ni Z, Sun Q. Altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat. THE NEW PHYTOLOGIST 2016; 209:721-32. [PMID: 26334764 DOI: 10.1111/nph.13615] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/22/2015] [Indexed: 05/23/2023]
Abstract
Polyploidy is a major driving force in plant evolution and speciation. Phenotypic changes often arise with the formation, natural selection and domestication of polyploid plants. However, little is known about the consequence of hybridization and polyploidization on root hair development. Here, we report that root hair length of synthetic and natural allopolyploid wheats is significantly longer than those of their diploid progenitors, whereas no difference is observed between allohexaploid and allotetraploid wheats. The expression of wheat gene TaRSL4, an orthologue of AtRSL4 controlling the root hair development in Arabidopsis, was positively correlated with the root hair length in diploid and allotetraploid wheats. Moreover, transcript abundance of TaRSL4 homoeologue from A genome (TaRSL4-A) was much higher than those of other genomes in natural allopolyploid wheat. Notably, increased root hair length by overexpression of the TaRSL4-A in wheat led to enhanced shoot fresh biomass under nutrient-poor conditions. Our observations indicate that increased root hair length in allohexaploid wheat originated in the allotetraploid progenitors and altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat.
Collapse
Affiliation(s)
- Yao Han
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Ke Huang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Yuyun Xu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Zhenshan Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| |
Collapse
|
49
|
Tanaka M, Tanaka H, Shitsukawa N, Kitagawa S, Takumi S, Murai K. Homoeologous copy-specific expression patterns of MADS-box genes for floral formation in allopolyploid wheat. Genes Genet Syst 2015; 90:217-29. [PMID: 26616759 DOI: 10.1266/ggs.15-00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The consensus model for floral organ formation in higher plants, the so-called ABCDE model, proposes that floral whorl-specific combinations of class A, B, C, D, and E genes specify floral organ identity. Class A, B, C, D and E genes encode MADS-box transcription factors; the single exception being the class A gene APETALA2. Bread wheat (Triticum aestivum) is a hexaploid species with a genome constitution AABBDD; the hexaploid originated from a cross between tetraploid T. turgidum (AABB) and diploid Aegilops tauschii (DD). Tetraploid wheat is thought to have originated from a cross between the diploid species T. urartu (AA) and Ae. speltoides (BB). Consequently, the hexaploid wheat genome contains triplicated homoeologous copies (homoeologs) of each gene derived from the different ancestral diploid species. In this study, we examined the expression patterns of homoeologs of class B, C and D MADS-box genes during floral development. For the class B gene wheat PISTILLATA2 (WPI2), the homoeologs from the A and D genomes were expressed, while expression of the B genome homoeolog was suppressed. For the class C gene wheat AGAMOUS1 (WAG1), the homoeologs on the A and B genomes were expressed, while expression of the D genome homoeolog was suppressed. For the class D gene wheat SEEDSTICK (WSTK), the B genome homoeolog was preferentially expressed. These differential patterns of homoeolog expression were consistently observed among different hexaploid wheat varieties and synthetic hexaploid wheat lines developed by artificial crosses between tetraploid wheat and Ae. tauschii. These results suggest that homoeolog-specific regulation of the floral MADS-box genes occurs in allopolyploid wheat.
Collapse
Affiliation(s)
- Miku Tanaka
- Department of Bioscience, Fukui Prefectural University
| | | | | | | | | | | |
Collapse
|
50
|
Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y, Sun Q. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2015; 15:152. [PMID: 26092253 PMCID: PMC4474349 DOI: 10.1186/s12870-015-0511-8] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/28/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Hexaploid wheat (Triticum aestivum) is a globally important crop. Heat, drought and their combination dramatically reduce wheat yield and quality, but the molecular mechanisms underlying wheat tolerance to extreme environments, especially stress combination, are largely unknown. As an allohexaploid, wheat consists of three closely related subgenomes (A, B, and D), and was reported to show improved tolerance to stress conditions compared to tetraploid. But so far very little is known about how wheat coordinates the expression of homeologous genes to cope with various environmental constraints on the whole-genome level. RESULTS To explore the transcriptional response of wheat to the individual and combined stress, we performed high-throughput transcriptome sequencing of seedlings under normal condition and subjected to drought stress (DS), heat stress (HS) and their combination (HD) for 1 h and 6 h, and presented global gene expression reprograms in response to these three stresses. Gene Ontology (GO) enrichment analysis of DS, HS and HD responsive genes revealed an overlap and complexity of functional pathways between each other. Moreover, 4,375 wheat transcription factors were identified on a whole-genome scale based on the released scaffold information by IWGSC, and 1,328 were responsive to stress treatments. Then, the regulatory network analysis of HSFs and DREBs implicated they were both involved in the regulation of DS, HS and HD response and indicated a cross-talk between heat and drought stress. Finally, approximately 68.4 % of homeologous genes were found to exhibit expression partitioning in response to DS, HS or HD, which was further confirmed by using quantitative RT-PCR and Nullisomic-Tetrasomic lines. CONCLUSIONS A large proportion of wheat homeologs exhibited expression partitioning under normal and abiotic stresses, which possibly contributes to the wide adaptability and distribution of hexaploid wheat in response to various environmental constraints.
Collapse
Affiliation(s)
- Zhenshan Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Beijing, Haidian District, 100193, China.
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Beijing, Haidian District, 100193, China.
| | - Jinxia Qin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Beijing, Haidian District, 100193, China.
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Beijing, Haidian District, 100193, China.
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Beijing, Haidian District, 100193, China.
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Beijing, Haidian District, 100193, China.
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Beijing, Haidian District, 100193, China.
| |
Collapse
|