1
|
Barragán‐Rosillo AC, Chávez Montes RA, Herrera‐Estrella L. The role of DNA content in shaping chromatin architecture and gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70116. [PMID: 40127924 PMCID: PMC11932763 DOI: 10.1111/tpj.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Whole-genome duplication is an evolutionary force that drives speciation in all living kingdoms and is notably prevalent in plants. The evolutionary history of plants involved at least two genomic duplications that significantly expanded the plant morphology and physiology spectrum. Many important crops are polyploids, showing valuable features relative to morphological and stress response traits. After genome duplication, diploidization processes facilitate genomic adjustments to restore disomic inheritance. However, little is known about the chromatin changes triggered by nuclear DNA content alterations. Here, we report that synthetically induced genome duplication leads to chromatinization and significant changes in gene expression, resulting in a transcriptional landscape resembling a natural tetraploid. Interestingly, synthetic diploidization elicits only minor alterations in transcriptional activity and chromatin accessibility compared to the more pronounced effects of tetraploidization. We identified epigenetic factors, including specific histone variants, that showed increased expression following genome duplication and decreased expression after genome reduction. These changes may play a key role in the epigenetic mechanisms underlying the phenotypic complexity after tetraploidization in plants. Our findings shed light on the mechanisms that modulate chromatin accessibility remodeling and gene transcription regulation underlying plant genome adaptation in response to changes in genome size.
Collapse
Affiliation(s)
- Alfonso Carlos Barragán‐Rosillo
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTexasUSA
| | - Ricardo A. Chávez Montes
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTexasUSA
| | - Luis Herrera‐Estrella
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTexasUSA
- Unidad de Genómica Avanzada del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoGuanajuatoMexico
| |
Collapse
|
2
|
Vogel K, Isono E. Deubiquitylating enzymes in Arabidopsis thaliana endocytic protein degradation. Biochem Soc Trans 2024; 52:291-299. [PMID: 38174770 DOI: 10.1042/bst20230561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
The regulation of ubiquitylation is key for plant growth and development, in which the activities of ubiquitylating enzymes as well as deubiquitylating enzymes (DUBs) determine the stability or function of the modified proteins. In contrast with ubiquitylating enzymes, there are less numbers of DUBs. DUBs can be classified into seven protein families according to the amino acid sequence of their catalytic domains. The catalytic domains of animal and plant DUB families show high homology, whereas the regions outside of the catalytic site can vary a lot. By hydrolyzing the ubiquitin molecules from ubiquitylated proteins, DUBs control ubiquitin-dependent selective protein degradation pathways such as the proteasomal-, autophagic-, and endocytic degradation pathways. In the endocytic degradation pathway, DUBs can modulate the endocytic trafficking and thus the stability of plasma membrane proteins including receptors and transporters. To date, three DUB families were shown to control the endocytic degradation pathway namely associated molecule with the SH3 domain of STAM (AMSH) 3, ubiquitin-specific protease (UBP) 12 and UBP13, and ovarian tumor protease (OTU) 11 and OTU12. In this review we will summarize the activity, molecular functions, and target protein of these DUBs and how they contribute to the environmental response of plants.
Collapse
Affiliation(s)
- Karin Vogel
- Department of Biology, University of Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany
| | - Erika Isono
- Department of Biology, University of Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany
| |
Collapse
|
3
|
Abstract
Background Identifying CO2-binding proteins is vital for our knowledge of CO2-regulated molecular processes. The carbamate post-translational modification is a reversible CO2-mediated adduct that can form on neutral N-terminal α-amino or lysine ε-amino groups. Methods We have developed triethyloxonium ion (TEO) as a chemical proteomics tool to trap the carbamate post-translational modification on protein covalently. We use 13C-NMR and TEO and identify ubiquitin as a plant CO2-binding protein. Results We observe the carbamate post-translational modification on the Arabidopsis thaliana ubiquitin ε-amino groups of lysines 6, 33, and 48. We show that biologically relevant near atmospheric PCO2 levels increase ubiquitin conjugation dependent on lysine 6. We further demonstrate that CO2 increases the ubiquitin E2 ligase (AtUBC5) charging step via the transthioesterification reaction in which Ub is transferred from the E1 ligase active site to the E2 active site. Conclusions and general significance Therefore, plant ubiquitin is a CO2-binding protein, and the carbamate post-translational modification represents a potential mechanism through which plant cells can respond to fluctuating PCO2.
Collapse
Affiliation(s)
- Harry G Gannon
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Martin J Cann
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
4
|
Liu J, Nie B, Yu B, Xu F, Zhang Q, Wang Y, Xu W. Rice ubiquitin-conjugating enzyme OsUbc13 negatively regulates immunity against pathogens by enhancing the activity of OsSnRK1a. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37102249 PMCID: PMC10363768 DOI: 10.1111/pbi.14059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/28/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Ubc13 is required for Lys63-linked polyubiquitination and innate immune responses in mammals, but its functions in plant immunity still remain largely unknown. Here, we used molecular biological, pathological, biochemical, and genetic approaches to evaluate the roles of rice OsUbc13 in response to pathogens. The OsUbc13-RNA interference (RNAi) lines with lesion mimic phenotypes displayed a significant increase in the accumulation of flg22- and chitin-induced reactive oxygen species, and in defence-related genes expression or hormones as well as resistance to Magnaporthe oryzae and Xanthomonas oryzae pv oryzae. Strikingly, OsUbc13 directly interacts with OsSnRK1a, which is the α catalytic subunit of SnRK1 (sucrose non-fermenting-1-related protein kinase-1) and acts as a positive regulator of broad-spectrum disease resistance in rice. In the OsUbc13-RNAi plants, although the protein level of OsSnRK1a did not change, its activity and ABA sensitivity were obviously enhanced, and the K63-linked polyubiquitination was weaker than that of wild-type Dongjin (DJ). Overexpression of the deubiquitinase-encoding gene OsOTUB1.1 produced similar effects with inhibition of OsUbc13 in affecting immunity responses, M. oryzae resistance, OsSnRK1a ubiquitination, and OsSnRK1a activity. Furthermore, re-interfering with OsSnRK1a in one OsUbc13-RNAi line (Ri-3) partially restored its M. oryzae resistance to a level between those of Ri-3 and DJ. Our data demonstrate OsUbc13 negatively regulates immunity against pathogens by enhancing the activity of OsSnRK1a.
Collapse
Affiliation(s)
- Jianping Liu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Nie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Boling Yu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feiyun Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Zhang
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Zhang X, Kuang T, Dong W, Qian Z, Zhang H, Landis JB, Feng T, Li L, Sun Y, Huang J, Deng T, Wang H, Sun H. Genomic convergence underlying high-altitude adaptation in alpine plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36960823 DOI: 10.1111/jipb.13485] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Evolutionary convergence is one of the most striking examples of adaptation driven by natural selection. However, genomic evidence for convergent adaptation to extreme environments remains scarce. Here, we assembled reference genomes of two alpine plants, Saussurea obvallata (Asteraceae) and Rheum alexandrae (Polygonaceae), with 37,938 and 61,463 annotated protein-coding genes. By integrating an additional five alpine genomes, we elucidated genomic convergence underlying high-altitude adaptation in alpine plants. Our results detected convergent contractions of disease-resistance genes in alpine genomes, which might be an energy-saving strategy for surviving in hostile environments with only a few pathogens present. We identified signatures of positive selection on a set of genes involved in reproduction and respiration (e.g., MMD1, NBS1, and HPR), and revealed signatures of molecular convergence on genes involved in self-incompatibility, cell wall modification, DNA repair and stress resistance, which may underlie adaptation to extreme cold, high ultraviolet radiation and hypoxia environments. Incorporating transcriptomic data, we further demonstrated that genes associated with cuticular wax and flavonoid biosynthetic pathways exhibit higher expression levels in leafy bracts, shedding light on the genetic mechanisms of the adaptive "greenhouse" morphology. Our integrative data provide novel insights into convergent evolution at a high-taxonomic level, aiding in a deep understanding of genetic adaptation to complex environments.
Collapse
Affiliation(s)
- Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, China
| | - Tianhui Kuang
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Wenlin Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihao Qian
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey Hortorium, Cornell University, Ithaca, New York, 14850, USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | - Tao Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, China
| | - Lijuan Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jinling Huang
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| | - Tao Deng
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, China
| | - Hang Sun
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
6
|
Yao S, Xie M, Hu M, Cui X, Wu H, Li X, Hu P, Tong C, Yu X. Genome-wide characterization of ubiquitin-conjugating enzyme gene family explores its genetic effects on the oil content and yield of Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 14:1118339. [PMID: 37021309 PMCID: PMC10067767 DOI: 10.3389/fpls.2023.1118339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Ubiquitin-conjugating enzyme (UBC) is a critical part of the ubiquitin-proteasome pathway and plays crucial roles in growth, development and abiotic stress response in plants. Although UBC genes have been detected in several plant species, characterization of this gene family at the whole-genome level has not been conducted in Brassica napus. In the present study, 200 putative BnUBCs were identified in B. napus, which were clustered into 18 subgroups based on phylogenetic analysis. BnUBCs within each subgroup showed relatively conserved gene architectures and motifs. Moreover, the gene expression patterns in various tissues as well as the identification of cis-acting regulatory elements in BnUBC promoters suggested further investigation of their potential functions in plant growth and development. Furthermore, three BnUBCs were predicted as candidate genes for regulating agronomic traits related to oil content and yield through association mapping. In conclusion, this study provided a wealth of information on the UBC family in B. napus and revealed their effects on oil content and yield, which will aid future functional research and genetic breeding of B. napus.
Collapse
Affiliation(s)
- Shengli Yao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Meili Xie
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Ming Hu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - XiaoBo Cui
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Haoming Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Xiaohua Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Peng Hu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoli Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Luo R, Yang K, Xiao W. Plant deubiquitinases: from structure and activity to biological functions. PLANT CELL REPORTS 2023; 42:469-486. [PMID: 36567335 DOI: 10.1007/s00299-022-02962-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
This article attempts to provide comprehensive review of plant deubiquitinases, paying special attention to recent advances in their biochemical activities and biological functions. Proteins in eukaryotes are subjected to post-translational modifications, in which ubiquitination is regarded as a reversible process. Cellular deubiquitinases (DUBs) are a key component of the ubiquitin (Ub)-proteasome system responsible for cellular protein homeostasis. DUBs recycle Ub by hydrolyzing poly-Ub chains on target proteins, and maintain a balance of the cellular Ub pool. In addition, some DUBs prefer to cleave poly-Ub chains not linked through the conventional K48 residue, which often alter the substrate activity instead of its stability. In plants, all seven known DUB subfamilies have been identified, namely Ub-binding protease/Ub-specific protease (UBP/USP), Ub C-terminal hydrolase (UCH), Machado-Joseph domain-containing protease (MJD), ovarian-tumor domain-containing protease (OTU), zinc finger with UFM1-specific peptidase domain protease (ZUFSP), motif interacting with Ub-containing novel DUB family (MINDY), and JAB1/MPN/MOV34 protease (JAMM). This review focuses on recent advances in the structure, activity, and biological functions of plant DUBs, particularly in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Runbang Luo
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
8
|
Liu W, Tang X, Fu X, Zhang H, Zhu C, Zhang N, Si H. Functional Characterization of Potato UBC13- UEV1s Genes Required for Ubiquitin Lys63 Chain to Polyubiquitination. Int J Mol Sci 2023; 24:ijms24032412. [PMID: 36768743 PMCID: PMC9917286 DOI: 10.3390/ijms24032412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Ubiquitin-conjugating enzymes (E2s/UBC) are components of the ubiquitin proteasome system (UPS), and the ubiquitin-conjugating enzyme variant (UEV) is one of E2s (ubiquitin-conjugating enzymes, UBC) subfamily. The UEVs and UBC13 play an auxiliary role in mediating Lys63-linked polyUb chain assembly, which is correlated with target protein non-proteolytic functions, such as DNA repair or response to stress. However, the collaborative mechanism of StUBC13 (homologue of AtUBC13) and StUEVs (the UEVs in potato) involved in potato are not fully understood understood. Here, we identified two StUBC13 and seven StUEVs from potato genome. We analyzed protein motif and conserved domain, gene structure, phylogenetic features, cis-acting elements of StUBC13 and StUEVs. Subsequently, we screened StUBC13 partners protein and verified interaction between StUBC13 and StUEVs using yeast two-hybrid, split luciferase complementation (SLC) and bimolecular fluorescence complementation (BiFC) approach. The expression profile and qRT-PCR analysis suggested that StUBC13 and StUEVs gene exhibited a tissue-specific expression and were induced by different stress. Overall, this investigative study provides a comprehensive reference and view for further functional research on StUBC13 and StUEV1s in potato.
Collapse
Affiliation(s)
- Weigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xue Fu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Huanhuan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Cunlan Zhu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence:
| |
Collapse
|
9
|
Kumasaruge I, Wen R, Wang L, Gao P, Peng G, Xiao W. Systematic characterization of Brassica napus UBC13 genes involved in DNA-damage response and K63-linked polyubiquitination. BMC PLANT BIOLOGY 2023; 23:24. [PMID: 36631796 PMCID: PMC9835285 DOI: 10.1186/s12870-023-04035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ubc13 is the only known ubiquitin conjugating enzyme (Ubc/E2) dedicated to promoting Lys (K)63-linked polyubiquitination, and this process requires a Ubc/E2 variant (UEV). Unlike conventional K48-linked polyubiquitination that targets proteins for degradation, K63-linked polyubiquitination, which is involved in several cellular processes, does not target proteins for degradation but alter their activities. RESULTS In this study we report the identification and functional characterization of 12 Brassica napus UBC13 genes. All the cloned UBC13 gene products were able to physically interact with AtUev1D, an Arabidopsis UEV, to form stable complexes that are capable of catalyzing K63-linked polyubiquitination in vitro. Furthermore, BnUBC13 genes functionally complemented the yeast ubc13 null mutant defects in spontaneous mutagenesis and DNA-damage responses, suggesting that BnUBC13s can replace yeast UBC13 in mediating K63-linked polyubiquitination and error-free DNA-damage tolerance. CONCLUSION Collectively, this study provides convincing data to support notions that B. napus Ubc13s promote K63-linked polyubiquitination and are probably required for abiotic stress response. Since plant Ubc13-UEV are also implicated in other developmental and stress responses, this systematic study sets a milestone in exploring roles of K63-linked polyubiquitination in this agriculturally important crop.
Collapse
Affiliation(s)
- Ivanthi Kumasaruge
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Rui Wen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Lipu Wang
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Peng Gao
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
10
|
Wang L, Yang K, Wang Q, Xiao W. Genetic analysis of DNA-damage tolerance pathways in Arabidopsis. PLANT CELL REPORTS 2023; 42:153-164. [PMID: 36319861 DOI: 10.1007/s00299-022-02942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Genetic analysis revealed a two-branch DNA-damage tolerance mechanism in Arabidopsis, namely translesion DNA synthesis and error-free lesion bypass, represented by Rev3 and Rad5a-Uev1C/D, respectively. DNA-damage tolerance (DDT) is a mechanism by which cells complete replication in the presence of replication-blocking lesions. In budding yeast, DDT is achieved through Rad6-Rad18-mediated monoubiquitination of proliferating cell nuclear antigen (PCNA), which promotes translesion DNA synthesis (TLS) and is followed by Ubc13-Mms2-Rad5 mediated K63-linked PCNA polyubiquitination that promotes error-free lesion bypass. Arabidopsis and other known plant genomes contain all of the above homologous genes except RAD18, and whether plants possess an intact DDT mechanism is unclear. In this study, we created Arabidopsis UEV1 (homologous to yeast MMS2) gene mutations and obtained two sets of double mutant lines Atuev1ab and Atuev1cd. It turned out that the Atuev1cd, but not the Atuev1ab mutant, was sensitive to DNA damage. Genetic analyses revealed that AtUEV1C/D and AtRAD5a function in the same pathway, while TLS represented by AtREV3 functions in a separate pathway in response to replication-blocking lesions. Furthermore, unlike budding yeast RAD5 that also functions in the TLS pathway, AtRAD5a is not required for TLS. Observations in this study collectively establish a two-branch DDT model in plants with similarity to and difference from the yeast DDT.
Collapse
Affiliation(s)
- Linxiao Wang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Qiuheng Wang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
11
|
Kosová K, Vítámvás P, Skuhrovec J, Vítámvás J, Planchon S, Renaut J, Saska P. Proteomic responses of two spring wheat cultivars to the combined water deficit and aphid ( Metopolophium dirhodum) treatments. FRONTIERS IN PLANT SCIENCE 2022; 13:1005755. [PMID: 36452089 PMCID: PMC9704420 DOI: 10.3389/fpls.2022.1005755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
In the field, plants usually have to face the combined effects of abiotic and biotic stresses. In our study, two spring wheat cultivars-Septima and Quintus-were subjected to three water regimes [70%, 50%, and 40% soil water capacity (SWC)], aphid (Metopolophium dirhodum) infestation, or the combination of both stresses, i.e., water deficit (50%, 40% SWC) and aphids. The study has a 2 × 3 × 2 factorial design with three biological replicates. In the present study, the results of proteomic analysis using 2D-DIGE followed by MALDI-TOF/TOF protein identification are presented. Water deficit but also aphid infestation led to alterations in 113 protein spots including proteins assigned to a variety of biological processes ranging from signaling via energy metabolism, redox regulation, and stress and defense responses to secondary metabolism indicating a long-term adaptation to adverse conditions. The absence of specific proteins involved in plant response to herbivorous insects indicates a loss of resistance to aphids in modern wheat cultivars during the breeding process and is in accordance with the "plant vigor hypothesis." Septima revealed enhanced tolerance with respect to Quintus as indicated by higher values of morphophysiological characteristics (fresh aboveground biomass, leaf length, osmotic potential per full water saturation) and relative abundance of proteins involved in mitochondrial respiration and ATP biosynthesis.
Collapse
Affiliation(s)
- Klára Kosová
- Plant Stress Biology and Biotechnology Group, Department of Plant Genetics and Breeding, Crop Research Institute, Prague, Czechia
| | - Pavel Vítámvás
- Plant Stress Biology and Biotechnology Group, Department of Plant Genetics and Breeding, Crop Research Institute, Prague, Czechia
| | - Jiří Skuhrovec
- Functional Diversity Group, Department of Plant Protection, Crop Research Institute, Prague, Czechia
| | - Jan Vítámvás
- Plant Stress Biology and Biotechnology Group, Department of Plant Genetics and Breeding, Crop Research Institute, Prague, Czechia
- Faculty of Forestry and Wood Science, Czech University of Life Sciences, Prague, Czechia
| | - Sébastien Planchon
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| | - Jenny Renaut
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| | - Pavel Saska
- Functional Diversity Group, Department of Plant Protection, Crop Research Institute, Prague, Czechia
| |
Collapse
|
12
|
Yang K, Xiao W. Functions and mechanisms of the Ubc13-UEV complex and lysine 63-linked polyubiquitination in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5372-5387. [PMID: 35640002 DOI: 10.1093/jxb/erac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitination is one of the best-known post-translational modifications in eukaryotes, in which different linkage types of polyubiquitination result in different outputs of the target proteins. Distinct from the well-characterized K48-linked polyubiquitination that usually serves as a signal for degradation of the target protein, K63-linked polyubiquitination often requires a unique E2 heterodimer Ubc13-UEV and alters the target protein activity instead of marking it for degradation. This review focuses on recent advances on the roles of Ubc13-UEV-mediated K63-linked polyubiquitination in plant growth, development, and response to environmental stresses.
Collapse
Affiliation(s)
- Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Orosa-Puente B, Spoel SH. Harnessing the ubiquitin code to respond to environmental cues. Essays Biochem 2022; 66:111-121. [PMID: 35880291 PMCID: PMC9400065 DOI: 10.1042/ebc20210094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
Ubiquitination is an essential post-translational signal that allows cells to adapt and respond to environmental stimuli. Substrate modifications range from a single ubiquitin molecule to complex polyubiquitin chains, where diverse chain topologies constitute a code that is utilized to modify the functions of proteins in numerous cellular signalling pathways. Diverse ubiquitin chain topologies are generated by linking the C-terminus of ubiquitin to one of seven lysine residues or the N-terminal methionine 1 residue of the preceding ubiquitin. Cooperative action between a large array of E2 conjugating and E3 ligase enzymes supports the formation of not only homotypic ubiquitin chains but also heterotypic mixed or branched chains. This complex array of chain topologies is recognized by proteins containing linkage-specific ubiquitin-binding domains and regulates numerous cellular pathways. Although many functions of the ubiquitin code in plants remain unknown, recent work suggests that specific chain topologies are associated with particular molecular processes. Deciphering the ubiquitin code and how plants utilize it to cope with the changing environment is essential to understand the regulatory mechanisms that underpin myriad stress responses and establishment of environmental tolerance.
Collapse
Affiliation(s)
- Beatriz Orosa-Puente
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 5JF, U.K
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 5JF, U.K
| |
Collapse
|
14
|
Liu H, Lu Y, Wang X, Wang X, Li R, Lu C, Lan X, Chen Y. Selection and Validation of Reference Genes for RT-qPCR Analysis in Tibetan Medicinal Plant Saussurea Laniceps Callus under Abiotic Stresses and Hormone Treatments. Genes (Basel) 2022; 13:904. [PMID: 35627289 PMCID: PMC9140610 DOI: 10.3390/genes13050904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Real-time quantitative PCR (RT-qPCR) is an important technique for studying gene expression analysis, but accurate and reliable results depend on the use of a stable reference gene. This study proposes to test the expression stability of candidate reference genes in the callus of Saussurea laniceps, a unique Tibetan medicinal plant. Based on the S. laniceps callus transcriptome, eleven candidate reference genes, including TUA2, TUB3, TUB8, TIF3B1, TIF3H1, ELF5A, PP2AA2, UEV1D, UBL5, UBC36, and SKIP1), were validated for RT-qPCR normalization in the callus under abiotic stress (salt, cold, and UV) and hormone treatments (abscisic acid, MeJA, and salicylic acid). The stability of the candidate genes was evaluated in all the samples of S. laniceps. Comprehensive analysis of all samples showed that the best reference genes were UBC36 and UBL5. ELF5A and TIF3B1 were ranked as the most stable genes in the sample sets under abiotic stress. For hormone stimulation, UBC36 and TIF3H1 genes had the best stability. This study provides useful guidelines and a starting point for reference gene selection for expression analysis using RT-qPCR techniques in S. laniceps.
Collapse
Affiliation(s)
- Huan Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| | - Yaning Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| | - Xiaojing Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| | - Xiaowei Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
| | - Rongchen Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| | - Cunfu Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi 860000, China
| | - Yuzhen Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| |
Collapse
|
15
|
Liu J, Liao W, Nie B, Zhang J, Xu W. OsUEV1B, an Ubc enzyme variant protein, is required for phosphate homeostasis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:706-719. [PMID: 33570751 DOI: 10.1111/tpj.15193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus is a crucial macronutrient for plant growth and development. The mechanisms for maintaining inorganic phosphate (Pi) homeostasis in rice are not well understood. The ubiquitin-conjugating enzyme variant protein OsUEV1B was previously found to interact with OsUbc13 and mediate lysine63-linked polyubiquitination. In the present study, we found OsUEV1B was specifically inhibited by Pi deficiency, and was localized in the nucleus and cytoplasm. Both osuev1b mutant and OsUEV1B-RNA interference (RNAi) lines displayed serious symptoms of toxicity due to Pi overaccumulation. Some Pi starvation inducible and phosphate transporter genes were upregulated in osuev1b mutant and OsUEV1B-RNAi plants in association with enhanced Pi acquisition, and representative Pi starvation responses, including stimulation of acid phosphatase activity and root hair growth, were also activated in the presence of sufficient Pi. A yeast two-hybrid screen revealed an interaction between OsUEV1B and OsVDAC1, which was confirmed by bimolecular fluorescence complementation and firefly split-luciferase complementation assays. OsVDAC1 encoded a voltage-dependent anion channel protein localized in the mitochondria, and OsUbc13 was shown to interact with OsVDAC1 via yeast two-hybrid and bimolecular fluorescence complementation assays. Under sufficient Pi conditions, similar to osuev1b, a mutation in OsVDAC1 resulted in significantly greater Pi concentrations in the roots and second leaves, improved acid phosphatase activity, and enhanced expression of the Pi starvation inducible and phosphate transporter genes compared with wild-type DongJin, whereas overexpression of OsVDAC1 had the opposite effects. OsUEV1B or OsVDAC1 knockout reduced the mitochondrial membrane potential and adenosine triphosphate levels. Moreover, overexpression of OsVDAC1 in osuev1b partially restored its high Pi concentration to a level between those of osuev1b and DongJin. Our results indicate that OsUEV1B is required for rice phosphate homeostasis.
Collapse
Affiliation(s)
- Jianping Liu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wencheng Liao
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Nie
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianhua Zhang
- College of Agriculture, Yangzhou University, Yangzhou, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Ma X, Zhang C, Kim DY, Huang Y, Chatt E, He P, Vierstra RD, Shan L. Ubiquitylome analysis reveals a central role for the ubiquitin-proteasome system in plant innate immunity. PLANT PHYSIOLOGY 2021; 185:1943-1965. [PMID: 33793954 PMCID: PMC8133637 DOI: 10.1093/plphys/kiab011] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/22/2020] [Indexed: 05/22/2023]
Abstract
Protein ubiquitylation profoundly expands proteome functionality and diversifies cellular signaling processes, with recent studies providing ample evidence for its importance to plant immunity. To gain a proteome-wide appreciation of ubiquitylome dynamics during immune recognition, we employed a two-step affinity enrichment protocol based on a 6His-tagged ubiquitin (Ub) variant coupled with high sensitivity mass spectrometry to identify Arabidopsis proteins rapidly ubiquitylated upon plant perception of the microbe-associated molecular pattern (MAMP) peptide flg22. The catalog from 2-week-old seedlings treated for 30 min with flg22 contained 690 conjugates, 64 Ub footprints, and all seven types of Ub linkages, and included previously uncharacterized conjugates of immune components. In vivo ubiquitylation assays confirmed modification of several candidates upon immune elicitation, and revealed distinct modification patterns and dynamics for key immune components, including poly- and monoubiquitylation, as well as induced or reduced levels of ubiquitylation. Gene ontology and network analyses of the collection also uncovered rapid modification of the Ub-proteasome system itself, suggesting a critical auto-regulatory loop necessary for an effective MAMP-triggered immune response and subsequent disease resistance. Included targets were UBIQUITIN-CONJUGATING ENZYME 13 (UBC13) and proteasome component REGULATORY PARTICLE NON-ATPASE SUBUNIT 8b (RPN8b), whose subsequent biochemical and genetic analyses implied negative roles in immune elicitation. Collectively, our proteomic analyses further strengthened the connection between ubiquitylation and flg22-based immune signaling, identified components and pathways regulating plant immunity, and increased the database of ubiquitylated substrates in plants.
Collapse
Affiliation(s)
- Xiyu Ma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Chao Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Do Young Kim
- Department of Genetics, University of Wisconsin–Madison, 425-G Henry Mall, Madison, Wisconsin 53706
- Advanced Bio Convergence Center, Pohang Technopark, Gyeong-Buk 37668, South Korea
| | - Yanyan Huang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Elizabeth Chatt
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin–Madison, 425-G Henry Mall, Madison, Wisconsin 53706
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
- Author for communication:
| |
Collapse
|
17
|
DNA-damage tolerance through PCNA ubiquitination and sumoylation. Biochem J 2021; 477:2655-2677. [PMID: 32726436 DOI: 10.1042/bcj20190579] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
DNA-damage tolerance (DDT) is employed by eukaryotic cells to bypass replication-blocking lesions induced by DNA-damaging agents. In budding yeast Saccharomyces cerevisiae, DDT is mediated by RAD6 epistatic group genes and the central event for DDT is sequential ubiquitination of proliferating cell nuclear antigen (PCNA), a DNA clamp required for replication and DNA repair. DDT consists of two parallel pathways: error-prone DDT is mediated by PCNA monoubiquitination, which recruits translesion synthesis DNA polymerases to bypass lesions with decreased fidelity; and error-free DDT is mediated by K63-linked polyubiquitination of PCNA at the same residue of monoubiquitination, which facilitates homologous recombination-mediated template switch. Interestingly, the same PCNA residue is also subjected to sumoylation, which leads to inhibition of unwanted recombination at replication forks. All three types of PCNA posttranslational modifications require dedicated conjugating and ligation enzymes, and these enzymes are highly conserved in eukaryotes, from yeast to human.
Collapse
|
18
|
Uev1A amino terminus stimulates poly-ubiquitin chain assembly and is required for NF-κB activation. Cell Signal 2020; 74:109712. [DOI: 10.1016/j.cellsig.2020.109712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022]
|
19
|
Characterization of Local and Systemic Impact of Whitefly ( Bemisia tabaci) Feeding and Whitefly-Transmitted Tomato Mottle Virus Infection on Tomato Leaves by Comprehensive Proteomics. Int J Mol Sci 2020; 21:ijms21197241. [PMID: 33008056 PMCID: PMC7583044 DOI: 10.3390/ijms21197241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 11/23/2022] Open
Abstract
Tomato mottle virus (ToMoV) is a single-stranded DNA (ssDNA) begomovirus transmitted to solanaceous crops by the whitefly species complex (Bemisia tabaci), causing stunted growth, leaf mottling, and reduced yield. Using a genetic repertoire of seven genes, ToMoV pathogenesis includes the manipulation of multiple plant biological processes to circumvent antiviral defenses. To further understand the effects of whitefly feeding and whitefly-transmitted ToMoV infection on tomato plants (Solanum lycopersicum ‘Florida Lanai’), we generated comprehensive protein profiles of leaves subjected to feeding by either viruliferous whiteflies harboring ToMoV, or non-viruliferous whiteflies, or a no-feeding control. The effects of whitefly feeding and ToMoV infection were measured both locally and systemically by sampling either a mature leaf directly from the site of clip-cage confined whitefly feeding, or from a newly formed leaf 10 days post feeding (dpf). At 3 dpf, tomato’s response to ToMoV included proteins associated with translation initiation and elongation as well as plasmodesmata dynamics. In contrast, systemic impacts of ToMoV on younger leaves 10 dpf were more pronounced and included a virus-specific change in plant proteins associated with mRNA maturation and export, RNA-dependent DNA methylation, and other antiviral plant processes. Our analysis supports previous findings and provides novel insight into tomato’s local and systemic response to whitefly feeding and ToMoV infection.
Collapse
|
20
|
Oliveira TDR, Aragão VPM, Moharana KC, Fedosejevs E, do Amaral FP, Sousa KR, Thelen JJ, Venâncio TM, Silveira V, Santa-Catarina C. Light spectra affect the in vitro shoot development of Cedrela fissilis Vell. (Meliaceae) by changing the protein profile and polyamine contents. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140529. [PMID: 32853775 DOI: 10.1016/j.bbapap.2020.140529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
The light spectrum quality is an important signal for plant growth and development. We evaluated the effects of different light spectra on the in vitro shoot development of Cedrela fissilis and its proteomic and polyamine (PA) profiles. Cotyledonary and apical nodal segments were grown under different light emitting diodes (LED) and fluorescent lamps. Shoots from cotyledonary nodal segments cultured with 6-benzyladenine (BA) that were grown under WmBdR LED showed increased length and higher fresh and dry matter compared to shoots grown under fluorescent lamps. A nonredundant protein databank generated by transcriptome sequencing and the de novo assembly of C. fissilis improved, and almost doubled, the protein identification compared to a Citrus sinensis databank. A total of 616 proteins were identified, with 23 up- and 103 down-accumulated in the shoots under WmBdR LEDs compared to fluorescent lamps. Most differentially accumulated proteins in shoots grown under the WmBdR LED lamp treatment compared to the fluorescent lamp treatment are involved in responding to metabolic processes, stress, biosynthetic and cellular protein modifications, and light stimulus processes. Among the proteins, the up-accumulation of argininosuccinate synthase was associated with an increase in the free putrescine content and, consequently, with higher shoot elongation under WmBdR LED. The down-accumulation of calreticulin, heat shock proteins, plastid-lipid-associated protein, ubiquitin-conjugating enzymes, and ultraviolet-B receptor UVR8 isoform X1 could be related to the longer shoot length noted under LED treatment. This study provides important data related to the effects of the light spectrum quality on in vitro morphogenesis through the modulation of specific proteins and free putrescine biosynthesis in C. fissilis, an endangered wood species from the Brazilian Atlantic Forest of economic and ecological relevance. The nonredundant protein databank of C. fissilis is available via ProteomeXchange under identifier PXD018020.
Collapse
Affiliation(s)
- Tadeu Dos Reis Oliveira
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Av. Alberto Lamego 2000, 28013-602, Campos Dos Goytacazes, RJ, Brazil
| | - Victor Paulo Mesquita Aragão
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Av. Alberto Lamego 2000, 28013-602, Campos Dos Goytacazes, RJ, Brazil
| | - Kanhu Charan Moharana
- UENF, CBB, Laboratório de Química e Função de Proteínas e Peptídeos, Campos dos Goytacazes, RJ, Brazil
| | - Eric Fedosejevs
- University of Missouri, Department of Biochemistry, Christopher S. Bond Life Sciences Center, 65211, Columbia, MO, USA
| | - Fernanda Plucani do Amaral
- University of Missouri, Department of Biochemistry, Christopher S. Bond Life Sciences Center, 65211, Columbia, MO, USA
| | - Kariane Rodrigues Sousa
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Av. Alberto Lamego 2000, 28013-602, Campos Dos Goytacazes, RJ, Brazil
| | - Jay J Thelen
- University of Missouri, Department of Biochemistry, Christopher S. Bond Life Sciences Center, 65211, Columbia, MO, USA
| | - Thiago Motta Venâncio
- UENF, CBB, Laboratório de Química e Função de Proteínas e Peptídeos, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- UENF, CBB, Laboratório de Biotecnologia (LBT), Campos dos Goytacazes, RJ, Brazil; UENF, Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Campos dos Goytacazes, RJ, Brazil
| | - Claudete Santa-Catarina
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Av. Alberto Lamego 2000, 28013-602, Campos Dos Goytacazes, RJ, Brazil.
| |
Collapse
|
21
|
Guo H, Wang L, Hu R, He Y, Xiao W. Molecular cloning and functional characterization of Physcomitrella patens UBC13-UEV1 genes required for Lys63-linked polyubiquitination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110518. [PMID: 32563457 DOI: 10.1016/j.plantsci.2020.110518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Ubc13 and Ubc/E2 variant (Uev) form a stable heterodimer to mediate Lys63-linked polyubiquitination. Unicellular eukaryotic genomes often contain single UBC13 and UEV gene; however, multiple homologs were found in higher plants. As initial land plants, Physcomitrella patens occupies a key evolutionary position between green algae and higher plants. In this study, we report the identification and functional characterization of two UBC13 and three UEV1 genes from P. patens. Both PpUbc13s form heterodimers with PpUev1B or PpUev1C, which catalyze Lys63-linked polyubiquitination in vitro and functionally complement the yeast ubc13 mms2 null mutant from killing by DNA-damaging agents. In contrast, PpUev1A is unable to interact with Ubc13s and cannot complement the yeast mms2 mutant. Two single mutations, PpUev1A-D12N and ΔCT, barely have any effect; however, the corresponding double mutation makes PpUev1A functional in both heterodimer formation and complementation. This study identifies a critical Uev residue located in the Ubc13-Uev interface and reveals that mosses began to evolve multiple UBC13 and UEV orthologs in order to adapt to the terrestrial environment. The evolutionary significance of PpUEV1A is discussed.
Collapse
Affiliation(s)
- Huiping Guo
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Linxiao Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ruoyang Hu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
22
|
Bai Z, Wei M, Li Z, Xiao W. Drosophila Uev1a is dually required for Ben-dependent DNA-damage response and fly mobility. Cell Signal 2020; 74:109719. [PMID: 32702441 DOI: 10.1016/j.cellsig.2020.109719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 11/25/2022]
Abstract
K63-linked polyubiquitination requires the ubiquitin-conjugating enzyme Ubc13 and a Ubc/E2 variant Uev. Lower eukaryotic organisms contain one UEV gene required for DNA-damage tolerance, while vertebrates and higher plants contain multiple UEV genes with distinct functions. In contrast, Drosophila contains only one UEV gene designated dUev1a. Here we report that dUev1a forms a stable heterodimer with Ben, the Drosophila Ubc13 ortholog, that dUev1a-F15E completely abolishes the interaction, and that a conserved dUev1a-F15Y substitution severely reduces its interaction with Ben. dUev1a functionally rescues the corresponding yeast mms2 null mutant from killing by various DNA-damaging agents in a Ben-dependent manner, and the heterozygous dUev1a mutant flies are more sensitive to DNA-damaging agent, indicating that the function of UEV in DNA-damage response is conserved throughout eukaryotes. Meanwhile, dUev1a+/- mutant flies displayed reduced mobility characteristic of defects in the central nervous system and reminiscent of the bendless phenotypes, suggesting that dUev1a acts together with Ben in this process. Our observations collectively imply that dUev1a is dually required for DNA-damage response and neurological signaling in Drosophila, and that these processes are mediated by the Ben-dUev1a complex that promotes K63-linked polyubiquitination.
Collapse
Affiliation(s)
- Zhiqiang Bai
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Min Wei
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhouhua Li
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China; Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
23
|
Liu W, Tang X, Qi X, Fu X, Ghimire S, Ma R, Li S, Zhang N, Si H. The Ubiquitin Conjugating Enzyme: An Important Ubiquitin Transfer Platform in Ubiquitin-Proteasome System. Int J Mol Sci 2020; 21:E2894. [PMID: 32326224 PMCID: PMC7215765 DOI: 10.3390/ijms21082894] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022] Open
Abstract
Owing to a sessile lifestyle in nature, plants are routinely faced with diverse hostile environments such as various abiotic and biotic stresses, which lead to accumulation of free radicals in cells, cell damage, protein denaturation, etc., causing adverse effects to cells. During the evolution process, plants formed defense systems composed of numerous complex gene regulatory networks and signal transduction pathways to regulate and maintain the cell homeostasis. Among them, ubiquitin-proteasome pathway (UPP) is the most versatile cellular signal system as well as a powerful mechanism for regulating many aspects of the cell physiology because it removes most of the abnormal and short-lived peptides and proteins. In this system, the ubiquitin-conjugating enzyme (E2) plays a critical role in transporting ubiquitin from the ubiquitin-activating enzyme (E1) to the ubiquitin-ligase enzyme (E3) and substrate. Nevertheless, the comprehensive study regarding the role of E2 enzymes in plants remains unexplored. In this review, the ubiquitination process and the regulatory role that E2 enzymes play in plants are primarily discussed, with the focus particularly put on E2's regulation of biological functions of the cell.
Collapse
Affiliation(s)
- Weigang Liu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
| | - Xun Tang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xuehong Qi
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xue Fu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Shantwana Ghimire
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
| | - Rui Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
| | - Shigui Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Huaijun Si
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
24
|
Wang Q, Liu M, Zang Y, Xiao W. The C-terminal extension of Arabidopsis Uev1A/B with putative prenylation site plays critical roles in protein interaction, subcellular distribution and membrane association. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110324. [PMID: 31928655 DOI: 10.1016/j.plantsci.2019.110324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Lysine (K) 63-linked polyubiquitination plays important roles in cellular processes including DNA-damage tolerance (DDT), NF-κB signaling and endocytosis. Compared to yeast and mammals, little is known about K63-linked polyubiquitination in plants. To date, a Uev-Ubc13 complex is the only known Ub-conjugating enzyme to catalyze K63-linked polyubiquitination, in which Uev serves as a regulatory subunit. The Arabidopsis thaliana genome contains four UEV1 genes that can be classified into two subfamilies (UEV1A/B and UEV1C/D), in which Uev1A/B have a C-terminal extension. Database analysis reveals that all higher plant genomes contain both subfamily UEV1s, which were evolved as early as angiosperm plants. Interestingly, all C-terminal tails in the Uev1A/B subfamily contain a putative prenylation motif, CaaX. Combined experimental results using AtUev1B demonstrated that it is most likely farnesylated and that its C-terminal tail, particularly the catalytic Cys residue in the CaaX motif, plays critical roles in protein-protein interaction, nuclear exclusion and membrane association. Using AtUev1B as bait for a yeast-two-hybrid screen, we identified 14 interaction proteins in a prenylation-dependent manner. These results collectively imply that prenylation of AtUev1A/B plays a critical role in its functional differentiation from AtUev1C/D.
Collapse
Affiliation(s)
- Qian Wang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China; Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, China
| | - Maoqing Liu
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuepeng Zang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
25
|
Romero-Barrios N, Monachello D, Dolde U, Wong A, San Clemente H, Cayrel A, Johnson A, Lurin C, Vert G. Advanced Cataloging of Lysine-63 Polyubiquitin Networks by Genomic, Interactome, and Sensor-Based Proteomic Analyses. THE PLANT CELL 2020; 32:123-138. [PMID: 31712406 PMCID: PMC6961633 DOI: 10.1105/tpc.19.00568] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/16/2019] [Accepted: 11/08/2019] [Indexed: 05/17/2023]
Abstract
The lack of resolution when studying the many different ubiquitin chain types found in eukaryotic cells has been a major hurdle to our understanding of their specific roles. We currently have very little insight into the cellular and physiological functions of Lys-63 (K63)-linked ubiquitin chains, although they are the second most abundant forms of ubiquitin in plant cells. To overcome this problem, we developed several large-scale approaches to characterize (1) the E2-E3 ubiquitination machinery driving K63-linked ubiquitin chain formation and (2) K63 polyubiquitination targets to provide a comprehensive picture of K63 polyubiquitin networks in Arabidopsis (Arabidopsis thaliana). Our work identified the ubiquitin-conjugating enzymes (E2s) UBC35/36 as the major drivers of K63 polyubiquitin chain formation and highlights the major role of these proteins in plant growth and development. Interactome approaches allowed us to identify many proteins that interact with the K63 polyubiquitination-dedicated E2s UBC35/36 and their cognate E2 variants, including more than a dozen E3 ligases and their putative targets. In parallel, we improved the in vivo detection of proteins decorated with K63-linked ubiquitin chains by sensor-based proteomics, yielding important insights into the roles of K63 polyubiquitination in plant cells. This work strongly increases our understanding of K63 polyubiquitination networks and functions in plants.
Collapse
Affiliation(s)
- Natali Romero-Barrios
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Dario Monachello
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France
| | - Ulla Dolde
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 31320 Castanet-Tolosan, France
| | - Aloysius Wong
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Hélène San Clemente
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 31320 Castanet-Tolosan, France
| | - Anne Cayrel
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Alexander Johnson
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Claire Lurin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France
| | - Grégory Vert
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 31320 Castanet-Tolosan, France
| |
Collapse
|
26
|
Zang Y, Gong Y, Wang Q, Guo H, Xiao W. Arabidopsis OTU1, a linkage-specific deubiquitinase, is required for endoplasmic reticulum-associated protein degradation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:141-155. [PMID: 31491807 DOI: 10.1111/tpj.14524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is part of the ER protein quality-control system (ERQC), which is critical for the conformation fidelity of most secretory and membrane proteins in eukaryotic organisms. ERAD is thought to operate in plants with core machineries highly conserved to those in human and yeast; however, little is known about the plant ERAD system. Here we report the characterization of a close homolog of human OTUB1 in Arabidopsis thaliana, designated as AtOTU1. AtOTU1 selectively hydrolyzes several types of ubiquitin chains and these activities depend on its conserved protease domain and/or the unique N-terminus. The otu1 null mutant is sensitive to high salinity stress, and particularly agents that cause protein misfolding. It turns out that AtOTU1 is required for the processing of known plant ERAD substrates such as barley powdery mildew O (MLO) alleles by virtue of its association with the CDC48 complex through its N-terminal region. These observations collectively define AtOTU1 as an OTU domain-containing deubiquitinase involved in Arabidopsis ERAD.
Collapse
Affiliation(s)
- Yuepeng Zang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yingya Gong
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Qian Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Huiping Guo
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| |
Collapse
|
27
|
Global Ubiquitome Profiling Revealed the Roles of Ubiquitinated Proteins in Metabolic Pathways of Tea Leaves in Responding to Drought Stress. Sci Rep 2019; 9:4286. [PMID: 30862833 PMCID: PMC6414630 DOI: 10.1038/s41598-019-41041-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/26/2019] [Indexed: 01/07/2023] Open
Abstract
Drought stress often affects the expression of genes and proteins in tea plants. However, the global profiling of ubiquitinated (Kub) proteins in tea plants remains unearthed. Here, we performed the ubiquitome in tea leaves under drought stress using antibody-based affinity enrichment coupled with LC-MS/MS analysis. In total, 1,409 lysine Kub sites in 781 proteins were identified, of which 14 sites in 12 proteins were up-regulated and 123 sites in 91 proteins down-regulated under drought stress. The identified Kub proteins were mainly located in the cytosol (31%), chloroplast (27%) and nuclear (19%). Moreover, 5 conserved motifs in EKub, EXXXKub, KubD, KubE and KubA were extracted. Several Kub sites in ubiquitin-mediated proteolysis-related proteins, including RGLG2, UBC36, UEV1D, RPN10 and PSMC2, might affect protein degradation and DNA repair. Plenty of Kub proteins related to catechins biosynthesis, including PAL, CHS, CHI and F3H, were positively correlated with each other due to their co-expression and co-localization. Furthermore, some Kub proteins involved in carbohydrate and amino acid metabolism, including FBPase, FBA and GAD1, might promote sucrose, fructose and GABA accumulation in tea leaves under drought stress. Our study preliminarily revealed the global profiling of Kub proteins in metabolic pathways and provided an important resource for further study on the functions of Kub proteins in tea plants.
Collapse
|
28
|
Huang W, Chen X, Guan Q, Zhong Z, Ma J, Yang B, Wang T, Zhu W, Tian J. Changes of alternative splicing in Arabidopsis thaliana grown under different CO2 concentrations. Gene 2019; 689:43-50. [DOI: 10.1016/j.gene.2018.11.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/09/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
|
29
|
Jia L, Zhao Q, Chen S. Evolution and expression analysis of the sorghum ubiquitin-conjugating enzyme family. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:236-247. [PMID: 32172767 DOI: 10.1071/fp18184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/02/2018] [Indexed: 06/10/2023]
Abstract
Ubiquitin-conjugating enzymes (UBCs), which catalyse the transfer of ubiquitin to substrate or E3 ligases, are key enzymes in ubiquitination modifications of target proteins. Current knowledge regarding the sorghum (Sorghum bicolor (L.) Moench) ubiquitin-conjugating enzyme (SbUBC) family remains very limited. We identified 53 UBC-encoding genes in the sorghum genome and divided these into 18 groups according to their phylogenetic relationship with Arabidopsis thaliana (L.) Heynh., which was further supported by conserved motif and gene structure analyses. Different expression levels under a variety of abiotic stresses suggested that these might participate in distinct signalling pathways and that they underwent functional divergence during evolution. Furthermore, several SbUBC genes responded to single treatments, and individual SbUBC genes responded to multiple treatments, suggesting that sorghum UBCs may mediate crosstalk among different signalling pathways. Overall, the results provide valuable information for better understanding the classification and putative functions of sorghum UBC-encoding genes.
Collapse
Affiliation(s)
- Liqiang Jia
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China
| | - QiuFang Zhao
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China
| | - Shu Chen
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China
| |
Collapse
|
30
|
Wang L, Wen R, Wang J, Xiang D, Wang Q, Zang Y, Wang Z, Huang S, Li X, Datla R, Fobert PR, Wang H, Wei Y, Xiao W. Arabidopsis UBC13 differentially regulates two programmed cell death pathways in responses to pathogen and low-temperature stress. THE NEW PHYTOLOGIST 2019; 221:919-934. [PMID: 30218535 DOI: 10.1111/nph.15435] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 08/02/2018] [Indexed: 05/17/2023]
Abstract
UBC13 is required for Lys63-linked polyubiquitination and innate immune responses in mammals, but its functions in plant immunity remain to be defined. Here we used genetic and pathological methods to evaluate roles of Arabidopsis UBC13 in response to pathogens and environmental stresses. Loss of UBC13 failed to activate the expression of numerous cold-responsive genes and resulted in hypersensitivity to low-temperature stress, indicating that UBC13 is involved in plant response to low-temperature stress. Furthermore, the ubc13 mutant displayed low-temperature-induced and salicylic acid-dependent lesion mimic phenotypes. Unlike typical lesion mimic mutants, ubc13 did not enhance disease resistance against virulent bacterial and fungal pathogens, but diminished hypersensitive response and compromised effector-triggered immunity against avirulent bacterial pathogens. UBC13 differently regulates two types of programmed cell death in response to low temperature and pathogen. The lesion mimic phenotype in the ubc13 mutant is partially dependent on SNC1. UBC13 interacts with an F-box protein CPR1 that regulates the homeostasis of SNC1. However, the SNC1 protein level was not altered in the ubc13 mutant, implying that UBC13 is not involved in CPR1-regulated SNC1 protein degradation. Taken together, our results revealed that UBC13 is a key regulator in plant response to low temperature and pathogens.
Collapse
Affiliation(s)
- Lipu Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Rui Wen
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Jinghe Wang
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Daoquan Xiang
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Qian Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuepeng Zang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Zheng Wang
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Shuai Huang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Pierre R Fobert
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Hong Wang
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E2
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| |
Collapse
|
31
|
Miricescu A, Goslin K, Graciet E. Ubiquitylation in plants: signaling hub for the integration of environmental signals. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4511-4527. [PMID: 29726957 DOI: 10.1093/jxb/ery165] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/27/2018] [Indexed: 05/20/2023]
Abstract
A fundamental question in biology is how organisms integrate the plethora of environmental cues that they perceive to trigger a co-ordinated response. The regulation of protein stability, which is largely mediated by the ubiquitin-proteasome system in eukaryotes, plays a pivotal role in these processes. Due to their sessile lifestyle and the need to respond rapidly to a multitude of environmental factors, plants are thought to be especially dependent on proteolysis to regulate cellular processes. In this review, we present the complexity of the ubiquitin system in plants, and discuss the relevance of the proteolytic and non-proteolytic roles of this system in the regulation and co-ordination of plant responses to environmental signals. We also discuss the role of the ubiquitin system as a key regulator of plant signaling pathways. We focus more specifically on the functions of E3 ligases as regulators of the jasmonic acid (JA), salicylic acid (SA), and ethylene hormone signaling pathways that play important roles to mount a co-ordinated response to multiple environmental stresses. We also provide examples of new players in this field that appear to integrate different cues and signaling pathways.
Collapse
Affiliation(s)
- Alexandra Miricescu
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - Kevin Goslin
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | | |
Collapse
|
32
|
Aizat WM, Ibrahim S, Rahnamaie-Tajadod R, Loke KK, Goh HH, Noor NM. Proteomics (SWATH-MS) informed by transcriptomics approach of tropical herb Persicaria minor leaves upon methyl jasmonate elicitation. PeerJ 2018; 6:e5525. [PMID: 30186693 PMCID: PMC6118203 DOI: 10.7717/peerj.5525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Jasmonic acid (JA) and its derivative, methyl JA (MeJA) are hormonal cues released by plants that signal defense response to curb damages from biotic and abiotic stresses. To study such response, a tropical herbal plant, Persicaria minor, which possesses pungent smell and various bioactivities including antimicrobial and anticancer, was treated with MeJA. Such elicitation has been performed in hairy root cultures and plants such as Arabidopsis and rice, yet how MeJA influenced the proteome of an herbal species like P. minor is unknown. METHOD In this study, P. minor plants were exogenously elicited with MeJA and leaf samples were subjected to SWATH-MS proteomics analysis. A previously published translated transcriptome database was used as a reference proteome database for a comprehensive protein sequence catalogue and to compare their differential expression. RESULTS From this proteomics informed by transcriptomics approach, we have successfully profiled 751 proteins of which 40 proteins were significantly different between control and MeJA-treated samples. Furthermore, a correlation analysis between both proteome and the transcriptome data sets suggests that significantly upregulated proteins were positively correlated with their cognate transcripts (Pearson's r = 0.677) while a weak correlation was observed for downregulated proteins (r = 0.147). DISCUSSION MeJA treatment induced the upregulation of proteins involved in various biochemical pathways including stress response mechanism, lipid metabolism, secondary metabolite production, DNA degradation and cell wall degradation. Conversely, proteins involved in energy expensive reactions such as photosynthesis, protein synthesis and structure were significantly downregulated upon MeJA elicitation. Overall protein-transcript correlation was also weak (r = 0.341) suggesting the existence of post-transcriptional regulation during such stress. In conclusion, proteomics analysis using SWATH-MS analysis supplemented by the transcriptome database allows comprehensive protein profiling of this non-model herbal species upon MeJA treatment.
Collapse
Affiliation(s)
- Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Sarah Ibrahim
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Kok-Keong Loke
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Normah Mohd Noor
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
33
|
Bai Z, Li Z, Xiao W. Drosophila bendless catalyzes K63-linked polyubiquitination and is involved in the response to DNA damage. Mutat Res 2018. [PMID: 29518634 DOI: 10.1016/j.mrfmmm.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, we report the identification and functional characterization of the Drosophila ben/ubc13 gene, encoding a unique ubiquitin-conjugating enzyme (Ubc or E2), in DNA-damage response. Ben forms a heterodimer with DmUev1a, the only Ubc/E2 variant (Uev) in Drosophila. Ben and DmUev1a act together to catalyze K63-linked polyubiquitination in vitro. ben can functionally rescue the yeast ubc13 null mutant from killing by DNA-damaging agents. We also find that BenP97S, which was previously described to affect the connectivity between the giant fiber and the tergotrochanter motor neuron, fails to interact with the RING protein Chfr but retains interaction with DmUev1a as well as Uevs from other species. The corresponding yeast Ubc13P97S interacts with Mms2 but fails to bind Rad5. Consequently, neither benP97S nor ubc13P97S is able to complement the yeast ubc13 mutant defective in error-free DNA-damage tolerance. More importantly, the benP97S mutant flies are more sensitive to a DNA-damaging agent, suggesting that Ben functions in a manner similar to its yeast and mammalian counterparts. Collectively, our observations imply that Ben-DmUev1a-promoted K63-linked polyubiquitination and involvement in DNA-damage response are highly conserved in eukaryotes including flies.
Collapse
Affiliation(s)
- Zhiqiang Bai
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhouhua Li
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China; Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
34
|
Hodge CD, Spyracopoulos L, Glover JNM. Ubc13: the Lys63 ubiquitin chain building machine. Oncotarget 2018; 7:64471-64504. [PMID: 27486774 PMCID: PMC5325457 DOI: 10.18632/oncotarget.10948] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022] Open
Abstract
Ubc13 is an ubiquitin E2 conjugating enzyme that participates with many different E3 ligases to form lysine 63-linked (Lys63) ubiquitin chains that are critical to signaling in inflammatory and DNA damage response pathways. Recent studies have suggested Ubc13 as a potential therapeutic target for intervention in various human diseases including several different cancers, alleviation of anti-cancer drug resistance, chronic inflammation, and viral infections. Understanding a potential therapeutic target from different angles is important to assess its usefulness and potential pitfalls. Here we present a global review of Ubc13 from its structure, function, and cellular activities, to its natural and chemical inhibition. The aim of this article is to review the literature that directly implicates Ubc13 in a biological function, and to integrate structural and mechanistic insights into the larger role of this critical E2 enzyme. We discuss observations of multiple Ubc13 structures that suggest a novel mechanism for activation of Ubc13 that involves conformational change of the active site loop.
Collapse
Affiliation(s)
- Curtis D Hodge
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
35
|
Romero-Barrios N, Vert G. Proteasome-independent functions of lysine-63 polyubiquitination in plants. THE NEW PHYTOLOGIST 2018; 217:995-1011. [PMID: 29194634 DOI: 10.1111/nph.14915] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/12/2017] [Indexed: 05/21/2023]
Abstract
Contents Summary 995 I. Introduction 995 II. The plant Ub machinery 996 III. From Ub to Ub linkage types in plants 997 IV. Increasing analytical resolution for K63 polyUb in plants 998 V. How to build K63 polyUb chains? 998 VI. Cellular roles of K63 polyUb in plants 999 VII. Physiological roles of K63 polyUb in plants 1004 VIII. Future perspectives: towards the next level of the Ub code 1006 Acknowledgements 1006 References 1007 SUMMARY: Ubiquitination is a post-translational modification essential for the regulation of eukaryotic proteins, having an impact on protein fate, function, localization or activity. What originally appeared to be a simple system to regulate protein turnover by the 26S proteasome is now known to be the most intricate regulatory process cells have evolved. Ubiquitin can be arranged in countless chain assemblies, triggering various cellular outcomes. Polyubiquitin chains using lysine-63 from ubiquitin represent the second most abundant type of ubiquitin modification. Recent studies have exposed their common function in proteasome-independent functions in non-plant model organisms. The existence of lysine-63 polyubiquitination in plants is, however, only just emerging. In this review, we discuss the recent advances on the characterization of ubiquitin chains and the molecular mechanisms driving the formation of lysine-63-linked ubiquitin modifications. We provide an overview of the roles associated with lysine-63 polyubiquitination in plant cells in the light of what is known in non-plant models. Finally, we review the crucial roles of lysine-63 polyubiquitin-dependent processes in plant growth, development and responses to environmental conditions.
Collapse
Affiliation(s)
- Natali Romero-Barrios
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| | - Grégory Vert
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| |
Collapse
|
36
|
Sakamoto AN, Kaya H, Endo M. Deletion of TLS polymerases promotes homologous recombination in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2018; 13:e1483673. [PMID: 29944437 PMCID: PMC6128680 DOI: 10.1080/15592324.2018.1483673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Unrepaired DNA damage hinders the maintenance of genome integrity because it blocks the catalytic activity of replicase. The stalled replication fork can be processed through either translesion synthesis (TLS) with specific polymerases, or replication using the undamaged template. To investigate how TLS activities are regulated and how the stalled replication fork is processed in plants, reversion frequencies and homologous recombination (HR) frequencies were analyzed using GUS-based substrates. The HR frequencies in plants deficient in DNA polymerase ζ (Pol ζ) or Rev1 were higher than that in wildtype plants under normal conditions, and were significantly increased by ultraviolet light irradiation. Heat shock protein (HSP) 90 is known to be involved in various stress responses. To examine the role of HSP90 in the regulation of damage tolerance, we analyzed reversion frequencies and HR frequencies in plants grown in the presence of a HSP inhibitor, geldanamycin (GDA). Reversion frequency was lower in GDA-treated plants than in mock-treated plants. Though the HR frequency was higher in GDA-treated wildtype plants than in mock-treated plants, no significant difference was detected in Rev1-deficient plants. In yeast, TLS polymerases interacted with each other or with a replication clump component, proliferating cell nuclear antigen (PCNA). HSP90 interacted with REV1 or REV7 in Nicotiana benthamiana cells. These results suggest that HSP90 interacts with TLS polymerase(s), which promotes error-prone TLS in plants.
Collapse
Affiliation(s)
- A. N. Sakamoto
- Department of Radiation-Applied Biology Research, National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki, Gumma, Japan
- CONTACT A. N. Sakamoto Department of Radiation-Applied Biology Research, National Institutes for Quantum and Radiological Science and Technology (QST), Watanuki-machi 1233, Takasaki, Gumma 370-1292, Japan
| | - H. Kaya
- Plant Molecular Biology and Virology, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - M. Endo
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
37
|
Zhang Y, Li Y, Yang X, Wang J, Wang R, Qian X, Zhang W, Xiao W. Uev1A-Ubc13 catalyzes K63-linked ubiquitination of RHBDF2 to promote TACE maturation. Cell Signal 2017; 42:155-164. [PMID: 29069608 DOI: 10.1016/j.cellsig.2017.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/21/2017] [Accepted: 10/21/2017] [Indexed: 01/05/2023]
Abstract
The TNFα-induced NF-κB signaling pathway plays critical roles in multiple biological processes. Extensive studies have explored the mechanisms regulating this signaling cascade, and identified an E2 complex, Uev1A-Ubc13, that mediates K63-linked poly-Ub chain formation and thus recruits NEMO to activate the signaling transduction. In this study, we demonstrate that the Uev1A-Ubc13 complex simultaneously serves as a repressor of the NF-κB pathway. It was found that cells overexpressing UEV1A silence the signal cascade earlier than control cells. Importantly, UEV1A overexpression enhances TACE maturation to shed the TNFα receptor. The Uev1A-Ubc13 complex interacts with RHBDF2, a key factor promoting TACE maturation, and inhibition of the Uev1A-Ubc13 activity interferes with RHBDF2-promoted TACE maturation. Furthermore, upon TNFα stimulation, the Uev1A-Ubc13 complex cooperates with CHIP to promote K63-linked ubiquitination of RHBDF2, enhancing its activity toward TACE maturation and subsequently blocking TNFα-induced NF-κB signaling.
Collapse
Affiliation(s)
- Yiran Zhang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yadan Li
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xiaoran Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Juanjuan Wang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruifeng Wang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xianghao Qian
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Weiwei Zhang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China; Department of Microbiology and Immunology, University of Saskatchewan, S7N 5E5, Canada.
| |
Collapse
|
38
|
Wang Q, Zang Y, Zhou X, Xiao W. Characterization of four rice UEV1 genes required for Lys63-linked polyubiquitination and distinct functions. BMC PLANT BIOLOGY 2017; 17:126. [PMID: 28716105 PMCID: PMC5513143 DOI: 10.1186/s12870-017-1073-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/03/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND The error-free branch of the DNA-damage tolerance (DDT) pathway is orchestrated by Lys63-linked polyubiquitination of proliferating cell nuclear antigen (PCNA), and this polyubiquitination is mediated by a Ubc13-Uev complex in yeast. We have previously cloned OsUBC13 from rice, whose product functions as an E2 to promote Lys63-linked ubiquitin chain assembly in the presence of yeast or human Uev. RESULTS Here we identify four highly conserved UEV1 genes in rice whose products are able to form stable heterodimers with OsUbc13 and mediate Lys63-linked ubiquitin chain assembly. Expression of OsUEV1s is able to rescue the yeast mms2 mutant from death caused by DNA-damaging agents. Interestingly, OsUev1A contains a unique C-terminal tail with a conserved prenylation site not found in the other three OsUev1s, and this post-translational modification appears to be required for its unique subcellular distribution and association with the membrane. The analysis of OsUEV1 expression profiles obtained from the Genevestigator database indicates that these genes are differentially regulated. CONCLUSIONS We speculate that different OsUev1s play distinct roles by serving as a regulatory subunit of the Ubc13-Uev1 complex to respond to diverse cellular, developmental and environmental signals.
Collapse
Affiliation(s)
- Qian Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuepeng Zang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xuan Zhou
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
39
|
Fei X, Li X, Li P, Deng X. Involvement of Chlamydomonas DNA damage tolerence gene UBC2 in lipid accumulation. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Furlan G, Trujillo M. In Vitro Ubiquitination Activity Assays in Plant Immune Responses. Methods Mol Biol 2017; 1578:109-121. [PMID: 28220418 DOI: 10.1007/978-1-4939-6859-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Ubiquitination is a central posttranslational modification that impinges on the fate of proteins. While attachment of K48-linked chains onto soluble proteins marks them for proteolysis via the 26S proteasome, mono-ubiquitination or K63-linked chains result in the endocytosis and sorting through the endomembrane system of integral membrane proteins, such as pattern recognition receptors. In vitro ubiquitination assays allow the biochemical analysis of all individual components of the ubiquitination machinery and its potential substrates. Here, we describe how to reconstitute the ubiquitination cascade in vitro and detail different variations of the assay, the required controls and how to interpret the obtained results.
Collapse
Affiliation(s)
- Giulia Furlan
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Marco Trujillo
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany.
| |
Collapse
|
41
|
Zhou B, Mural RV, Chen X, Oates ME, Connor RA, Martin GB, Gough J, Zeng L. A Subset of Ubiquitin-Conjugating Enzymes Is Essential for Plant Immunity. PLANT PHYSIOLOGY 2017; 173:1371-1390. [PMID: 27909045 PMCID: PMC5291023 DOI: 10.1104/pp.16.01190] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/28/2016] [Indexed: 05/06/2023]
Abstract
Of the three classes of enzymes involved in ubiquitination, ubiquitin-conjugating enzymes (E2) have been often incorrectly considered to play merely an auxiliary role in the process, and few E2 enzymes have been investigated in plants. To reveal the role of E2 in plant innate immunity, we identified and cloned 40 tomato genes encoding ubiquitin E2 proteins. Thioester assays indicated that the majority of the genes encode enzymatically active E2. Phylogenetic analysis classified the 40 tomato E2 enzymes into 13 groups, of which members of group III were found to interact and act specifically with AvrPtoB, a Pseudomonas syringae pv tomato effector that uses its ubiquitin ligase (E3) activity to suppress host immunity. Knocking down the expression of group III E2 genes in Nicotiana benthamiana diminished the AvrPtoB-promoted degradation of the Fen kinase and the AvrPtoB suppression of host immunity-associated programmed cell death. Importantly, silencing group III E2 genes also resulted in reduced pattern-triggered immunity (PTI). By contrast, programmed cell death induced by several effector-triggered immunity elicitors was not affected on group III-silenced plants. Functional characterization suggested redundancy among group III members for their role in the suppression of plant immunity by AvrPtoB and in PTI and identified UBIQUITIN-CONJUGATING11 (UBC11), UBC28, UBC29, UBC39, and UBC40 as playing a more significant role in PTI than other group III members. Our work builds a foundation for the further characterization of E2s in plant immunity and reveals that AvrPtoB has evolved a strategy for suppressing host immunity that is difficult for the plant to thwart.
Collapse
Affiliation(s)
- Bangjun Zhou
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Ravi V Mural
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Xuanyang Chen
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Matt E Oates
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Richard A Connor
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Gregory B Martin
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Julian Gough
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Lirong Zeng
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.);
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.);
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.);
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| |
Collapse
|
42
|
The Pol30-K196 residue plays a critical role in budding yeast DNA postreplication repair through interaction with Rad18. DNA Repair (Amst) 2016; 47:42-48. [PMID: 27707542 DOI: 10.1016/j.dnarep.2016.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 01/14/2023]
Abstract
PCNA plays critical roles in DNA replication and various DNA repair pathways including DNA damage tolerance (DDT). In budding yeast Saccharomyces cerevisiae, DDT (aka DNA postreplication repair, PRR) is achieved by sequential ubiquitination of PCNA encoded by POL30. Our previous studies revealed that two Arabidopsis PCNA genes were able to complement the essential function of POL30 in budding yeast, but failed to rescue the PRR activity. Here we hypothesize that a certain amino acid variation(s) is responsible for the difference, and identified K196 as a critical residue for the PRR activity. It was found that the pol30-K196V mutation abolishes Rad18 interaction and PRR activity, whereas nearby amino acid substitutions can partially restore Rad18 interaction and PRR activity. Together with the Pol30-Ub fusion data, we believe that we have identified a putative Rad18-binding pocket in Pol30 that is required for PCNA monoubiquitination and PRR.
Collapse
|
43
|
A MUB E2 structure reveals E1 selectivity between cognate ubiquitin E2s in eukaryotes. Nat Commun 2016; 7:12580. [PMID: 27550514 PMCID: PMC4996978 DOI: 10.1038/ncomms12580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Ubiquitin (Ub) is a protein modifier that controls processes ranging from protein degradation to endocytosis, but early-acting regulators of the three-enzyme ubiquitylation cascade are unknown. Here we report that the prenylated membrane-anchored ubiquitin-fold protein (MUB) is an early-acting regulator of subfamily-specific E2 activation. An AtMUB3:AtUBC8 co-crystal structure defines how MUBs inhibit E2∼Ub formation using a combination of E2 backside binding and a MUB-unique lap-bar loop to block E1 access. Since MUBs tether Arabidopsis group VI E2 enzymes (related to HsUbe2D and ScUbc4/5) to the plasma membrane, and inhibit E2 activation at physiological concentrations, they should function as potent plasma membrane localized regulators of Ub chain synthesis in eukaryotes. Our findings define a biochemical function for MUB, a family of highly conserved Ub-fold proteins, and provide an example of selective activation between cognate Ub E2s, previously thought to be constitutively activated by E1s. Regulators of the important ubiquitylation cascade are not well studied. Here, the authors report the crystal structure of a prenylated membrane-anchored ubiquitin-fold protein from Arabidopsis bound to an E2 protein and conclude that it is an example of selective activation between E2 enzymes.
Collapse
|
44
|
Johnson A, Vert G. Unraveling K63 Polyubiquitination Networks by Sensor-Based Proteomics. PLANT PHYSIOLOGY 2016; 171:1808-20. [PMID: 27208306 PMCID: PMC4936586 DOI: 10.1104/pp.16.00619] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/06/2016] [Indexed: 05/03/2023]
Abstract
The polybiquitination of proteins can take on different topologies depending on the residue from ubiquitin involved in the chain formation. Although the role of lysine-48 (K48) polyubiquitination in proteasome-mediated degradation is fairly well characterized, much less is understood about the other types of ubiquitin chains and proteasome-independent functions. To overcome this, we developed a K63 polyubiquitin-specific sensor-based approach to track and isolate K63 polyubiquitinated proteins in plants. Proteins carrying K63 polyubiquitin chains were found to be enriched in diverse membrane compartments as well as in nuclear foci. Using liquid chromatography-tandem mass spectrometry, we identified over 100 proteins from Arabidopsis (Arabidopsis thaliana) that are modified with K63 polyubiquitin chains. The K63 ubiquitinome contains critical factors involved in a wide variety of biological processes, including transport, metabolism, protein trafficking, and protein translation. Comparison of the proteins found in this study with previously published nonresolutive ubiquitinomes identified about 70 proteins as ubiquitinated and specifically modified with K63-linked chains. To extend our knowledge about K63 polyubiquitination, we compared the K63 ubiquitinome with K63 ubiquitination networks based on the Arabidopsis interactome. Altogether, this work increases our resolution of the cellular and biological roles associated with this poorly characterized posttranslational modification and provides a unique insight into the networks of K63 polyubiquitination in plants.
Collapse
Affiliation(s)
- Alexander Johnson
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Grégory Vert
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
45
|
Wang S, Cao L, Wang H. Arabidopsis ubiquitin-conjugating enzyme UBC22 is required for female gametophyte development and likely involved in Lys11-linked ubiquitination. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3277-88. [PMID: 27069118 PMCID: PMC4892721 DOI: 10.1093/jxb/erw142] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Protein ubiquitination is critical for numerous processes in eukaryotes. The ubiquitin-conjugating enzyme (E2) is required for ubiquitination. The Arabidopsis genome has approximately 37 E2 genes, but in vivo functions for most of them remain unknown. In this study we observed that knockout mutants of Arabidopsis UBC22 had much-reduced silique length and seed number, with nearly 90% of ovules aborted. Analyses revealed that the majority of mutant embryo sacs displayed severe defects and often contained no gamete nuclei. There was no difference between mutant and wild-type Arabidopsis at the megaspore mother cell stage; however, the functional megaspore was either not present or appeared abnormal in a large portion of mutant ovules, suggesting that the defect started with functional megaspore degeneration in the mutants. Degeneration continued during megagametogenesis, such that the percentage of mature embryo sacs without any gamete nuclei was much greater than the percentage of developing ovules without a functional megaspore and, in addition, various abnormalities in megagametogenesis were observed. Additionally, heterozygous plants had only 13.1% of ovules aborted, indicating that the heterozygous sporophytic tissues could affect the development of the mutant female gametophyte. UBC22 is the sole member of an Arabidopsis E2 subfamily, and is more closely related to one type of E2s in animals that catalyzes Lys11-specific ubiquitination. Indeed, our results showed that Arabidopsis UBC22 could catalyze ubiquitin dimer formation in vitro in a Lys11-dependent manner, suggesting that it likely catalyzes Lys11-linked ubiquitination in plants. This study has thus identified one biochemical property of UBC22 and revealed a novel function in female gametophyte development.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Ling Cao
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Wang
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
46
|
Guo H, Wen R, Liu Z, Datla R, Xiao W. Molecular Cloning and Functional Characterization of Two Brachypodium distachyon UBC13 Genes Whose Products Promote K63-Linked Polyubiquitination. FRONTIERS IN PLANT SCIENCE 2016; 6:1222. [PMID: 26779244 PMCID: PMC4703986 DOI: 10.3389/fpls.2015.01222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/18/2015] [Indexed: 05/24/2023]
Abstract
Living organisms are constantly subject to DNA damage from environmental sources. Due to the sessile nature of plants, UV irradiation is a major genotoxic agent and imposes a significant threat on plant survival, genome stability and crop yield. In addition, other environmental chemicals can also influence the stability of the plant genome. Eukaryotic organisms have evolved a mechanism to cope with replication-blocking lesions and stabilize the genome. This mechanism is known as error-free DNA damage tolerance, and is mediated by K63-linked PCNA polyubiquitination. Genes related to K63-linked polyubiquitination have been isolated recently from model plants like Arabidopsis and rice, but we are unaware of such reports on the crop model Brachypodium distachyon. Here, we report the identification and functional characterization of two B. distachyon UBC13 genes. Both Ubc13s form heterodimers with Uevs from other species, which are capable of catalyzing K63 polyubiquitination in vitro. Both genes can functionally rescue the yeast ubc13 null mutant from killing by DNA-damaging agents. These results suggest that Ubc13-Uev-promoted K63-linked polyubiquitination is highly conserved in eukaryotes including B. distachyon. Consistent with recent findings that K63-linked polyubiquitination is involved in several developmental and stress-responsive pathways, the expression of BdUbc13s appears to be constitutive and is regulated by abnormal temperatures.
Collapse
Affiliation(s)
- Huiping Guo
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Rui Wen
- National Research Council CanadaSaskatoon, SK, Canada
| | - Zhi Liu
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Raju Datla
- National Research Council CanadaSaskatoon, SK, Canada
| | - Wei Xiao
- College of Life Sciences, Capital Normal UniversityBeijing, China
- Department of Microbiology and Immunology, University of SaskatchewanSaskatoon, SK, Canada
| |
Collapse
|
47
|
Guo H, Wen R, Wang Q, Datla R, Xiao W. Three Brachypodium distachyon Uev1s Promote Ubc13-Mediated Lys63-Linked Polyubiquitination and Confer Different Functions. FRONTIERS IN PLANT SCIENCE 2016; 7:1551. [PMID: 27803708 PMCID: PMC5067413 DOI: 10.3389/fpls.2016.01551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/03/2016] [Indexed: 05/08/2023]
Abstract
In this study, we report the identification and functional characterization of three Brachypodium distachyon UEV genes. All three BdUev1s form heterodimers with BdUbc13s, which are capable of catalyzing Lys63-linked polyubiquitination in vitro. The three BdUEV1 genes are also able to functionally complement the budding yeast mms2 mutant defective in DNA-damage tolerance. BdUev1A differs from the other two BdUev1s in that it contains an 18-amino acid tail, which appears to compromise its function in yeast, as deletion of this tail restores full function. BdUev1A is excluded from the nucleus, whereas BdUev1B, BdUev1C and the C-terminally truncated BdUev1A are mainly found in the nucleus. These and the BdUEV1 gene expression analysis allow us to speculate that although all three BdUev1s function by promoting Lys63-linked polyubiquitination, BdUev1B and BdUev1C are involved in DNA-damage response and possibly other nuclear functions, while BdUev1A is required for non-nuclear function(s).
Collapse
Affiliation(s)
- Huiping Guo
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Rui Wen
- National Research Council Canada, SaskatoonSK, Canada
| | - Qianqian Wang
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Raju Datla
- National Research Council Canada, SaskatoonSK, Canada
| | - Wei Xiao
- College of Life Sciences, Capital Normal UniversityBeijing, China
- Department of Microbiology and Immunology, University of Saskatchewan, SaskatoonSK, Canada
- *Correspondence: Wei Xiao,
| |
Collapse
|
48
|
Jue D, Sang X, Lu S, Dong C, Zhao Q, Chen H, Jia L. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize. PLoS One 2015; 10:e0143488. [PMID: 26606743 PMCID: PMC4659669 DOI: 10.1371/journal.pone.0143488] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/05/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). METHODOLOGY/PRINCIPAL FINDINGS In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. CONCLUSIONS Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize.
Collapse
Affiliation(s)
- Dengwei Jue
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Xuelian Sang
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Shengqiao Lu
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530227, China
| | - Chen Dong
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Qiufang Zhao
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Hongliang Chen
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Liqiang Jia
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| |
Collapse
|
49
|
Chen C, Song Y, Zhuang K, Li L, Xia Y, Shen Z. Proteomic Analysis of Copper-Binding Proteins in Excess Copper-Stressed Roots of Two Rice (Oryza sativa L.) Varieties with Different Cu Tolerances. PLoS One 2015; 10:e0125367. [PMID: 25919452 PMCID: PMC4412397 DOI: 10.1371/journal.pone.0125367] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/12/2015] [Indexed: 12/30/2022] Open
Abstract
To better understand the mechanisms involved in the heavy metal stress response and tolerance in plants, a proteomic approach was used to investigate the differences in Cu-binding protein expression in Cu-tolerant and Cu-sensitive rice varieties. Cu-binding proteins from Cu-treated rice roots were separated using a new IMAC method in which an IDA-sepharose column was applied prior to the Cu-IMAC column to remove metal ions from protein samples. More than 300 protein spots were reproducibly detected in the 2D gel. Thirty-five protein spots exhibited changes greater than 1.5-fold in intensity compared to the control. Twenty-four proteins contained one or more of nine putative metal-binding motifs reported by Smith et al., and 19 proteins (spots) contained one to three of the top six motifs reported by Kung et al. The intensities of seven protein spots were increased in the Cu-tolerant variety B1139 compared to the Cu-sensitive variety B1195 (p<0.05) and six protein spots were markedly up-regulated in B1139, but not detectable in B1195. Four protein spots were significantly up-regulated in B1139, but unchanged in B1195 under Cu stress. In contrast, two protein spots were significantly down-regulated in B1195, but unchanged in B1139. These Cu-responsive proteins included those involved in antioxidant defense and detoxification (spots 5, 16, 21, 22, 28, 29 and 33), pathogenesis (spots 5, 16, 21, 22, 28, 29 and 33), regulation of gene transcription (spots 8 and 34), amino acid synthesis (spots 8 and 34), protein synthesis, modification, transport and degradation (spots 1, 2, 4, 10, 15, 19, 30, 31, 32 and 35), cell wall synthesis (spot 14), molecular signaling (spot 3), and salt stress (spots 7, 9 and 27); together with other proteins, such as a putative glyoxylate induced protein, proteins containing dimeric alpha-beta barrel domains, and adenosine kinase-like proteins. Our results suggest that these proteins, together with related physiological processes, play an important role in the detoxification of excess Cu and in maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yufeng Song
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Kai Zhuang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Lu Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| |
Collapse
|
50
|
Wang Y, Xu MY, Liu JP, Wang MG, Yin HQ, Tu JM. Molecular identification and interaction assay of the gene (OsUbc13) encoding a ubiquitin-conjugating enzyme in rice. J Zhejiang Univ Sci B 2015; 15:624-37. [PMID: 25001222 DOI: 10.1631/jzus.b1300273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ubiquitin (Ub)-conjugating enzyme, Ubc13, has been known to be involved in error-free DNA damage tolerance (or post-replication repair) via catalyzing Lys63-linked polyubiquitin chains formation together with a Ubc variant. However, its functions remain largely unknown in plant species, especially in monocotyledons. In this study, we cloned a Ub-conjugating enzyme, OsUbc13, that shares the conserved domain of Ubc with AtUBC13B in Oryza sativa L., which encodes a protein of 153 amino acids; the deduced sequence shares high similarities with other homologs. Real-time quantitative polymerase chain reaction (PCR) indicated that OsUbc13 transcripts could be detected in all tissues examined, and the expression level was higher in palea, pistil, stamen, and leaf, and lower in root, stem, and lemma; the expression of OsUbc13 was induced by low temperature, methylmethane sulfate (MMS), and H(2)O(2), but repressed by mannitol, abscisic acid (ABA), and NaCl. OsUbc13 was probably localized in the plasma and nuclear membranes. About 20 proteins, which are responsible for the positive yeast two-hybrid interaction of OsUbc13, were identified. These include the confirmed OsVDAC (correlated with apoptosis), OsMADS1 (important for development of floral organs), OsB22EL8 (related to reactive oxygen species (ROS) scavenging and DNA protection), and OsCROC-1 (required for formation of Lys63 polyubiquitylation and error-free DNA damage tolerance). The molecular characterization provides a foundation for the functional study of OsUbc13.
Collapse
Affiliation(s)
- Ya Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | | | | | | | | | | |
Collapse
|