1
|
Nanjappan Jothiraj S, Mills C, Irving ZC, Kam JWY. Detection of freely moving thoughts using SVM and EEG signals. J Neural Eng 2025; 22:026021. [PMID: 40048826 DOI: 10.1088/1741-2552/adbd77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Objective.Freely moving thought is a type of thinking that shifts from one topic to another without any overarching direction or aim. The ability to detect when freely moving thought occurs may help us promote its beneficial outcomes, such as for creative thinking and positive mood. Thus far, no studies have used machine learning to detect freely moving thought on the basis of 'objective' (e.g. neural or behavioral) data.Approach.Our study addresses this gap, using event-related potential (ERP) and spectral features of electroencephalogram (EEG) signals as well as behavioral measures during a simple attention task and machine learning to detect freely moving thought. EEG features were first examined with both inter-subject and intra-subject strategies. Specifically, the statistical and entropy features of the P3 ERP and alpha spectral measures were entered as inputs to the support vector machine. The best combination of EEG features achieving higher classification performance in both strategies were then selected to combine with behavioral features to further enhance classification performance.Main results.Our best performing model has a Matthew's correlation coefficient and area under the curve of 0.3105 and 0.6665 for inter-subject models and 0.2815 and 0.6407 for intra-subject models respectively.Significance.The above chance level performance in both strategies using EEG and behavioral features shows great promise for machine learning approaches to detect freely moving thought and highlights their potential for real-time prediction in the real world. This has important implications for enhancing creative processes and mood associated with freely moving thought.
Collapse
Affiliation(s)
| | - Caitlin Mills
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Zachary C Irving
- Corcoran Department of Philosophy, University of Virginia, Charlottesville, VA 22904, United States of America
| | - Julia W Y Kam
- Department of Psychology and Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N1N4, Canada
| |
Collapse
|
2
|
Sepúlveda-Fontaine SA, Amigó JM. Applications of Entropy in Data Analysis and Machine Learning: A Review. ENTROPY (BASEL, SWITZERLAND) 2024; 26:1126. [PMID: 39766755 PMCID: PMC11675792 DOI: 10.3390/e26121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Since its origin in the thermodynamics of the 19th century, the concept of entropy has also permeated other fields of physics and mathematics, such as Classical and Quantum Statistical Mechanics, Information Theory, Probability Theory, Ergodic Theory and the Theory of Dynamical Systems. Specifically, we are referring to the classical entropies: the Boltzmann-Gibbs, von Neumann, Shannon, Kolmogorov-Sinai and topological entropies. In addition to their common name, which is historically justified (as we briefly describe in this review), another commonality of the classical entropies is the important role that they have played and are still playing in the theory and applications of their respective fields and beyond. Therefore, it is not surprising that, in the course of time, many other instances of the overarching concept of entropy have been proposed, most of them tailored to specific purposes. Following the current usage, we will refer to all of them, whether classical or new, simply as entropies. In particular, the subject of this review is their applications in data analysis and machine learning. The reason for these particular applications is that entropies are very well suited to characterize probability mass distributions, typically generated by finite-state processes or symbolized signals. Therefore, we will focus on entropies defined as positive functionals on probability mass distributions and provide an axiomatic characterization that goes back to Shannon and Khinchin. Given the plethora of entropies in the literature, we have selected a representative group, including the classical ones. The applications summarized in this review nicely illustrate the power and versatility of entropy in data analysis and machine learning.
Collapse
Affiliation(s)
| | - José M. Amigó
- Centro de Investigación Operativa, Universidad Miguel Hernández de Elche, 03202 Elche, Spain;
| |
Collapse
|
3
|
Liu J, Younk R, M Drahos L, S Nagrale S, Yadav S, S Widge A, Shoaran M. Neural decoding and feature selection methods for closed-loop control of avoidance behavior. J Neural Eng 2024; 21:056041. [PMID: 39419091 PMCID: PMC11523571 DOI: 10.1088/1741-2552/ad8839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Objective.Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors.Approach.We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance.Main results.Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80-150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low training/inference time and memory usage, requiring<310 ms for training,<0.051 ms for inference, and 16.6 kB of memory, using a single core of AMD Ryzen Threadripper PRO 5995WX CPU.Significance.Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation.
Collapse
Affiliation(s)
- Jinhan Liu
- Institute of Electrical and Micro Engineering, EPFL, Lausanne, Switzerland
- Neuro-X Institute, EPFL, Geneva, Switzerland
| | - Rebecca Younk
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Lauren M Drahos
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Sumedh S Nagrale
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Shreya Yadav
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Alik S Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Mahsa Shoaran
- Institute of Electrical and Micro Engineering, EPFL, Lausanne, Switzerland
- Neuro-X Institute, EPFL, Geneva, Switzerland
| |
Collapse
|
4
|
Varnosfaderani SM, McNulty I, Sarhan NJ, Abood W, Alhawari M. An Efficient Epilepsy Prediction Model on European Dataset With Model Evaluation Considering Seizure Types. IEEE J Biomed Health Inform 2024; 28:5842-5854. [PMID: 38968012 DOI: 10.1109/jbhi.2024.3423766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
This paper develops a computationally efficient model for automatic patient-specific seizure prediction using a two-layer LSTM from multichannel intracranial electroencephalogram time-series data. We decrease the number of parameters by employing a smaller input size and fewer electrodes, thereby making the model a viable option for wearable and implantable devices. We test the proposed prediction model on 26 patients from the European iEEG dataset, which is the largest epileptic seizure dataset. We also apply an automatic preprocessing technique based on a common average reference to remove artifacts from this dataset. The simulation results show that the model with its simple structure in conjunction with the mean post-processing procedure performed the best, with an average AUC of 0.885. This study is the first that utilizes the European database for epilepsy prediction application and the first that analyzes the effect of the seizure type on the system performance and demonstrates that the seizure type has a considerable impact.
Collapse
|
5
|
Liu J, Younk R, Drahos LM, Nagrale SS, Yadav S, Widge AS, Shoaran M. Neural Decoding and Feature Selection Techniques for Closed-Loop Control of Defensive Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597165. [PMID: 38895388 PMCID: PMC11185693 DOI: 10.1101/2024.06.06.597165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Objective Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors. Approach We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance. Main results Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80-150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low time complexity, requiring <110 ms for training and <1 ms for inference. Significance Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation.
Collapse
Affiliation(s)
- Jinhan Liu
- Institute of Electrical and Micro Engineering, EPFL, Lausanne, Switzerland
- Neuro-X Institute, EPFL, Geneva, Switzerland
| | - Rebecca Younk
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Lauren M Drahos
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sumedh S Nagrale
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Shreya Yadav
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Alik S Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- These authors jointly supervised this work
| | - Mahsa Shoaran
- Institute of Electrical and Micro Engineering, EPFL, Lausanne, Switzerland
- Neuro-X Institute, EPFL, Geneva, Switzerland
- These authors jointly supervised this work
| |
Collapse
|
6
|
Skaria S, Savithriamma SK. Automatic classification of seizure and seizure-free EEG signals based on phase space reconstruction features. J Biol Phys 2024; 50:181-196. [PMID: 38466526 PMCID: PMC11106053 DOI: 10.1007/s10867-024-09654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Epilepsy is a type of brain disorder triggered by an abrupt electrical imbalance of neuronal networks. An electroencephalogram (EEG) is a diagnostic tool to capture the underlying brain mechanisms and detect seizure onset in epileptic patients. To detect seizures, neurologists need to manually monitor EEG recordings for long periods, which is challenging and susceptible to errors depending on expertise and experience. Therefore, automatic identification of seizure and seizure-free EEG signals becomes essential. This study introduces a method based on the features extracted from the phase space reconstruction for classifying seizure and seizure-free EEG signals. The computed features are derived from the elliptical area and interquartile range of the Euclidean distance by varying percentage values of data points ranging from 50 to 100%. We consider two public datasets and evaluate these features in each EEG epoch that includes the healthy, interictal, preictal, and ictal stages of epileptic subjects, utilizing the K-nearest neighbor classifier for classification. Results show that the features have higher values during the seizure than the seizure-free EEG signals and healthy subjects. Furthermore, the proposed features can effectively discriminate seizure EEG signals from the seizure-free and normal subjects with 100% accuracy, sensitivity, and specificity in both datasets. Likewise, the classification between the preictal stage and seizure EEG signals attains 98% accuracy. Overall, the reconstructed phase space features significantly enhance the accuracy of detecting epileptic EEG signals compared with existing methods. This advancement holds great potential in assisting neurologists in swiftly and accurately diagnosing epileptic seizures from EEG signals.
Collapse
Affiliation(s)
- Shervin Skaria
- Department of Physics, Government College Kottayam, Nattakom, Kerala, India
| | | |
Collapse
|
7
|
Kim DH, Park JO, Lee DY, Choi YS. Multiscale distribution entropy analysis of short epileptic EEG signals. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5556-5576. [PMID: 38872548 DOI: 10.3934/mbe.2024245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This paper proposes an information-theoretic measure for discriminating epileptic patterns in short-term electroencephalogram (EEG) recordings. Considering nonlinearity and nonstationarity in EEG signals, quantifying complexity has been preferred. To decipher abnormal epileptic EEGs, i.e., ictal and interictal EEGs, via short-term EEG recordings, a distribution entropy (DE) is used, motivated by its robustness on the signal length. In addition, to reflect the dynamic complexity inherent in EEGs, a multiscale entropy analysis is incorporated. Here, two multiscale distribution entropy (MDE) methods using the coarse-graining and moving-average procedures are presented. Using two popular epileptic EEG datasets, i.e., the Bonn and the Bern-Barcelona datasets, the performance of the proposed MDEs is verified. Experimental results show that the proposed MDEs are robust to the length of EEGs, thus reflecting complexity over multiple time scales. In addition, the proposed MDEs are consistent irrespective of the selection of short-term EEGs from the entire EEG recording. By evaluating the Man-Whitney U test and classification performance, the proposed MDEs can better discriminate epileptic EEGs than the existing methods. Moreover, the proposed MDE with the moving-average procedure performs marginally better than one with the coarse-graining. The experimental results suggest that the proposed MDEs are applicable to practical seizure detection applications.
Collapse
Affiliation(s)
- Dae Hyeon Kim
- Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Jin-Oh Park
- Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Dae-Young Lee
- Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Young-Seok Choi
- Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, South Korea
| |
Collapse
|
8
|
Liu X, Li C, Lou X, Kong H, Li X, Li Z, Zhong L. Epileptic seizure prediction based on EEG using pseudo-three-dimensional CNN. Front Neuroinform 2024; 18:1354436. [PMID: 38566773 PMCID: PMC10986364 DOI: 10.3389/fninf.2024.1354436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Epileptic seizures are characterized by their sudden and unpredictable nature, posing significant risks to a patient's daily life. Accurate and reliable seizure prediction systems can provide alerts before a seizure occurs, as well as give the patient and caregivers provider enough time to take appropriate measure. This study presents an effective seizure prediction method based on deep learning that combine with handcrafted features. The handcrafted features were selected by Max-Relevance and Min-Redundancy (mRMR) to obtain the optimal set of features. To extract the epileptic features from the fused multidimensional structure, we designed a P3D-BiConvLstm3D model, which is a combination of pseudo-3D convolutional neural network (P3DCNN) and bidirectional convolutional long short-term memory 3D (BiConvLstm3D). We also converted EEG signals into a multidimensional structure that fused spatial, manual features, and temporal information. The multidimensional structure is then fed into a P3DCNN to extract spatial and manual features and feature-to-feature dependencies, followed by a BiConvLstm3D input to explore temporal dependencies while preserving the spatial features, and finally, a channel attention mechanism is implemented to emphasize the more representative information in the multichannel output. The proposed has an average accuracy of 98.13%, an average sensitivity of 98.03%, an average precision of 98.30% and an average specificity of 98.23% for the CHB-MIT scalp EEG database. A comparison of the proposed model with other baseline methods was done to confirm the better performance of features through time-space nonlinear feature fusion. The results show that the proposed P3DCNN-BiConvLstm3D-Attention3D method for epilepsy prediction by time-space nonlinear feature fusion is effective.
Collapse
Affiliation(s)
- Xin Liu
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Chunyang Li
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xicheng Lou
- School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Haohuan Kong
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xinwei Li
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zhangyong Li
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Lisha Zhong
- School of Medical Information and Engineering, Southwest Medical University Luzhou, Luzhou, China
| |
Collapse
|
9
|
Pouryosef M, Abedini-Nassab R, Akrami SMR. A Novel Framework for Epileptic Seizure Detection Using Electroencephalogram Signals Based on the Bat Feature Selection Algorithm. Neuroscience 2024; 541:35-49. [PMID: 38301741 DOI: 10.1016/j.neuroscience.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
The precise electroencephalogram (EEG) signal classification with the highest possible accuracy is a key goal in the brain-computer interface (BCI). Considering the complexity and nonstationary nature of the EEG signals, there is an urgent need for effective feature extraction and data mining techniques. Here, we introduce a novel pipeline based on Bat and genetic algorithms for feature construction and dimension reduction of EEG signals. After wavelet extraction and segmentation, the Bat algorithm identifies the most relevant features. We use these features and a genetic algorithm combined with a neural network method to automatically classify the segments of the epilepsy EEG signals. We also use available classification methods based on k-Nearest Neighbors or naïve Bayes for comparison purposes. The code distinguishes individual signals within various combinations of data obtained from healthy volunteers with open or closed eyes and patients suffering from epilepsy disorders during seizure-free periods or seizure activities. Compared to the previously introduced methods, our proposed framework demonstrates a superior balance of high accuracy and short runtime. The minimum achieved accuracies for balanced and unbalanced classes are 100% and 75.9%, respectively. This approach has the potential for direct applications in clinics, enabling accurate and rapid analysis of the epilepsy EEG signals obtained from patients.
Collapse
Affiliation(s)
- Mahrad Pouryosef
- Division of Mechatronics Engineering, Faculty of Mechanical Engineering, University of Tabriz, 29 Bahman Blvd, Tabriz 51666 14761, Iran
| | | | - Seyed Mohammad Reza Akrami
- Division of Mechatronics Engineering, Faculty of Mechanical Engineering, University of Tabriz, 29 Bahman Blvd, Tabriz 51666 14761, Iran
| |
Collapse
|
10
|
Rakhmatulin I, Dao MS, Nassibi A, Mandic D. Exploring Convolutional Neural Network Architectures for EEG Feature Extraction. SENSORS (BASEL, SWITZERLAND) 2024; 24:877. [PMID: 38339594 PMCID: PMC10856895 DOI: 10.3390/s24030877] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
The main purpose of this paper is to provide information on how to create a convolutional neural network (CNN) for extracting features from EEG signals. Our task was to understand the primary aspects of creating and fine-tuning CNNs for various application scenarios. We considered the characteristics of EEG signals, coupled with an exploration of various signal processing and data preparation techniques. These techniques include noise reduction, filtering, encoding, decoding, and dimension reduction, among others. In addition, we conduct an in-depth analysis of well-known CNN architectures, categorizing them into four distinct groups: standard implementation, recurrent convolutional, decoder architecture, and combined architecture. This paper further offers a comprehensive evaluation of these architectures, covering accuracy metrics, hyperparameters, and an appendix that contains a table outlining the parameters of commonly used CNN architectures for feature extraction from EEG signals.
Collapse
Affiliation(s)
- Ildar Rakhmatulin
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK; (A.N.)
| | - Minh-Son Dao
- National Institute of Information and Communications Technology (NICT), Tokyo 184-0015, Japan
| | - Amir Nassibi
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK; (A.N.)
| | - Danilo Mandic
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK; (A.N.)
| |
Collapse
|
11
|
McFadden J. Carving Nature at Its Joints: A Comparison of CEMI Field Theory with Integrated Information Theory and Global Workspace Theory. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1635. [PMID: 38136515 PMCID: PMC10743215 DOI: 10.3390/e25121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
The quest to comprehend the nature of consciousness has spurred the development of many theories that seek to explain its underlying mechanisms and account for its neural correlates. In this paper, I compare my own conscious electromagnetic information field (cemi field) theory with integrated information theory (IIT) and global workspace theory (GWT) for their ability to 'carve nature at its joints' in the sense of predicting the entities, structures, states and dynamics that are conventionally recognized as being conscious or nonconscious. I go on to argue that, though the cemi field theory shares features of both integrated information theory and global workspace theory, it is more successful at carving nature at its conventionally accepted joints between conscious and nonconscious systems, and is thereby a more successful theory of consciousness.
Collapse
Affiliation(s)
- Johnjoe McFadden
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
12
|
Chen D, Huang H, Bao X, Pan J, Li Y. An EEG-based attention recognition method: fusion of time domain, frequency domain, and non-linear dynamics features. Front Neurosci 2023; 17:1194554. [PMID: 37502681 PMCID: PMC10368951 DOI: 10.3389/fnins.2023.1194554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction Attention is a complex cognitive function of human brain that plays a vital role in our daily lives. Electroencephalogram (EEG) is used to measure and analyze attention due to its high temporal resolution. Although several attention recognition brain-computer interfaces (BCIs) have been proposed, there is a scarcity of studies with a sufficient number of subjects, valid paradigms, and reliable recognition analysis across subjects. Methods In this study, we proposed a novel attention paradigm and feature fusion method to extract features, which fused time domain features, frequency domain features and nonlinear dynamics features. We then constructed an attention recognition framework for 85 subjects. Results and discussion We achieved an intra-subject average classification accuracy of 85.05% ± 6.87% and an inter-subject average classification accuracy of 81.60% ± 9.93%, respectively. We further explored the neural patterns in attention recognition, where attention states showed less activation than non-attention states in the prefrontal and occipital areas in α, β and θ bands. The research explores, for the first time, the fusion of time domain features, frequency domain features and nonlinear dynamics features for attention recognition, providing a new understanding of attention recognition.
Collapse
Affiliation(s)
- Di Chen
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
- Research Center for Brain-Computer Interface, Pazhou Laboratory, Guangzhou, China
| | - Haiyun Huang
- Research Center for Brain-Computer Interface, Pazhou Laboratory, Guangzhou, China
- School of Software, South China Normal University, Foshan, China
| | - Xiaoyu Bao
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
- Research Center for Brain-Computer Interface, Pazhou Laboratory, Guangzhou, China
| | - Jiahui Pan
- Research Center for Brain-Computer Interface, Pazhou Laboratory, Guangzhou, China
- School of Software, South China Normal University, Foshan, China
| | - Yuanqing Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
- Research Center for Brain-Computer Interface, Pazhou Laboratory, Guangzhou, China
| |
Collapse
|
13
|
Prabhakar SK, Won DO. Performance comparison of bio-inspired and learning-based clustering analysis with machine learning techniques for classification of EEG signals. Front Artif Intell 2023; 6:1156269. [PMID: 37415937 PMCID: PMC10321130 DOI: 10.3389/frai.2023.1156269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023] Open
Abstract
A comprehensive analysis of an automated system for epileptic seizure detection is explained in this work. When a seizure occurs, it is quite difficult to differentiate the non-stationary patterns from the discharges occurring in a rhythmic manner. The proposed approach deals with it efficiently by clustering it initially for the sake of feature extraction by using six different techniques categorized under two different methods, e.g., bio-inspired clustering and learning-based clustering. Learning-based clustering includes K-means clusters and Fuzzy C-means (FCM) clusters, while bio-inspired clusters include Cuckoo search clusters, Dragonfly clusters, Firefly clusters, and Modified Firefly clusters. Clustered values were then classified with 10 suitable classifiers, and after the performance comparison analysis of the EEG time series, the results proved that this methodology flow achieved a good performance index and a high classification accuracy. A comparatively higher classification accuracy of 99.48% was achieved when Cuckoo search clusters were utilized with linear support vector machines (SVM) for epilepsy detection. A high classification accuracy of 98.96% was obtained when K-means clusters were classified with a naive Bayesian classifier (NBC) and Linear SVM, and similar results were obtained when FCM clusters were classified with Decision Trees yielding the same values. The comparatively lowest classification accuracy, at 75.5%, was obtained when Dragonfly clusters were classified with the K-nearest neighbor (KNN) classifier, and the second lowest classification accuracy of 75.75% was obtained when Firefly clusters were classified with NBC.
Collapse
|
14
|
Jianbiao M, Xinzui W, Zhaobo L, Juan L, Zhongwei Z, Hui F. EEG signal classification of tinnitus based on SVM and sample entropy. Comput Methods Biomech Biomed Engin 2023; 26:580-594. [PMID: 35850561 DOI: 10.1080/10255842.2022.2075698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The prevalence of tinnitus is high and seriously affects the daily life of patients. As the pathogenesis of tinnitus is not yet clear, there is a lack of rapid and objective diagnostic modalities. In order to provide clinicians with an objective diagnostic approach, this paper combines time-frequency domain and non-linear power analysis to investigate the differences in the specificity of the EEG signal in tinnitus patients compared to healthy subjects. In this paper, resting-state electroencephalograms (EEG) were collected from 10 cases each of tinnitus patients and healthy subjects, and the data from the two groups were compared in the δ (0.5 - 3 .5 Hz), θ (4 - 7.5 Hz), α1 (8 - 10 Hz), α2 (10 - 12 Hz), β1 (13 - 18 Hz), β2 (18.5 - 21 Hz), β3 (21.5 - 30 Hz), and γ (30.5 - 44 Hz) bands for the differences in sample entropy values. The results of the resting state experiment revealed that the δ, α2 and β1 band samples of tinnitus patients all had greater entropy values than healthy subjects, with extremely significant differences compared to healthy subjects (p < 0.01). It is mainly concentrated in the δ band in the right parietal region of the cerebral cortex, the α2 band in the central region, and the γ band in the left prefrontal region. Finally, support vector machines combined with optimal feature combinations were used to achieve objective recognition of tinnitus disorders, with an 8.58% increase in accuracy compared to other features. Through the above study, entropy reflects the degree of chaos in the brain and the chaotic characteristics of the resting state EEG signal can characterise the onset of tinnitus, the results of which can help clinicians in the early diagnosis of tinnitus.
Collapse
Affiliation(s)
- Mai Jianbiao
- Jihua Institute of Biomedical Engineering and Technology, Ji Hua Laboratory, Foshan, Guangdong, China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Wang Xinzui
- Jihua Institute of Biomedical Engineering and Technology, Ji Hua Laboratory, Foshan, Guangdong, China
| | - Li Zhaobo
- Jihua Institute of Biomedical Engineering and Technology, Ji Hua Laboratory, Foshan, Guangdong, China
| | - Liu Juan
- Jihua Institute of Biomedical Engineering and Technology, Ji Hua Laboratory, Foshan, Guangdong, China
| | - Zhang Zhongwei
- Jihua Institute of Biomedical Engineering and Technology, Ji Hua Laboratory, Foshan, Guangdong, China
| | - Fu Hui
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Zolezzi DM, Alonso-Valerdi LM, Ibarra-Zarate DI. EEG frequency band analysis in chronic neuropathic pain: A linear and nonlinear approach to classify pain severity. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 230:107349. [PMID: 36689806 DOI: 10.1016/j.cmpb.2023.107349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Chronic neuropathic pain (NP) is a chronic pain condition that severely impacts a patient's life. Pain management has proved to be inefficient due to a lack of a simple clinical tool that may identify and monitor NP. A low-cost, noninvasive tool that provides relevant information on NP is the electroencephalogram (EEG). However, the commonly used linear EEG features have proved to be limited in characterizing NP pathophysiology. This study sought to determine whether nonlinear EEG features such as approximate entropy (ApEn) would better differentiate pain severity than absolute band power. METHODS A non-parametric statistical approach based on the Brief Pain Inventory (BPI), along with linear and nonlinear EEG features, is proposed in this study. For this purpose, thirty-six chronic NP patients were recruited, and 22 channels were registered. Additionally, a control database of 13 participants with no NP was used as a reference, where 19 channels were registered. For both groups, EEG was recorded for 10 min in a resting state: 5 min with eyes open (EO) and 5 min with eyes closed (EC). Absolute band power and ApEn EEG features in the five clinical frequency bands (delta, theta, alpha, beta, and gamma) were estimated for all channels in both groups. As a result, 220-dimensional and 190-dimensional feature vectors were obtained for experimental and control classes respectively. For the experimental class, NP patients were grouped according to their BPI evaluation in three groups: low, moderate, and high pain. Finally, feature vectors were compared between groups using Kruskal Wallis and post-hoc Dunn's tests. RESULTS ApEn revealed significant statistical difference (p <=0.0001) in most frequency bands and conditions among the groups. In contrast, power had less significant differences between groups, particularly with EO. Furthermore, NP groups were notably clustered using only ApEn in theta, alpha, and beta bands. CONCLUSIONS The results indicate that ApEn effectively characterizes the different severities of chronic NP rather than the commonly used linear features. ApEn and other nonlinear techniques (e.g., spectral entropy, Shannon entropy) might be a more suitable methodology to monitor chronic NP experience.
Collapse
Affiliation(s)
- Daniela M Zolezzi
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, Mexico; Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Frederik Bajers Vej 7A 2-207, Aalborg East 9220, Denmark.
| | | | - David I Ibarra-Zarate
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Vía Atlixcáyotl 2301, Puebla 72453, Mexico
| |
Collapse
|
16
|
Yang W, Ouyang Q, Zhu Z, Wu Y, Fan M, Liao Y, Guo X, Xu Z, Zhang X, Zhang Y, Hu N, Zhang D. A biosensing system employing nonlinear dynamic analysis-assisted neural network for drug-induced cardiotoxicity assessment. Biosens Bioelectron 2023; 222:114923. [PMID: 36455375 DOI: 10.1016/j.bios.2022.114923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Preclinical investigation of drug-induced cardiotoxicity is of importance for drug development. To evaluate such cardiotoxicity, in vitro high-throughput interdigitated electrode-based recording of cardiomyocytes mechanical beating is widely used. To automatically analyze the features from the beating signals for drug-induced cardiotoxicity assessment, artificial neural network analysis is conventionally employed and signals are segmented into cycles and feature points are located in the cycles. However, signal segmentation and location of feature points for different signal shapes require design of specific algorithms. Consequently, this may lower the efficiency of research and the applications of such algorithms in signals with different morphologies are limited. Here, we present a biosensing system that employs nonlinear dynamic analysis-assisted neural network (NDANN) to avoid the signal segmentation process and directly extract features from beating signal time series. By processing beating time series with fixed time duration to avoid the signal segmentation process, this NDANN-based biosensing system can identify drug-induced cardiotoxicity with accuracy over 0.99. The individual drugs were classified with high accuracies over 0.94 and drug-induced cardiotoxicity levels were accurately predicted. We also evaluated the generalization performance of the NDANN-based biosensing system in assessing drug-induced cardiotoxicity through an independent dataset. This system achieved accuracy of 0.85-0.95 for different drug concentrations in identification of drug-induced cardiotoxicity. This result demonstrates that our NDANN-based biosensing system has the capacity of screening newly developed drugs, which is crucial in practical applications. This NDANN-based biosensing system can work as a new screening platform for drug-induced cardiotoxicity and improve the efficiency of bio-signal processing.
Collapse
Affiliation(s)
- Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China
| | - Qiangqiang Ouyang
- First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhijing Zhu
- Key Laboratory of Novel Target and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, School of Computer & Computing Science, Zhejiang University City College, Hangzhou, 310015, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yue Wu
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China.
| | - Minzhi Fan
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China
| | - Yuheng Liao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China
| | - Xinyu Guo
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China
| | - Zhongyuan Xu
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China
| | - Xiaoyu Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China
| | - Yunshan Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China
| | - Ning Hu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China; Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China.
| |
Collapse
|
17
|
Dastgoshadeh M, Rabiei Z. Detection of epileptic seizures through EEG signals using entropy features and ensemble learning. Front Hum Neurosci 2023; 16:1084061. [PMID: 36875740 PMCID: PMC9976189 DOI: 10.3389/fnhum.2022.1084061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Epilepsy is a disorder of the central nervous system that is often accompanied by recurrent seizures. World health organization (WHO) estimated that more than 50 million people worldwide suffer from epilepsy. Although electroencephalogram (EEG) signals contain vital physiological and pathological information of brain and they are a prominent medical tool for detecting epileptic seizures, visual interpretation of such tools is time-consuming. Since early diagnosis of epilepsy is essential to control seizures, we present a new method using data mining and machine learning techniques to diagnose epileptic seizures automatically. Methods The proposed detection system consists of three main steps: In the first step, the input signals are pre-processed by discrete wavelet transform (DWT) and sub-bands containing useful information are extracted. In the second step, the features of each sub-band are extracted by approximate entropy (ApEn) and sample entropy (SampEn) and then these features are ranked by ANOVA test. Finally, feature selection is done by the FSFS technique. In the third step, three algorithms are used to classify seizures: Least squared support vector machine (LS-SVM), K nearest neighbors (KNN) and Naive Bayes model (NB). Results and discussion The average accuracy for both LS-SVM and NB was 98% and it was 94.5% for KNN, while the results show that the proposed method can detect epileptic seizures with an average accuracy of 99.5%, 99.01% of sensitivity and 100% of specificity which show an improvement over most similar methods and can be used as an effective tool in diagnosing this complication.
Collapse
Affiliation(s)
| | - Zahra Rabiei
- Department of Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
| |
Collapse
|
18
|
Wu W, Ling BWK, Li R, Lin Z, Liu Q, Shao J, Ho CYF. Classification Approach for Attention Assessment via Singular Spectrum Analysis Based on Single-Channel Electroencephalograms. SENSORS (BASEL, SWITZERLAND) 2023; 23:761. [PMID: 36679558 PMCID: PMC9867040 DOI: 10.3390/s23020761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Attention refers to the human psychological ability to focus on doing an activity. The attention assessment plays an important role in diagnosing attention deficit hyperactivity disorder (ADHD). In this paper, the attention assessment is performed via a classification approach. First, the single-channel electroencephalograms (EEGs) are acquired from various participants when they perform various activities. Then, fast Fourier transform (FFT) is applied to the acquired EEGs, and the high-frequency components are discarded for performing denoising. Next, empirical mode decomposition (EMD) is applied to remove the underlying trend of the signals. In order to extract more features, singular spectrum analysis (SSA) is employed to increase the total number of the components. Finally, some typical models such as the random forest-based classifier, the support vector machine (SVM)-based classifier, and the back-propagation (BP) neural network-based classifier are used for performing the classifications. Here, the percentages of the classification accuracies are employed as the attention scores. The computer numerical simulation results show that our proposed method yields a higher classification performance compared to the traditional methods without performing the EMD and SSA.
Collapse
|
19
|
A Feature Extraction Method for Seizure Detection Based on Multi-Site Synchronous Changes and Edge Detection Algorithm. Brain Sci 2022; 13:brainsci13010052. [PMID: 36672034 PMCID: PMC9856467 DOI: 10.3390/brainsci13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
Automatic detection of epileptic seizures is important in epilepsy control and treatment, and specific feature extraction assists in accurate detection. We developed a feature extraction method for seizure detection based on multi-site synchronous changes and an edge detection algorithm. We investigated five chronic temporal lobe epilepsy rats with 8- and 12-channel detection sites in the hippocampus and limbic system. Multi-site synchronous changes were selected as a specific feature and implemented as a seizure detection method. For preprocessing, we used magnitude-squared coherence maps and Canny edge detection algorithm to find the frequency band with the most significant change in synchronization and the important channel pairs. In detection, we used the maximal cross-correlation coefficient as an indicator of synchronization and the correlation coefficient curves' average value and standard deviation as two detection features. The method achieved high performance, with an average 96.60% detection rate, 2.63/h false alarm rate, and 1.25 s detection delay. The experimental results show that synchronization is an appropriate feature for seizure detection. The magnitude-squared coherence map can assist in selecting a specific frequency band and channel pairs to enhance the detection result. We found that individuals have a specific frequency band that reflects the most significant synchronization changes, and our method can individually adjust parameters and has good detection performance.
Collapse
|
20
|
Epileptic Seizure Detection Using a Hybrid 1D CNN-Machine Learning Approach from EEG Data. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9579422. [PMID: 36483658 PMCID: PMC9726261 DOI: 10.1155/2022/9579422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
Electroencephalography (EEG) is a widely used technique for the detection of epileptic seizures. It can be recorded in a noninvasive manner to present the electrical activity of the brain. The visual inspection of nonlinear and highly complex EEG signals is both costly and time-consuming. Therefore, an effective automatic detection system is needed to assist in the long-term evaluation and treatment of patients. Traditional approaches based on machine learning require feature extraction, while deep learning approaches are time-consuming and require more layers for effective feature learning and processing of complex EEG waveforms. Deep learning-based approaches also have weak generalization ability. This paper proposes a solution based on the combination of convolution neural networks (CNN) and machine learning classifiers. It preprocesses the EEG signal using the Butterworth filter and performs feature extraction using CNN. From the extracted set of features, the approach selects only the relevant features using mutual information-based estimators to reduce the curse of dimensionality and improve classification accuracy. The selected features are then passed as input to different machine learning classifiers. The suggested solution is evaluated on the University of Bonn dataset and CHB-MIT datasets. Our model effectively predicts 2, 3, 4, and 5 classes with accuracy of 100%, 99%, 94.6%, and 94%, respectively, for the Bonn dataset and 98% for CHB-MIT datasets.
Collapse
|
21
|
Escobar-Ipuz F, Torres A, García-Jiménez M, Basar C, Cascón J, Mateo J. Prediction of patients with idiopathic generalized epilepsy from healthy controls using machine learning from scalp EEG recordings. Brain Res 2022; 1798:148131. [DOI: 10.1016/j.brainres.2022.148131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
|
22
|
Yuan S, Mu J, Zhou W, Dai LY, Liu JX, Wang J, Liu X. Automatic Epileptic Seizure Detection Using Graph-Regularized Non-Negative Matrix Factorization and Kernel-Based Robust Probabilistic Collaborative Representation. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2641-2650. [PMID: 36063515 DOI: 10.1109/tnsre.2022.3204533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Automatic seizure detection system can serve as a meaningful clinical tool for the treatment and analysis of epilepsy using electroencephalogram (EEG) and has obtained rapid development. An automatic detection of epileptic seizure method based on kernel-based robust probabilistic collaborative representation (ProCRC) combined with graph-regularized non-negative matrix factorization (GNMF) is proposed in this work. The raw EEG signals are pre-processed through the wavelet transform to obtain time-frequency distribution of EEG signals as preliminary feature information and GNMF is further employed for dimension reduction, retaining and enhancing the productive feature information of EEG signals. Then, the test sample is represented using robust ProCRC that can decide whether the testing sample belongs to each class (seizure or non-seizure) by jointly maximizing the likelihood. In addition, the kernel trick is applied to improve the separability of non-linear high dimensional EEG signals in robust ProCRC. Finally, post-processing techniques are introduced to generate more accurate and reliable results. The average epoch-based sensitivity of 96.48%, event-based sensitivity of 93.65% and specificity of 98.55% are acquired in this method, which is evaluated on the public Freiburg EEG database.
Collapse
|
23
|
Llorente-Vidrio D, Ballesteros M, Salgado I, Chairez I. Deep Learning Adapted to Differential Neural Networks Used as Pattern Classification of Electrophysiological Signals. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:4807-4818. [PMID: 33735073 DOI: 10.1109/tpami.2021.3066996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This manuscript presents the design of a deep differential neural network (DDNN) for pattern classification. First, we proposed a DDNN topology with three layers, whose learning laws are derived from a Lyapunov analysis, justifying local asymptotic convergence of the classification error and the weights of the DDNN. Then, an extension to include an arbitrary number of hidden layers in the DDNN is analyzed. The learning laws for this general form of the DDNN offer a contribution to the deep learning framework for signal classification with biological nature and dynamic structures. The DDNN is used to classify electroencephalographic signals from volunteers that perform an identification graphical test. The classification results show exponential growth in the signal classification accuracy from 82 percent with one layer to 100 percent with three hidden layers. Working with DDNN instead of static deep neural networks (SDNN) represents a set of advantages, such as processing time and training period reduction up to almost 100 times, and the increment of the classification accuracy while working with less hidden layers than working with SDNN, which are highly dependent on their topology and the number of neurons in each layer. The DDNN employed fewer neurons due to the induced feedback characteristic.
Collapse
|
24
|
Karunakar Reddy V, Kumar AV R. Multi-channel neuro signal classification using Adam-based coyote optimization enabled deep belief network. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Huang CH, Wang PH, Ju MS, Lin CCK. Using Constrained Square-Root Cubature Kalman Filter for Quantifying the Severity of Epileptic Activities in Mice. Biomedicines 2022; 10:biomedicines10071588. [PMID: 35884892 PMCID: PMC9313404 DOI: 10.3390/biomedicines10071588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Quantification of severity of epileptic activities, especially during electrical stimulation, is an unmet need for seizure control and evaluation of therapeutic efficacy. In this study, a parameter ratio derived from constrained square-root cubature Kalman filter (CSCKF) was formulated to quantify the excitability of local neural network and compared with three commonly used indicators, namely, band power, Teager energy operator, and sample entropy, to objectively determine their effectiveness in quantifying the severity of epileptiform discharges in mice. (2) Methods: A set of one normal and four types of epileptic EEGs was generated by a mathematical model. EEG data of epileptiform discharges during two types of electrical stimulation were recorded in 20 mice. Then, EEG segments of 5 s in length before, during and after the real and sham stimulation were collected. Both simulated and experimental data were used to compare the consistency and differences among the performance indicators. (3) Results: For the experimental data, the results of the four indicators were inconsistent during both types of electrical stimulation, although there was a trend that seizure severity changed with the indicators. For the simulated data, when the simulated EEG segments were used, the results of all four indicators were similar; however, this trend did not match the trend of excitability of the model network. In the model output which retained the DC component, except for the CSCKF parameter ratio, the results of the other three indicators were almost identical to those using the simulated EEG. For CSCKF, the parameter ratio faithfully reflected the excitability of the neural network. (4) Conclusion: For common EEG, CSCKF did not outperform other commonly used performance indicators. However, for EEG with a preserved DC component, CSCKF had the potential to quantify the excitability of the neural network and the associated severity of epileptiform discharges.
Collapse
Affiliation(s)
- Chih-Hsu Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Medical Device Innovation Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Peng-Hsiang Wang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Ming-Shaung Ju
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
- Correspondence: (M.-S.J.); (C.-C.K.L.); Tel.: +886-6-235-3535 (ext. 2692) (C.-C.K.L.)
| | - Chou-Ching K. Lin
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Medical Device Innovation Center, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (M.-S.J.); (C.-C.K.L.); Tel.: +886-6-235-3535 (ext. 2692) (C.-C.K.L.)
| |
Collapse
|
26
|
Shah SY, Larijani H, Gibson RM, Liarokapis D. Random Neural Network Based Epileptic Seizure Episode Detection Exploiting Electroencephalogram Signals. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22072466. [PMID: 35408080 PMCID: PMC9002775 DOI: 10.3390/s22072466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 06/12/2023]
Abstract
Epileptic seizures are caused by abnormal electrical activity in the brain that manifests itself in a variety of ways, including confusion and loss of awareness. Correct identification of epileptic seizures is critical in the treatment and management of patients with epileptic disorders. One in four patients present resistance against seizures episodes and are in dire need of detecting these critical events through continuous treatment in order to manage the specific disease. Epileptic seizures can be identified by reliably and accurately monitoring the patients' neuro and muscle activities, cardiac activity, and oxygen saturation level using state-of-the-art sensing techniques including electroencephalograms (EEGs), electromyography (EMG), electrocardiograms (ECGs), and motion or audio/video recording that focuses on the human head and body. EEG analysis provides a prominent solution to distinguish between the signals associated with epileptic episodes and normal signals; therefore, this work aims to leverage on the latest EEG dataset using cutting-edge deep learning algorithms such as random neural network (RNN), convolutional neural network (CNN), extremely random tree (ERT), and residual neural network (ResNet) to classify multiple variants of epileptic seizures from non-seizures. The results obtained highlighted that RNN outperformed all other algorithms used and provided an overall accuracy of 97%, which was slightly improved after cross validation.
Collapse
Affiliation(s)
- Syed Yaseen Shah
- School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK; (R.M.G.); (D.L.)
| | - Hadi Larijani
- SMART Technology Research Centre, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK
| | - Ryan M. Gibson
- School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK; (R.M.G.); (D.L.)
| | - Dimitrios Liarokapis
- School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK; (R.M.G.); (D.L.)
| |
Collapse
|
27
|
Han Y, Ziebell P, Riccio A, Halder S. Two sides of the same coin: adaptation of BCIs to internal states with user-centered design and electrophysiological features. BRAIN-COMPUTER INTERFACES 2022. [DOI: 10.1080/2326263x.2022.2041294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yiyuan Han
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Philipp Ziebell
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - Angela Riccio
- Neuroelectrical Imaging and Brain Computer Interface Laboratory,Fondazione Santa Lucia, Irccs, Rome, Italy
| | - Sebastian Halder
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| |
Collapse
|
28
|
ENIC: Ensemble and Nature Inclined Classification with Sparse Depiction based Deep and Transfer Learning for Biosignal Classification. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.108416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Yin D, Chen D, Tang Y, Dong H, Li X. Adaptive feature selection with shapley and hypothetical testing: Case study of EEG feature engineering. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2021.11.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Tuncer E, Doğru Bolat E. Classification of epileptic seizures from electroencephalogram (EEG) data using bidirectional short-term memory (Bi-LSTM) network architecture. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
31
|
Zhang Y, Yao S, Yang R, Liu X, Qiu W, Han L, Zhou W, Shang W. Epileptic Seizure Detection Based on Bidirectional Gated Recurrent Unit Network. IEEE Trans Neural Syst Rehabil Eng 2022; 30:135-145. [PMID: 35030083 DOI: 10.1109/tnsre.2022.3143540] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Visual inspection of long-term electroencephalography (EEG) is a tedious task for physicians in neurology. Based on bidirectional gated recurrent unit (Bi-GRU) neural network, an automatic seizure detection method is proposed in this paper to facilitate the diagnosis and treatment of epilepsy. Firstly, wavelet transforms are applied to EEG recordings for filtering pre-processing. Then the relative energies of signals in several particular frequency bands are calculated and inputted into Bi-GRU network. Afterwards, the outputs of Bi-GRU network are further processed by moving average filtering, threshold comparison and seizure merging to generate the discriminant results that the tested EEG belong to seizure or not. Evaluated on CHB-MIT scalp EEG database, the proposed seizure detection method obtained an average sensitivity of 93.89% and an average specificity of 98.49%. 124 out of 128 seizures were correctly detected and the achieved average false detection rate was 0.31 per hour on 867.14 h testing data. The results show the superiority of Bi-GRU network in seizure detection and the proposed detection method has a promising potential in the monitoring of long-term EEG.
Collapse
|
32
|
Pattern recognition of epilepsy using parallel probabilistic neural network. APPL INTELL 2022. [DOI: 10.1007/s10489-021-02509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Catherine Joy R, Thomas George S, Albert Rajan A, Subathra MSP. Detection of ADHD From EEG Signals Using Different Entropy Measures and ANN. Clin EEG Neurosci 2022; 53:12-23. [PMID: 34424101 DOI: 10.1177/15500594211036788] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a prevalent behavioral, cognitive, neurodevelopmental pediatric disorder. Clinical evaluations, symptom surveys, and neuropsychological assessments are some of the ADHD assessment methods, which are time-consuming processes and have a certain degree of uncertainty. This research investigates an efficient computer-aided technological solution for detecting ADHD from the acquired electroencephalography (EEG) signals based on different nonlinear entropy estimators and an artificial neural network classifier. Features extracted through fuzzy entropy, log energy entropy, permutation entropy, SURE entropy, and Shannon entropy are analyzed for effective discrimination of ADHD subjects from the control group. The experimented results confirm that the proposed techniques can effectively detect and classify ADHD subjects. The permutation entropy gives the highest classification accuracy of 99.82%, sensitivity of 98.21%, and specificity of 98.82%. Also, the potency of different entropy estimators derived from the t-test reflects that the Shannon entropy has a higher P-value (>.001); therefore, it has a limited scope than other entropy estimators for ADHD diagnosis. Furthermore, the considerable variance found from potential features obtained in the frontal polar (FP) and frontal (F) lobes using different entropy estimators under the eyes-closed condition shows that the signals received in these lobes will have more significance in distinguishing ADHD from normal subjects.
Collapse
Affiliation(s)
- R Catherine Joy
- Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - S Thomas George
- Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - A Albert Rajan
- Department of Electrical and Electronics Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - M S P Subathra
- Department of Electrical and Electronics Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
34
|
Al-Hadeethi H, Abdulla S, Diykh M, Green JH. Determinant of Covariance Matrix Model Coupled with AdaBoost Classification Algorithm for EEG Seizure Detection. Diagnostics (Basel) 2021; 12:74. [PMID: 35054242 PMCID: PMC8774996 DOI: 10.3390/diagnostics12010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022] Open
Abstract
Experts usually inspect electroencephalogram (EEG) recordings page-by-page in order to identify epileptic seizures, which leads to heavy workloads and is time consuming. However, the efficient extraction and effective selection of informative EEG features is crucial in assisting clinicians to diagnose epilepsy accurately. In this paper, a determinant of covariance matrix (Cov-Det) model is suggested for reducing EEG dimensionality. First, EEG signals are segmented into intervals using a sliding window technique. Then, Cov-Det is applied to each interval. To construct a features vector, a set of statistical features are extracted from each interval. To eliminate redundant features, the Kolmogorov-Smirnov (KST) and Mann-Whitney U (MWUT) tests are integrated, the extracted features ranked based on KST and MWUT metrics, and arithmetic operators are adopted to construe the most pertinent classified features for each pair in the EEG signal group. The selected features are then fed into the proposed AdaBoost Back-Propagation neural network (AB_BP_NN) to effectively classify EEG signals into seizure and free seizure segments. Finally, the AB_BP_NN is compared with several classical machine learning techniques; the results demonstrate that the proposed mode of AB_BP_NN provides insignificant false positive rates, simpler design, and robustness in classifying epileptic signals. Two datasets, the Bern-Barcelona and Bonn datasets, are used for performance evaluation. The proposed technique achieved an average accuracy of 100% and 98.86%, respectively, for the Bern-Barcelona and Bonn datasets, which is considered a noteworthy improvement compared to the current state-of-the-art methods.
Collapse
Affiliation(s)
- Hanan Al-Hadeethi
- School of Sciences, University of Southern Queensland, Toowoomba, QLD 4300, Australia;
| | - Shahab Abdulla
- USQ College, University of Southern Queensland, Toowoomba, QLD 4300, Australia
| | - Mohammed Diykh
- College of Education for Pure Science, University of Thi-Qar, Nasiriyah 64001, Iraq
- Information and Communication Technology Research Group, Scientific Research Centre, Al-Ayen University, Nasiriyah 64001, Iraq
| | - Jonathan H. Green
- USQ College, University of Southern Queensland, Toowoomba, QLD 4300, Australia
- Faculty of the Humanities, University of the Free State, Bloemfontein 9301, South Africa
| |
Collapse
|
35
|
Ort J, Hakvoort K, Neuloh G, Clusmann H, Delev D, Kernbach JM. Foundations of Time Series Analysis. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 134:215-220. [PMID: 34862545 DOI: 10.1007/978-3-030-85292-4_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For almost a century, classical statistical methods including exponential smoothing and autoregression integrated moving averages (ARIMA) have been predominant in the analysis of time series (TS) and in the pursuit of forecasting future events from historical data. TS are chronological sequences of observations, and TS data are therefore prevalent in many aspects of clinical medicine and academic neuroscience. With the rise of highly complex and nonlinear datasets, machine learning (ML) methods have become increasingly popular for prediction or pattern detection and within neurosciences, including neurosurgery. ML methods regularly outperform classical methods and have been successfully applied to, inter alia, predict physiological responses in intracranial pressure monitoring or to identify seizures in EEGs. Implementing nonparametric methods for TS analysis in clinical practice can benefit clinical decision making and sharpen our diagnostic armory.
Collapse
Affiliation(s)
- Jonas Ort
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany
| | - Karlijn Hakvoort
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany
| | - Georg Neuloh
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany
| | - Julius M Kernbach
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany. .,Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
36
|
Detection of preictal state in epileptic seizures using ensemble classifier. Epilepsy Res 2021; 178:106818. [PMID: 34847427 DOI: 10.1016/j.eplepsyres.2021.106818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/10/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Epilepsy affected patient experiences more than one frequency seizures which can not be treated with medication or surgical procedures in 30% of the cases. Therefore, an early prediction of these seizures is inevitable for these cases to control them with therapeutic interventions. METHODS In recent years, researchers have proposed multiple deep learning based methods for detection of preictal state in electroencephalogram (EEG) signals, however, accurate detection of start of preictal state remains a challenge. We propose a novel ensemble classifier based method that gets the comprehensive feature set as input and combines three different classifiers to detect the preictal state. RESULTS We have applied the proposed method on the publicly available scalp EEG dataset CHBMIT of 22 subjects. An average accuracy of 94.31% with sensitivity and specificity of 94.73% and 93.72% respectively has been achieved with the method proposed in this study. CONCLUSIONS Proposed study utilizes the preprocessing techniques for noise removal, combines deep learning based and handcrafted features and an ensemble classifier for detection of start of preictal state. Proposed method gives better results in terms of accuracy, sensitivity, and specificity.
Collapse
|
37
|
Persistent Homology-Based Topological Analysis on the Gestalt Patterns during Human Brain Cognition Process. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2334332. [PMID: 34760139 PMCID: PMC8575602 DOI: 10.1155/2021/2334332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
The neuropsychological characteristics inside the brain are still not sufficiently understood in previous Gestalt psychological analyses. In particular, the extraction and analysis of human brain consciousness information itself have not received enough attention for the time being. In this paper, we aim to investigate the features of EEG signals from different conscious thoughts. Specifically, we try to extract the physiologically meaningful features of the brain responding to different contours and shapes in images in Gestalt cognitive tests by combining persistent homology analysis with electroencephalogram (EEG). The experimental results show that more brain regions in the frontal lobe are involved when the subject perceives the random and disordered combination of images compared to the ordered Gestalt images. Meanwhile, the persistence entropy of EEG data evoked by random sequence diagram (RSD) is significantly different from that evoked by the ordered Gestalt (GST) images in several frequency bands, which indicate that the human cognition of the shape and contour of images can be separated to some extent through topological analysis. This implies the feasibility to digitize the neural signals while preserving the whole and local features of the original signals, which are further verified by our extensive experiments. In general, this paper evaluates and quantifies cognitively related neural correlates by persistent homology features of EEG signals, which provides an approach to realizing the digitization of neural signals. Preliminary verification of the analyzability of human consciousness signals provides reliable research ideas and directions for the realization of feature extraction and analysis of human brain consciousness cognition.
Collapse
|
38
|
Zolezzi DM, Maria Alonso-Valerdi L, Naal-Ruiz NE, Ibarra-Zarate DI. Identification of Neuropathic Pain Severity based on Linear and Non-Linear EEG Features. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:169-173. [PMID: 34891264 DOI: 10.1109/embc46164.2021.9630101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lack of an integral characterization of chronic neuropathic pain (NP) has led to pharmacotherapy mismanagement and has hindered advances in clinical trials. In this study, we attempted to identify chronic NP by fusing psychometric (based on the Brief Inventory of Pain - BIP), and both linear and non-linear electroencephalographic (EEG) features. For this purpose, 35 chronic NP patients were recruited voluntarily. All the volunteers answered the BIP; and additionally, 22 EEG channels positioned in accordance with the 10/20 international system were registered for 10 minutes at resting state: 5 minutes with eyes open and 5 minutes with eyes closed. EEG Signals were sampled at 250 Hz within a bandwidth between 0.1 and 100 Hz. As linear features, absolute band power was obtained per clinical frequency band: delta (0.1~4 Hz), theta (4~8 Hz), alpha (8~12 Hz), beta (12~30 Hz) and gamma (30~100 Hz); considering five regions: prefrontal, frontal, central, parietal and occipital. As non-linear features, approximate entropy was calculated per channel and per clinical frequency band with addition of the broadband (0.1~100 Hz). Resulting feature vectors were grouped in line with the BIP outcome. Three groups were considered: low, moderate, and high pain. Finally, BIP-EEG patterns were classified in those three classes, achieving 96% accuracy. This result improves a previous work of a SVM classifier that used exclusively linear EEG features and showed an accuracy between 87% and 90% per class to predict central NP after spinal cord injury.
Collapse
|
39
|
Monllor P, Cervera-Ferri A, Lloret MA, Esteve D, Lopez B, Leon JL, Lloret A. Electroencephalography as a Non-Invasive Biomarker of Alzheimer's Disease: A Forgotten Candidate to Substitute CSF Molecules? Int J Mol Sci 2021; 22:10889. [PMID: 34639229 PMCID: PMC8509134 DOI: 10.3390/ijms221910889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Biomarkers for disease diagnosis and prognosis are crucial in clinical practice. They should be objective and quantifiable and respond to specific therapeutic interventions. Optimal biomarkers should reflect the underlying process (pathological or not), be reproducible, widely available, and allow measurements repeatedly over time. Ideally, biomarkers should also be non-invasive and cost-effective. This review aims to focus on the usefulness and limitations of electroencephalography (EEG) in the search for Alzheimer's disease (AD) biomarkers. The main aim of this article is to review the evolution of the most used biomarkers in AD and the need for new peripheral and, ideally, non-invasive biomarkers. The characteristics of the EEG as a possible source for biomarkers will be revised, highlighting its advantages compared to the molecular markers available so far.
Collapse
Affiliation(s)
- Paloma Monllor
- CIBERFES, Department of Physiology, Institute INCLIVA, Faculty of Medicine, Health Research University of Valencia, Avda. Blasco Ibanez 17, 46010 Valencia, Spain; (P.M.); (D.E.)
| | - Ana Cervera-Ferri
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Maria-Angeles Lloret
- Department of Clinical Neurophysiology, University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain;
| | - Daniel Esteve
- CIBERFES, Department of Physiology, Institute INCLIVA, Faculty of Medicine, Health Research University of Valencia, Avda. Blasco Ibanez 17, 46010 Valencia, Spain; (P.M.); (D.E.)
| | - Begoña Lopez
- Department of Neurology, University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain;
| | - Jose-Luis Leon
- Ascires Biomedical Group, Department of Neuroradiology, Hospital Clinico Universitario, 46010 Valencia, Spain;
| | - Ana Lloret
- CIBERFES, Department of Physiology, Institute INCLIVA, Faculty of Medicine, Health Research University of Valencia, Avda. Blasco Ibanez 17, 46010 Valencia, Spain; (P.M.); (D.E.)
| |
Collapse
|
40
|
Medrano J, Kheddar A, Lesne A, Ramdani S. Radius selection using kernel density estimation for the computation of nonlinear measures. CHAOS (WOODBURY, N.Y.) 2021; 31:083131. [PMID: 34470232 DOI: 10.1063/5.0055797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
When nonlinear measures are estimated from sampled temporal signals with finite-length, a radius parameter must be carefully selected to avoid a poor estimation. These measures are generally derived from the correlation integral, which quantifies the probability of finding neighbors, i.e., pair of points spaced by less than the radius parameter. While each nonlinear measure comes with several specific empirical rules to select a radius value, we provide a systematic selection method. We show that the optimal radius for nonlinear measures can be approximated by the optimal bandwidth of a Kernel Density Estimator (KDE) related to the correlation sum. The KDE framework provides non-parametric tools to approximate a density function from finite samples (e.g., histograms) and optimal methods to select a smoothing parameter, the bandwidth (e.g., bin width in histograms). We use results from KDE to derive a closed-form expression for the optimal radius. The latter is used to compute the correlation dimension and to construct recurrence plots yielding an estimate of Kolmogorov-Sinai entropy. We assess our method through numerical experiments on signals generated by nonlinear systems and experimental electroencephalographic time series.
Collapse
Affiliation(s)
- Johan Medrano
- LIRMM, CNRS UMR 5506, University of Montpellier, F-34095 Montpellier, France
| | | | - Annick Lesne
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75252 Paris, France
| | - Sofiane Ramdani
- LIRMM, CNRS UMR 5506, University of Montpellier, F-34095 Montpellier, France
| |
Collapse
|
41
|
Samal D, Dash PK, Bisoi R. Automatic identification of epileptic seizure signal using optimized added kernel support vector machine (OAKSVM). Neural Comput Appl 2021. [DOI: 10.1007/s00521-020-05675-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Yao W, Yao W, Ju Y, Xia Y, Guo D, Yao D. Distribution of equal states for amplitude fluctuations in epileptic EEG. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Mai ND, Lee BG, Chung WY. Affective Computing on Machine Learning-Based Emotion Recognition Using a Self-Made EEG Device. SENSORS (BASEL, SWITZERLAND) 2021; 21:5135. [PMID: 34372370 PMCID: PMC8348417 DOI: 10.3390/s21155135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG) custom-designed device. The system collects EEG signals using an eight-electrode placement on the scalp; two of these electrodes were placed in the frontal lobe, and the other six electrodes were placed in the temporal lobe. We performed experiments on eight subjects while they watched emotive videos. Six entropy measures were employed for extracting suitable features from the EEG signals. Next, we evaluated our proposed models using three popular classifiers: a support vector machine (SVM), multi-layer perceptron (MLP), and one-dimensional convolutional neural network (1D-CNN) for emotion classification; both subject-dependent and subject-independent strategies were used. Our experiment results showed that the highest average accuracies achieved in the subject-dependent and subject-independent cases were 85.81% and 78.52%, respectively; these accuracies were achieved using a combination of the sample entropy measure and 1D-CNN. Moreover, our study investigates the T8 position (above the right ear) in the temporal lobe as the most critical channel among the proposed measurement positions for emotion classification through electrode selection. Our results prove the feasibility and efficiency of our proposed EEG-based affective computing method for emotion recognition in real-world applications.
Collapse
Affiliation(s)
- Ngoc-Dau Mai
- Department of Artificial Intelligence Convergence, Pukyong National University, Busan 48513, Korea;
| | - Boon-Giin Lee
- School of Computer Science, The University of Nottingham Ningbo China, Ningbo 315100, China;
| | - Wan-Young Chung
- Department of Artificial Intelligence Convergence, Pukyong National University, Busan 48513, Korea;
| |
Collapse
|
44
|
Khoshnevis SA, Sankar R. Classification of the stages of Parkinson’s disease using novel higher-order statistical features of EEG signals. Neural Comput Appl 2021. [DOI: 10.1007/s00521-020-05505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Kaur T, Diwakar A, Kirandeep, Mirpuri P, Tripathi M, Chandra PS, Gandhi TK. Artificial Intelligence in Epilepsy. Neurol India 2021; 69:560-566. [PMID: 34169842 DOI: 10.4103/0028-3886.317233] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background The study of seizure patterns in electroencephalography (EEG) requires several years of intensive training. In addition, inadequate training and human error may lead to misinterpretation and incorrect diagnosis. Artificial intelligence (AI)-based automated seizure detection systems hold an exciting potential to create paradigms for proper diagnosis and interpretation. AI holds the promise to transform healthcare into a system where machines and humans can work together to provide an accurate, timely diagnosis, and treatment to the patients. Objective This article presents a brief overview of research on the use of AI systems for pattern recognition in EEG for clinical diagnosis. Material and Methods The article begins with the need for understanding nonstationary signals such as EEG and simplifying their complexity for accurate pattern recognition in medical diagnosis. It also explains the core concepts of AI, machine learning (ML), and deep learning (DL) methods. Results and Conclusions In this present context of epilepsy diagnosis, AI may work in two ways; first by creating visual representations (e.g., color-coded paradigms), which allow persons with limited training to make a diagnosis. The second is by directly explaining a complete automated analysis, which of course requires more complex paradigms than the previous one. We also clarify that AI is not about replacing doctors and strongly emphasize the need for domain knowledge in building robust AI models that can work in real-time scenarios rendering good detection accuracy in a minimum amount of time.
Collapse
Affiliation(s)
- Taranjit Kaur
- Department of Electrical, Engineering, IIT Delhi, New Delhi, India
| | | | - Kirandeep
- Department of Neuroscience, AIIMS, New Delhi, India
| | | | | | | | - Tapan K Gandhi
- Department of Electrical, Engineering, IIT Delhi, New Delhi, India
| |
Collapse
|
46
|
Krishnaprasanna R, Vijaya Baskar V, Panneerselvam J. Automatic identification of epileptic seizures using volume of phase space representation. Phys Eng Sci Med 2021; 44:545-556. [PMID: 33956327 DOI: 10.1007/s13246-021-01006-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/26/2021] [Indexed: 11/26/2022]
Abstract
Epilepsy is a neurological disorder that affects people of any age, which can be detected by Electroencephalogram (EEG) signals. This paper proposes a novel method called Volume of Phase Space Representation (VOPSR) to classify seizure and seizure-free EEG signals automatically. Primarily, the recorded EEG signal is disintegrated into several Intrinsic Mode Functions (IMFs) using the Empirical Mode Decomposition (EMD) method and the three-dimensional phase space have been reconstructed for the obtained IMFs. The volume is measured for the obtained 3D-PSR for different IMFs called VOPSR, which is used as a feature set for the classification of Epileptic seizure EEG signals. Support vector machine (SVM) is used as a classifier for the classification of epileptic and epileptic-free EEG signals. The classification performance of the proposed method is evaluated under different kernels such as Linear, Polynomial and Radial Basis Function (RBF) kernels. Finally, the proposed method outperforms noteworthy state-of-the-art classification methods in the context of epileptic EEG signals, achieving 99.13% accuracy (average) with the Linear, Polynomial, and RBF kernels. The proposed technique can be used to detect epilepsy from the EEG signals automatically without human intervention.
Collapse
Affiliation(s)
- R Krishnaprasanna
- Department of ECE, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India.
| | - V Vijaya Baskar
- School of EEE, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | | |
Collapse
|
47
|
Sukriti, Chakraborty M, Mitra D. A novel automated seizure detection system from EMD-MSPCA denoised EEG: Refined composite multiscale sample, fuzzy and permutation entropies based scheme. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Assessing multi-layered nonlinear characteristics of ECG/EEG signal via adaptive kernel density estimation-based hierarchical entropies. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Effect of hand grip actions on object recognition process: a machine learning-based approach for improved motor rehabilitation. Neural Comput Appl 2021. [DOI: 10.1007/s00521-020-05125-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Oliva JT, Rosa JLG. Binary and multiclass classifiers based on multitaper spectral features for epilepsy detection. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|