1
|
Dessevres E, Valderrama M, Le Van Quyen M. Artificial intelligence for the detection of interictal epileptiform discharges in EEG signals. Rev Neurol (Paris) 2025:S0035-3787(25)00492-8. [PMID: 40221359 DOI: 10.1016/j.neurol.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
INTRODUCTION Over the past decades, the integration of modern technologies - such as electronic health records, cloud computing, and artificial intelligence (AI) - has revolutionized the collection, storage, and analysis of medical data in neurology. In epilepsy, Interictal Epileptiform Discharges (IEDs) are the most established biomarker, indicating an increased likelihood of seizures. Their detection traditionally relies on visual EEG assessment, a time-consuming and subjective process contributing to a high misdiagnosis rate. These limitations have spurred the development of automated AI-driven approaches aimed at improving accuracy and efficiency in IED detection. METHODS Research on automated IED detection began 45 years ago, spanning from morphological methods to deep learning techniques. In this review, we examine various IED detection approaches, evaluating their performance and limitations. RESULTS Traditional machine learning and deep learning methods have produced the most promising results to date, and their application in IED detection continues to grow. Today, AI-driven tools are increasingly integrated into clinical workflows, assisting clinicians in identifying abnormalities while reducing false-positive rates. DISCUSSION To optimize the clinical implementation of automated AI-based IED detection, it is essential to render the codes publicly available and to standardize the datasets and metrics. Establishing uniform benchmarks will enable objective model comparisons and help determine which approaches are best suited for clinical use.
Collapse
Affiliation(s)
- E Dessevres
- Laboratoire d'Imagerie Biomédicale (LIB) Inserm U1146, Sorbonne Université, UMR7371 CNRS, 15, Rue de l'École-de-Médecine, 75006 Paris, France
| | - M Valderrama
- Department of Biomedical Engineering, Universidad de Los Andes, 111711 Bogotá, Colombia
| | - M Le Van Quyen
- Laboratoire d'Imagerie Biomédicale (LIB) Inserm U1146, Sorbonne Université, UMR7371 CNRS, 15, Rue de l'École-de-Médecine, 75006 Paris, France.
| |
Collapse
|
2
|
Ding L, Zou Q, Zhu J, Wang Y, Yang Y. Dynamical intracranial EEG functional network controllability localizes the seizure onset zone and predicts the epilepsy surgical outcome. J Neural Eng 2025; 22:026015. [PMID: 40009882 DOI: 10.1088/1741-2552/adba8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/26/2025] [Indexed: 02/28/2025]
Abstract
Objective. Seizure onset zone (SOZ) localization and SOZ resection outcome prediction are critical for the surgical treatment of drug-resistant epilepsy but have mainly relied on manual inspection of intracranial electroencephalography (iEEG) monitoring data, which can be both inaccurate and time-consuming. Therefore, automating SOZ localization and surgical outcome prediction by using appropriate iEEG neural features and machine learning models has become an emerging topic. However, current channel-wise local features, graph-theoretic network features, and system-theoretic network features cannot fully capture the spatial, temporal, and neural dynamical aspects of epilepsy, hindering accurate SOZ localization and surgical outcome prediction.Approach. Here, we develop a method for computing dynamical functional network controllability from multi-channel iEEG signals, which from a control-theoretic viewpoint, has the ability to simultaneously capture the spatial, temporal, functional, and dynamical aspects of epileptic brain networks. We then apply multiple machine learning models to use iEEG functional network controllability for localizing SOZ and predicting surgical outcomes in drug-resistant epilepsy patients and compare with existing neural features. We finally combine iEEG functional network controllability with representative local, graph-theoretic, and system-theoretic features to leverage complementary information for further improving performance.Main results. We find that iEEG functional network controllability at SOZ channels is significantly higher than that of other channels. We further show that machine learning models using iEEG functional network controllability successfully localize SOZ and predict surgical outcomes, significantly outperforming existing local, graph-theoretic, and system-theoretic features. We finally demonstrate that there exists complementary information among different types of neural features and fusing them further improves performance.Significance. Our results suggest that iEEG functional network controllability is an effective feature for automatic SOZ localization and surgical outcome prediction in epilepsy treatment.
Collapse
Affiliation(s)
- Ling Ding
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, People's Republic of China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, People's Republic of China
| | - Qingyu Zou
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, People's Republic of China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, People's Republic of China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Junming Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Hangzhou 310058, People's Republic of China
| | - Yueming Wang
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, People's Republic of China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yuxiao Yang
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, People's Republic of China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, People's Republic of China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
- State Key Laboratory of Brain-machine Intelligence, Hangzhou 310058, People's Republic of China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Hangzhou 310058, People's Republic of China
| |
Collapse
|
3
|
Wang Y, Orlandic L, Machetti S, Ansaloni G, Atienza D. ACE: Automated Optimization Towards Iterative Classification in Edge Health Monitors. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2025; 19:82-92. [PMID: 40031441 DOI: 10.1109/tbcas.2024.3468160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Wearable devices for health monitoring are essential for tracking individuals' health status and facilitating early detection of diseases. However, processing biomedical signals online for real-time monitoring is challenging due to limited computational resources on edge devices. To address this challenge, we propose an application-agnostic methodology called ACE (Automated optimization towards classification on the Edge). ACE converts a health monitoring algorithm with feature extraction and classification into an iterative detection process, incorporating algorithms of varying complexities and minimizing re-computation of shared data. First, ACE decomposes a monolithic model, employing a single feature set and classifier, into multiple algorithms with different computational complexities. Then, our automatic analysis tool integrates buffering logic into these algorithms to prevent re-computation of shared computational-intensive data. The optimized algorithm is then converted into a low-level language in C for deployment. During runtime, the system initiates monitoring with the lowest complexity algorithm and iteratively involves algorithms with higher complexity without recomputing the existing data. The iteration process continues until a pre-defined confidence threshold is met. We demonstrate the effectiveness of ACE on two biomedical applications: seizure detection and emotional state classification. ACE achieves at least 28.9% and 18.9% runtime savings without any accuracy loss on a Cortex-A9 edge platform for the two benchmarks, respectively. We discuss and demonstrate how ACE can be used by designers of such biomedical algorithms to automatically optimize and deploy their applications on the edge.
Collapse
|
4
|
Degirmenci M, Yuce YK, Perc M, Isler Y. EEG channel and feature investigation in binary and multiple motor imagery task predictions. Front Hum Neurosci 2024; 18:1525139. [PMID: 39741784 PMCID: PMC11685146 DOI: 10.3389/fnhum.2024.1525139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Motor Imagery (MI) Electroencephalography (EEG) signals are non-stationary and dynamic physiological signals which have low signal-to-noise ratio. Hence, it is difficult to achieve high classification accuracy. Although various machine learning methods have already proven useful to that effect, the use of many features and ineffective EEG channels often leads to a complex structure of classifier algorithms. State-of-the-art studies were interested in improving classification performance with complex feature extraction and classification methods by neglecting detailed EEG channel and feature investigation in predicting MI tasks from EEGs. Here, we investigate the effects of the statistically significant feature selection method on four different feature domains (time-domain, frequency-domain, time-frequency domain, and non-linear domain) and their two different combinations to reduce the number of features and classify MI-EEG features by comparing low-dimensional matrices with well-known machine learning algorithms. Methods Our main goal is not to find the best classifier performance but to perform feature and channel investigation in MI task classification. Therefore, the detailed investigation of the effect of EEG channels and features is implemented using a statistically significant feature distribution on 22 EEG channels for each feature set separately. We used the BCI Competition IV Dataset IIa and 288 samples per person. A total of 1,364 MI-EEG features were analyzed in this study. We tested nine distinct classifiers: Decision tree, Discriminant analysis, Logistic regression, Naive Bayes, Support vector machine, k-Nearest neighbor, Ensemble learning, Neural networks, and Kernel approximation. Results Among all feature sets considered, classifications performed with non-linear and combined feature sets resulted in a maximum accuracy of 63.04% and 47.36% for binary and multiple MI task predictions, respectively. The ensemble learning classifier achieved the maximum accuracy in almost all feature sets for binary and multiple MI task classifications. Discussion Our research thus shows that the statistically significant feature-based feature selection method significantly improves the classification performance with fewer features in almost all feature sets, enabling detailed and effective EEG channel and feature investigation.
Collapse
Affiliation(s)
- Murside Degirmenci
- Kutahya Vocational School, Kutahya Health Sciences University, Kutahya, Türkiye
| | - Yilmaz Kemal Yuce
- Department of Computer Engineering, Alanya Alaaddin Keykubat University, Antalya, Türkiye
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Community Healthcare Center Dr. Adolf Drolc Maribor, Maribor, Slovenia
- Complexity Science Hub Vienna, Vienna, Austria
- Department of Physics, Kyung Hee University, Seoul, Republic of Korea
| | - Yalcin Isler
- Department of Biomedical Engineering, Izmir Katip Celebi University, Izmir, Türkiye
| |
Collapse
|
5
|
Ju C, Guan C. Graph Neural Networks on SPD Manifolds for Motor Imagery Classification: A Perspective From the Time-Frequency Analysis. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:17701-17715. [PMID: 37725740 DOI: 10.1109/tnnls.2023.3307470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The motor imagery (MI) classification has been a prominent research topic in brain-computer interfaces (BCIs) based on electroencephalography (EEG). Over the past few decades, the performance of MI-EEG classifiers has seen gradual enhancement. In this study, we amplify the geometric deep-learning-based MI-EEG classifiers from the perspective of time-frequency analysis, introducing a new architecture called Graph-CSPNet. We refer to this category of classifiers as Geometric Classifiers, highlighting their foundation in differential geometry stemming from EEG spatial covariance matrices. Graph-CSPNet utilizes novel manifold-valued graph convolutional techniques to capture the EEG features in the time-frequency domain, offering heightened flexibility in signal segmentation for capturing localized fluctuations. To evaluate the effectiveness of Graph-CSPNet, we employ five commonly used publicly available MI-EEG datasets, achieving near-optimal classification accuracies in nine out of 11 scenarios. The Python repository can be found at https://github.com/GeometricBCI/Tensor-CSPNet-and-Graph-CSPNet.
Collapse
|
6
|
Djemili R, Djemili I. Nonlinear and chaos features over EMD/VMD decomposition methods for ictal EEG signals detection. Comput Methods Biomech Biomed Engin 2024; 27:2091-2110. [PMID: 37861376 DOI: 10.1080/10255842.2023.2271603] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
The detection and identification of epileptic seizures attracted considerable relevance for the neurophysiologists. In order to accomplish the detection of epileptic seizures or equivalently ictal EEG states, this paper proposes the use of nonlinear and chaos features not computed over the raw EEG signals as it was commonly experienced, but instead over intrinsic mode functions (IMFs) extracted subsequently to the application of newly time-frequency signal decomposition methods on the basis of empirical mode decomposition (EMD) and variational mode decomposition (VMD) methods. The first step within the proposed methodology is to excerpt the various components of the IMFs by EMD and VMD decomposition methods on time EEG segments. The Hjorth parameters, the Hurst exponent, the Recurrence Quantification Analysis (RQA), the detrended fluctuation analysis (DFA), the Largest Lyapunov Exponent (LLE), The Higuchi and Katz fractal dimensions (HFD and KFD), seven nonlinear and chaos features computed over the IMFs were investigated and their classification performances evaluated using the k-nearest neighbor (KNN) and the multilayer perceptron neural network (MLPNN) classifiers. Furthermore, the combination of the best nonlinear features has also been examined in terms of sensitivity, specificity and overall classification accuracy. The publicly available Bonn EEG dataset has been has been employed to validate the efficiency of the proposed method for detecting ictal EEG signals from normal or interictal EEG segments. Among the several experiments involved in the current study, the ultimate results establish that the overall classification accuracy can achieve 100%, 99.45%, 99.8%, 99.8%, 98.6% and 99.1% for six different epileptic seizure detection case problems studied, confirming the ability of the proposed methodology in helping the clinic practitioners in the epilepsy detection care units to classify seizure events with a great confidence.
Collapse
Affiliation(s)
| | - Ilyes Djemili
- Lab. Electrotech, Université 20 Août, Skikda, Algeria
| |
Collapse
|
7
|
Hu Y, Liu J, Sun R, Yu Y, Sui Y. Classification of epileptic seizures in EEG data based on iterative gated graph convolution network. Front Comput Neurosci 2024; 18:1454529. [PMID: 39268152 PMCID: PMC11390464 DOI: 10.3389/fncom.2024.1454529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction The automatic and precise classification of epilepsy types using electroencephalogram (EEG) data promises significant advancements in diagnosing patients with epilepsy. However, the intricate interplay among multiple electrode signals in EEG data poses challenges. Recently, Graph Convolutional Neural Networks (GCN) have shown strength in analyzing EEG data due to their capability to describe complex relationships among different EEG regions. Nevertheless, several challenges remain: (1) GCN typically rely on predefined or prior graph topologies, which may not accurately reflect the complex correlations between brain regions. (2) GCN struggle to capture the long-temporal dependencies inherent in EEG signals, limiting their ability to effectively extract temporal features. Methods To address these challenges, we propose an innovative epileptic seizure classification model based on an Iterative Gated Graph Convolutional Network (IGGCN). For the epileptic seizure classification task, the original EEG graph structure is iteratively optimized using a multi-head attention mechanism during training, rather than relying on a static, predefined prior graph. We introduce Gated Graph Neural Networks (GGNN) to enhance the model's capacity to capture long-term dependencies in EEG series between brain regions. Additionally, Focal Loss is employed to alleviate the imbalance caused by the scarcity of epileptic EEG data. Results Our model was evaluated on the Temple University Hospital EEG Seizure Corpus (TUSZ) for classifying four types of epileptic seizures. The results are outstanding, achieving an average F1 score of 91.5% and an average Recall of 91.8%, showing a substantial improvement over current state-of-the-art models. Discussion Ablation experiments verified the efficacy of iterative graph optimization and gated graph convolution. The optimized graph structure significantly differs from the predefined EEG topology. Gated graph convolutions demonstrate superior performance in capturing the long-term dependencies in EEG series. Additionally, Focal Loss outperforms other commonly used loss functions in the TUSZ classification task.
Collapse
Affiliation(s)
- Yue Hu
- College of Computer Science and Technology, University of Qingdao, Qingdao, China
| | - Jian Liu
- Yunxiao Road Outpatient Department, Qingdao Stomatological Hospital, Qingdao, China
| | - Rencheng Sun
- College of Computer Science and Technology, University of Qingdao, Qingdao, China
| | - Yongqiang Yu
- College of Computer Science and Technology, University of Qingdao, Qingdao, China
| | - Yi Sui
- College of Computer Science and Technology, University of Qingdao, Qingdao, China
| |
Collapse
|
8
|
Huang N, Xi Z, Jiao Y, Zhang Y, Jiao Z, Li X. Multi-modal feature fusion with multi-head self-attention for epileptic EEG signals. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6918-6935. [PMID: 39483100 DOI: 10.3934/mbe.2024304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
It is important to classify electroencephalography (EEG) signals automatically for the diagnosis and treatment of epilepsy. Currently, the dominant single-modal feature extraction methods cannot cover the information of different modalities, resulting in poor classification performance of existing methods, especially the multi-classification problem. We proposed a multi-modal feature fusion (MMFF) method for epileptic EEG signals. First, the time domain features were extracted by kernel principal component analysis, the frequency domain features were extracted by short-time Fourier extracted transform, and the nonlinear dynamic features were extracted by calculating sample entropy. On this basis, the features of these three modalities were interactively learned through the multi-head self-attention mechanism, and the attention weights were trained simultaneously. The fused features were obtained by combining the value vectors of feature representations, while the time, frequency, and nonlinear dynamics information were retained to screen out more representative epileptic features and improve the accuracy of feature extraction. Finally, the feature fusion method was applied to epileptic EEG signal classifications. The experimental results demonstrated that the proposed method achieves a classification accuracy of 92.76 ± 1.64% across the five-category classification task for epileptic EEG signals. The multi-head self-attention mechanism promotes the fusion of multi-modal features and offers an efficient and novel approach for diagnosing and treating epilepsy.
Collapse
Affiliation(s)
- Ning Huang
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Zhengtao Xi
- School of Wangzheng Microelectronics, Changzhou University, Changzhou 213164, China
| | - Yingying Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, UK
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
- School of Wangzheng Microelectronics, Changzhou University, Changzhou 213164, China
| | - Xiaona Li
- Department of Nursing, The Third Affiliated Hospital with Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
9
|
Swami P, Maheshwari J, Kumar M, Bhatia M. Evolutionary transfer optimization-based approach for automated ictal pattern recognition using brain signals. Front Hum Neurosci 2024; 18:1386168. [PMID: 39055535 PMCID: PMC11269234 DOI: 10.3389/fnhum.2024.1386168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/01/2024] [Indexed: 07/27/2024] Open
Abstract
The visual scrutinization process for detecting epileptic seizures (ictal patterns) is time-consuming and prone to manual errors, which can have serious consequences, including drug abuse and life-threatening situations. To address these challenges, expert systems for automated detection of ictal patterns have been developed, yet feature engineering remains problematic due to variability within and between subjects. Single-objective optimization approaches yield less reliable results. This study proposes a novel expert system using the non-dominated sorting genetic algorithm (NSGA)-II to detect ictal patterns in brain signals. Employing an evolutionary multi-objective optimization (EMO) approach, the classifier minimizes both the number of features and the error rate simultaneously. Input features include statistical features derived from phase space transformations, singular values, and energy values of time-frequency domain wavelet packet transform coefficients. Through evolutionary transfer optimization (ETO), the optimal feature set is determined from training datasets and passed through a generalized regression neural network (GRNN) model for pattern detection of testing datasets. The results demonstrate high accuracy with minimal computation time (<0.5 s), and EMO reduces the feature set matrix by more than half, suggesting reliability for clinical applications. In conclusion, the proposed model offers promising advancements in automating ictal pattern recognition in EEG data, with potential implications for improving epilepsy diagnosis and treatment. Further research is warranted to validate its performance across diverse datasets and investigate potential limitations.
Collapse
Affiliation(s)
- Piyush Swami
- Section for Visual Computing, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital – Amager and Hvidovre, Copenhagen, Denmark
- Biomedical Engineering Techies, Broendby, Denmark
| | - Jyoti Maheshwari
- School of Behavioural Forensics, National Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Mohit Kumar
- School of Electronics Engineering, VIT-AP University, Amaravati, India
| | | |
Collapse
|
10
|
Kerr WT, McFarlane KN, Figueiredo Pucci G. The present and future of seizure detection, prediction, and forecasting with machine learning, including the future impact on clinical trials. Front Neurol 2024; 15:1425490. [PMID: 39055320 PMCID: PMC11269262 DOI: 10.3389/fneur.2024.1425490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
Seizures have a profound impact on quality of life and mortality, in part because they can be challenging both to detect and forecast. Seizure detection relies upon accurately differentiating transient neurological symptoms caused by abnormal epileptiform activity from similar symptoms with different causes. Seizure forecasting aims to identify when a person has a high or low likelihood of seizure, which is related to seizure prediction. Machine learning and artificial intelligence are data-driven techniques integrated with neurodiagnostic monitoring technologies that attempt to accomplish both of those tasks. In this narrative review, we describe both the existing software and hardware approaches for seizure detection and forecasting, as well as the concepts for how to evaluate the performance of new technologies for future application in clinical practice. These technologies include long-term monitoring both with and without electroencephalography (EEG) that report very high sensitivity as well as reduced false positive detections. In addition, we describe the implications of seizure detection and forecasting upon the evaluation of novel treatments for seizures within clinical trials. Based on these existing data, long-term seizure detection and forecasting with machine learning and artificial intelligence could fundamentally change the clinical care of people with seizures, but there are multiple validation steps necessary to rigorously demonstrate their benefits and costs, relative to the current standard.
Collapse
Affiliation(s)
- Wesley T. Kerr
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | | | | |
Collapse
|
11
|
Shafiezadeh S, Duma GM, Mento G, Danieli A, Antoniazzi L, Del Popolo Cristaldi F, Bonanni P, Testolin A. Calibrating Deep Learning Classifiers for Patient-Independent Electroencephalogram Seizure Forecasting. SENSORS (BASEL, SWITZERLAND) 2024; 24:2863. [PMID: 38732969 PMCID: PMC11086106 DOI: 10.3390/s24092863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
The recent scientific literature abounds in proposals of seizure forecasting methods that exploit machine learning to automatically analyze electroencephalogram (EEG) signals. Deep learning algorithms seem to achieve a particularly remarkable performance, suggesting that the implementation of clinical devices for seizure prediction might be within reach. However, most of the research evaluated the robustness of automatic forecasting methods through randomized cross-validation techniques, while clinical applications require much more stringent validation based on patient-independent testing. In this study, we show that automatic seizure forecasting can be performed, to some extent, even on independent patients who have never been seen during the training phase, thanks to the implementation of a simple calibration pipeline that can fine-tune deep learning models, even on a single epileptic event recorded from a new patient. We evaluate our calibration procedure using two datasets containing EEG signals recorded from a large cohort of epileptic subjects, demonstrating that the forecast accuracy of deep learning methods can increase on average by more than 20%, and that performance improves systematically in all independent patients. We further show that our calibration procedure works best for deep learning models, but can also be successfully applied to machine learning algorithms based on engineered signal features. Although our method still requires at least one epileptic event per patient to calibrate the forecasting model, we conclude that focusing on realistic validation methods allows to more reliably compare different machine learning approaches for seizure prediction, enabling the implementation of robust and effective forecasting systems that can be used in daily healthcare practice.
Collapse
Affiliation(s)
- Sina Shafiezadeh
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (G.M.); (F.D.P.C.)
| | - Gian Marco Duma
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, 31015 Conegliano, Italy; (G.M.D.); (A.D.); (L.A.); (P.B.)
| | - Giovanni Mento
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (G.M.); (F.D.P.C.)
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Alberto Danieli
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, 31015 Conegliano, Italy; (G.M.D.); (A.D.); (L.A.); (P.B.)
| | - Lisa Antoniazzi
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, 31015 Conegliano, Italy; (G.M.D.); (A.D.); (L.A.); (P.B.)
| | | | - Paolo Bonanni
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, 31015 Conegliano, Italy; (G.M.D.); (A.D.); (L.A.); (P.B.)
| | - Alberto Testolin
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (G.M.); (F.D.P.C.)
- Department of Mathematics, University of Padova, 35131 Padova, Italy
| |
Collapse
|
12
|
Degirmenci M, Yuce YK, Perc M, Isler Y. EEG-based finger movement classification with intrinsic time-scale decomposition. Front Hum Neurosci 2024; 18:1362135. [PMID: 38505099 PMCID: PMC10948500 DOI: 10.3389/fnhum.2024.1362135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/15/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Brain-computer interfaces (BCIs) are systems that acquire the brain's electrical activity and provide control of external devices. Since electroencephalography (EEG) is the simplest non-invasive method to capture the brain's electrical activity, EEG-based BCIs are very popular designs. Aside from classifying the extremity movements, recent BCI studies have focused on the accurate coding of the finger movements on the same hand through their classification by employing machine learning techniques. State-of-the-art studies were interested in coding five finger movements by neglecting the brain's idle case (i.e., the state that brain is not performing any mental tasks). This may easily cause more false positives and degrade the classification performances dramatically, thus, the performance of BCIs. This study aims to propose a more realistic system to decode the movements of five fingers and the no mental task (NoMT) case from EEG signals. Methods In this study, a novel praxis for feature extraction is utilized. Using Proper Rotational Components (PRCs) computed through Intrinsic Time Scale Decomposition (ITD), which has been successfully applied in different biomedical signals recently, features for classification are extracted. Subsequently, these features were applied to the inputs of well-known classifiers and their different implementations to discriminate between these six classes. The highest classifier performances obtained in both subject-independent and subject-dependent cases were reported. In addition, the ANOVA-based feature selection was examined to determine whether statistically significant features have an impact on the classifier performances or not. Results As a result, the Ensemble Learning classifier achieved the highest accuracy of 55.0% among the tested classifiers, and ANOVA-based feature selection increases the performance of classifiers on five-finger movement determination in EEG-based BCI systems. Discussion When compared with similar studies, proposed praxis achieved a modest yet significant improvement in classification performance although the number of classes was incremented by one (i.e., NoMT).
Collapse
Affiliation(s)
- Murside Degirmenci
- Department of Biomedical Technologies, Izmir Katip Celebi University, Izmir, Türkiye
| | - Yilmaz Kemal Yuce
- Department of Computer Engineering, Alanya Alaaddin Keykubat University, Alanya, Antalya, Türkiye
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Complexity Science Hub Vienna, Vienna, Austria
- Department of Physics, Kyung Hee University, Seoul, Republic of Korea
| | - Yalcin Isler
- Department of Biomedical Engineering, Izmir Katip Celebi University, Izmir, Türkiye
| |
Collapse
|
13
|
Krishnan PT, Erramchetty SK, Balusa BC. Advanced framework for epilepsy detection through image-based EEG signal analysis. Front Hum Neurosci 2024; 18:1336157. [PMID: 38317649 PMCID: PMC10839025 DOI: 10.3389/fnhum.2024.1336157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Background Recurrent and unpredictable seizures characterize epilepsy, a neurological disorder affecting millions worldwide. Epilepsy diagnosis is crucial for timely treatment and better outcomes. Electroencephalography (EEG) time-series data analysis is essential for epilepsy diagnosis and surveillance. Complex signal processing methods used in traditional EEG analysis are computationally demanding and difficult to generalize across patients. Researchers are using machine learning to improve epilepsy detection, particularly visual feature extraction from EEG time-series data. Objective This study examines the application of a Gramian Angular Summation Field (GASF) approach for the analysis of EEG signals. Additionally, it explores the utilization of image features, specifically the Scale-Invariant Feature Transform (SIFT) and Oriented FAST and Rotated BRIEF (ORB) techniques, for the purpose of epilepsy detection in EEG data. Methods The proposed methodology encompasses the transformation of EEG signals into images based on GASF, followed by the extraction of features utilizing SIFT and ORB techniques, and ultimately, the selection of relevant features. A state-of-the-art machine learning classifier is employed to classify GASF images into two categories: normal EEG patterns and focal EEG patterns. Bern-Barcelona EEG recordings were used to test the proposed method. Results This method classifies EEG signals with 96% accuracy using SIFT features and 94% using ORB features. The Random Forest (RF) classifier surpasses state-of-the-art approaches in precision, recall, F1-score, specificity, and Area Under Curve (AUC). The Receiver Operating Characteristic (ROC) curve shows that Random Forest outperforms Support Vector Machine (SVM) and k-Nearest Neighbors (k-NN) classifiers. Significance The suggested method has many advantages over time-series EEG data analysis and machine learning classifiers used in epilepsy detection studies. A novel image-based preprocessing pipeline using GASF for robust image synthesis and SIFT and ORB for feature extraction is presented here. The study found that the suggested method can accurately discriminate between normal and focal EEG signals, improving patient outcomes through early and accurate epilepsy diagnosis.
Collapse
Affiliation(s)
| | | | - Bhanu Chander Balusa
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India
| |
Collapse
|
14
|
Zhong X, Liu G, Dong X, Li C, Li H, Cui H, Zhou W. Automatic Seizure Detection Based on Stockwell Transform and Transformer. SENSORS (BASEL, SWITZERLAND) 2023; 24:77. [PMID: 38202939 PMCID: PMC10781173 DOI: 10.3390/s24010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Epilepsy is a chronic neurological disease associated with abnormal neuronal activity in the brain. Seizure detection algorithms are essential in reducing the workload of medical staff reviewing electroencephalogram (EEG) records. In this work, we propose a novel automatic epileptic EEG detection method based on Stockwell transform and Transformer. First, the S-transform is applied to the original EEG segments, acquiring accurate time-frequency representations. Subsequently, the obtained time-frequency matrices are grouped into different EEG rhythm blocks and compressed as vectors in these EEG sub-bands. After that, these feature vectors are fed into the Transformer network for feature selection and classification. Moreover, a series of post-processing methods were introduced to enhance the efficiency of the system. When evaluating the public CHB-MIT database, the proposed algorithm achieved an accuracy of 96.15%, a sensitivity of 96.11%, a specificity of 96.38%, a precision of 96.33%, and an area under the curve (AUC) of 0.98 in segment-based experiments, along with a sensitivity of 96.57%, a false detection rate of 0.38/h, and a delay of 20.62 s in event-based experiments. These outstanding results demonstrate the feasibility of implementing this seizure detection method in future clinical applications.
Collapse
Affiliation(s)
- Xiangwen Zhong
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Guoyang Liu
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Xingchen Dong
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Chuanyu Li
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Haotian Li
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Haozhou Cui
- School of Integrated Circuits, Shandong University, Jinan 260100, China
| | - Weidong Zhou
- School of Integrated Circuits, Shandong University, Jinan 260100, China
- Shenzhen Institute, Shandong University, Shenzhen 518057, China
| |
Collapse
|
15
|
Yousif MAA, Ozturk M. Deep Learning-Based Classification of Epileptic Electroencephalography Signals Using a Concentrated Time-Frequency Approach. Int J Neural Syst 2023; 33:2350064. [PMID: 37830300 DOI: 10.1142/s0129065723500648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
ConceFT (concentration of frequency and time) is a new time-frequency (TF) analysis method which combines multitaper technique and synchrosqueezing transform (SST). This combination produces highly concentrated TF representations with approximately perfect time and frequency resolutions. In this paper, it is aimed to show the TF representation performance and robustness of ConceFT by using it for the classification of the epileptic electroencephalography (EEG) signals. Therefore, a signal classification algorithm which uses TF images obtained with ConceFT to feed the transfer learning structure has been presented. Epilepsy is a common neurological disorder that millions of people suffer worldwide. Daily lives of the patients are quite difficult because of the unpredictable time of seizures. EEG signals monitoring the electrical activity of the brain can be used to detect approaching seizures and make possible to warn the patient before the attack. GoogLeNet which is a well-known deep learning model has been preferred to classify TF images. Classification performance is directly related to the TF representation accuracy of the ConceFT. The proposed method has been tested for various classification scenarios and obtained accuracies between 95.83% and 99.58% for two and three-class classification scenarios. High results show that ConceFT is a successful and promising TF analysis method for non-stationary biomedical signals.
Collapse
Affiliation(s)
- Mosab A A Yousif
- Department of Biomedical Engineering, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Department of Electronics Engineering, University of Gezira, Wad-Madani, Sudan
| | - Mahmut Ozturk
- Department of Electrical and Electronics Engineering, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
16
|
Liu S, Wang J, Li S, Cai L. Epileptic Seizure Detection and Prediction in EEGs Using Power Spectra Density Parameterization. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3884-3894. [PMID: 37725738 DOI: 10.1109/tnsre.2023.3317093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Power spectrum analysis is one of the effective tools for classifying epileptic signals based on electroencephalography (EEG) recordings. However, the conflation of periodic and aperiodic components within the EEG may presents an obstacle to epilepsy detection or prediction. In this paper, we explored the significance of the periodic and aperiodic components of the EEG power spectrum for the detection and prediction of epilepsy respectively. We use a power spectrum density parameterization method to separate the periodic and aperiodic components of the signals, and validate their roles in epilepsy detection and prediction on two public datasets. The average classification accuracy of the periodic and aperiodic components for 10 clinical tasks on the Bonn EEG database were 73.9% and 96.68%, respectively, and increases to 98.88% when combined. For 22 patients on the CHB-MIT Long-term EEG database, the combined features achieve an average detection accuracy of 99.95% and successfully predict all seizures with low false prediction rates. We conclude that both the periodic and aperiodic components of the EEG power spectrum contributed to discriminating different stages of epilepsy, but the aperiodic neural activity played a decisive role in classification. This discovery has significant implications for diagnosing epileptic seizures and providing personalized brain activity information to improve the accuracy and efficiency of epilepsy detection.
Collapse
|
17
|
Zheng S, Zhang X, Song P, Hu Y, Gong X, Peng X. Complexity-based graph convolutional neural network for epilepsy diagnosis in normal, acute, and chronic stages. Front Comput Neurosci 2023; 17:1211096. [PMID: 37841676 PMCID: PMC10570412 DOI: 10.3389/fncom.2023.1211096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction The automatic precision detection technology based on electroencephalography (EEG) is essential in epilepsy studies. It can provide objective proof for epilepsy diagnosis, treatment, and evaluation, thus helping doctors improve treatment efficiency. At present, the normal and acute phases of epilepsy can be well identified through EEG analysis, but distinguishing between the normal and chronic phases is still tricky. Methods In this paper, five popular complexity indicators of EEG signal, including approximate entropy, sample entropy, permutation entropy, fuzzy entropy and Kolmogorov complexity, are computed from rat hippocampi to characterize the normal, acute, and chronic phases during epileptogenesis. Results of one-way ANOVA and principal component analysis both show that utilizing complexity features, we are able to easily identify differences between normal, acute, and chronic phases. We also propose an innovative framework for epilepsy detection based on graph convolutional neural network (GCNN) using multi-channel EEG complexity as input. Results Combining information of five complexity measures at eight channels, our GCNN model demonstrate superior ability in recognizing the normal, acute, and chronic phases. Experiments results show that our GCNN model reached the high prediction accuracy above 98% and F1 score above 97% among these three phases for each individual rat. Discussion Our research practice based on real data shows that EEG complexity characteristics are of great significance for recognizing different stages of epilepsy.
Collapse
Affiliation(s)
- Shiming Zheng
- Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai, China
| | - Xiaopei Zhang
- Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai, China
| | - Panpan Song
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Hu
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Gong
- Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai, China
| | - Xiaoling Peng
- Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai, China
| |
Collapse
|
18
|
Raeisi K, Khazaei M, Tamburro G, Croce P, Comani S, Zappasodi F. A Class-Imbalance Aware and Explainable Spatio-Temporal Graph Attention Network for Neonatal Seizure Detection. Int J Neural Syst 2023; 33:2350046. [PMID: 37497802 DOI: 10.1142/s0129065723500466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Seizures are the most prevalent clinical indication of neurological disorders in neonates. In this study, a class-imbalance aware and explainable deep learning approach based on Convolutional Neural Networks (CNNs) and Graph Attention Networks (GATs) is proposed for the accurate automated detection of neonatal seizures. The proposed model integrates the temporal information of EEG signals with the spatial information on the EEG channels through the graph representation of the multi-channel EEG segments. One-dimensional CNNs are used to automatically develop a feature set that accurately represents the differences between seizure and nonseizure epochs in the time domain. By employing GAT, the attention mechanism is utilized to emphasize the critical channel pairs and information flow among brain regions. GAT coefficients were then used to empirically visualize the important regions during the seizure and nonseizure epochs, which can provide valuable insight into the location of seizures in the neonatal brain. Additionally, to tackle the severe class imbalance in the neonatal seizure dataset using under-sampling and focal loss techniques are used. Overall, the final Spatio-Temporal Graph Attention Network (ST-GAT) outperformed previous benchmarked methods with a mean AUC of 96.6% and Kappa of 0.88, demonstrating its high accuracy and potential for clinical applications.
Collapse
Affiliation(s)
- Khadijeh Raeisi
- Department of Neuroscience, Imaging and Clinical Sciences, Universita Gabriele d'Annunzio, Chieti 66100, Italy
| | - Mohammad Khazaei
- Department of Neuroscience, Imaging and Clinical Sciences, Universita Gabriele d'Annunzio, Chieti 66100, Italy
| | - Gabriella Tamburro
- Department of Neuroscience, Imaging and Clinical Sciences-Behavioral Imaging and Neural Dynamics Center, Universita Gabriele d'Annunzio, Chieti 66100, Italy
| | - Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences-Behavioral Imaging and Neural Dynamics Center, Universita Gabriele d'Annunzio, Chieti 66100, Italy
| | - Silvia Comani
- Department of Neuroscience, Imaging and Clinical Sciences-Behavioral Imaging and Neural Dynamics Center, Universita Gabriele d'Annunzio, Chieti 66100, Italy
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences-Behavioral, Imaging and Neural Dynamics Center-Institute for, Advanced Biomedical Technologies, Universita Gabriele d'Annunzio, Chieti 66100, Italy
| |
Collapse
|
19
|
Karabiber Cura O, Akan A, Sabiha Ture H. Classification of Epileptic and Psychogenic Nonepileptic Seizures via Time-Frequency Features of EEG Data. Int J Neural Syst 2023; 33:2350045. [PMID: 37530675 DOI: 10.1142/s0129065723500454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The majority of psychogenic nonepileptic seizures (PNESs) are brought on by psychogenic causes, but because their symptoms resemble those of epilepsy, they are frequently misdiagnosed. Although EEG signals are normal in PNES cases, electroencephalography (EEG) recordings alone are not sufficient to identify the illness. Hence, accurate diagnosis and effective treatment depend on long-term video EEG data and a complete patient history. Video EEG setup, however, is more expensive than using standard EEG equipment. To distinguish PNES signals from conventional epileptic seizure (ES) signals, it is crucial to develop methods solely based on EEG recordings. The proposed study presents a technique utilizing short-term EEG data for the classification of inter-PNES, PNES, and ES segments using time-frequency methods such as the Continuous Wavelet transform (CWT), Short-Time Fourier transform (STFT), CWT-based synchrosqueezed transform (WSST), and STFT-based SST (FSST), which provide high-resolution time-frequency representations (TFRs). TFRs of EEG segments are utilized to generate 13 joint TF (J-TF)-based features, four gray-level co-occurrence matrix (GLCM)-based features, and 16 higher-order joint TF moment (HOJ-Mom)-based features. These features are then employed in the classification procedure. Both three-class (inter-PNES versus PNES versus ES: ACC: 80.9%, SEN: 81.8%, and PRE: 84.7%) and two-class (Inter-PNES versus PNES: ACC: 88.2%, SEN: 87.2%, and PRE: 86.1%; PNES versus ES: ACC: 98.5%, SEN: 99.3%, and PRE: 98.9%) classification algorithms performed well, according to the experimental results. The STFT and FSST strategies surpass the CWT and WSST strategies in terms of classification accuracy, sensitivity, and precision. Moreover, the J-TF-based feature sets often perform better than the other two.
Collapse
Affiliation(s)
- Ozlem Karabiber Cura
- Department of Biomedical Engineering, Izmir Katip Çelebi University, Cigli 35620 Izmir, Turkey
| | - Aydin Akan
- Department of Electrical and Electronics Engineering, Izmir University of Economics, Balcova 35330 Izmir, Turkey
| | - Hatice Sabiha Ture
- Department of Neurology, Faculty of Medicine, Izmir Katip Çelebi University, Cigli 35620 Izmir, Turkey
| |
Collapse
|
20
|
Du H, Riddell RP, Wang X. A hybrid complex-valued neural network framework with applications to electroencephalogram (EEG). Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
21
|
Pan R, Yang C, Li Z, Ren J, Duan Y. Magnetoencephalography-based approaches to epilepsy classification. Front Neurosci 2023; 17:1183391. [PMID: 37502686 PMCID: PMC10368885 DOI: 10.3389/fnins.2023.1183391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/12/2023] [Indexed: 07/29/2023] Open
Abstract
Epilepsy is a chronic central nervous system disorder characterized by recurrent seizures. Not only does epilepsy severely affect the daily life of the patient, but the risk of premature death in patients with epilepsy is three times higher than that of the normal population. Magnetoencephalography (MEG) is a non-invasive, high temporal and spatial resolution electrophysiological data that provides a valid basis for epilepsy diagnosis, and used in clinical practice to locate epileptic foci in patients with epilepsy. It has been shown that MEG helps to identify MRI-negative epilepsy, contributes to clinical decision-making in recurrent seizures after previous epilepsy surgery, that interictal MEG can provide additional localization information than scalp EEG, and complete excision of the stimulation area defined by the MEG has prognostic significance for postoperative seizure control. However, due to the complexity of the MEG signal, it is often difficult to identify subtle but critical changes in MEG through visual inspection, opening up an important area of research for biomedical engineers to investigate and implement intelligent algorithms for epilepsy recognition. At the same time, the use of manual markers requires significant time and labor costs, necessitating the development and use of computer-aided diagnosis (CAD) systems that use classifiers to automatically identify abnormal activity. In this review, we discuss in detail the results of applying various different feature extraction methods on MEG signals with different classifiers for epilepsy detection, subtype determination, and laterality classification. Finally, we also briefly look at the prospects of using MEG for epilepsy-assisted localization (spike detection, high-frequency oscillation detection) due to the unique advantages of MEG for functional area localization in epilepsy, and discuss the limitation of current research status and suggestions for future research. Overall, it is hoped that our review will facilitate the reader to quickly gain a general understanding of the problem of MEG-based epilepsy classification and provide ideas and directions for subsequent research.
Collapse
Affiliation(s)
- Ruoyao Pan
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Chunlan Yang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zhimei Li
- Department of Internal Neurology, Tiantan Hospital, Beijing, China
| | - Jiechuan Ren
- Department of Internal Neurology, Tiantan Hospital, Beijing, China
| | - Ying Duan
- Beijing Universal Medical Imaging Diagnostic Center, Beijing, China
| |
Collapse
|
22
|
Degirmenci M, Yuce YK, Perc M, Isler Y. Statistically significant features improve binary and multiple Motor Imagery task predictions from EEGs. Front Hum Neurosci 2023; 17:1223307. [PMID: 37497042 PMCID: PMC10366537 DOI: 10.3389/fnhum.2023.1223307] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
In recent studies, in the field of Brain-Computer Interface (BCI), researchers have focused on Motor Imagery tasks. Motor Imagery-based electroencephalogram (EEG) signals provide the interaction and communication between the paralyzed patients and the outside world for moving and controlling external devices such as wheelchair and moving cursors. However, current approaches in the Motor Imagery-BCI system design require effective feature extraction methods and classification algorithms to acquire discriminative features from EEG signals due to the non-linear and non-stationary structure of EEG signals. This study investigates the effect of statistical significance-based feature selection on binary and multi-class Motor Imagery EEG signal classifications. In the feature extraction process performed 24 different time-domain features, 15 different frequency-domain features which are energy, variance, and entropy of Fourier transform within five EEG frequency subbands, 15 different time-frequency domain features which are energy, variance, and entropy of Wavelet transform based on five EEG frequency subbands, and 4 different Poincare plot-based non-linear parameters are extracted from each EEG channel. A total of 1,364 Motor Imagery EEG features are supplied from 22 channel EEG signals for each input EEG data. In the statistical significance-based feature selection process, the best one among all possible combinations of these features is tried to be determined using the independent t-test and one-way analysis of variance (ANOVA) test on binary and multi-class Motor Imagery EEG signal classifications, respectively. The whole extracted feature set and the feature set that contain statistically significant features only are classified in this study. We implemented 6 and 7 different classifiers in multi-class and binary (two-class) classification tasks, respectively. The classification process is evaluated using the five-fold cross-validation method, and each classification algorithm is tested 10 times. These repeated tests provide to check the repeatability of the results. The maximum of 61.86 and 47.36% for the two-class and four-class scenarios, respectively, are obtained with Ensemble Subspace Discriminant among all these classifiers using selected features including only statistically significant features. The results reveal that the introduced statistical significance-based feature selection approach improves the classifier performances by achieving higher classifier performances with fewer relevant components in Motor Imagery task classification. In conclusion, the main contribution of the presented study is two-fold evaluation of non-linear parameters as an alternative to the commonly used features and the prediction of multiple Motor Imagery tasks using statistically significant features.
Collapse
Affiliation(s)
- Murside Degirmenci
- Department of Biomedical Technologies, Izmir Katip Celebi University, İzmir, Türkiye
| | - Yilmaz Kemal Yuce
- Department of Computer Engineering, Alanya Alaaddin Keykubat University, Antalya, Türkiye
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Alma Mater Europaea, Maribor, Slovenia
- Complexity Science Hub Vienna, Vienna, Austria
- Department of Physics, Kyung Hee University, Seoul, Republic of Korea
| | - Yalcin Isler
- Department of Biomedical Engineering, Izmir Katip Celebi University, İzmir, Türkiye
| |
Collapse
|
23
|
Pandey A, Singh SK, Udmale SS, Shukla K. An intelligent optimized deep learning model to achieve early prediction of epileptic seizures. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
24
|
Alalayah KM, Senan EM, Atlam HF, Ahmed IA, Shatnawi HSA. Effective Early Detection of Epileptic Seizures through EEG Signals Using Classification Algorithms Based on t-Distributed Stochastic Neighbor Embedding and K-Means. Diagnostics (Basel) 2023; 13:diagnostics13111957. [PMID: 37296809 DOI: 10.3390/diagnostics13111957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Epilepsy is a neurological disorder in the activity of brain cells that leads to seizures. An electroencephalogram (EEG) can detect seizures as it contains physiological information of the neural activity of the brain. However, visual examination of EEG by experts is time consuming, and their diagnoses may even contradict each other. Thus, an automated computer-aided diagnosis for EEG diagnostics is necessary. Therefore, this paper proposes an effective approach for the early detection of epilepsy. The proposed approach involves the extraction of important features and classification. First, signal components are decomposed to extract the features via the discrete wavelet transform (DWT) method. Principal component analysis (PCA) and the t-distributed stochastic neighbor embedding (t-SNE) algorithm were applied to reduce the dimensions and focus on the most important features. Subsequently, K-means clustering + PCA and K-means clustering + t-SNE were used to divide the dataset into subgroups to reduce the dimensions and focus on the most important representative features of epilepsy. The features extracted from these steps were fed to extreme gradient boosting, K-nearest neighbors (K-NN), decision tree (DT), random forest (RF) and multilayer perceptron (MLP) classifiers. The experimental results demonstrated that the proposed approach provides superior results to those of existing studies. During the testing phase, the RF classifier with DWT and PCA achieved an accuracy of 97.96%, precision of 99.1%, recall of 94.41% and F1 score of 97.41%. Moreover, the RF classifier with DWT and t-SNE attained an accuracy of 98.09%, precision of 99.1%, recall of 93.9% and F1 score of 96.21%. In comparison, the MLP classifier with PCA + K-means reached an accuracy of 98.98%, precision of 99.16%, recall of 95.69% and F1 score of 97.4%.
Collapse
Affiliation(s)
- Khaled M Alalayah
- Department of Computer Science, College of Science and Arts, Najran University, Sharurah 68341, Saudi Arabia
| | - Ebrahim Mohammed Senan
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Alrazi University, Sana'a P.O. Box 1152, Yemen
| | - Hany F Atlam
- Cyber Security Centre, WMG, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
25
|
Jurdana V, Vrankic M, Lopac N, Jadav GM. Method for Automatic Estimation of Instantaneous Frequency and Group Delay in Time-Frequency Distributions with Application in EEG Seizure Signals Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:4680. [PMID: 37430594 DOI: 10.3390/s23104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 07/12/2023]
Abstract
Instantaneous frequency (IF) is commonly used in the analysis of electroencephalogram (EEG) signals to detect oscillatory-type seizures. However, IF cannot be used to analyze seizures that appear as spikes. In this paper, we present a novel method for the automatic estimation of IF and group delay (GD) in order to detect seizures with both spike and oscillatory characteristics. Unlike previous methods that use IF alone, the proposed method utilizes information obtained from localized Rényi entropies (LREs) to generate a binary map that automatically identifies regions requiring a different estimation strategy. The method combines IF estimation algorithms for multicomponent signals with time and frequency support information to improve signal ridge estimation in the time-frequency distribution (TFD). Our experimental results indicate the superiority of the proposed combined IF and GD estimation approach over the IF estimation alone, without requiring any prior knowledge about the input signal. The LRE-based mean squared error and mean absolute error metrics showed improvements of up to 95.70% and 86.79%, respectively, for synthetic signals and up to 46.45% and 36.61% for real-life EEG seizure signals.
Collapse
Affiliation(s)
- Vedran Jurdana
- Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia
| | - Miroslav Vrankic
- Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia
| | - Nikola Lopac
- Faculty of Maritime Studies, University of Rijeka, 51000 Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, 51000 Rijeka, Croatia
| | | |
Collapse
|
26
|
Ronchini M, Rezaeiyan Y, Zamani M, Panuccio G, Moradi F. NET-TEN: a silicon neuromorphic network for low-latency detection of seizures in local field potentials. J Neural Eng 2023; 20. [PMID: 37144338 DOI: 10.1088/1741-2552/acd029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Objective. Therapeutic intervention in neurological disorders still relies heavily on pharmacological solutions, while the treatment of patients with drug resistance remains an unresolved issue. This is particularly true for patients with epilepsy, 30% of whom are refractory to medications. Implantable devices for chronic recording and electrical modulation of brain activity have proved a viable alternative in such cases. To operate, the device should detect the relevant electrographic biomarkers from local field potentials (LFPs) and determine the right time for stimulation. To enable timely interventions, the ideal device should attain biomarker detection with low latency while operating under low power consumption to prolong battery life.Approach. Here we introduce a fully-analog neuromorphic device implemented in CMOS technology for analyzing LFP signals in anin vitromodel of acute ictogenesis. Neuromorphic networks have progressively gained a reputation as low-latency low-power computing systems, which makes them a promising candidate as processing core of next-generation implantable neural interfaces.Main results. The developed system can detect ictal and interictal events with ms-latency and with high precision, consuming on average 3.50 nW during the task.Significance. The work presented in this paper paves the way to a new generation of brain implantable devices for personalized closed-loop stimulation for epilepsy treatment.
Collapse
Affiliation(s)
- Margherita Ronchini
- Integrated Circuits & Electronics Laboratory, Institut for Elektro- og Computerteknologi, Aarhus University, Aarhus, Denmark
| | - Yasser Rezaeiyan
- Integrated Circuits & Electronics Laboratory, Institut for Elektro- og Computerteknologi, Aarhus University, Aarhus, Denmark
| | - Milad Zamani
- Integrated Circuits & Electronics Laboratory, Institut for Elektro- og Computerteknologi, Aarhus University, Aarhus, Denmark
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Farshad Moradi
- Integrated Circuits & Electronics Laboratory, Institut for Elektro- og Computerteknologi, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Shivaraja TR, Remli R, Kamal N, Wan Zaidi WA, Chellappan K. Assessment of a 16-Channel Ambulatory Dry Electrode EEG for Remote Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:3654. [PMID: 37050713 PMCID: PMC10098757 DOI: 10.3390/s23073654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Ambulatory EEGs began emerging in the healthcare industry over the years, setting a new norm for long-term monitoring services. The present devices in the market are neither meant for remote monitoring due to their technical complexity nor for meeting clinical setting needs in epilepsy patient monitoring. In this paper, we propose an ambulatory EEG device, OptiEEG, that has low setup complexity, for the remote EEG monitoring of epilepsy patients. OptiEEG's signal quality was compared with a gold standard clinical device, Natus. The experiment between OptiEEG and Natus included three different tests: eye open/close (EOC); hyperventilation (HV); and photic stimulation (PS). Statistical and wavelet analysis of retrieved data were presented when evaluating the performance of OptiEEG. The SNR and PSNR of OptiEEG were slightly lower than Natus, but within an acceptable bound. The standard deviations of MSE for both devices were almost in a similar range for the three tests. The frequency band energy analysis is consistent between the two devices. A rhythmic slowdown of theta and delta was observed in HV, whereas photic driving was observed during PS in both devices. The results validated the performance of OptiEEG as an acceptable EEG device for remote monitoring away from clinical environments.
Collapse
Affiliation(s)
- Theeban Raj Shivaraja
- Department of Electrical, Electronics and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Rabani Remli
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
- Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Noorfazila Kamal
- Department of Electrical, Electronics and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Wan Asyraf Wan Zaidi
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
- Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Kalaivani Chellappan
- Department of Electrical, Electronics and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
28
|
Epileptic Seizure Detection Using Machine Learning: Taxonomy, Opportunities, and Challenges. Diagnostics (Basel) 2023; 13:diagnostics13061058. [PMID: 36980366 PMCID: PMC10047386 DOI: 10.3390/diagnostics13061058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/14/2023] Open
Abstract
Epilepsy is a life-threatening neurological brain disorder that gives rise to recurrent unprovoked seizures. It occurs due to abnormal chemical changes in our brains. For many years, studies have been conducted to support the automatic diagnosis of epileptic seizures for clinicians’ ease. For that, several studies entail machine learning methods for early predicting epileptic seizures. Mainly, feature extraction methods have been used to extract the right features from the EEG data generated by the EEG machine. Then various machine learning classifiers are used for the classification process. This study provides a systematic literature review of the feature selection process and classification performance. This review was limited to finding the most used feature extraction methods and the classifiers used for accurate classification of normal to epileptic seizures. The existing literature was examined from well-known repositories such as MDPI, IEEE Xplore, Wiley, Elsevier, ACM, Springer link, and others. Furthermore, a taxonomy was created that recapitulates the state-of-the-art used solutions for this problem. We also studied the nature of different benchmark and unbiased datasets and gave a rigorous analysis of the working of classifiers. Finally, we concluded the research by presenting the gaps, challenges, and opportunities that can further help researchers predict epileptic seizures.
Collapse
|
29
|
Feature extraction and selection from electroencephalogram signals for epileptic seizure diagnosis. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
30
|
Priyadarshini BI, Reddy DK. Modified remora optimization based matching pursuit with density peak clustering for localization of epileptic seizure onset zones. EVOLVING SYSTEMS 2023. [DOI: 10.1007/s12530-023-09488-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
31
|
Amiri M, Aghaeinia H, Amindavar HR. Automatic epileptic seizure detection in EEG signals using sparse common spatial pattern and adaptive short-time Fourier transform-based synchrosqueezing transform. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
32
|
Walther D, Viehweg J, Haueisen J, Mäder P. A systematic comparison of deep learning methods for EEG time series analysis. Front Neuroinform 2023; 17:1067095. [PMID: 36911074 PMCID: PMC9995756 DOI: 10.3389/fninf.2023.1067095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Analyzing time series data like EEG or MEG is challenging due to noisy, high-dimensional, and patient-specific signals. Deep learning methods have been demonstrated to be superior in analyzing time series data compared to shallow learning methods which utilize handcrafted and often subjective features. Especially, recurrent deep neural networks (RNN) are considered suitable to analyze such continuous data. However, previous studies show that they are computationally expensive and difficult to train. In contrast, feed-forward networks (FFN) have previously mostly been considered in combination with hand-crafted and problem-specific feature extractions, such as short time Fourier and discrete wavelet transform. A sought-after are easily applicable methods that efficiently analyze raw data to remove the need for problem-specific adaptations. In this work, we systematically compare RNN and FFN topologies as well as advanced architectural concepts on multiple datasets with the same data preprocessing pipeline. We examine the behavior of those approaches to provide an update and guideline for researchers who deal with automated analysis of EEG time series data. To ensure that the results are meaningful, it is important to compare the presented approaches while keeping the same experimental setup, which to our knowledge was never done before. This paper is a first step toward a fairer comparison of different methodologies with EEG time series data. Our results indicate that a recurrent LSTM architecture with attention performs best on less complex tasks, while the temporal convolutional network (TCN) outperforms all the recurrent architectures on the most complex dataset yielding a 8.61% accuracy improvement. In general, we found the attention mechanism to substantially improve classification results of RNNs. Toward a light-weight and online learning-ready approach, we found extreme learning machines (ELM) to yield comparable results for the less complex tasks.
Collapse
Affiliation(s)
- Dominik Walther
- Data-Intensive Systems and Visualization Group (dAI.SY), Technische Universität Ilmenau, Ilmenau, Germany
| | - Johannes Viehweg
- Data-Intensive Systems and Visualization Group (dAI.SY), Technische Universität Ilmenau, Ilmenau, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Patrick Mäder
- Data-Intensive Systems and Visualization Group (dAI.SY), Technische Universität Ilmenau, Ilmenau, Germany.,Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
33
|
Mishra S, Kumar Satapathy S, Mohanty SN, Pattnaik CR. A DM-ELM based classifier for EEG brain signal classification for epileptic seizure detection. Commun Integr Biol 2022; 16:2153648. [PMID: 36531748 PMCID: PMC9757406 DOI: 10.1080/19420889.2022.2153648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Epilepsy is one of the dreaded conditions that had taken billions of people under its cloud worldwide. Detecting the seizure at the correct time in an individual is something that medical practitioners focus in order to help people save their lives. Analysis of the Electroencephalogram (EEG) signal from the scalp area of the human brain can help in detecting the seizure beforehand. This paper presents a novel classification technique to classify EEG brain signals for epilepsy identification based on Discrete Wavelet Transform and Moth Flame Optimization-based Extreme Learning Machine (DM-ELM). ELM is a very popular machine learning method based on Neural Networks (NN) where the model is trained rigorously to get the minimized error rate and maximized accuracy. Here we have used several experimental evaluations to compare the performance of basic ELM and DM-ELM and it has been experimentally proved that DM-ELM outperforms basic ELM but with few time constraints.
Collapse
Affiliation(s)
- Shruti Mishra
- Department of Computer Science & Engineering, Vellore Institute of Technology, Chennai, india
| | - Sandeep Kumar Satapathy
- Department of Computer Science & Engineering, Vellore Institute of Technology, Chennai, india
| | - Sachi Nandan Mohanty
- School of Computer Science &Engineering, VIT-AP University, Amaravati, India,CONTACT Sachi Nandan Mohanty School of Computer Science &Engineering, VIT-AP University, Amaravati, India
| | - Chinmaya Ranjan Pattnaik
- Department of Computer Science & Engineering, Ajay Binaya Institute of Technology, Cuttack, India
| |
Collapse
|
34
|
Zambrana-Vinaroz D, Vicente-Samper JM, Manrique-Cordoba J, Sabater-Navarro JM. Wearable Epileptic Seizure Prediction System Based on Machine Learning Techniques Using ECG, PPG and EEG Signals. SENSORS (BASEL, SWITZERLAND) 2022; 22:9372. [PMID: 36502071 PMCID: PMC9736525 DOI: 10.3390/s22239372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Epileptic seizures have a great impact on the quality of life of people who suffer from them and further limit their independence. For this reason, a device that would be able to monitor patients' health status and warn them for a possible epileptic seizure would improve their quality of life. With this aim, this article proposes the first seizure predictive model based on Ear EEG, ECG and PPG signals obtained by means of a device that can be used in a static and outpatient setting. This device has been tested with epileptic people in a clinical environment. By processing these data and using supervised machine learning techniques, different predictive models capable of classifying the state of the epileptic person into normal, pre-seizure and seizure have been developed. Subsequently, a reduced model based on Boosted Trees has been validated, obtaining a prediction accuracy of 91.5% and a sensitivity of 85.4%. Thus, based on the accuracy of the predictive model obtained, it can potentially serve as a support tool to determine the status epilepticus and prevent a seizure, thereby improving the quality of life of these people.
Collapse
Affiliation(s)
- David Zambrana-Vinaroz
- Neuroengineering Biomedical Research Group, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Jose Maria Vicente-Samper
- Neuroengineering Biomedical Research Group, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Juliana Manrique-Cordoba
- Neuroengineering Biomedical Research Group, Miguel Hernández University of Elche, 03202 Elche, Spain
| | | |
Collapse
|
35
|
Epileptic Seizure Detection Using a Hybrid 1D CNN-Machine Learning Approach from EEG Data. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9579422. [PMID: 36483658 PMCID: PMC9726261 DOI: 10.1155/2022/9579422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
Electroencephalography (EEG) is a widely used technique for the detection of epileptic seizures. It can be recorded in a noninvasive manner to present the electrical activity of the brain. The visual inspection of nonlinear and highly complex EEG signals is both costly and time-consuming. Therefore, an effective automatic detection system is needed to assist in the long-term evaluation and treatment of patients. Traditional approaches based on machine learning require feature extraction, while deep learning approaches are time-consuming and require more layers for effective feature learning and processing of complex EEG waveforms. Deep learning-based approaches also have weak generalization ability. This paper proposes a solution based on the combination of convolution neural networks (CNN) and machine learning classifiers. It preprocesses the EEG signal using the Butterworth filter and performs feature extraction using CNN. From the extracted set of features, the approach selects only the relevant features using mutual information-based estimators to reduce the curse of dimensionality and improve classification accuracy. The selected features are then passed as input to different machine learning classifiers. The suggested solution is evaluated on the University of Bonn dataset and CHB-MIT datasets. Our model effectively predicts 2, 3, 4, and 5 classes with accuracy of 100%, 99%, 94.6%, and 94%, respectively, for the Bonn dataset and 98% for CHB-MIT datasets.
Collapse
|
36
|
Christou V, Miltiadous A, Tsoulos I, Karvounis E, Tzimourta KD, Tsipouras MG, Anastasopoulos N, Tzallas AT, Giannakeas N. Evaluating the Window Size's Role in Automatic EEG Epilepsy Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:9233. [PMID: 36501935 PMCID: PMC9739775 DOI: 10.3390/s22239233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Electroencephalography is one of the most commonly used methods for extracting information about the brain's condition and can be used for diagnosing epilepsy. The EEG signal's wave shape contains vital information about the brain's state, which can be challenging to analyse and interpret by a human observer. Moreover, the characteristic waveforms of epilepsy (sharp waves, spikes) can occur randomly through time. Considering all the above reasons, automatic EEG signal extraction and analysis using computers can significantly impact the successful diagnosis of epilepsy. This research explores the impact of different window sizes on EEG signals' classification accuracy using four machine learning classifiers. The machine learning methods included a neural network with ten hidden nodes trained using three different training algorithms and the k-nearest neighbours classifier. The neural network training methods included the Broyden-Fletcher-Goldfarb-Shanno algorithm, the multistart method for global optimization problems, and a genetic algorithm. The current research utilized the University of Bonn dataset containing EEG data, divided into epochs having 50% overlap and window lengths ranging from 1 to 24 s. Then, statistical and spectral features were extracted and used to train the above four classifiers. The outcome from the above experiments showed that large window sizes with a length of about 21 s could positively impact the classification accuracy between the compared methods.
Collapse
Affiliation(s)
- Vasileios Christou
- Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece
| | - Andreas Miltiadous
- Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece
| | - Ioannis Tsoulos
- Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece
| | - Evaggelos Karvounis
- Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece
| | - Katerina D. Tzimourta
- Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Western Macedonia, 50100 Kozani, Greece
| | - Markos G. Tsipouras
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Western Macedonia, 50100 Kozani, Greece
| | | | - Alexandros T. Tzallas
- Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece
| | - Nikolaos Giannakeas
- Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece
| |
Collapse
|
37
|
Graph-generative neural network for EEG-based epileptic seizure detection via discovery of dynamic brain functional connectivity. Sci Rep 2022; 12:18998. [PMID: 36348082 PMCID: PMC9643358 DOI: 10.1038/s41598-022-23656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic complexity in brain functional connectivity has hindered the effective use of signal processing or machine learning methods to diagnose neurological disorders such as epilepsy. This paper proposed a new graph-generative neural network (GGN) model for the dynamic discovery of brain functional connectivity via deep analysis of scalp electroencephalogram (EEG) signals recorded from various regions of a patient's scalp. Brain functional connectivity graphs are generated for the extraction of spatial-temporal resolution of various onset epilepsy seizure patterns. Our supervised GGN model was substantiated by seizure detection and classification experiments. We train the GGN model using a clinically proven dataset of over 3047 epileptic seizure cases. The GGN model achieved a 91% accuracy in classifying seven types of epileptic seizure attacks, which outperformed the 65%, 74%, and 82% accuracy in using the convolutional neural network (CNN), graph neural networks (GNN), and transformer models, respectively. We present the GGN model architecture and operational steps to assist neuroscientists or brain specialists in using dynamic functional connectivity information to detect neurological disorders. Furthermore, we suggest to merge our spatial-temporal graph generator design in upgrading the conventional CNN and GNN models with dynamic convolutional kernels for accuracy enhancement.
Collapse
|
38
|
Yuan S, Mu J, Zhou W, Dai LY, Liu JX, Wang J, Liu X. Automatic Epileptic Seizure Detection Using Graph-Regularized Non-Negative Matrix Factorization and Kernel-Based Robust Probabilistic Collaborative Representation. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2641-2650. [PMID: 36063515 DOI: 10.1109/tnsre.2022.3204533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Automatic seizure detection system can serve as a meaningful clinical tool for the treatment and analysis of epilepsy using electroencephalogram (EEG) and has obtained rapid development. An automatic detection of epileptic seizure method based on kernel-based robust probabilistic collaborative representation (ProCRC) combined with graph-regularized non-negative matrix factorization (GNMF) is proposed in this work. The raw EEG signals are pre-processed through the wavelet transform to obtain time-frequency distribution of EEG signals as preliminary feature information and GNMF is further employed for dimension reduction, retaining and enhancing the productive feature information of EEG signals. Then, the test sample is represented using robust ProCRC that can decide whether the testing sample belongs to each class (seizure or non-seizure) by jointly maximizing the likelihood. In addition, the kernel trick is applied to improve the separability of non-linear high dimensional EEG signals in robust ProCRC. Finally, post-processing techniques are introduced to generate more accurate and reliable results. The average epoch-based sensitivity of 96.48%, event-based sensitivity of 93.65% and specificity of 98.55% are acquired in this method, which is evaluated on the public Freiburg EEG database.
Collapse
|
39
|
Kralikova I, Babusiak B, Smondrk M. EEG-Based Person Identification during Escalating Cognitive Load. SENSORS (BASEL, SWITZERLAND) 2022; 22:7154. [PMID: 36236268 PMCID: PMC9572021 DOI: 10.3390/s22197154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
With the development of human society, there is an increasing importance for reliable person identification and authentication to protect a person's material and intellectual property. Person identification based on brain signals has captured substantial attention in recent years. These signals are characterized by original patterns for a specific person and are capable of providing security and privacy of an individual in biometric identification. This study presents a biometric identification method based on a novel paradigm with accrual cognitive brain load from relaxing with eyes closed to the end of a serious game, which includes three levels with increasing difficulty. The used database contains EEG data from 21 different subjects. Specific patterns of EEG signals are recognized in the time domain and classified using a 1D Convolutional Neural Network proposed in the MATLAB environment. The ability of person identification based on individual tasks corresponding to a given degree of load and their fusion are examined by 5-fold cross-validation. Final accuracies of more than 99% and 98% were achieved for individual tasks and task fusion, respectively. The reduction of EEG channels is also investigated. The results imply that this approach is suitable to real applications.
Collapse
|
40
|
Karunakar Reddy V, Kumar AV R. Multi-channel neuro signal classification using Adam-based coyote optimization enabled deep belief network. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
N.J. S, M.S.P. S, S. TG. EEG-based classification of normal and seizure types using relaxed local neighbour difference pattern and artificial neural network. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.108508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Hofmann M, Mader P. Synaptic Scaling-An Artificial Neural Network Regularization Inspired by Nature. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:3094-3108. [PMID: 33502984 DOI: 10.1109/tnnls.2021.3050422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nature has always inspired the human spirit and scientists frequently developed new methods based on observations from nature. Recent advances in imaging and sensing technology allow fascinating insights into biological neural processes. With the objective of finding new strategies to enhance the learning capabilities of neural networks, we focus on a phenomenon that is closely related to learning tasks and neural stability in biological neural networks, called homeostatic plasticity. Among the theories that have been developed to describe homeostatic plasticity, synaptic scaling has been found to be the most mature and applicable. We systematically discuss previous studies on the synaptic scaling theory and how they could be applied to artificial neural networks. Therefore, we utilize information theory to analytically evaluate how mutual information is affected by synaptic scaling. Based on these analytic findings, we propose two flavors in which synaptic scaling can be applied in the training process of simple and complex, feedforward, and recurrent neural networks. We compare our approach with state-of-the-art regularization techniques on standard benchmarks. We found that the proposed method yields the lowest error in both regression and classification tasks compared to previous regularization approaches in our experiments across a wide range of network feedforward and recurrent topologies and data sets.
Collapse
|
43
|
Tao TL, Guo LH, He Q, Zhang H, Xu L. Seizure detection by brain-connectivity analysis using dynamic graph isomorphism network. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2302-2305. [PMID: 36086224 DOI: 10.1109/embc48229.2022.9871701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Epilepsy is a neurological disease caused by ab-normal neural electrical discharges. Electroencephalography (EEG) is a powerful tool to measure the brain electrical activity and has been widely used for seizure detection. Manual EEG analysis is labor-intensive and time-consuming. Automatic seizure detection is urgently demanded for long-time seizure monitoring. Many methods have been proposed for automatic seizure detection based on EEG signals. However, most of the existing methods are patient-specific with limited generaliz-ability. Few studies investigate inter-patient seizure detection, which remains challenging. The aim of the present study is therefore to develop advanced algorithms for efficient inter-patient seizure detection using EEG. To this end, dynamic brain network is employed to capture the spatiotemporal dynamics of the connectivity among brain regions. A novel graph neural network referred to as graph isomorphic network is proposed for effective local-global spatiotemporal feature extraction and seizure classification. The proposed method is evaluated with the CHB-MIT open dataset with a ten-fold cross-validation. The results reveal excellent performance for the proposed method, with accuracy, sensitivity, and specificity of 96.2%, 95.4%, and 97.0% respectively, significantly higher than the results reported in the literature. Our results provide useful information for inter-patient seizure detection, particularly for long-time ambulatory seizure monitoring.
Collapse
|
44
|
Kaushik G, Gaur P, Sharma RR, Pachori RB. EEG signal based seizure detection focused on Hjorth parameters from tunable-Q wavelet sub-bands. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Cura OK, Akan A, Yilmaz GC, Ture HS. Detection of Alzheimer's Dementia by Using Signal Decomposition and Machine Learning Methods. Int J Neural Syst 2022; 32:2250042. [DOI: 10.1142/s0129065722500423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Ahmad I, Wang X, Zhu M, Wang C, Pi Y, Khan JA, Khan S, Samuel OW, Chen S, Li G. EEG-Based Epileptic Seizure Detection via Machine/Deep Learning Approaches: A Systematic Review. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6486570. [PMID: 35755757 PMCID: PMC9232335 DOI: 10.1155/2022/6486570] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/10/2022] [Indexed: 12/21/2022]
Abstract
Epileptic seizure is one of the most chronic neurological diseases that instantaneously disrupts the lifestyle of affected individuals. Toward developing novel and efficient technology for epileptic seizure management, recent diagnostic approaches have focused on developing machine/deep learning model (ML/DL)-based electroencephalogram (EEG) methods. Importantly, EEG's noninvasiveness and ability to offer repeated patterns of epileptic-related electrophysiological information have motivated the development of varied ML/DL algorithms for epileptic seizure diagnosis in the recent years. However, EEG's low amplitude and nonstationary characteristics make it difficult for existing ML/DL models to achieve a consistent and satisfactory diagnosis outcome, especially in clinical settings, where environmental factors could hardly be avoided. Though several recent works have explored the use of EEG-based ML/DL methods and statistical feature for seizure diagnosis, it is unclear what the advantages and limitations of these works are, which might preclude the advancement of research and development in the field of epileptic seizure diagnosis and appropriate criteria for selecting ML/DL models and statistical feature extraction methods for EEG-based epileptic seizure diagnosis. Therefore, this paper attempts to bridge this research gap by conducting an extensive systematic review on the recent developments of EEG-based ML/DL technologies for epileptic seizure diagnosis. In the review, current development in seizure diagnosis, various statistical feature extraction methods, ML/DL models, their performances, limitations, and core challenges as applied in EEG-based epileptic seizure diagnosis were meticulously reviewed and compared. In addition, proper criteria for selecting appropriate and efficient feature extraction techniques and ML/DL models for epileptic seizure diagnosis were also discussed. Findings from this study will aid researchers in deciding the most efficient ML/DL models with optimal feature extraction methods to improve the performance of EEG-based epileptic seizure detection.
Collapse
Affiliation(s)
- Ijaz Ahmad
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| | - Mingxing Zhu
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
- School of Electronics and Information Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Cheng Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| | - Yao Pi
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Javed Ali Khan
- Department of Software Engineering, University of Science and Technology, Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Siyab Khan
- Institute of Computer Science and Information Technology, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Oluwarotimi Williams Samuel
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| | - Shixiong Chen
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
47
|
Liu G, Tian L, Zhou W. Patient-Independent Seizure Detection Based on Channel-Perturbation Convolutional Neural Network and Bidirectional Long Short-Term Memory. Int J Neural Syst 2022; 32:2150051. [PMID: 34781854 DOI: 10.1142/s0129065721500519] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Automatic seizure detection is of great significance for epilepsy diagnosis and alleviating the massive burden caused by manual inspection of long-term EEG. At present, most seizure detection methods are highly patient-dependent and have poor generalization performance. In this study, a novel patient-independent approach is proposed to effectively detect seizure onsets. First, the multi-channel EEG recordings are preprocessed by wavelet decomposition. Then, the Convolutional Neural Network (CNN) with proper depth works as an EEG feature extractor. Next, the obtained features are fed into a Bidirectional Long Short-Term Memory (BiLSTM) network to further capture the temporal variation characteristics. Finally, aiming to reduce the false detection rate (FDR) and improve the sensitivity, the postprocessing, including smoothing and collar, is performed on the outputs of the model. During the training stage, a novel channel perturbation technique is introduced to enhance the model generalization ability. The proposed approach is comprehensively evaluated on the CHB-MIT public scalp EEG database as well as a more challenging SH-SDU scalp EEG database we collected. Segment-based average accuracies of 97.51% and 93.70%, event-based average sensitivities of 86.51% and 89.89%, and average AUC-ROC of 90.82% and 90.75% are yielded on the CHB-MIT database and SH-SDU database, respectively.
Collapse
Affiliation(s)
- Guoyang Liu
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Lan Tian
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Weidong Zhou
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| |
Collapse
|
48
|
Li Y, Zhang Z. Enhanced Laterality Index: A Novel Measure for Hemispheric Asymmetry. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8997108. [PMID: 35529543 PMCID: PMC9076328 DOI: 10.1155/2022/8997108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/30/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022]
Abstract
During sleep, the two hemispheres display asymmetries in their activation pattern. Various hemispheric asymmetry measures have been utilized in existing works. Nevertheless, all these measures have one common problem that they would merely take one representative quantity into account when evaluating the functional asymmetry. However, there is a complex series of information exchanges between the two cerebral hemispheres, and only considering one quantity inevitably leads to one-sided or even incorrect conclusions. Consequently, to address the limitation of conventional laterality indices, we propose the so-called enhanced laterality index (ELI), which considers multiple measures of functional asymmetries. Normal sleep and obstructive sleep apnea electroencephalograms (EEGs) from 21 subjects collected in the clinical acquisition system are applied, and two representative quantities are considered simultaneously in this paper. We measure the signal complexity by using fuzzy entropy, and the signal strength is evaluated by calculating EEG energy. The difference of ELI is demonstrated by the comparison with the traditional laterality index (LI) in evaluating the functional asymmetry during sleep.
Collapse
Affiliation(s)
- Yuwen Li
- School of Instrument Science and Engineering, Southeast University, Nanjing 210000, China
| | - Zhimin Zhang
- Science and Technology on Information Systems Engineering Laboratory, The 28th Research Institute of CETC, Nanjing 210000, China
| |
Collapse
|
49
|
EEG Oscillatory Power and Complexity for Epileptic Seizure Detection. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monitoring patients at risk of epileptic seizure is critical for optimal treatment and ensuing the reduction of seizure risk and complications. In general, seizure detection is done manually in hospitals and involves time-consuming visual inspection and interpretation by experts of electroencephalography (EEG) recordings. The purpose of this study is to investigate the pertinence of band-limited spectral power and signal complexity in order to discriminate between seizure and seizure-free EEG brain activity. The signal complexity and spectral power are evaluated in five frequency intervals, namely, the delta, theta, alpha, beta, and gamma bands, to be used as EEG signal feature representation. Classification of seizure and seizure-free data was performed by prevalent potent classifiers. Substantial comparative performance evaluation experiments were performed on a large EEG data record of 341 patients in the Temple University Hospital EEG seizure database. Based on statistically validated criteria, results show the efficiency of band-limited spectral power and signal complexity when using random forest and gradient-boosting decision tree classifiers (95% of the area under the curve (AUC) and 91% for both F-measure and accuracy). These results support the use of these automatic classification schemes to assist the practicing neurologist interpret EEG records more accurately and without tedious visual inspection.
Collapse
|
50
|
Chirasani SKR, Manikandan S. A deep neural network for the classification of epileptic seizures using hierarchical attention mechanism. Soft comput 2022; 26:5389-5397. [PMID: 35465467 PMCID: PMC9012945 DOI: 10.1007/s00500-022-07122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2021] [Indexed: 11/17/2022]
Abstract
Electroencephalogram (EEG) is a common diagnostic tool for measuring the seizure activity of the brain. There are many deep learning techniques introduced to analyze EEG. These methods show phenomenal results, although they are limited to computational complexity. Our objective was to develop a novel algorithm that gives maximum classification accuracy with a minor computational complexity. In this view, we have introduced a novel convolutional architecture with an integration of a hierarchical attention mechanism. The model comprises three parts: Feature extraction layer, which uses to extract the convoluted feature map; hierarchical attention layer, which is used to obtain weighted hierarchical feature map; classification layer, which uses weighted features for classification of healthy and seizure subjects. The proposed model can extract significant information from the EEG signal to classify seizure subjects, and it is compared with a few existing deep convolutional algorithms through experimentation. The experimental outcomes show that the proposed model has higher accuracy with less computational time.
Collapse
Affiliation(s)
| | - Suchetha Manikandan
- Centre for Healthcare advancements, Innovation and Research, Vellore Institute of Technology, Chennai Campus, Chennai, India
| |
Collapse
|