1
|
Gao R, Gu L, Zuo W, Wang P. Comprehensive predictors of drug-resistant epilepsy in MELAS: clinical, EEG, imaging, and biochemical factors. BMC Neurol 2025; 25:64. [PMID: 39953503 PMCID: PMC11827305 DOI: 10.1186/s12883-025-04046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/17/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Seizures are a common but often overlooked manifestation of MELAS. This study aimed to describe the characteristics of seizures in MELAS and to analyze the clinical, electroencephalographic, imaging, and biochemical factors associated with drug-resistant epilepsy. METHODS A single-center retrospective study was conducted to investigate the clinical characteristics of seizures in MELAS patients. The study collected data on clinical features, muscle biopsy results, genetic testing, seizure symptoms, electroencephalography (EEG), neuroimaging findings, cerebrospinal fluid and blood biochemistry, and the modified Rankin Scale (mRS). We also investigated the correlation between seizure frequency and mRS scores. In addition, we analyzed the risk factors for drug-resistant epilepsy in MELAS. RESULTS A total of 37 patients with confirmed MELAS (24 males and 13 females) were included in the study. All patients experienced seizures, with an onset age ranging from 14 to 53 years and a mean of 32 years. These MELAS patients experienced a variety of seizure types, with generalized seizures being the most common. EEG findings revealed background rhythm abnormalities in all patients, and epileptiform discharges were observed in 37.8% of patients during the interictal phase. Status epilepticus (OR 16.499; 95% CI, 1.615-168.557; P = 0.018) and elevated resting serum lactate levels (OR 8.594; 95% CI, 1.342-59.733; P = 0.024) were identified as independent risk factors for drug-resistant epilepsy. In addition, changes in the seizure frequency at the last follow-up compared to baseline were positively correlated with the mRS score. (r = 0.533, p < 0.001). CONCLUSION Status epilepticus and elevated resting serum lactate levels were predictive of the development of drug-resistant epilepsy in MELAS. Poor seizure control was significantly associated with increased clinical disability. Early identification of high-risk patients for drug-resistant epilepsy could facilitate the development of more effective treatment plans.
Collapse
Affiliation(s)
- Rui Gao
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, China
| | - Lihua Gu
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, China
| | - Wenchao Zuo
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, China.
| |
Collapse
|
2
|
Ignacio-Mejía I, Contreras-García IJ, Pichardo-Macías LA, García-Cruz ME, Ramírez Mendiola BA, Bandala C, Medina-Campos ON, Pedraza-Chaverri J, Cárdenas-Rodríguez N, Mendoza-Torreblanca JG. Effect of Levetiracetam on Oxidant-Antioxidant Activity during Long-Term Temporal Lobe Epilepsy in Rats. Int J Mol Sci 2024; 25:9313. [PMID: 39273262 PMCID: PMC11395009 DOI: 10.3390/ijms25179313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Epilepsy is a disorder characterized by a predisposition to generate seizures. Levetiracetam (LEV) is an antiseizure drug that has demonstrated oxidant-antioxidant effects during the early stages of epilepsy in several animal models. However, the effect of LEV on oxidant-antioxidant activity during long-term epilepsy has not been studied. Therefore, the objective of the present study was to determine the effects of LEV on the concentrations of five antioxidant enzymes and on the levels of four oxidant stress markers in the hippocampus of rats with temporal lobe epilepsy at 5.7 months after status epilepticus (SE). The results revealed that superoxide dismutase (SOD) activity was significantly greater in the epileptic group (EPI) than in the control (CTRL), CTRL + LEV and EPI + LEV groups. No significant differences were found among the groups' oxidant markers. However, the ratios of SOD/hydrogen peroxide (H2O2), SOD/glutathione peroxidase (GPx) and SOD/GPx + catalase (CAT) were greater in the EPI group than in the CTRL and EPI + LEV groups. Additionally, there was a positive correlation between SOD activity and GPx activity in the EPI + LEV group. LEV-mediated modulation of the antioxidant system appears to be time dependent; at 5.7 months after SE, the role of LEV may be as a stabilizer of the redox state.
Collapse
Affiliation(s)
- Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City 11200, Mexico
| | - Itzel Jatziri Contreras-García
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City 11200, Mexico
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico
| | - Mercedes Edna García-Cruz
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | | | - Cindy Bandala
- Laboratorio de Neurociencia Traslacional Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11410, Mexico
| | - Omar Noel Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | | |
Collapse
|
3
|
Li C, Wang Z, Ren M, Ren S, Wu G, Wang L. Synaptic vesicle protein 2A mitigates parthanatos via apoptosis-inducing factor in a rat model of pharmacoresistant epilepsy. CNS Neurosci Ther 2024; 30:e14778. [PMID: 38801174 PMCID: PMC11129553 DOI: 10.1111/cns.14778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
AIMS Synaptic vesicle protein 2A (SV2A) is a unique therapeutic target for pharmacoresistant epilepsy (PRE). As seizure-induced neuronal programmed death, parthanatos was rarely reported in PRE. Apoptosis-inducing factor (AIF), which has been implicated in parthanatos, shares a common cytoprotective function with SV2A. We aimed to investigate whether parthanatos participates in PRE and is mitigated by SV2A via AIF. METHODS An intraperitoneal injection of lithium chloride-pilocarpine was used to establish an epileptic rat model, and phenytoin and phenobarbital sodium were utilized to select PRE and pharmacosensitive rats. The expression of SV2A was manipulated via lentivirus delivery into the hippocampus. Video surveillance was used to assess epileptic ethology. Biochemical tests were employed to test hippocampal tissues following a successful SV2A infection. Molecular dynamic calculations were used to simulate the interaction between SV2A and AIF. RESULTS Parthanatos core index, PARP1, PAR, nuclear AIF and MIF, γ-H2AX, and TUNEL staining were all increased in PRE. SV2A is bound to AIF to form a stable complex, successfully inhibiting AIF and MIF nuclear translocation and parthanatos and consequently mitigating spontaneous recurrent seizures in PRE. Moreover, parthanatos deteriorated after the SV2A reduction. SIGNIFICANCE SV2A protected hippocampal neurons and mitigated epileptic seizures by inhibiting parthanatos via binding to AIF in PRE.
Collapse
Affiliation(s)
- Chen Li
- School of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Ziqi Wang
- School of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Mianmian Ren
- School of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Siying Ren
- The Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Guofeng Wu
- The Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Likun Wang
- The Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
4
|
Lazar S, Neufeld-Cohen A, Egoz I, Baranes S, Gez R, Glick P, Cohen M, Gutman H, Chapman S, Gore A. Efficacy of a combined anti-seizure treatment against cholinergic established status epilepticus following a sarin nerve agent insult in rats. Toxicol Appl Pharmacol 2024; 484:116870. [PMID: 38395364 DOI: 10.1016/j.taap.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The development of refractory status epilepticus (SE) following sarin intoxication presents a therapeutic challenge. Here, we evaluated the efficacy of delayed combined double or triple treatment in reducing abnormal epileptiform seizure activity (ESA) and the ensuing long-term neuronal insult. SE was induced in rats by exposure to 1.2 LD50 sarin followed by treatment with atropine and TMB4 (TA) 1 min later. Double treatment with ketamine and midazolam or triple treatment with ketamine, midazolam and levetiracetam was administered 30 min post-exposure, and the results were compared to those of single treatment with midazolam alone or triple treatment with ketamine, midazolam, and valproate, which was previously shown to ameliorate this neurological insult. Toxicity and electrocorticogram activity were monitored during the first week, and behavioral evaluations were performed 2 weeks post-exposure, followed by biochemical and immunohistopathological analyses. Both double and triple treatment reduced mortality and enhanced weight recovery compared to TA-only treatment. Triple treatment and, to a lesser extent, double treatment significantly ameliorated the ESA duration. Compared to the TA-only or the TA+ midazolam treatment, both double and triple treatment reduced the sarin-induced increase in the neuroinflammatory marker PGE2 and the brain damage marker TSPO and decreased gliosis, astrocytosis and neuronal damage. Finally, both double and triple treatment prevented a change in behavior, as measured in the open field test. No significant difference was observed between the efficacies of the two triple treatments, and both triple combinations completely prevented brain injury (no differences from the naïve rats). Delayed double and, to a greater extent, triple treatment may serve as an efficacious delayed therapy, preventing brain insult propagation following sarin-induced refractory SE.
Collapse
Affiliation(s)
- Shlomi Lazar
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel.
| | - Adi Neufeld-Cohen
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Inbal Egoz
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Shlomi Baranes
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Rellie Gez
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Pnina Glick
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Maayan Cohen
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Hila Gutman
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Shira Chapman
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Ariel Gore
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel.
| |
Collapse
|
5
|
Mastrocco A, Prittie J, West C, Clark M. A review of the pharmacology and clinical applications of levetiracetam in dogs and cats. J Vet Emerg Crit Care (San Antonio) 2024; 34:9-22. [PMID: 37987141 DOI: 10.1111/vec.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/15/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2023]
Abstract
OBJECTIVE To review and summarize the pharmacology of the antiepileptic drug (AED), levetiracetam (LEV), and to discuss its clinical utility in dogs and cats. DATA SOURCES Veterinary and human peer-reviewed medical literature and the authors' clinical experience. SUMMARY LEV is an AED with mechanisms of action distinct from those of other AEDs. In people and small animals, LEV exhibits linear kinetics, excellent oral bioavailability, and minimal drug-drug interactions. Serious side effects are rarely reported in any species. LEV use is gaining favor for treating epilepsy in small animals and may have wider clinical applications in patients with portosystemic shunts, neuroglycopenia, and traumatic brain injury. In people, LEV may improve cognitive function in patients with dementia. CONCLUSION LEV is a well-tolerated AED with well-documented efficacy in human patients. Although its use is becoming more common in veterinary medicine, its role as a first-line monotherapy in small animal epileptics remains to be determined. This review of the human and animal literature regarding LEV describes its role in epileptic people and animals as well as in other disease states and provides recommendations for clinical usage.
Collapse
Affiliation(s)
- Alicia Mastrocco
- Department of Emergency and Critical Care, The Animal Medical Center, New York, New York, USA
| | - Jennifer Prittie
- Department of Emergency and Critical Care, The Animal Medical Center, New York, New York, USA
| | - Chad West
- Department of Neurology, The Animal Medical Center, New York, New York, USA
| | - Melissa Clark
- Department of Internal Medicine, Gulf Coast Veterinary Specialists, Houston, Texas, USA
| |
Collapse
|
6
|
Kumar H, Katyal J, Kumar Gupta Y. Effect of U50488, a selective kappa opioid receptor agonist and levetiracetam against lithium-pilocarpine-induced status epilepticus, spontaneous convulsive seizures and related cognitive impairment. Neurosci Lett 2023; 815:137477. [PMID: 37714287 DOI: 10.1016/j.neulet.2023.137477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023]
Abstract
PURPOSE Kappa opioid receptor (KOR) agonists have anticonvulsant effect but their antiepileptogenic effect is unknown. U50488, a selective KOR agonist is used to determine its effect on status epilepticus (SE), spontaneous convulsive seizures (SS) and cognitive impairment in rat lithium-pilocarpine SE model. Effect of an antiepileptic drug levetiracetam is also studied. METHOD Male Wistar rats with SE were divided into three groups namely, LiP, LiP + U50488 (10 mg/kg, i.p.) and LiP + levetiracetam (400 mg/kg, i.p.) group. SE was terminated after 90 min of its onset with diazepam (15 mg/kg, i.p.) and phenobarbitone (25 mg/kg, i.p.). Drug treatment was started after 15 min of onset of SE and repeated once after 4 h. Rats were video monitored 12 h daily (9 AM to 9 PM) to determine severity of SE using modified Racine scale and onset and frequency of SS from day 0 to day 21. Morris water maze (MWM) test was done at baseline i.e. day -1 (before lithium administration) and day 22, to assess cognitive impairment. RESULTS As compared to LiP, U50488 decreased the severity of SE (1.98 ± 0.13 vs 2.95 ± 0.12; p-value < 0.0001) but not levetiracetam (2.62 ± 0.09; p-value = 0.3112). Survival increased with both U50488 (90%, n = 10) and levetiracetam (81.8%, n = 11) as compared to NS (56.2%, n = 16). No effect on onset and frequency of SS was found in U50488/levetiracetam group. U50488 improved seizures-induced cognitive impairment. Levetiracetam group showed thigmotactic (wall hugging) behaviour in MWM in 8 out of 9 rats. CONCLUSION Acute treatment with U50488, a kappa opioid receptor agonist has a beneficial effect on SE, SE-related mortality and memory impairment. The dual protective effect of U50488 on seizures and related cognitive impairment is advantageous over currently used antiseizure drugs which are known to cause cognitive impairment.
Collapse
Affiliation(s)
- Hemant Kumar
- Department of Pharmacology, Faculty of Medicine and Health Sciences, SGT University, Gurgaon, Haryana, India.
| | - Jatinder Katyal
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | | |
Collapse
|
7
|
Zhang YY, Wang L, Guo H, Han TT, Chang YH, Cui XC. Levetiracetam attenuates diabetes-associated cognitive impairment and microglia polarization by suppressing neuroinflammation. Front Pharmacol 2023; 14:1145819. [PMID: 37214458 PMCID: PMC10192710 DOI: 10.3389/fphar.2023.1145819] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Cognitive impairment is a common complication and comorbidity of diabetes. However, the underlying mechanisms of diabetes-associated cognitive dysfunction are currently unclear. M1 microglia secretes pro-inflammatory factors and can be marked by CD16, iNOS, Iba1 and TNF-ɑ. The decline of M2 microglia in the diabetic rats indicates that high glucose promotes the differentiation of microglia into the M1 type to trigger neuroinflammatory responses. Moreover, there is a lack of strong evidence for treatments of diabetes-associated cognitive impairment in addition to controlling blood glucose. Methods: Diabetic rats were established by intraperitoneal injection of one dose of streptozotocin (60 mg/kg). Polarization transitions of microglia were induced by high glucose treatment in BV2 cells. Levetiracetam was orally administered to rats 72 h after streptozotocin injection for 12 weeks. Results: In STZ-induced diabetic rats, the results demonstrated that levetiracetam improved rat cognitive function (Morris water maze test) and hippocampus morphology (Hematoxylin-eosin staining), and the effect was more evident in the high-dose levetiracetam group. Microglia activation in the hippocampus was inhibited by levetiracetam treatment for 12 weeks. Serum levels of TNF-α, IL-1β, and IL-6 were reduced in the LEV-L and LEV-H groups, and IL-1β level was obviously reduced in the LEV-H group. In vitro, we found that levetiracetam 50 µM attenuated high-glucose induced microglial polarization by increasing IL-10 level and decreasing IL-1β and TNF-α levels. Moreover, levetiracetam 50 µM increased and decreased the proportion of CD206+/Iba1+ and iNOS+/Iba1+cells, respectively. Western blot analysis illustrated that LEV 50 µM downregulated the expression of MyD88 and TRAF6, and phosphorylation of TAK1, JNK, p38, and NF-κB p65. The effect of levetiracetam on the anti-polarization and expression of p-JNK and p-NF-κB p65 were partly reversed by anisomycin (p38 and JNK activators). Discussion: Together, our data suggest that levetiracetam attenuates streptozotocin-induced cognitive impairment by suppressing microglia activation. The in vitro findings also indicate that the levetiracetam inhibited the polarization of microglia via the JNK/MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yun-yun Zhang
- Department of General Practice, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Lu Wang
- Department of General Practice, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Hua Guo
- Department of General Practice, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ting-ting Han
- Department of General Practice, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yan-hua Chang
- Department of General Practice, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xiao-chuan Cui
- Department of General Practice, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
McNulty MT, Fermin D, Eichinger F, Jang D, Kretzler M, Burtt NP, Pollak MR, Flannick J, Weins A, Friedman DJ, Sampson MG. A glomerular transcriptomic landscape of apolipoprotein L1 in Black patients with focal segmental glomerulosclerosis. Kidney Int 2022; 102:136-148. [PMID: 34929253 PMCID: PMC9206042 DOI: 10.1016/j.kint.2021.10.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
Apolipoprotein L1 (APOL1)-associated focal segmental glomerulosclerosis (FSGS) is the dominant form of FSGS in Black individuals. There are no targeted therapies for this condition, in part because the molecular mechanisms underlying APOL1's pathogenic contribution to FSGS are incompletely understood. Studying the transcriptomic landscape of APOL1 FSGS in patient kidneys is an important way to discover genes and molecular behaviors that are unique or most relevant to the human disease. With the hypothesis that the pathology driven by the high-risk APOL1 genotype is reflected in alteration of gene expression across the glomerular transcriptome, we compared expression and co-expression profiles of 15,703 genes in 16 Black patients with FSGS at high-risk vs 14 Black patients with a low-risk APOL1 genotype. Expression data from APOL1-inducible HEK293 cells and normal human glomeruli were used to pursue genes and molecular pathways uncovered in these studies. We discovered increased expression of APOL1 and nine other significant differentially expressed genes in high-risk patients. This included stanniocalcin, which has a role in mitochondrial and calcium-related processes along with differential correlations between high- and low-risk APOL1 and metabolism pathway genes. There were similar correlations with extracellular matrix- and immune-related genes, but significant loss of co-expression of mitochondrial genes in high-risk FSGS, and an NF-κB-down regulating gene, NKIRAS1, as the most significant hub gene with strong differential correlations with NDUF family (mitochondrial respiratory genes) and immune-related (JAK-STAT) genes. Thus, differences in mitochondrial gene regulation appear to underlie many differences observed between high- and low-risk Black patients with FSGS.
Collapse
Affiliation(s)
- Michelle T McNulty
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts, USA; Kidney Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA
| | - Damian Fermin
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Felix Eichinger
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Dongkeun Jang
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Noël P Burtt
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA; Metabolism Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Martin R Pollak
- Harvard Medical School, Boston, Massachusetts, USA; Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason Flannick
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA; Metabolism Program, Broad Institute, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Division of Genetics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Astrid Weins
- Harvard Medical School, Boston, Massachusetts, USA
| | - David J Friedman
- Harvard Medical School, Boston, Massachusetts, USA; Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew G Sampson
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts, USA; Kidney Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
9
|
Contreras-García IJ, Cárdenas-Rodríguez N, Romo-Mancillas A, Bandala C, Zamudio SR, Gómez-Manzo S, Hernández-Ochoa B, Mendoza-Torreblanca JG, Pichardo-Macías LA. Levetiracetam Mechanisms of Action: From Molecules to Systems. Pharmaceuticals (Basel) 2022; 15:475. [PMID: 35455472 PMCID: PMC9030752 DOI: 10.3390/ph15040475] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a chronic disease that affects millions of people worldwide. Antiepileptic drugs (AEDs) are used to control seizures. Even though parts of their mechanisms of action are known, there are still components that need to be studied. Therefore, the search for novel drugs, new molecular targets, and a better understanding of the mechanisms of action of existing drugs is still crucial. Levetiracetam (LEV) is an AED that has been shown to be effective in seizure control and is well-tolerable, with a novel mechanism of action through an interaction with the synaptic vesicle protein 2A (SV2A). Moreover, LEV has other molecular targets that involve calcium homeostasis, the GABAergic system, and AMPA receptors among others, that might be integrated into a single mechanism of action that could explain the antiepileptogenic, anti-inflammatory, neuroprotective, and antioxidant properties of LEV. This puts it as a possible multitarget drug with clinical applications other than for epilepsy. According to the above, the objective of this work was to carry out a comprehensive and integrative review of LEV in relation to its clinical uses, structural properties, therapeutical targets, and different molecular, genetic, and systemic action mechanisms in order to consider LEV as a candidate for drug repurposing.
Collapse
Affiliation(s)
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico;
| | - Cindy Bandala
- Neurociencia Básica, Instituto Nacional de Rehabilitación LGII, Secretaría de Salud, Ciudad de México 14389, Mexico;
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Sergio R. Zamudio
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| | | | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
| |
Collapse
|
10
|
Shakkour Z, Habashy KJ, Berro M, Takkoush S, Abdelhady S, Koleilat N, Eid AH, Zibara K, Obeid M, Shear D, Mondello S, Wang KK, Kobeissy F. Drug Repurposing in Neurological Disorders: Implications for Neurotherapy in Traumatic Brain Injury. Neuroscientist 2020; 27:620-649. [PMID: 33089741 DOI: 10.1177/1073858420961078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) remains a significant leading cause of death and disability among adults and children globally. To date, there are no Food and Drug Administration-approved drugs that can substantially attenuate the sequelae of TBI. The innumerable challenges faced by the conventional de novo discovery of new pharmacological agents led to the emergence of alternative paradigm, which is drug repurposing. Repurposing of existing drugs with well-characterized mechanisms of action and human safety profiles is believed to be a promising strategy for novel drug use. Compared to the conventional discovery pathways, drug repurposing is less costly, relatively rapid, and poses minimal risk of the adverse outcomes to study on participants. In recent years, drug repurposing has covered a wide range of neurodegenerative diseases and neurological disorders including brain injury. This review highlights the advances in drug repurposing and presents some of the promising candidate drugs for potential TBI treatment along with their possible mechanisms of neuroprotection. Edaravone, glyburide, ceftriaxone, levetiracetam, and progesterone have been selected due to their potential role as putative TBI neurotherapeutic agents. These drugs are Food and Drug Administration-approved for purposes other than brain injuries; however, preclinical and clinical studies have shown their efficacy in ameliorating the various detrimental outcomes of TBI.
Collapse
Affiliation(s)
- Zaynab Shakkour
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Moussa Berro
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samira Takkoush
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nadia Koleilat
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Makram Obeid
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Deborah Shear
- Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Sicilia, Italy
| | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Seizure-Induced Oxidative Stress in Status Epilepticus: Is Antioxidant Beneficial? Antioxidants (Basel) 2020; 9:antiox9111029. [PMID: 33105652 PMCID: PMC7690410 DOI: 10.3390/antiox9111029] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a common neurological disorder which affects patients physically and mentally and causes a real burden for the patient, family and society both medically and economically. Currently, more than one-third of epilepsy patients are still under unsatisfied control, even with new anticonvulsants. Other measures may be added to those with drug-resistant epilepsy. Excessive neuronal synchronization is the hallmark of epileptic activity and prolonged epileptic discharges such as in status epilepticus can lead to various cellular events and result in neuronal damage or death. Unbalanced oxidative status is one of the early cellular events and a critical factor to determine the fate of neurons in epilepsy. To counteract excessive oxidative damage through exogenous antioxidant supplements or induction of endogenous antioxidative capability may be a reasonable approach for current anticonvulsant therapy. In this article, we will introduce the critical roles of oxidative stress and further discuss the potential use of antioxidants in this devastating disease.
Collapse
|
12
|
Mbizvo GK, Chandrasekar B, Nevitt SJ, Dixon P, Hutton JL, Marson AG. Levetiracetam add-on for drug-resistant focal epilepsy. Cochrane Database Syst Rev 2020; 6:CD001901. [PMID: 35658745 PMCID: PMC7387854 DOI: 10.1002/14651858.cd001901.pub3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Drug resistance is common in focal epilepsy. In this update, we summarised the current evidence regarding add-on levetiracetam in treating drug-resistant focal epilepsy. The original review was published in 2001 and last updated in 2012. OBJECTIVES To evaluate the effectiveness of levetiracetam when used as an add-on treatment for people with drug-resistant focal epilepsy. SEARCH METHODS We searched the Cochrane Register of Studies (CRS Web, which includes the Cochrane Epilepsy Group Specialized Register and CENTRAL), MEDLINE Ovid, ClinicalTrials.gov, and the WHO International Clinical Trials Registry Platform (ICTRP) to November 2018. We contacted the manufacturers of levetiracetam and researchers in the field to seek any ongoing or unpublished trials. SELECTION CRITERIA Randomised, placebo-controlled trials of add-on levetiracetam treatment in people with drug-resistant focal epilepsy. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials for inclusion, assessed trials for bias, extracted data, and evaluated the overall certainty of the evidence. Outcomes investigated included 50% or greater reduction in focal seizure frequency (response), treatment withdrawal, adverse effects (including a specific analysis of changes in behaviour), cognitive effects, and quality of life (QoL). Primary analysis was intention-to-treat. We performed meta-analysis for all outcomes using a Mantel-Haenszel approach and calculated risk ratios (RR), with 95% confidence intervals (CI) for all estimates apart from adverse effects (99% CIs). We assessed heterogeneity using a Chi² test and the I² statistic. MAIN RESULTS This update included 14 trials (2455 participants), predominantly possessing low risks of bias. Participants were adults in 12 trials (2159 participants) and children in the remaining two (296 participants). The doses of levetiracetam tested were 500 mg/day to 4000 mg/day in adults, and 60 mg/kg/day in children. Treatment ranged from 12 to 24 weeks. When individual doses were examined, levetiracetam at either 500 mg/day or 4000 mg/day did not perform better than placebo for the 50% or greater reduction in seizure frequency outcome (500 mg: RR 1.60, 95% CI 0.71 to 3.62; P = 0.26; 4000 mg: RR 1.64, 95% CI 0.59 to 4.57; P = 0.34). Levetiracetam was significantly better than placebo at all other individual doses (1000 mg to 3000 mg). RR was significantly in favour of levetiracetam compared to placebo when results were pooled across all doses (RR 2.37, 95% CI 2.02 to 2.78; 14 studies, 2455 participants; moderate-certainty evidence). Dose-response analysis demonstrated that the odds of achieving response (50% or greater reduction in seizure frequency) were increased by nearly 40% (odds ratio (OR) 1.39, 95% CI 1.23 to 1.58) for each 1000 mg increase in dose of levetiracetam. There were important levels of heterogeneity across multiple comparisons. Participants were not significantly more likely to experience treatment withdrawal with levetiracetam than with placebo (pooled RR 1.11, 95% CI 0.89 to 1.40; 13 studies, 2428 participants; high-certainty evidence). Somnolence was the most common adverse effect, affecting 13% of participants, and it was significantly associated with levetiracetam compared to placebo (pooled RR 1.62, 99% CI 1.19 to 2.20; 13 studies, 2423 participants; moderate-certainty evidence). Changes in behaviour were negligible in adults (1% affected; RR 1.79, 99% CI 0.59 to 5.41), but significant in children (23% affected; RR 1.90, 99% CI 1.16 to 3.11). Levetiracetam had a positive effect on some aspects of cognition and QoL in adults and worsened certain aspects of child behaviour. AUTHORS' CONCLUSIONS Overall, this review update finds that in both adults and children with drug-resistant focal epilepsy, levetiracetam added on to usual care is more effective than placebo at reducing seizure frequency, it is unlikely to be stopped by patients, and it has minimal adverse effects outside of potential worsening behaviour in children. These findings are unchanged from the previous review update in 2012. This review update contributes two key additional findings: 1. a 500 mg daily dose of levetiracetam is no more effective than placebo at reducing seizures; and 2. the odds of response (50% reduction in seizure frequency) are increased by nearly 40% for each 1000 mg increase in dose of levetiracetam. It seems reasonable to continue the use of levetiracetam in both adults and children with drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Gashirai K Mbizvo
- The Walton Centre NHS Foundation Trust, Liverpool, UK
- Muir Maxwell Epilepsy Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Sarah J Nevitt
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Pete Dixon
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Jane L Hutton
- Department of Statistics, University of Warwick, Coventry, UK
| | - Anthony G Marson
- The Walton Centre NHS Foundation Trust, Liverpool, UK
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
13
|
Li X, Himes RA, Prosser LC, Christie CF, Watt E, Edwards SF, Metcalf CS, West PJ, Wilcox KS, Chan SS, Chou CJ. Discovery of the First Vitamin K Analogue as a Potential Treatment of Pharmacoresistant Seizures. J Med Chem 2020; 63:5865-5878. [PMID: 32390424 PMCID: PMC7684765 DOI: 10.1021/acs.jmedchem.0c00168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite the availability of more than 25 antiseizure drugs on the market, approximately 30% of patients with epilepsy still suffer from seizures. Thus, the epilepsy therapy market has a great need for a breakthrough drug that will aid pharmacoresistant patients. In our previous study, we discovered a vitamin K analogue, 2h, which displayed modest antiseizure activity in zebrafish and mouse seizure models. However, there are limitations to this compound due to its pharmacokinetic profile. In this study, we develop a new series of vitamin K analogues by modifying the structure of 2h. Among these, compound 3d shows full protection in a rodent pharmacoresistant seizure model with limited rotarod motor toxicity and favorable pharmacokinetic properties. Furthermore, the brain/plasma concentration ratio of 3d indicates its excellent permeability into the brain. The resulting data shows that 3d can be further developed as a potential antiseizure drug in the clinic.
Collapse
Affiliation(s)
- Xiaoyang Li
- Ocean University of China, School of Medicine and Pharmacy, Qingdao, Shandong, 266071, China
| | - Richard A. Himes
- Department of Chemistry and Biochemistry, College of Charleston, 66 George Street,Charleston, South Carolina29424, USA
| | - Lyndsey C. Prosser
- Department of Chemistry and Biochemistry, College of Charleston, 66 George Street,Charleston, South Carolina29424, USA
| | | | - Emma Watt
- Department of Chemistry and Biochemistry, College of Charleston, 66 George Street,Charleston, South Carolina29424, USA
| | - Sharon F. Edwards
- Anticonvulsant Drug Development (ADD) Program, Department of Pharmacology & Toxicology, University of Utah, 84112, USA
| | - Cameron S. Metcalf
- Anticonvulsant Drug Development (ADD) Program, Department of Pharmacology & Toxicology, University of Utah, 84112, USA
| | - Peter J. West
- Anticonvulsant Drug Development (ADD) Program, Department of Pharmacology & Toxicology, University of Utah, 84112, USA
| | - Karen S. Wilcox
- Anticonvulsant Drug Development (ADD) Program, Department of Pharmacology & Toxicology, University of Utah, 84112, USA
| | - Sherine S.L. Chan
- Neuroene Therapeutics, Mount Pleasant, South Carolina 29464, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - C. James Chou
- Neuroene Therapeutics, Mount Pleasant, South Carolina 29464, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| |
Collapse
|
14
|
The effects of acupuncture on occipital neuralgia: a systematic review and meta-analysis. BMC Complement Med Ther 2020; 20:171. [PMID: 32493452 PMCID: PMC7268636 DOI: 10.1186/s12906-020-02955-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 05/19/2020] [Indexed: 12/26/2022] Open
Abstract
Background Occipital neuralgia is one of the main causes of occipital pain. This systematic review aims to assess the level of evidence in randomized controlled trials (RCTs) on the effects of acupuncture on occipital neuralgia. Methods We searched 11 databases and a journal archive from their inception up to December 2019 for relevant RCTs. We did not place any specific restrictions on patients diagnosed with occipital neuralgia, such as age or gender. We included studies that used an acupuncture intervention group, with or without the control group treatment, and that set a control group receiving active, interventional treatment such as medication. For outcomes, we used visual analogue scale (VAS) and effective rate. Results We included a total of 11 RCTs. All VAS scores (mean difference [MD] –2.35, 95% confidence interval [CI] –2.84, − 1.86) and effective rate values (odds ratio [OR] 4.96, 95% CI 2.24, 10.96) showed significant differences in effect between acupuncture treatment alone and the control group treatment. Similarly, combined acupuncture treatment with control group treatment also showed significant effects in effective rate (OR 6.68, 95% CI 1.11, 40.37). We performed a subgroup analysis on studies that used acupuncture only as the intervention and reported the effective rate, and found that all acupuncture subgroups showed significant effects compared to the control group treatments. None of the studies reported severe adverse effects. Conclusions Although acupuncture only and combined acupuncture treatments showed significant effects compared to medication, the results of this study are inconclusive. Studies with rigorous study design and larger sample sizes are needed to confirm the role of acupuncture in this field. Trial registration International prospective register for systematic review (PROSPERO) number CRD42019128050.
Collapse
|
15
|
Mahdavi A, Naeini AA, Najafi M, Maracy M, Ghazvini MA. Effect of levetiracetam drug on antioxidant and liver enzymes in epileptic patients: case-control study. Afr Health Sci 2020; 20:984-990. [PMID: 33163067 PMCID: PMC7609075 DOI: 10.4314/ahs.v20i2.55] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND There is a limited amount of data regarding levetiracetam (LEV), an antiepileptic drug. OBJECTIVE This study was conducted to assess the effect of LEV on antioxidant status and liver enzymes. METHODS In this case-control study, 33 epileptic patients under treatment with LEV for at least 6 months were compared with 35 healthy subjects. We measured serum total antioxidant capacity (TAC), salivary superoxide dismutase (SOD), alanine aminoteransferase (ALT), and aspartate aminoteransferase (AST) levels in both groups. Dietary intakes were collected using a Food Frequency Questionnaire (FFQ). RESULT The level of TAC in the healthy subjects was significantly higher than it was in the patients (P=0.02), but the mean of ALT (P=0.02) and AST (P=0.03) was significantly higher in the patients in comparison with the controls. Mean salivary SOD showed no difference between the two groups. In the patients, the duration of drug use was inversely correlated with serum TAC (p=0.04) and had a direct correlation with ALT (p=0.01) and AST (p=0.03.). CONCLUSION The results of our study indicated that LEV increased liver enzymes Also, treatment with this drug did not improve oxidative stress, but this could be due to the different in the dietary antioxidant intake. Routine screening of the liver and antioxidant enzymes in patients with chronic use of LEV is recommended.
Collapse
Affiliation(s)
- Atena Mahdavi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirmansour Alavi Naeini
- Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Najafi
- Department of Neurology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Mohammadreza Maracy
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
16
|
Levetiracetam administration is correlated with lower mortality in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes: a retrospective study. Chin Med J (Engl) 2019; 132:269-274. [PMID: 30681492 PMCID: PMC6595817 DOI: 10.1097/cm9.0000000000000061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Studies on the relationship between antiepileptic drug (AED) administration and clinical outcomes in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) remain scarce. Levetiracetam (LEV) is an AED that is neuroprotective in various neurologic disorders. This study aimed to determine the impact of LEV on the outcome of MELAS. Methods: A retrospective, single-center study was performed based on a large cohort of patients with MELAS with a history of seizures (n = 102). Decisions on antiepileptic therapies were made empirically. Patients were followed up for 1 to 8 years (median, 4 years) and divided into 2 groups based on whether LEV was administered (LEV or non-LEV). The modified Rankin scale (mRS) scores and mortality risks were analyzed in all patients. Results: LEV, carbamazepine, benzodiazepines, topiramate, oxcarbazepine, valproate, and lamotrigine were administered in 48, 37, 18, 13, 11, 9, and 9 patients, singly or in combination, respectively. The mean mRS score of the LEV group (n = 48) was lower than that of the non-LEV group (n = 54; mean ± standard deviation, 2.79 ± 1.47 vs. 3.83 ± 1.93, P = 0.006) up to the end of the study. Nevertheless, there was no difference in the proportion of subjects without disability (mRS ranging 0–1) between the groups (P = 0.37). The multivariate regressions revealed that LEV treatment was associated with lower mRS scores (odds ratio 0.32, 95% confidence interval [CI] 0.15–0.68, P = 0.003) and mortality rates (hazard ratio 0.24, 95% CI 0.08–0.74, P = 0.013). There was a significant difference in the Kaplan-Meier survival curves between the groups (χ2 = 4.29, P = 0.04). Conclusions: The LEV administration is associated with lower mortality in patients with MELAS in this retrospective study. Further laboratory research and prospective cohort studies are needed to confirm whether LEV has neuroprotective effects on patients with mitochondrial diseases.
Collapse
|
17
|
Orsucci D, Ienco EC, Siciliano G, Mancuso M. Mitochondrial disorders and drugs: what every physician should know. Drugs Context 2019; 8:212588. [PMID: 31391854 PMCID: PMC6668504 DOI: 10.7573/dic.212588] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial disorders are a group of metabolic conditions caused by impairment of the oxidative phosphorylation system. There is currently no clear evidence supporting any pharmacological interventions for most mitochondrial disorders, except for coenzyme Q10 deficiencies, Leber hereditary optic neuropathy, and mitochondrial neurogastrointestinal encephalomyopathy. Furthermore, some drugs may potentially have detrimental effects on mitochondrial dysfunction. Drugs known to be toxic for mitochondrial functions should be avoided whenever possible. Mitochondrial patients needing one of these treatments should be carefully monitored, clinically and by laboratory exams, including creatine kinase and lactate. In the era of molecular and ‘personalized’ medicine, many different physicians (not only neurologists) should be aware of the basic principles of mitochondrial medicine and its therapeutic implications. Multicenter collaboration is essential for the advancement of therapy for mitochondrial disorders. Whenever possible, randomized clinical trials are necessary to establish efficacy and safety of drugs. In this review we discuss in an accessible way the therapeutic approaches and perspectives in mitochondrial disorders. We will also provide an overview of the drugs that should be used with caution in these patients.
Collapse
|
18
|
Mohammad HMF, Sami MM, Makary S, Toraih EA, Mohamed AO, El-Ghaiesh SH. Neuroprotective effect of levetiracetam in mouse diabetic retinopathy: Effect on glucose transporter-1 and GAP43 expression. Life Sci 2019; 232:116588. [PMID: 31226418 DOI: 10.1016/j.lfs.2019.116588] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 01/12/2023]
Abstract
AIMS Retinopathy is a neurodegenerative complication associating diabetes mellitus. Diabetic retinopathy (DR) is the primary reason of visual loss during early adulthood. DR has a complicated multifactorial pathophysiology initiated by hyperglycaemia-induced ischaemic neurodegenerative retinal changes, followed by vision-threatening consequences. The main therapeutic modalities for DR involve invasive delivery of intravitreal antiangiogenic agents as well as surgical interventions. The current work aimed to explore the potential anti-inflammatory and retinal neuroprotective effects of levetiracetam. MAIN METHODS This study was performed on alloxan-induced diabetes in mice (n: 21). After 10 weeks, a group of diabetic animals (n: 7) was treated with levetiracetam (25 mg/kg) for six weeks. Retinal tissues were dissected and paraffin-fixed for examination using (1) morphometric analysis with haematoxylin and eosin (HE), (2) immunohistochemistry (GLUT1, GFAP and GAP43), and (3) RT-PCR-detected expression of retinal inflammatory and apoptotic mediators (TNF-α, IL6, iNOS, NF-κB and Tp53). KEY FINDINGS Diabetic mice developed disorganized and debilitated retinal layers with upregulation of the gliosis marker GFAP and downregulation of the neuronal plasticity marker GAP43. Additionally, diabetic retinae showed increased transcription of NF-κB, TNF-α, IL6, iNOS and Tp53. Levetiracetam-treated mice showed downregulation of retinal GLUT1 with relief and regression of retinal inflammation and improved retinal structural organization. SIGNIFICANCE Levetiracetam may represent a potential neuroprotective agent in DR. The data presented herein supported an anti-inflammatory role of levetiracetam. However, further clinical studies may be warranted to confirm the effectiveness and safety of levetiracetam in DR patients.
Collapse
Affiliation(s)
- Hala M F Mohammad
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Central Lab., Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manal M Sami
- Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Samy Makary
- Department of Medical Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman A Toraih
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Molecular Lab, Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Amany O Mohamed
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Sabah H El-Ghaiesh
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt; Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia.
| |
Collapse
|
19
|
Affiliation(s)
- Ursula Geronzi
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Federica Lotti
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Salvatore Grosso
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| |
Collapse
|
20
|
Morimoto M, Hashimoto T, Kitaoka T, Kyotani S. Impact of Oxidative Stress and Newer Antiepileptic Drugs on the Albumin and Cortisol Value in Severe Motor and Intellectual Disabilities With Epilepsy. J Clin Med Res 2017; 10:137-145. [PMID: 29317959 PMCID: PMC5755653 DOI: 10.14740/jocmr3289w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/20/2017] [Indexed: 11/11/2022] Open
Abstract
Background Epilepsy is a common complication in patients with severe motor and intellectual disabilities (SMID). There are no reports as yet of the effects of these medications in vivo other than their epileptic efficacy. The purpose of this study was to clarify the effects of the newer antiepileptic drugs (AEDs) on the blood biochemical parameters and oxidative stress in SMID with epilepsy by comparing the therapeutic effects between a group of patients receiving lamotrigine (LTG) and levetiracetam (LEV) in addition to the conventional AEDs (newer AED group) and a group receiving conventional AEDs alone (old AED group). Methods The study population consisted of 44 SMID patients with epilepsy, of which 23 were allocated to the newer AED group and 21 were allocated to the old AED group. In the newer AED group, measurements of the reactive oxygen metabolites (d-ROMs), biological antioxidant potential (BAP) and serum albumin were carried out at the following two time points: 1 week before and 1 year after the start of administration of the newer AEDs. In the old AED group, measurements of the same variables were performed at two time points 1 year apart. Results A significant decrease of the d-ROM levels and a significant increase of the BAP were noted in the newer AED group. A significant elevation of the serum albumin was also evident. In the old AED group, a significant increase of the d-ROMs levels was noted at the second measurement. Cortisol levels which have been described to be related to the albumin, revealed a significant decrease of the serum cortisol in relation to elevation of serum albumin in the newer AED group. Conclusions The present study results suggest that the addition of newer AEDs reduces the oxidative stress load and improves the antioxidant potential of the body. Furthermore, the present data also demonstrate that the newer AEDs have indirect impact on biological parameters.
Collapse
Affiliation(s)
- Masahito Morimoto
- Japanese Red Cross Tokushima Hinomine Rehabilitation Center for People with Disabilities, Tokushima, Japan
| | - Toshiaki Hashimoto
- Japanese Red Cross Tokushima Hinomine Rehabilitation Center for People with Disabilities, Tokushima, Japan
| | - Taisuke Kitaoka
- Tokushima Bunri University, Graduate School of Pharmaceutical Sciences, Tokushima, Japan
| | - Shojiro Kyotani
- Tokushima Bunri University, Graduate School of Pharmaceutical Sciences, Tokushima, Japan
| |
Collapse
|
21
|
Bindu PS, Sonam K, Govindaraj P, Govindaraju C, Chiplunkar S, Nagappa M, Kumar R, Vekhande CC, Arvinda HR, Gayathri N, Srinivas Bharath MM, Ponmalar JNJ, Philip M, Vandana VP, Khan NA, Nunia V, Paramasivam A, Sinha S, Thangaraj K, Taly AB. Outcome of epilepsy in patients with mitochondrial disorders: Phenotype genotype and magnetic resonance imaging correlations. Clin Neurol Neurosurg 2017; 164:182-189. [PMID: 29272804 DOI: 10.1016/j.clineuro.2017.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Studies exploring the outcome of epilepsy in patients with mitochondrial disorders are limited. This study examined the outcome of epilepsy in patients with mitochondrial disorders and its relation with the clinical phenotype, genotype and magnetic resonance imaging findings. PATIENTS AND METHODS The cohort was derived from the database of 67 patients with definite genetic diagnosis of mitochondrial disorders evaluated over a period of 11years (2006-2016). Among this, 27 had epilepsy and were included in final analysis. Data were analyzed with special reference to clinical phenotypes, genotypes, epilepsy characteristics, EEG findings, anti epileptic drugs used, therapeutic response, and magnetic resonance imaging findings. Patients were divided into three groups according to the seizure frequency at the time of last follow up: Group I- Seizure free; Group II- Infrequent seizures; Group III- uncontrolled seizures. For each group the clinical phenotype, genotype, magnetic resonance imaging and duration of epilepsy were compared. RESULTS The phenotypes & genotypes included Mitochondrial Encephalopathy Lactic Acidosis and Stroke like episodes (MELAS) & m.3243A>G mutation (n = 10), Myoclonic Epilepsy Ragged Red Fiber syndrome (MERRF) & m.8344A>G mutation (n = 4), Chronic Progressive External Ophthalmoplegia plus &POLG1 mutation (CPEO, n = 6), episodic neuroregression due to nuclear mutations (n = 6; NDUFV1 (n = 3), NDUFA1, NDUFS2, MPV17-1 one each), and one patient with infantile basal ganglia stroke syndrome, mineralizing angiopathy &MT-ND5 mutations. Seven patients (25.9%) were seizure free; seven had infrequent seizures (25.9%), while thirteen (48.1%) had frequent uncontrolled seizures. Majority of the subjects in seizure free group had episodic neuroregression & leukoencephalopathy due to nuclear mutations (85.7%). Patients in group II with infrequent seizures had CPEO, POLG1 mutation and a normal MRI (71%) while 62% of the subjects in group III had MELAS, m.3243A>G mutation and stroke like lesions on MRI. CONCLUSIONS A fair correlation exists between the outcome of epilepsy, clinical phenotypes, genotypes and magnetic resonance imaging findings in patients with mitochondrial disorders. The recognition of these patterns is important clinically because of the therapeutic and prognostic implications.
Collapse
Affiliation(s)
- Parayil Sankaran Bindu
- Dept. of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular lab-Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Kothari Sonam
- Dept. of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular lab-Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Periyasamy Govindaraj
- Dept. of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular lab-Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Chikkanna Govindaraju
- Dept. of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shwetha Chiplunkar
- Dept. of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular lab-Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Dept. of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular lab-Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rakesh Kumar
- Dept. of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Hanumanthapura R Arvinda
- Dept. of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Narayanappa Gayathri
- Dept. of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular lab-Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - M M Srinivas Bharath
- Dept. of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - J N Jessiena Ponmalar
- Neuromuscular lab-Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Mariyamma Philip
- Dept. of Biostatistics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - V P Vandana
- Dept. of Speech Pathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Vandana Nunia
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Sanjib Sinha
- Dept. of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Arun B Taly
- Dept. of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular lab-Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| |
Collapse
|
22
|
Motaghinejad M, Motevalian M, Abdollahi M, Heidari M, Madjd Z. Topiramate Confers Neuroprotection Against Methylphenidate-Induced Neurodegeneration in Dentate Gyrus and CA1 Regions of Hippocampus via CREB/BDNF Pathway in Rats. Neurotox Res 2017; 31:373-399. [PMID: 28078543 DOI: 10.1007/s12640-016-9695-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 12/18/2022]
Abstract
Methylphenidate (MPH) abuse can cause serious neurological damages. The neuroprotective effects of topiramate (TPM) have been reported already, but its mechanism of action still remains unclear. The current study evaluates in vivo role of CREB/BDNF in TPM protection of the rat hippocampal cells from methylphenidate-induced apoptosis, oxidative stress, and inflammation. A total of 60 adult male rats were divided into six groups. Groups 1 and 2 received normal saline (0.7 ml/rat) and MPH (10 mg/kg) respectively for 14 days. Groups 3 and 4 were concurrently treated with MPH (10 mg/kg) and TPM 50 and 100 mg/kg respectively for 14 days. Groups 5 and 6 were treated with 50 and 100 mg/kg TPM only respectively. After drug administration, open field test (OFT) was used to investigate motor activity. The hippocampus was then isolated and the apoptotic, antiapoptotic, oxidative, antioxidant, and inflammatory factors were measured. Expression of the total and phosphorylated CREB and BDNF in gene and protein levels, and gene expression of Ak1, CaMK4, MAPK3, PKA, and c-Fos levels were also measured. MPH significantly decreased motor activity in OFT. TPM (50 and 100 mg/kg) decreased MPH-induced motor activity disturbance. Additionally, MPH significantly increased Bax protein level, CaMK4 gene expression, lipid peroxidation, catalase activity, mitochondrial GSH, IL-1β, and TNF-α levels in isolated hippocampal cells. Also CREB, in total and phosphorylated forms, BDNF and Bcl-2 protein levels, Ak1, MAPK3, PKA and c-Fos gene expression, superoxide dismutase, glutathione peroxidase, and glutathione reductase activities decreased significantly by MPH. TPM (50 and 100 mg/kg), both in the presence and absence of MPH, attenuated the effects of MPH. Immunohistochemistry data showed that TPM increased localization of the total and phosphorylated forms of CREB in dentate gyrus (DG) and CA1 areas of the hippocampus. It seems that TPM can be used as a neuroprotective agent against apoptosis, oxidative stress, and neuroinflammation induced by frequent use of MPH. This might be probably mediated by the CREB/BDNF and their upstream signaling pathways.
Collapse
Affiliation(s)
- Majid Motaghinejad
- Razi Drug Research Center & Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat high way, Beside Milad Tower, Tehran, 14496-14525, Iran
| | - Manijeh Motevalian
- Razi Drug Research Center & Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat high way, Beside Milad Tower, Tehran, 14496-14525, Iran.
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Heidari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center and Department of pathology, Faculty of medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Motaghinejad M, Motevalian M, Shabab B. Neuroprotective effects of various doses of topiramate against methylphenidate induced oxidative stress and inflammation in rat isolated hippocampus. Clin Exp Pharmacol Physiol 2016; 43:360-71. [PMID: 26718459 DOI: 10.1111/1440-1681.12538] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 01/25/2023]
Abstract
Methylphenidate (MPH) abuse causes neurodegeneration. The neuroprotective effects of topiramate (TPM) have been reported but its putative mechanism remains unclear. The current study evaluates the role of various doses of TPM on protection of rat hippocampal cells from MPH-induced oxidative stress and inflammation in vivo. Seventy adult male rats were divided into six groups. Group 1 received normal saline (0.7 mL/rat) and group 2 was injected with MPH (10 mg/kg) for 21 days. Groups 3, 4, 5, 6 and 7 concurrently were treated by MPH (10 mg/kg) and TPM (10, 30, 50, 70 and 100 mg/kg, intraperitoneally (i.p.)), respectively for 21 days. After drug administration, the open field test (OFT) was used to investigate motor activity. Oxidative, antioxidant and inflammatory factors were measured in isolated hippocampus. Also, the brain-derived neurotrophic factor (BDNF) level was measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. Cresyl violet staining of Dentate Gyrus (DG) and CA1 cell layers of the hippocampus were also performed. MPH significantly disturbs motor activity in OFT and TPM (70 and 100 mg/kg) decreased this disturbance. Also MPH significantly increased lipid peroxidation, mitochondrial reduced state of glutathione (GSH) level, interleukin (IL)-1β and tumour necrosis factor (TNF)-α and BDNF level in isolated hippocampal cells. Also superoxide dismutase, glutathione peroxidase and glutathione reductase activity significantly decreased. Various doses of TPM attenuated these effects and significantly decreased MPH-induced oxidative damage, inflammation and hippocampal cell loss and increased BDNF level. This study suggests that TPM has the potential to be used as a neuroprotective agent against oxidative stress and neuroinflammation induced by frequent use of MPH.
Collapse
Affiliation(s)
- Majid Motaghinejad
- Razi Drug Research Centre and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Razi Drug Research Centre and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Shabab
- Solid Dosage Form Department, Iran Hormone Pharmaceutical Company, Tehran, Iran
| |
Collapse
|
24
|
Stockburger C, Miano D, Baeumlisberger M, Pallas T, Arrey TN, Karas M, Friedland K, Müller WE. A Mitochondrial Role of SV2a Protein in Aging and Alzheimer's Disease: Studies with Levetiracetam. J Alzheimers Dis 2016; 50:201-15. [PMID: 26639968 DOI: 10.3233/jad-150687] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aberrant neuronal network activity associated with neuronal hyperexcitability seems to be an important cause of cognitive decline in aging and Alzheimer's disease (AD). Out of many antiepileptics, only levetiracetam improved cognitive dysfunction in AD patients and AD animal models by reducing hyperexcitability. As impaired inhibitory interneuronal function, rather than overactive neurons, seems to be the underlying cause, improving impaired neuronal function rather than quieting overactive neurons might be relevant in explaining the lack of activity of the other antiepileptics. Interestingly, improvement of cognitive deficits by levetiracetam caused by small levels of soluble Aβ was accompanied by improvement of synaptic function and plasticity. As the negative effects of Aβ on synaptic plasticity strongly correlate with mitochondrial dysfunction, wehypothesized that the effect of levetiracetam on synaptic activity might be raised by an improved mitochondrial function. Accordingly, we investigated possible effects of levetiracetam on neuronal deficits associated with mitochondrial dysfunction linked to aging and AD. Levetiracetam improved several aspects of mitochondrial dysfunction including alterations of fission and fusion balance in a cell model for aging and early late-onset AD. We demonstrate for the first time, using immunohistochemistry and proteomics, that the synaptic vesicle protein 2A (SV2a), the molecular target of levetiracetam, is expressed in mitochondria. In addition, levetiracetam shows significant effect on the opening of the mitochondrial permeability transition pore. Importantly, the effects of levetiracetam were significantly abolished when SV2a was knockdown using siRNA. In conclusion, interfering with the SV2a protein at the mitochondrial level and thereby improving mitochondrial function might represent an additional therapeutic effect of levetiracetam to improve symptoms of late-onset AD.
Collapse
Affiliation(s)
- Carola Stockburger
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/M, Germany
| | - Davide Miano
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/M, Germany
| | - Marion Baeumlisberger
- Institute of Pharmaceutical Chemistry, Cluster of Excellence "Macromolecular Complexes", Goethe-University Frankfurt, Frankfurt/M, Germany
| | - Thea Pallas
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/M, Germany
| | | | - Michael Karas
- Institute of Pharmaceutical Chemistry, Cluster of Excellence "Macromolecular Complexes", Goethe-University Frankfurt, Frankfurt/M, Germany
| | - Kristina Friedland
- Molecular and Clinical Pharmacy, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen/Nuremberg, Erlangen, Germany
| | - Walter E Müller
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/M, Germany
| |
Collapse
|
25
|
Itoh K, Ishihara Y, Komori R, Nochi H, Taniguchi R, Chiba Y, Ueno M, Takata-Tsuji F, Dohgu S, Kataoka Y. Levetiracetam treatment influences blood-brain barrier failure associated with angiogenesis and inflammatory responses in the acute phase of epileptogenesis in post-status epilepticus mice. Brain Res 2016; 1652:1-13. [PMID: 27693413 DOI: 10.1016/j.brainres.2016.09.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022]
Abstract
Our previous study showed that treatment with levetiracetam (LEV) after status epilepticus (SE) termination by diazepam might prevent the development of spontaneous recurrent seizures via the inhibition of neurotoxicity induced by brain edema events. In the present study, we determined the possible molecular and cellular mechanisms of LEV treatment after termination of SE. To assess the effect of LEV against the brain alterations after SE, we focused on blood-brain barrier (BBB) dysfunction associated with angiogenesis and brain inflammation. The consecutive treatment of LEV inhibited the temporarily increased BBB leakage in the hippocampus two days after SE. At the same time point, the LEV treatment significantly inhibited the increase in the number of CD31-positive endothelial immature cells and in the expression of angiogenic factors. These findings suggested that the increase in neovascularization led to an increase in BBB permeability by SE-induced BBB failure, and these brain alterations were prevented by LEV treatment. Furthermore, in the acute phase of the latent period, pro-inflammatory responses for epileptogenic targets in microglia and astrocytes of the hippocampus activated, and these upregulations of pro-inflammatory-related molecules were inhibited by LEV treatment. These findings suggest that LEV is likely involved in neuroprotection via anti-angiogenesis and anti-inflammatory activities against BBB dysfunction in the acute phase of epileptogenesis after SE.
Collapse
Affiliation(s)
- Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan.
| | - Yasuhiro Ishihara
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Rie Komori
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Hiromi Nochi
- Laboratory for Pharmaceutical Health Sciences, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Ruri Taniguchi
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Fuyuko Takata-Tsuji
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Yasufumi Kataoka
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
26
|
Neuroprotective effects of various doses of topiramate against methylphenidate-induced oxidative stress and inflammation in isolated rat amygdala: the possible role of CREB/BDNF signaling pathway. J Neural Transm (Vienna) 2016; 123:1463-1477. [PMID: 27665547 DOI: 10.1007/s00702-016-1619-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/05/2016] [Indexed: 12/26/2022]
Abstract
Methylphenidate (MPH) abuse damages brain cells. The neuroprotective effects of topiramate (TPM) have been reported previously, but its exact mechanism of action still remains unclear. This study investigated the in vivo role of various doses of TPM in the protection of rat amygdala cells against methylphenidate-induced oxidative stress and inflammation. Seventy adult male rats were divided into seven groups. Groups 1 and 2 received normal saline (0.7 ml/rat) and MPH (10 mg/kg), respectively, for 21 days. Groups 3, 4, 5, 6, and 7 were concurrently treated with MPH (10 mg/kg) and TPM (10, 30, 50, 70, and 100 mg/kg), respectively, for 21 days. elevated plus maze (EPM) was used to assess motor activity disturbances. In addition, oxidative, antioxidantand inflammatory factors and CREB, Ak1, CAMK4, MAPK3, PKA, BDNF, and c FOS gene levels were measured by RT-PCR, and also, CREB and BDNF protein levels were measured by WB in isolated amygdalae. MPH significantly disturbed motor activity and TPM (70 and 100 mg/kg) neutralized its effects. MPH significantly increased lipid peroxidation, mitochondrial GSSG levels and IL-1β and TNF-α level and CAMK4 gene expression in isolated amygdala cells. In contrast, superoxide dismutase, glutathione peroxidase, and glutathione reductase activities and CREB, BDNF Ak1, MAPK3, PKA, BDNF, and c FOS expression significantly decreased. The various doses of TPM attenuated these effects of MPH. It seems that TPM can be used as a neuroprotective agent and is a good candidate against MPH-induced neurodegeneration.
Collapse
|
27
|
Dose-dependent effects of levetiracetam after hypoxia and hypothermia in the neonatal mouse brain. Brain Res 2016; 1646:116-124. [PMID: 27216570 DOI: 10.1016/j.brainres.2016.05.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
Perinatal asphyxia to the developing brain remains a major cause of morbidity. Hypothermia is currently the only established neuroprotective treatment available for term born infants with hypoxic-ischemic encephalopathy, saving one in seven to eight infants from developing severe neurological deficits. Therefore, additional treatments with clinically applicable drugs are indispensable. This study investigates a potential additive neuroprotective effect of levetiracetam combined with hypothermia after hypoxia-induced brain injury in neonatal mice. 9-day-old C57BL/6-mice (P9) were subjected either to acute hypoxia or room-air. After 90min of systemic hypoxia (6% O2), pups were randomized into six groups: 1) vehicle, 2) low-dose levetiracetam (LEV), 3) high-dose LEV, 4) hypothermia (HT), 5) HT combined with low-dose LEV and 6) HT combined with high-dose LEV. Pro-apoptotic factors, neuronal structures, and myelination were analysed by histology and on protein level at appropriate time points. On P28 to P37 long-term outcome was assessed by neurobehavioral testing. Hypothermia confers acute and long-term neuroprotection by reducing apoptosis and preservation of myelinating oligodendrocytes and neurons in a model of acute hypoxia in the neonatal mouse brain. Low-dose LEV caused no adverse effects after neonatal hypoxic brain damage treated with hypothermia whereas administration of high-dose LEV alone or in combination with hypothermia increased neuronal apoptosis after hypoxic brain injury. LEV in low- dosage had no additive neuroprotective effect following acute hypoxic brain injury.
Collapse
|
28
|
Aline DAO, Maria IL, Adriano JEMCF, Emiliano RVR, Camila NDCL, Edith TV, Alana GDS, Klistenes ADL, Francisca EAFC, Danielle MG, Marta MDFCAF. Antioxidant properties of antiepileptic drugs levetiracetam and clonazepam in mice brain after in vitro-induced oxidative stress. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajpp2015.4358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
29
|
Erbaş O, Yılmaz M, Taşkıran D. Levetiracetam attenuates rotenone-induced toxicity: A rat model of Parkinson's disease. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 42:226-230. [PMID: 26896611 DOI: 10.1016/j.etap.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
Levetiracetam (LEV), a second-generation anti-epileptic drug, is used for treatment of both focal and generalized epilepsy. Growing body of evidence suggests that LEV may have neuroprotective effects. The present study was undertaken to investigate the neuroprotective effects of LEV on rotenone-induced Parkinson's disease (PD) in rats. Twenty-four adult Sprague-Dawley rats were infused with rotenone (3 μg/μl in DMSO) or vehicle (1 μl DMSO) into the left substantia nigra pars compacta (SNc) under stereotaxic surgery. PD model was assessed by rotational test ten days after drug infusion. The valid PD rats were randomly distributed into two groups; Group 1 (n=8) and Group 2 (n=8) were administered saline (1 ml/kg/day, i.p.) and LEV (600 mg/kg/day, i.p.) through 21 days, respectively. The effects of LEV treatment were evaluated by behavioral (rotation score), biochemical (brain homovalinic acid level and oxidant/antioxidant status) and immunohistochemical (tyrosine hydroxylase) parameters. Apomorphine-induced rotations in PD rats were significantly suppressed by LEV treatment. While unilateral rotenone lesion induced a dramatic loss of dopaminergic neurons both in the striatum and SNc, LEV treatment significantly attenuated the degenerative changes in dopaminergic neurons. Furthermore, LEV significantly decreased lipid peroxide levels, a marker of lipid peroxidation, and induced glutathione levels, catalase and superoxide dismutase activity in PD rats compared with saline group. We conclude that LEV may have beneficial effects on dopaminergic neurons against rotenone-induced injury. The underlying mechanism may be associated with the attenuation of oxidative stress.
Collapse
Affiliation(s)
- Oytun Erbaş
- Department of Physiology, İstanbul Bilim University School of Medicine, İstanbul, Turkey
| | - Mustafa Yılmaz
- Department of Neurology, Muğla University School of Medicine, Mugla, Turkey
| | - Dilek Taşkıran
- Department of Physiology, Ege University School of Medicine, İzmir, Turkey.
| |
Collapse
|
30
|
Lee YJ, Yum MS, Kim EH, Ko TS. Intravenous levetiracetam versus phenobarbital in children with status epilepticus or acute repetitive seizures. KOREAN JOURNAL OF PEDIATRICS 2016; 59:35-9. [PMID: 26893602 PMCID: PMC4753198 DOI: 10.3345/kjp.2016.59.1.35] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/06/2015] [Accepted: 07/15/2015] [Indexed: 12/11/2022]
Abstract
Purpose This study compared the efficacy and tolerability of intravenous (i.v.) phenobarbital (PHB) and i.v. levetiracetam (LEV) in children with status epilepticus (SE) or acute repetitive seizure (ARS). Methods The medical records of children (age range, 1 month to 15 years) treated with i.v. PHB or LEV for SE or ARS at our single tertiary center were retrospectively reviewed. Seizure termination was defined as seizure cessation within 30 minutes of infusion completion and no recurrence within 24 hours. Information on the demographic variables, electroencephalography and magnetic resonance imaging findings, previous antiepileptic medications, and adverse events after drug infusion was obtained. Results The records of 88 patients with SE or ARS (median age, 18 months; 50 treated with PHB and 38 with LEV) were reviewed. The median initial dose of i.v. PHB was 20 mg/kg (range, 10–20 mg/kg) and that of i.v. LEV was 30 mg/kg (range, 20–30 mg/kg). Seizure termination occurred in 57.9% of patients treated with i.v. LEV (22 of 38) and 74.0% treated with i.v. PHB (37 of 50) (P=0.111). The factor associated with seizure termination was the type of event (SE vs. ARS) in each group. Adverse effects were reported in 13.2% of patients treated with i.v. LEV (5 of 38; n=4, aggressive behavior and n=1, vomiting), and 28.0% of patients treated with i.v. PHB (14 of 50). Conclusion Intravenous LEV was efficacious and safe in children with ARS or SE. Further evaluation is needed to determine the most effective and best-tolerated loading dose of i.v. LEV.
Collapse
Affiliation(s)
- Yun-Jeong Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, Seoul, Korea
| | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center Children's Hospital, Seoul, Korea
| | - Eun-Hee Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, Seoul, Korea
| | - Tae-Sung Ko
- Department of Pediatrics, Asan Medical Center Children's Hospital, Seoul, Korea
| |
Collapse
|
31
|
Zheng F, Du C, Wang X. Levetiracetam for the treatment of status epilepticus. Expert Rev Neurother 2015; 15:1113-21. [DOI: 10.1586/14737175.2015.1088785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Tamijani SMS, Karimi B, Amini E, Golpich M, Dargahi L, Ali RA, Ibrahim NM, Mohamed Z, Ghasemi R, Ahmadiani A. Thyroid hormones: Possible roles in epilepsy pathology. Seizure 2015; 31:155-64. [PMID: 26362394 DOI: 10.1016/j.seizure.2015.07.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs) L-thyroxine and L-triiodothyronine, primarily known as metabolism regulators, are tyrosine-derived hormones produced by the thyroid gland. They play an essential role in normal central nervous system development and physiological function. By binding to nuclear receptors and modulating gene expression, THs influence neuronal migration, differentiation, myelination, synaptogenesis and neurogenesis in developing and adult brains. Any uncorrected THs supply deficiency in early life may result in irreversible neurological and motor deficits. The development and function of GABAergic neurons as well as glutamatergic transmission are also affected by THs. Though the underlying molecular mechanisms still remain unknown, the effects of THs on inhibitory and excitatory neurons may affect brain seizure activity. The enduring predisposition of the brain to generate epileptic seizures leads to a complex chronic brain disorder known as epilepsy. Pathologically, epilepsy may be accompanied by mitochondrial dysfunction, oxidative stress and eventually dysregulation of excitatory glutamatergic and inhibitory GABAergic neurotransmission. Based on the latest evidence on the association between THs and epilepsy, we hypothesize that THs abnormalities may contribute to the pathogenesis of epilepsy. We also review gender differences and the presumed underlying mechanisms through which TH abnormalities may affect epilepsy here.
Collapse
Affiliation(s)
| | - Benyamin Karimi
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Elham Amini
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Mojtaba Golpich
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raymond Azman Ali
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Sendrowski K, Sobaniec W, Stasiak-Barmuta A, Sobaniec P, Popko J. Study of the protective effects of nootropic agents against neuronal damage induced by amyloid-beta (fragment 25–35) in cultured hippocampal neurons. Pharmacol Rep 2015; 67:326-31. [PMID: 25712658 DOI: 10.1016/j.pharep.2014.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/21/2014] [Accepted: 09/30/2014] [Indexed: 12/16/2022]
|
34
|
Itoh K, Inamine M, Oshima W, Kotani M, Chiba Y, Ueno M, Ishihara Y. Prevention of status epilepticus-induced brain edema and neuronal cell loss by repeated treatment with high-dose levetiracetam. Brain Res 2015; 1608:225-34. [PMID: 25770058 DOI: 10.1016/j.brainres.2015.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 11/28/2022]
Abstract
The management of status epilepticus (SE) is important to prevent mortality and the development of post-SE symptomatic epilepsy. Acquired epilepsy after an initial brain insult by SE can be experimentally reproduced in the murine model of SE induced by pilocarpine. In the present study, we evaluated the possibility of treatment with a high-dose of levetiracetam in this model. Repeated treatment with high-dose levetiracetam after termination of SE by diazepam significantly prevented the incidence of spontaneous recurrent seizures and mortality for at least 28 days. To determine the brain alterations after SE, magnetic resonance imaging was performed. Both T2-weighted imaging and diffusion-weighted imaging showed changes in the limbic regions. These changes in the limbic regions demonstrated the development of cytotoxic edema three hours after SE, followed by the development of vasogenic edema two days after SE. In the pilocarpine-SE model, the incidence of spontaneous recurrent seizures after SE was strongly associated with neuronal damage within a few hours to days after SE by the development of vasogenic edema via the breakdown of the blood-brain barrier in the limbic regions. High-dose levetiracetam significantly suppressed the parameters in the limbic areas. These data indicate that repeated treatment with high-dose levetiracetam for at least two days after SE termination by diazepam is important for controlling the neuronal damage by preventing brain edema. Therefore, these findings suggest that early treatment with high-dose levetiracetam after SE termination by diazepam may protect against adverse sequelae via the inhibition of neurotoxicity induced by brain edema events.
Collapse
Affiliation(s)
- Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan.
| | - Moriyoshi Inamine
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Wataru Oshima
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Masaharu Kotani
- Department of Molecular and Cellular Biology, Faculty of Pharmaceutical Science, Ohu University, Koriyama, Fukushima 963-8611, Japan
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Yasuhiro Ishihara
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| |
Collapse
|
35
|
Akman L, Erbas O, Akdemir A, Yavasoglu A, Taskiran D, Kazandi M. Levetiracetam ameliorates ovarian function in streptozotocin-induced diabetic rats. Gynecol Endocrinol 2015; 31:657-62. [PMID: 26291800 DOI: 10.3109/09513590.2015.1032931] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Diabetes mellitus can adversely affect gonadal function. In the present study, we aimed to investigate the protective effects and mechanism of action of levetiracetam (LEV) on the ovaries in a streptozotocin (STZ)-induced diabetes model in rats. Twenty-one adult female rats were assigned to three groups as control, diabetes group treated with 1 mL/kg/d saline (STZ + SP) and diabetes group treated with 600 mg/kg/d LEV (STZ + LEV). Following 4 weeks treatment, blood samples were collected for biochemical analysis and ovariectomy was performed for histopathological examination. Plasma anti-Mullerian hormone (AMH), glutathione and total anti-oxidant capacity values were significantly lower whereas lipid peroxides and transforming growth factor-β (TGF-β) values were significantly higher in STZ + SP group compared to control. LEV treatment successfully decreased lipid peroxidation and TGF-β levels, and also increased anti-oxidant parameters and AMH levels in diabetic rats. Saline-treated rats significantly displayed ovarian degeneration and decreased counts of follicles. However, treatment of diabetic rats with LEV effectively prevented the degenerative changes and follicle loss. Also, LEV suppressed ovarian nuclear factor-kappa B (NF-kB) immunoexpression in diabetic rats. Taken together, we propose that LEV can ameliorate the adverse effects of diabetes on ovarian function via decreasing NF-kB expression and oxidative stress and increasing anti-oxidant status in rats.
Collapse
Affiliation(s)
- Levent Akman
- a Department of Obstetrics and Gynecology , Ege University Medical School , Izmir , Turkey
- b Department of Stem Cell , Ege University, Institute of Health Sciences , Izmir , Turkey
| | | | - Ali Akdemir
- a Department of Obstetrics and Gynecology , Ege University Medical School , Izmir , Turkey
- b Department of Stem Cell , Ege University, Institute of Health Sciences , Izmir , Turkey
| | - Altug Yavasoglu
- d Department of Histology and Embryology , Ege University Medical School , Izmir , Turkey
| | | | - Mert Kazandi
- a Department of Obstetrics and Gynecology , Ege University Medical School , Izmir , Turkey
| |
Collapse
|
36
|
Cheng L, Lei S, Chen SH, Hong Z, Yang TH, Li L, Chen F, Li HX, Zhou D, Li JM. Pretreatment with intravenous levetiracetam in the rhesus monkey Coriaria lactone-induced status epilepticus model. J Neurol Sci 2014; 348:111-20. [PMID: 25579413 DOI: 10.1016/j.jns.2014.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 11/08/2014] [Accepted: 11/11/2014] [Indexed: 02/05/2023]
Abstract
PURPOSE To investigate the antiepileptic and protective effects of intravenous levetiracetam (iv LEV) in the rhesus monkey model of acute status epilepticus (SE). METHODS Thirty minutes before intraperitoneal induction of SE by Coriaria lactone (CL), rhesus monkeys were treated with LEV (15 or 150 mg/kg) delivered intravenously as a single bolus. CL dose and epileptic behavior were recorded. Electroencephalography (EEG) was performed before and during the experiment. All rhesus monkeys were killed after 1-month video monitoring and processed for pathological investigation of neuronal injury, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining, and glial fibrillary acidic protein (GFAP) staining. RESULTS No animal exhibited spontaneous seizures during 1-month video monitoring. Development of acute SE was significantly inhibited in the group given 150 mg/kg LEV, compared with controls and the 15 mg/kg LEV group. Delayed latency, reduction of SE duration, decreased cumulative time of tonic convulsions, slight severity of SE, and a high CL induction dose were observed in the high LEV dose group (p<0.05). The EEG showed less frequent epileptic discharges in the group administered with 150 mg/kg LEV. Hematoxylin and eosin (H&E) staining, ultrastructural examination, TUNEL and GFAP staining revealed serious damage, including neuron loss, swollen mitochondrion, and strong positivity for TUNEL in the hippocampus and thalamus of controls, whereas moderate damage in the group administered with 15 mg/kg LEV, and very mild damage in the 150 mg/kg LEV group. Gliosis was found in the hippocampus of controls, not in the LEV groups and normal rhesus monkey. CONCLUSION The study supports the antiepileptic and protective effect of pretreatment with intravenous LEV in rhesus monkey model with SE.
Collapse
Affiliation(s)
- Lan Cheng
- Department of Neurology, West China Hospital, Sichuan University, PR China
| | - Song Lei
- Department of Pathology, West China Hospital, Sichuan University, PR China
| | - Si-Han Chen
- Department of Neurology, West China Hospital, Sichuan University, PR China
| | - Zhen Hong
- Department of Neurology, West China Hospital, Sichuan University, PR China
| | - Tian-Hua Yang
- Department of Neurology, West China Hospital, Sichuan University, PR China
| | - Li Li
- Laboratory of Transplant, West China Hospital, Sichuan University, PR China
| | - Fei Chen
- Laboratory of Transplant, West China Hospital, Sichuan University, PR China
| | - Hong-Xia Li
- National Chengdu Center for Safety Evaluation of Traditional Chinese Medicine, West China Hospital, Sichuan University, PR China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, PR China.
| | - Jin-Mei Li
- Department of Neurology, West China Hospital, Sichuan University, PR China.
| |
Collapse
|
37
|
Amini E, Rezaei M, Mohamed Ibrahim N, Golpich M, Ghasemi R, Mohamed Z, Raymond AA, Dargahi L, Ahmadiani A. A Molecular Approach to Epilepsy Management: from Current Therapeutic Methods to Preconditioning Efforts. Mol Neurobiol 2014; 52:492-513. [PMID: 25195699 DOI: 10.1007/s12035-014-8876-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/25/2014] [Indexed: 01/16/2023]
Abstract
Epilepsy is the most common and chronic neurological disorder characterized by recurrent unprovoked seizures. The key aim in treating patients with epilepsy is the suppression of seizures. An understanding of focal changes that are involved in epileptogenesis may therefore provide novel approaches for optimal treatment of the seizure. Although the actual pathogenesis of epilepsy is still uncertain, recently growing lines of evidence declare that microglia and astrocyte activation, oxidative stress and reactive oxygen species (ROS) production, mitochondria dysfunction, and damage of blood-brain barrier (BBB) are involved in its pathogenesis. Impaired GABAergic function in the brain is probably the most accepted hypothesis regarding the pathogenesis of epilepsy. Clinical neuroimaging of patients and experimental modeling have demonstrated that seizures may induce neuronal apoptosis. Apoptosis signaling pathways are involved in the pathogenesis of several types of epilepsy such as temporal lobe epilepsy (TLE). The quality of life of patients is seriously affected by treatment-related problems and also by unpredictability of epileptic seizures. Moreover, the available antiepileptic drugs (AED) are not significantly effective to prevent epileptogenesis. Thus, novel therapies that are proficient to control seizure in people who are suffering from epilepsy are needed. The preconditioning method promises to serve as an alternative therapeutic approach because this strategy has demonstrated the capability to curtail epileptogenesis. For this reason, understanding of molecular mechanisms underlying brain tolerance induced by preconditioning is crucial to delineate new neuroprotective ways against seizure damage and epileptogenesis. In this review, we summarize the work to date on the pathogenesis of epilepsy and discuss recent therapeutic strategies in the treatment of epilepsy. We will highlight that novel therapy targeting such as preconditioning process holds great promise. In addition, we will also highlight the role of gene reprogramming and mitochondrial biogenesis in the preconditioning-mediated neuroprotective events.
Collapse
Affiliation(s)
- Elham Amini
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mitochondrial disorders and epilepsy. Rev Neurol (Paris) 2014; 170:375-80. [DOI: 10.1016/j.neurol.2014.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 11/21/2022]
|
39
|
Rogers SK, Shapiro LA, Tobin RP, Tow B, Zuzek A, Mukherjee S, Newell-Rogers MK. Levetiracetam Differentially Alters CD95 Expression of Neuronal Cells and the Mitochondrial Membrane Potential of Immune and Neuronal Cells in vitro. Front Neurol 2014; 5:17. [PMID: 24600432 PMCID: PMC3927234 DOI: 10.3389/fneur.2014.00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/29/2014] [Indexed: 01/09/2023] Open
Abstract
Epilepsy is a neurological seizure disorder that affects over 100 million people worldwide. Levetiracetam, either alone, as monotherapy, or as adjunctive treatment, is widely used to control certain types of seizures. Despite its increasing popularity as a relatively safe and effective anti-convulsive treatment option, its mechanism(s) of action are poorly understood. Studies have suggested neuronal, glial, and immune mechanisms of action. Understanding the precise mechanisms of action of levetiracetam would be extremely beneficial in helping to understand the processes involved in seizure generation and epilepsy. Moreover, a full understanding of these mechanisms would help to create more efficacious treatments while minimizing side-effects. The current study examined the effects of levetiracetam on the mitochondrial membrane potential of neuronal and non-neuronal cells, in vitro, in order to determine if levetiracetam influences metabolic processes in these cell types. In addition, this study sought to address possible immune-mediated mechanisms by determining if levetiracetam alters the expression of immune receptor–ligand pairs. The results show that levetiracetam induces expression of CD95 and CD178 on NGF-treated C17.2 neuronal cells. The results also show that levetiracetam increases mitochondrial membrane potential on C17.2 neuronal cells in the presence of nerve growth factor. In contrast, levetiracetam decreases the mitochondrial membrane potential of splenocytes and this effect was dependent on intact invariant chain, thus implicating immune cell interactions. These results suggest that both neuronal and non-neuronal anti-epileptic activities of levetiracetam involve control over energy metabolism, more specifically, mΔΨ. Future studies are needed to further investigate this potential mechanism of action.
Collapse
Affiliation(s)
| | - Lee A Shapiro
- Department of Surgery, Texas A&M University Health Science Center , Temple, TX , USA ; Central Texas Veterans Health Care System , Temple, TX , USA ; Scott and White Hospital , Temple, TX , USA
| | - Richard P Tobin
- Department of Surgery, Texas A&M University Health Science Center , Temple, TX , USA
| | - Benjamin Tow
- Department of Surgery, Texas A&M University Health Science Center , Temple, TX , USA
| | - Aleksej Zuzek
- Department of Surgery, Texas A&M University Health Science Center , Temple, TX , USA
| | - Sanjib Mukherjee
- Department of Surgery, Texas A&M University Health Science Center , Temple, TX , USA ; Central Texas Veterans Health Care System , Temple, TX , USA ; Scott and White Hospital , Temple, TX , USA
| | - M Karen Newell-Rogers
- Department of Surgery, Texas A&M University Health Science Center , Temple, TX , USA ; Scott and White Hospital , Temple, TX , USA
| |
Collapse
|
40
|
Chakraborty J, Rajamma U, Mohanakumar KP. A mitochondrial basis for Huntington's disease: therapeutic prospects. Mol Cell Biochem 2013; 389:277-91. [PMID: 24374792 DOI: 10.1007/s11010-013-1951-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 12/19/2013] [Indexed: 01/12/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant disease, with overt movement dysfunctions. Despite focused research on the basis of neurodegeneration in HD for last few decades, the mechanism for the site-specific lesion of neurons in the brain is not clear. All the explanations that partially clarify the phenomenon of neurodegeneration leads to one organelle, mitochondrion, which is severely affected in HD at the level of electron transport chain, Ca(2+) buffering efficiency and morphology. But, with the existing knowledge, it is not clear whether the cell death processes in HD initiate from mitochondria, though the Huntingtin (Htt) aggregates show close proximity to this organelle, or do some extracellular stimuli like TNFα or FasL trigger the process. Mainly because of the disparity in the different available experimental models, the results are quite confusing or at least inconsistent to a great extent. The fact remains that the mutant Htt protein was seen to be associated with mitochondria directly, and as the striatum is highly enriched with dopamine and glutamate, it may make the striatal mitochondria more vulnerable because of the presence of dopa-quinones, and due to an imbalance in Ca(2+). The current therapeutic strategies are based on symptomatic relief, and, therefore, mainly target neurotransmitter(s) and their receptors to modulate behavioral outputs, but none of them targets mitochondria or try to address the basic molecular events that cause neurons to die in discrete regions of the brain, which could probably be resulting from grave mitochondrial dysfunctions. Therefore, targeting mitochondria for their protection, while addressing symptomatic recovery, holds a great potential to tone down the progression of the disease, and to provide better relief to the patients and caretakers.
Collapse
Affiliation(s)
- J Chakraborty
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Rooms 117&119, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | | | | |
Collapse
|
41
|
Shetty AK. Prospects of levetiracetam as a neuroprotective drug against status epilepticus, traumatic brain injury, and stroke. Front Neurol 2013; 4:172. [PMID: 24204362 PMCID: PMC3816384 DOI: 10.3389/fneur.2013.00172] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/21/2013] [Indexed: 01/08/2023] Open
Abstract
Levetiracetam (LEV) is an anti-epileptic drug commonly used for the treatment of partial onset and generalized seizures. In addition to its neuromodulatory and neuroinhibitory effects via its binding to the synaptic vesicle protein SV2A, multiple studies have suggested neuroprotective properties for LEV in both epileptic and non-epileptic conditions. The purpose of this review is to discuss the extent of LEV-mediated protection seen in different neurological conditions, the potential of LEV for easing epileptogenesis, and the possible mechanisms that underlie the protective properties of LEV. LEV has been found to be particularly beneficial for restraining seizures in animal models of spontaneous epilepsy, acute seizures, and status epilepticus (SE). However, its ability for easing epileptogenesis and cognitive dysfunction following SE remains controversial with some studies implying favorable outcomes and others reporting no beneficial effects. Efficacy of LEV as a neuroprotective drug against traumatic brain injury (TBI) has received much attention. While animal studies in TBI models have showed significant neuroprotection and improvements in motor and memory performance with LEV treatment, clinical studies suggest that LEV has similar efficacy as phenytoin in terms of its ability to prevent post-traumatic epilepsy. LEV treatment for TBI is also reported to have fewer adverse effects and monitoring considerations but electroencephalographic recordings suggest the presence of increased seizure tendency. Studies on stroke imply that LEV is a useful alternative to carbamazepine for preventing post-stroke seizures in terms of efficacy and safety. Thus, LEV treatment has promise for restraining SE-, TBI-, or stroke-induced chronic epilepsy. Nevertheless, additional studies are needed to ascertain the most apt dose, timing of intervention, and duration of treatment after the initial precipitating injury and the mechanisms underlying LEV-mediated beneficial effects.
Collapse
Affiliation(s)
- Ashok K Shetty
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White , Temple, TX , USA ; Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System , Temple, TX , USA ; Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine , College Station, TX , USA
| |
Collapse
|
42
|
Khurana DS, Valencia I, Goldenthal MJ, Legido A. Mitochondrial dysfunction in epilepsy. Semin Pediatr Neurol 2013; 20:176-87. [PMID: 24331359 DOI: 10.1016/j.spen.2013.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epilepsy is the most common neurologic disorder worldwide and is characterized by recurrent unprovoked seizures. The mitochondrial (mt) respiratory chain is the final common pathway for cellular energy production through the process of oxidative phosphorylation. As neurons are terminally differentiated cells that lack significant regenerative capacity and have a high energy demand, they are more vulnerable to mt dysfunction. Therefore, epileptic seizures have been well described in several diseases such as mt encephalomyopathy, lactic acidosis, and stroke-like episodes and myoclonic epilepsy and ragged red fibers, which are caused by gene mutations in mtDNA, among others. Mutations in nuclear DNA regulating mt function are also being described (eg, POLG gene mutation). The role of mitochondria (mt) in acquired epilepsies, which account for about 60% of all epilepsies, is equally important but less well understood. Oxidative stress is one of the possible mechanisms in the pathogenesis of epilepsy resulting from mt dysfunction gradually disrupting the intracellular Ca(2+) homeostasis, which modulates neuronal excitability and synaptic transmission, making neurons more vulnerable to additional stress, and leading to energy failure and neuronal loss in epilepsy. Antiepileptic drugs (AEDs) also affect mt function in several ways. There must be caution when treating epilepsy in patients with known mt disorders as some AEDs are toxic to the mt. This review summarizes our current knowledge of the effect of mt disorders on epilepsy, of epileptic seizures on mt, and of AEDs on mt function and the implications of all these interactions for the management of epilepsy in patients with or without mt disease.
Collapse
Affiliation(s)
- Divya S Khurana
- Section of Neurology, Departments of Pediatrics and Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA.
| | - Ignacio Valencia
- Section of Neurology, Departments of Pediatrics and Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA
| | - Michael J Goldenthal
- Section of Neurology, Departments of Pediatrics and Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA
| | - Agustín Legido
- Section of Neurology, Departments of Pediatrics and Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
43
|
Kang HC, Lee YM, Kim HD. Mitochondrial disease and epilepsy. Brain Dev 2013; 35:757-61. [PMID: 23414619 DOI: 10.1016/j.braindev.2013.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/27/2012] [Accepted: 01/06/2013] [Indexed: 11/30/2022]
Abstract
Mitochondrial diseases are a group of diseases caused by dysfunctional mitochondria, organelles that generate energy for the cell. Mitochondrial diseases are often caused by mutations, acquired, or inherited in the mitochondrial DNA or nuclear genes that code for respiratory chain complexes in the mitochondrion. Mitochondrial diseases involve multiple organs and show heterogeneous and unpredictable progression. The most common clinical presentation of mitochondrial diseases is encephalomyopathy, and epileptic seizures can frequently occur as a presenting sign of mitochondrial encephalopathy. While whether mitochondrial dysfunction or epilepsy is the cause or consequence is still debatable, they may be interrelated to create a vicious cycle. Epileptic phenotypes vary in different mitochondrial diseases. At present, there are no curative treatments for mitochondrial diseases, and the efficacy of many anticonvulsants, vitamins, nutritional supplements, and the ketogenic diet remain to be proven. Understanding the pathophysiology of mitochondrial diseases may further facilitate effective diagnostic and therapeutic approaches to these diseases.
Collapse
Affiliation(s)
- Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Epilepsy Clinic, Severance Children's Hospital, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | | | | |
Collapse
|
44
|
Rowley S, Patel M. Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med 2013; 62:121-131. [PMID: 23411150 PMCID: PMC4043127 DOI: 10.1016/j.freeradbiomed.2013.02.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 01/25/2023]
Abstract
A role for mitochondria and oxidative stress is emerging in acquired epilepsies such as temporal lobe epilepsy (TLE). TLE is characterized by chronic unprovoked seizures arising from an inciting insult with a variable seizure-free "latent period." The mechanism by which inciting injury induces chronic epilepsy, known as epileptogenesis, involves multiple cellular, molecular, and physiological changes resulting in altered hyperexcitable circuitry. Whether mitochondrial and redox mechanisms contribute to epileptogenesis remains to be fully clarified. Mitochondrial impairment is revealed in studies from human imaging and tissue analysis from TLE patients. The collective data from animal models suggest that steady-state mitochondrial reactive oxygen species and resultant oxidative damage to cellular macromolecules occur during different phases of epileptogenesis. This review discusses evidence for the role of mitochondria and redox changes occurring in human and experimental TLE. Potential mechanisms by which mitochondrial energetic and redox mechanisms contribute to increased neuronal excitability and therapeutic approaches to target TLE are delineated.
Collapse
Affiliation(s)
- Shane Rowley
- Neuroscience Training Program and School of Pharmacy, University of Colorado at Denver, Aurora, CO 80045, USA
| | - Manisha Patel
- Neuroscience Training Program and School of Pharmacy, University of Colorado at Denver, Aurora, CO 80045, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado at Denver, Aurora, CO 80045, USA.
| |
Collapse
|
45
|
Shi JQ, Wang BR, Tian YY, Xu J, Gao L, Zhao SL, Jiang T, Xie HG, Zhang YD. Antiepileptics topiramate and levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice. CNS Neurosci Ther 2013; 19:871-81. [PMID: 23889921 DOI: 10.1111/cns.12144] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The close relationship between epileptic seizure and Alzheimer's disease (AD) has been demonstrated in the past decade. Valproic acid, a traditional first-line antiepileptic drug, exerted protective effects in transgenic models of AD. It remains uncertain whether new antiepileptic drugs could reverse neuropathology and behavioral deficits in AD transgenic mice. AIMS APPswe/PS1dE9 transgenic mice were used in this study, which over express the Swedish mutation of amyloid precursor protein together with presenilin 1 deleted in exon 9. 7-month-old APPswe/PS1dE9 transgenic mice were treated daily with 20 mg/kg topiramate (TPM) and 50 mg/kg levetiracetam (LEV) for 30 days by intraperitoneal injection to explore the effects of TPM and LEV on the neuropathology and behavioral deficits. RESULTS The results indicated that TPM and LEV alleviated behavioral deficits and reduced amyloid plaques in APPswe/PS1dE9 transgenic mice. TPM and LEV increased Aβ clearance and up-regulated Aβ transport and autophagic degradation. TPM and LEV inhibited Aβ generation and suppressed γ-secretase activity. TPM and LEV inhibited GSK-3β activation and increased the activation of AMPK/Akt activation. Further, TPM and LEV inhibited histone deacetylase activity in vivo. CONCLUSIONS Therefore, TPM and LEV might have the potential to treat AD effectively in patient care.
Collapse
Affiliation(s)
- Jian-Quan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dionisio S, Brown H, Boyle R, Blum S. Managing the generalised tonic-clonic seizure and preventing progress to status epilepticus: a stepwise approach. Intern Med J 2013; 43:739-46. [DOI: 10.1111/imj.12168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/08/2013] [Indexed: 12/01/2022]
Affiliation(s)
- S. Dionisio
- Department of Neurology; Princess Alexandra Hospital
| | - H. Brown
- Department of Neurology; Princess Alexandra Hospital
| | - R. Boyle
- Department of Neurology; Princess Alexandra Hospital
| | | |
Collapse
|
47
|
|
48
|
Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, Smith SB, Ganapathy V, Maher P. The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 2013; 18:522-55. [PMID: 22667998 PMCID: PMC3545354 DOI: 10.1089/ars.2011.4391] [Citation(s) in RCA: 730] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The antiporter system x(c)(-) imports the amino acid cystine, the oxidized form of cysteine, into cells with a 1:1 counter-transport of glutamate. It is composed of a light chain, xCT, and a heavy chain, 4F2 heavy chain (4F2hc), and, thus, belongs to the family of heterodimeric amino acid transporters. Cysteine is the rate-limiting substrate for the important antioxidant glutathione (GSH) and, along with cystine, it also forms a key redox couple on its own. Glutamate is a major neurotransmitter in the central nervous system (CNS). By phylogenetic analysis, we show that system x(c)(-) is a rather evolutionarily new amino acid transport system. In addition, we summarize the current knowledge regarding the molecular mechanisms that regulate system x(c)(-), including the transcriptional regulation of the xCT light chain, posttranscriptional mechanisms, and pharmacological inhibitors of system x(c)(-). Moreover, the roles of system x(c)(-) in regulating GSH levels, the redox state of the extracellular cystine/cysteine redox couple, and extracellular glutamate levels are discussed. In vitro, glutamate-mediated system x(c)(-) inhibition leads to neuronal cell death, a paradigm called oxidative glutamate toxicity, which has successfully been used to identify neuroprotective compounds. In vivo, xCT has a rather restricted expression pattern with the highest levels in the CNS and parts of the immune system. System x(c)(-) is also present in the eye. Moreover, an elevated expression of xCT has been reported in cancer. We highlight the diverse roles of system x(c)(-) in the regulation of the immune response, in various aspects of cancer and in the eye and the CNS.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, University of Ulm, Ulm, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The mitochondrial respiratory chain is the final common pathway for energy production. Defects affecting this pathway can give rise to disease that presents at any age and affects any tissue. However, irrespective of genetic defect, epilepsy is common and there is a significant risk of status epilepticus. This review summarizes our current understanding of the epilepsy that occurs in mitochondrial disease, focusing on three of the most common disorders: mitochondrial myopathy encephalopathy, lactic acidosis and stroke-like episodes (MELAS), myoclonus epilepsy and ragged-red fibers (MERRF), and polymerase gamma (POLG) related disease. In addition, we review the pathogenesis and possible treatment of these disorders.
Collapse
|
50
|
Mbizvo GK, Dixon P, Hutton JL, Marson AG. Levetiracetam add-on for drug-resistant focal epilepsy: an updated Cochrane Review. Cochrane Database Syst Rev 2012; 2012:CD001901. [PMID: 22972056 PMCID: PMC7061650 DOI: 10.1002/14651858.cd001901.pub2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Epilepsy is an important neurological condition and drug resistance in epilepsy is particularly common in individuals with focal seizures. In this review, we summarise the current evidence regarding a new antiepileptic drug, levetiracetam, when used as add-on treatment for controlling drug-resistant focal epilepsy. This is an update to a Cochrane Review that was originally published in 2001. OBJECTIVES To evaluate the effectiveness of levetiracetam, added on to usual care, in treating drug-resistant focal epilepsy. SEARCH METHODS We searched the Cochrane Epilepsy Group's Specialized Register (August 2012), the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library Issue 7, 2012), and MEDLINE (1946 to August week 1, 2012). We also contacted the manufacturers of levetiracetam and researchers in the field to seek any ongoing or unpublished trials. SELECTION CRITERIA Randomised, placebo-controlled trials of add-on levetiracetam treatment in people with drug-resistant focal epilepsy. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials for inclusion, assessed trials for bias, extracted data, and evaluated the overall quality of evidence. Outcomes investigated included 50% or greater reduction in focal seizure frequency (response); less than 50% reduction in focal seizure frequency (non-response); treatment withdrawal; adverse effects (including a specific analysis of changes in behaviour); cognitive effects and quality of life (QoL). Risk ratios (RR) with 95% confidence intervals (CIs) were used as measures of effect (99% CIs for adverse effects). Primary analyses were Intention-to-Treat (ITT). Dose response and inter-trial heterogeneity were evaluated in regression models. MAIN RESULTS Eleven trials (1861 participants) were included. They predominantly possessed low risks of bias. Participants were adults in nine trials (1565 participants) and children in the remaining two trials (296 participants). The dose of levetiracetam tested was 1000 to 4000 mg/day in adults, and 60 mg/kg/day in children. Treatment ranged from 12 to 24 weeks. For the 50% or greater reduction in focal seizure frequency outcome, the RR was significantly in favour of levetiracetam at all doses. The naive estimates, ignoring dose, showed children (52% responded) as better responders than adults (39% responded) on levetiracetam. 25% of children and 16% of adults responded to placebo. The Number Needed to Treat for an additional beneficial outcome for children and adults was four (95% CI three to seven) and five (95% CI four to six), respectively. The significant levels of statistical heterogeneity between trials on adults precluded valid provision of an overall RR (ignoring dose). Results for the two trials that tested levetiracetam 2000 mg on adults were sufficiently similar to be combined to give an RR for 50% or greater reduction in focal seizure frequency of 4.91 (95% CI 2.75 to 8.77), with an RR of 0.68 (95% CI 0.60 to 0.77) for non-response. At this dose, 37% and 8% of adults were responders in the levetiracetam and placebo groups, respectively. Regression analysis demonstrated that much of the heterogeneity between adult trials was likely to be explained by different doses of levetiracetam tested and different years of trial publication. There was no evidence of statistical heterogeneity between trials on children. For these trials, the RR for 50% or greater reduction in focal seizure frequency was 1.91 (95% CI 1.38 to 2.63), with an RR of 0.68 (95% CI 0.56 to 0.81) for non-response. 27% of children responded. Participants were not significantly more likely to have levetiracetam withdrawn (RR 0.98; 95% CI 0.73 to 1.32 and RR 0.80; 95% CI 0.43 to 1.46 for adults and children, respectively). For adults, somnolence (RR 1.51; 99% CI 1.06 to 2.17) and infection (RR 1.76; 99% CI 1.03 to 3.02) were significantly associated with levetiracetam. Accidental injury was significantly associated with placebo (RR 0.60; 99% CI 0.39 to 0.92). No individual adverse effect was significantly associated with levetiracetam in children. Changes in behaviour were negligible in adults (1% affected; RR 1.79; 99% CI 0.59 to 5.41) but significant in children (23% affected; RR 1.90; 99% CI 1.16 to 3.11). Cognitive effect and QoL outcomes suggested that levetiracetam had a positive effect on cognition and some aspects of QoL in adults. In children, levetiracetam did not appear to alter cognitive function but there was evidence of worsening in certain aspects of child behaviour. The overall quality of evidence used was high. AUTHORS' CONCLUSIONS This update adds seven more trials to the original review, which contained four trials. At every dose analysed, levetiracetam significantly reduced focal seizure frequency relative to placebo. This indicates that levetiracetam can significantly reduce focal seizure frequency when it is used as an add-on treatment for both adults and children with drug-resistant focal epilepsy. As there was evidence of significant levels of statistical heterogeneity within this positive effect it is difficult to be precise about the relative magnitude of the effect. At a dose of 2000 mg, levetiracetam may be expected to be 3.9 times more effective than placebo; with 30% of adults being responders at this dose. At a dose of 60 mg/kg/day, levetiracetam may be expected to be 0.9 times more effective than placebo; with 25% of children being responders at this dose. When dose was ignored, children were better responders than adults by around 4% to 13%. The results grossly suggest that one child or adult may respond to levetiracetam for every four or five children or adults, respectively, that have received levetiracetam rather than placebo. The drug seems to be well tolerated in both adults and children although non-specific changes in behaviour may be experienced in as high as 20% of children. This aspect of the adverse-effect profile of levetiracetam was analysed crudely and requires further investigation and validation. It seems reasonable to continue the use of levetiracetam in both adults and children with drug-resistant focal epilepsy. The results cannot be used to confirm longer-term or monotherapy effects of levetiracetam or its effects on generalised seizures. The conclusions are largely unchanged from those in the original review. The most significant contribution of this update is the addition of paediatric data into the analysis.
Collapse
Affiliation(s)
- Gashirai K Mbizvo
- Institute for Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| | | | | | | |
Collapse
|