1
|
Andersen TO, Altshuler I, Vera-Ponce de León A, Walter JM, McGovern E, Keogh K, Martin C, Bernard L, Morgavi DP, Park T, Li Z, Jiang Y, Firkins JL, Yu Z, Hvidsten TR, Waters SM, Popova M, Arntzen MØ, Hagen LH, Pope PB. Metabolic influence of core ciliates within the rumen microbiome. THE ISME JOURNAL 2023:10.1038/s41396-023-01407-y. [PMID: 37169869 DOI: 10.1038/s41396-023-01407-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome-centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprise an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting-animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.
Collapse
Affiliation(s)
- Thea O Andersen
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ianina Altshuler
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Arturo Vera-Ponce de León
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Juline M Walter
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Emily McGovern
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County, Meath, Ireland
| | - Kate Keogh
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County, Meath, Ireland
| | - Cécile Martin
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Laurence Bernard
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Diego P Morgavi
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Zongjun Li
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Yu Jiang
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sinead M Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County, Meath, Ireland
| | - Milka Popova
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Live H Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
2
|
Teklebrhan T, Tan Z, Jonker A. Diet containing sulfur shifted hydrogen metabolism from methanogenesis to alternative sink and influenced fermentation and gut microbial ecosystem of goats. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Daugaliyeva A, Daugaliyeva S, Ashanin A, Beltramo C, Mamyrova L, Yessembekova Z, Peletto S. Prokaryotic Diversity of Ruminal Content and Its Relationship with Methane Emissions in Cattle from Kazakhstan. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111911. [PMID: 36431046 PMCID: PMC9695961 DOI: 10.3390/life12111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
In this study, we analyzed the microbial composition of the rumen contents of cattle from Kazakhstan. Specifically, samples of the liquid and solid fractions of the rumen were collected to determine the quantitative and qualitative composition of methanogenic archaea. Cattle were six steers receiving hay-concentrate feeding. Methane emission was determined by repeated measurements for each animal. Rumen samples were then taken from fistulas and analyzed using 16S metabarcoding via Next-Generation Sequencing (NGS). The difference between the rumen fractions was investigated, resulting in differential distribution of the families Streptococccaceae, Lactobacillaceae, Desulfobulbaceae, and Succinivibrionaceae, which were more abundant in the liquid fraction, while Thalassospiraceae showed a higher presence in the solid fraction. These differences can be explained by the fact that fibrolytic bacteria are associated with the solid fraction compared to the liquid. A relationship between methane emission and methanogenic microbiota was also observed. Steers producing more methane showed microbiota richer in methanogens; specifically, most Mathanobacteriaceae resided in the liquid fraction and solid fraction of animals 1 and 6, respectively. The same animals carried most of the Methanobrevibacter and Methanosphaera genera. On the contrary, animals 2, 3, and 5 hosted a lower amount of methanogens, which also agreed with the data on methane emissions. In conclusion, this study demonstrated a relationship between methane emission and the content of methanogenic archaea in different rumen fractions collected from cattle in Kazakhstan. As a result of the studies, it was found that the solid fraction of the rumen contained more genera of methanogens than the liquid fraction of the rumen. These results prove that taking rumen contents through a fistula is more useful than taking it through a probe. The presented data may be of interest to scientists from all over the world engaged in similar research in a comparative aspect.
Collapse
Affiliation(s)
- Aida Daugaliyeva
- LLP ‘Kazakh Research Institute for Livestock and Fodder Production’, St. Zhandosova 51, Almaty 050035, Kazakhstan
| | - Saule Daugaliyeva
- LLP ‘Scientific Production Center of Microbiology and Virology’, Bogenbay Batyr Str. 105, Almaty 050010, Kazakhstan
- Correspondence:
| | - Alexander Ashanin
- LLP ‘Kazakh Research Institute for Livestock and Fodder Production’, St. Zhandosova 51, Almaty 050035, Kazakhstan
| | - Chiara Beltramo
- Istituto Zooprofilattico Sperimentale del Piemonte, Ligura e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Latipa Mamyrova
- LLP ‘Kazakh Research Institute for Livestock and Fodder Production’, St. Zhandosova 51, Almaty 050035, Kazakhstan
| | - Zinagul Yessembekova
- LLP ‘Kazakh Research Institute for Livestock and Fodder Production’, St. Zhandosova 51, Almaty 050035, Kazakhstan
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Ligura e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy
| |
Collapse
|
4
|
Effects of danofloxacin dosing regimen on gastrointestinal pharmacokinetics and fecal microbiome in steers. Sci Rep 2021; 11:11249. [PMID: 34045586 PMCID: PMC8160337 DOI: 10.1038/s41598-021-90647-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/21/2021] [Indexed: 01/04/2023] Open
Abstract
Fluoroquinolones are a class of antimicrobial commonly used in human medicine, and deemed critical by the World Health Organization. Nonetheless, two formulations are approved for the treatment of respiratory disease in beef cattle. The objective of this study was to determine the gastrointestinal pharmacokinetics and impact on enteric bacteria of cattle when receiving one of the two dosing regimens (high: 40 mg/kg SC once or low: 20 mg/kg IM q48hr) of danofloxacin, a commonly utilized synthetic fluoroquinolone in veterinary medicine. Danofloxacin was administered to 12 steers (age 7 months) fitted with intestinal ultrafiltration devices at two different dosing regimens to assess the gastrointestinal pharmacokinetics, the shifts in the gastrointestinal microbiome and the development of resistant bacterial isolates. Our results demonstrated high intestinal penetration of danofloxacin for both dosing groups, as well as, significant differences in MIC values for E. coli and Enterococcus between dosing groups at selected time points over a 38 day period. Danofloxacin treatment consistently resulted in the Euryarchaeota phyla decreasing over time, specifically due to a decrease in Methanobrevibacter. Although microbiome differences were minor between dosing groups, the low dose group had a higher number of isolates with MIC values high enough to cause clinically relevant resistance. This information would help guide veterinarians as to appropriate dosing schemes to minimize the spread of antimicrobial resistance.
Collapse
|
5
|
Chuphal N, Singha KP, Sardar P, Sahu NP, Shamna N, Kumar V. Scope of Archaea in Fish Feed: a New Chapter in Aquafeed Probiotics? Probiotics Antimicrob Proteins 2021; 13:1668-1695. [PMID: 33821466 DOI: 10.1007/s12602-021-09778-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 12/21/2022]
Abstract
The outbreak of diseases leading to substantial loss is a major bottleneck in aquaculture. Over the last decades, the concept of using feed probiotics was more in focus to address the growth and health of cultivable aquatic organisms. The objective of this review is to provide an overview of the distinct functionality of archaea from conventional probiotics in nutrient utilization, specific caloric contribution, evading immune response and processing thermal resistance. The prime limitation of conventional probiotics is the viability of desired microbes under harsh feed processing conditions. To overcome the constraints of commercial probiotics pertaining to incompatibility towards industrial processing procedure, a super microbe, archaea, appears to be a potential alternative approach in aquaculture. The peculiarity of the archaeal cell wall provides them with heat stability and rigidity under industrial processing conditions. Besides, archaea being one of the gut microbial communities participates in various health-oriented biological functions in animals. Thus, the current review devoted that administration of archaea in aquafeed could be a promising strategy in aquaculture. Archaea may be used as a potential probiotic with the possible modes of functions and advantages over conventional probiotics in aquafeed preparation. The present review also provides the challenges associated with the use of archaea for aquaculture and a brief outline of the patents on archaea to highlight the various use of archaea in different sectors.
Collapse
Affiliation(s)
- Nisha Chuphal
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Krishna Pada Singha
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India.,Aquaculture Research Institute, Department of Animal Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844-3020, USA
| | - Parimal Sardar
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India.
| | - Narottam Prasad Sahu
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Naseemashahul Shamna
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Vikas Kumar
- Aquaculture Research Institute, Department of Animal Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844-3020, USA.
| |
Collapse
|
6
|
Stahl DA. The path leading to the discovery of the ammoniaoxidizing archaea. Environ Microbiol 2020; 22:4507-4519. [PMID: 32955155 DOI: 10.1111/1462-2920.15239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/28/2022]
Affiliation(s)
- David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
7
|
Agronomic and environmental factors affecting cultivation of the winter mushroom or Enokitake: achievements and prospects. Appl Microbiol Biotechnol 2019; 103:2469-2481. [DOI: 10.1007/s00253-019-09652-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/25/2023]
|
8
|
Mahalingam S, Dharumadurai D, Archunan G. Vaginal microbiome analysis of buffalo (Bubalus bubalis) during estrous cycle using high-throughput amplicon sequence of 16S rRNA gene. Symbiosis 2019. [DOI: 10.1007/s13199-018-00595-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Invited review: Phenotyping strategies and quantitative-genetic background of resistance, tolerance and resilience associated traits in dairy cattle. Animal 2018; 13:897-908. [PMID: 30523776 DOI: 10.1017/s1751731118003208] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In dairy cattle, resistance, tolerance and resilience refer to the adaptation ability to a broad range of environmental conditions, implying stable performances (e.g. production level, fertility status) independent from disease or infection pressure. All three mechanisms resistance, tolerance and resilience contribute to overall robustness, implying the evaluation of phenotyping and breeding strategies for improved robustness in dairy cattle populations. Classically, breeding approaches on improved robustness rely on simple production traits, in combination with detailed environmental descriptors and enhanced statistical modelling to infer possible genotype by environment interactions. In this regard, innovative environmental descriptors were heat stress indicators, and statistical modelling focussed on random regression or reaction norm methodology. A robust animal has high breeding values over a broad spectra of environmental levels. During the last years, direct health traits were included into selection indices, implying advances in genetic evaluations for traits being linked to resistance or tolerance against infectious and non-infectious diseases. Up to now, genetic evaluation for health traits is primarily based on subjectively measured producer-recorded data, with disease trait heritabilities in a low-to-moderate range. Thus, it is imperative to identify objectively measurable phenotypes as suitable biomarkers. New technologies (e.g. mid-infrared spectrometry) offer possibilities to determine potential biomarkers via laboratory analyses. Novel biomarkers include measurable physiological traits (e.g. serum metabolites, hormone levels) as indicators for a current infection, or the host's reaction to environmental stressors. The rumen microbiome composition is proposed as a biomarker to detect interactions between host genotype and environmental effects. The understanding of host genetic variation in disease resistance and individual expression of robustness encourages analyses on the underlying immune response (IR) system. Recent advances have been made in order to infer the genetic background of IR traits and cows immunological competence in relation to functional and production traits. Thus, a last aspect of this review addresses the genetic background and current state of genetic control for resistance to economically relevant infectious and non-infectious dairy cattle diseases by considering immune-related factors.
Collapse
|
10
|
The impact of reducing dietary crude protein and increasing total dietary fiber on hindgut fermentation, the methanogen community and gas emission in growing pigs. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Matthews C, Crispie F, Lewis E, Reid M, O’Toole PW, Cotter PD. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 2018; 10:115-132. [PMID: 30207838 PMCID: PMC6546327 DOI: 10.1080/19490976.2018.1505176] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/08/2018] [Accepted: 06/26/2018] [Indexed: 02/03/2023] Open
Abstract
Methane is generated in the foregut of all ruminant animals by the microorganisms present. Dietary manipulation is regarded as the most effective and most convenient way to reduce methane emissions (and in turn energy loss in the animal) and increase nitrogen utilization efficiency. This review examines the impact of diet on bovine rumen function and outlines what is known about the rumen microbiome. Our understanding of this area has increased significantly in recent years due to the application of omics technologies to determine microbial composition and functionality patterns in the rumen. This information can be combined with data on nutrition, rumen physiology, nitrogen excretion and/or methane emission to provide comprehensive insights into the relationship between rumen microbial activity, nitrogen utilisation efficiency and methane emission, with an ultimate view to the development of new and improved intervention strategies.
Collapse
Affiliation(s)
- Chloe Matthews
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Fiona Crispie
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Eva Lewis
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Michael Reid
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul W. O’Toole
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Zhu Z, Kristensen L, Difford GF, Poulsen M, Noel SJ, Abu Al-Soud W, Sørensen SJ, Lassen J, Løvendahl P, Højberg O. Changes in rumen bacterial and archaeal communities over the transition period in primiparous Holstein dairy cows. J Dairy Sci 2018; 101:9847-9862. [PMID: 30172409 DOI: 10.3168/jds.2017-14366] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/03/2018] [Indexed: 11/19/2022]
Abstract
In the present study, we hypothesized that the rumen bacterial and archaeal communities would change significantly over the transition period of dairy cows, mainly as an adaptation to the classical use of low-grain prepartum and high-grain postpartum diets. Bacterial 16S rRNA gene amplicon sequencing of rumen samples from 10 primiparous Holstein dairy cows revealed no changes over the transition period in relative abundance of genera such as Ruminococcus, Butyrivibrio, Clostridium, Coprococcus, and Pseudobutyrivibrio. However, other dominant genus-level taxa, such as Prevotella, unclassified Ruminococcaceae, and unclassified Succinivibrionaceae, showed distinct changes in relative abundance from the prepartum to the postpartum period. Overall, we observed individual fluctuation patterns over the transition period for a range of bacterial taxa that, in some cases, were correlated with observed changes in the rumen short-chain fatty acids profile. Combined results from clone library and terminal-restriction fragment length polymorphism (T-RFLP) analyses, targeting the methyl-coenzyme M reductase α-subunit (mcrA) gene, revealed a methanogenic archaeal community dominated by the Methanobacteriales and Methanomassiliicoccales orders, particularly the genera Methanobrevibacter, Methanosphaera, and Methanomassiliicoccus. As observed for the bacterial community, the T-RFLP patterns showed significant shifts in methanogenic community composition over the transition period. Together, the composition of the rumen bacterial and archaeal communities exhibited changes in response to particularly the dietary changes of dairy cows over the transition period.
Collapse
Affiliation(s)
- Zhigang Zhu
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark.
| | - Lise Kristensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Gareth F Difford
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Morten Poulsen
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Samantha J Noel
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Waleed Abu Al-Soud
- Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Søren J Sørensen
- Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jan Lassen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Peter Løvendahl
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Ole Højberg
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark.
| |
Collapse
|
13
|
Hartinger T, Gresner N, Südekum KH. Does intra-ruminal nitrogen recycling waste valuable resources? A review of major players and their manipulation. J Anim Sci Biotechnol 2018; 9:33. [PMID: 29721317 PMCID: PMC5911377 DOI: 10.1186/s40104-018-0249-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/06/2018] [Indexed: 12/15/2022] Open
Abstract
Nitrogenous emissions from ruminant livestock production are of increasing public concern and, together with methane, contribute to environmental pollution. The main cause of nitrogen-(N)-containing emissions is the inadequate provision of N to ruminants, leading to an excess of ammonia in the rumen, which is subsequently excreted. Depending on the size and molecular structure, various bacterial, protozoal and fungal species are involved in the ruminal breakdown of nitrogenous compounds (NC). Decelerating ruminal NC degradation by controlling the abundance and activity of proteolytic and deaminating microorganisms, but without reducing cellulolytic processes, is a promising strategy to decrease N emissions along with increasing N utilization by ruminants. Different dietary options, including among others the treatment of feedstuffs with heat or the application of diverse feed additives, as well as vaccination against rumen microorganisms or their enzymes have been evaluated. Thereby, reduced productions of microbial metabolites, e.g. ammonia, and increased microbial N flows give evidence for an improved N retention. However, linkage between these findings and alterations in the rumen microbiota composition, particularly NC-degrading microbes, remains sparse and contradictory findings confound the exact evaluation of these manipulating strategies, thus emphasizing the need for comprehensive research. The demand for increased sustainability in ruminant livestock production requests to apply attention to microbial N utilization efficiency and this will require a better understanding of underlying metabolic processes as well as composition and interactions of ruminal NC-degrading microorganisms.
Collapse
Affiliation(s)
- Thomas Hartinger
- Institute of Animal Science, University of Bonn, 53115 Bonn, Germany
| | - Nina Gresner
- Institute of Animal Science, University of Bonn, 53115 Bonn, Germany
| | | |
Collapse
|
14
|
Jose VL, Appoothy T, More RP, Arun AS. Metagenomic insights into the rumen microbial fibrolytic enzymes in Indian crossbred cattle fed finger millet straw. AMB Express 2017; 7:13. [PMID: 28050853 PMCID: PMC5209320 DOI: 10.1186/s13568-016-0310-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 11/24/2022] Open
Abstract
The rumen is a unique natural habitat, exhibiting an unparalleled genetic resource of fibrolytic enzymes of microbial origin that degrade plant polysaccharides. The objectives of this study were to identify the principal plant cell wall-degrading enzymes and the taxonomic profile of rumen microbial communities that are associated with it. The cattle rumen microflora and the carbohydrate-active enzymes were functionally classified through a whole metagenomic sequencing approach. Analysis of the assembled sequences by the Carbohydrate-active enzyme analysis Toolkit identified the candidate genes encoding fibrolytic enzymes belonging to different classes of glycoside hydrolases(11,010 contigs), glycosyltransferases (6366 contigs), carbohydrate esterases (4945 contigs), carbohydrate-binding modules (1975 contigs), polysaccharide lyases (480 contigs), and auxiliary activities (115 contigs). Phylogenetic analysis of CAZyme encoding contigs revealed that a significant proportion of CAZymes were contributed by bacteria belonging to genera Prevotella, Bacteroides, Fibrobacter, Clostridium, and Ruminococcus. The results indicated that the cattle rumen microbiome and the CAZymes are highly complex, structurally similar but compositionally distinct from other ruminants. The unique characteristics of rumen microbiota and the enzymes produced by resident microbes provide opportunities to improve the feed conversion efficiency in ruminants and serve as a reservoir of industrially important enzymes for cellulosic biofuel production.
Collapse
|
15
|
Paul SS, Dey A, Baro D, Punia BS. Comparative community structure of archaea in rumen of buffaloes and cattle. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3284-3293. [PMID: 27976411 DOI: 10.1002/jsfa.8177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 11/13/2016] [Accepted: 12/06/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Detailed knowledge of the community structure of methanogens is essential for amelioration of methane emission from livestock species. Several studies have indicated that predominant methanogens of buffalo rumen are different from those in cattle. However, predominant genera of methanogens reported by individual studies varied primarily because of limited scope of sampling, sequencing of limited number of sequences and potential PCR bias in individual studies. In this study, the collective comparative diversity of methanogenic archaea in the rumen of cattle and buffaloes was examined by performing a meta-analysis of all the 16S rRNA (rrn) sequences deposited in GenBank. RESULTS Ruminal methanogen sequences of buffalo were clustered into 900 species-level operational taxonomic units (OTUs), and ruminal methanogen sequences of cattle were clustered into 1522 species level OTUs. The number of species-level OTUs shared between cattle and buffaloes was 229 (10.4% of all OTUs), comprising 1746 sequences (27% of the total 6447 sequences). According to taxonomic classification by three different classifiers, Methanobrevibacter was found to be the most predominant genus both in cattle (69-71% of sequences) as well as buffaloes (65.1-68.9% of sequences). Percentage of Methanomicrobium was much higher (P < 0.05) in the case of buffalo (18%) than that of cattle (4.5%). On the other hand, percentages of Methanosphaera- and Methanomassiliicoccus-like methanogens were much higher (P < 0.05) in cattle than in buffaloes. CONCLUSION This study indicated that there is a substantial difference in community structure of ruminal methanogens of cattle and buffaloes. The study has also indicated that the percent of species-level operational taxonomic units shared between cattle and buffalo is very low, and thus host species-specific methane mitigation strategies need to be developed for cattle and buffaloes. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shyam S Paul
- ICAR - Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Avijit Dey
- ICAR - Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Daoharu Baro
- ICAR - Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Balbir S Punia
- ICAR - Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| |
Collapse
|
16
|
Zeitz J, Ineichen S, Soliva C, Leiber F, Tschuor A, Braun U, Kreuzer M, Clauss M. Variability in microbial population and fermentation traits at various sites within the forestomach and along the digestive tract as assessed in goats fed either grass or browse. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2015.12.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Wu S, Ren Y, Peng C, Hao Y, Xiong F, Wang G, Li W, Zou H, Angert ER. Metatranscriptomic discovery of plant biomass-degrading capacity from grass carp intestinal microbiomes. FEMS Microbiol Ecol 2015; 91:fiv107. [DOI: 10.1093/femsec/fiv107] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2015] [Indexed: 01/15/2023] Open
|
18
|
Witzig M, Boguhn J, Zeder M, Seifert J, Rodehutscord M. Effect of donor animal species and their feeding on the composition of the microbial community establishing in a rumen simulation. J Appl Microbiol 2015; 119:33-46. [DOI: 10.1111/jam.12829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 11/26/2022]
Affiliation(s)
- M. Witzig
- Institut für Nutztierwissenschaften; Universität Hohenheim; Stuttgart Germany
| | - J. Boguhn
- Institut für Nutztierwissenschaften; Universität Hohenheim; Stuttgart Germany
| | - M. Zeder
- Technobiology GmbH; Buchrain Switzerland
| | - J. Seifert
- Institut für Nutztierwissenschaften; Universität Hohenheim; Stuttgart Germany
| | - M. Rodehutscord
- Institut für Nutztierwissenschaften; Universität Hohenheim; Stuttgart Germany
| |
Collapse
|
19
|
Abecia L, Fondevila M, Rodríguez-Romero N, Martínez G, Yáñez-Ruiz DR. Comparative study of fermentation and methanogen community structure in the digestive tract of goats and rabbits. J Anim Physiol Anim Nutr (Berl) 2013; 97 Suppl 1:80-8. [PMID: 23639021 DOI: 10.1111/jpn.12049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/26/2012] [Indexed: 12/01/2022]
Abstract
Methane is the most important anthropogenic contribution to climate change after carbon dioxide and represents a loss of feed energy for the animal, mainly for herbivorous species. However, our knowledge about the ecology of Archaea, the microbial group responsible for methane synthesis in the gut, is very poor. Moreover, it is well known that hindgut fermentation differs from rumen fermentation. The composition of archaeal communities in fermentation compartments of goats and rabbits were investigated using DGGE to generate fingerprints of archaeal 16S rRNA gene. Ruminal contents and faeces from five Murciano-Granadina goats and caecal contents of five commercial White New Zealand rabbits were compared. Diversity profile of methanogenic archaea was carried out by PCR-DGGE. Quantification of methanogenic archaea and the abundance relative to bacteria was determined by real-time PCR. Methanogenic archaeal species were relatively constant across species. Dendrogram from DGGE of the methanogen community showed one cluster for goat samples with two sub-clusters by type of sample (ruminal and faeces). In a second cluster, samples from rabbit were grouped. No differences were found either in richness or Shannon index as diversity indexes. Although the primer sets used was developed to investigate rumen methanogenic archaeal community, primers specificity did not affect the assessment of rabbit methanogen community structure. Rumen content showed the highest number or methanogenic archaea (log₁₀ 9.36), followed by faeces (log₁₀ 8.52) and showing rabbit caecum the lower values (log₁₀ 5.52). DGGE profile showed that pre-gastric and hindgut fermenters hold a very different methanogen community. Rabbits hold a microbial community of similar complexity than that in ruminants but less abundant, which agrees with the type of fermentation profile.
Collapse
Affiliation(s)
- L Abecia
- Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | | | |
Collapse
|
20
|
Mohammadzadeh H, Yáñez-Ruiz DR, Martínez-Fernandez G, Abecia L. Molecular comparative assessment of the microbial ecosystem in rumen and faeces of goats fed alfalfa hay alone or combined with oats. Anaerobe 2013; 29:52-8. [PMID: 24333680 DOI: 10.1016/j.anaerobe.2013.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 11/07/2013] [Accepted: 11/27/2013] [Indexed: 01/08/2023]
Abstract
The objective of this work was to compare the biomass and community structure of bacteria, protozoa and archaea communities in samples of rumen and faeces of goats and to what extent the diet (alfalfa hay with or without supplemented oats) offered to them exert an influence. Four cannulated adult goats fistulated in the rumen were used in a cross over design experiment in two experimental periods of 26 days, consisting in 14 days of adaptation, 7 days of sampling rumen contents and 5 days of digestibility measurement. Bacterial, protozoa and archaeal biomass and the communities' structure was assessed by real time PCR (qPCR) and denaturing gradient gel electrophoresis (DGGE), respectively. The numbers of archaea and bacteria in both rumen and faeces were higher and lower, respectively, in animals fed AH diet (P < 0.005). Contrary, protozoal numbers were not affected by the diet but were lower (P < 0.001) in faeces than in rumen. The analysis of the community structure revealed a consistently different population in structure in rumen and faeces for the three studied microbial groups and that supplementing alfalfa hay with oats led to a decrease in the similarity between sites in the rumen and faeces: similarity indexes for bacteria (57 and 27%), archaea (26 and 9%) and protozoa (62 and 22%) in animals fed AH and AHO diets, respectively.
Collapse
Affiliation(s)
- Hamid Mohammadzadeh
- Animal Nutrition Institute, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Iran
| | - David R Yáñez-Ruiz
- Animal Nutrition Institute, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Gonzalo Martínez-Fernandez
- Animal Nutrition Institute, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Leticia Abecia
- Animal Nutrition Institute, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
21
|
Identification of methanogenic archaea in the hyporheic sediment of Sitka stream. PLoS One 2013; 8:e80804. [PMID: 24278322 PMCID: PMC3835567 DOI: 10.1371/journal.pone.0080804] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
Methanogenic archaea produce methane as a metabolic product under anoxic conditions and they play a crucial role in the global methane cycle. In this study molecular diversity of methanogenic archaea in the hyporheic sediment of the lowland stream Sitka (Olomouc, Czech Republic) was analyzed by PCR amplification, cloning and sequencing analysis of the methyl coenzyme M reductase alpha subunit (mcrA) gene. Sequencing analysis of 60 clones revealed 24 different mcrA phylotypes from hyporheic sedimentary layers to a depth of 50 cm. Phylotypes were affiliated with Methanomicrobiales, Methanosarcinales and Methanobacteriales orders. Only one phylotype remains unclassified. The majority of the phylotypes showed higher affiliation with uncultured methanogens than with known methanogenic species. The presence of relatively rich assemblage of methanogenic archaea confirmed that methanogens may be an important component of hyporheic microbial communities and may affect CH4 cycling in rivers.
Collapse
|
22
|
Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type. Appl Environ Microbiol 2013; 80:586-94. [PMID: 24212580 DOI: 10.1128/aem.03131-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Methane is an undesirable end product of rumen fermentative activity because of associated environmental impacts and reduced host feed efficiency. Our study characterized the rumen microbial methanogenic community in beef cattle divergently selected for phenotypic residual feed intake (RFI) while offered a high-forage (HF) diet followed by a low-forage (LF) diet. Rumen fluid was collected from 14 high-RFI (HRFI) and 14 low-RFI (LRFI) animals at the end of both dietary periods. 16S rRNA gene clone libraries were used, and methanogen-specific tag-encoded pyrosequencing was carried out on the samples. We found that Methanobrevibacter spp. are the dominant methanogens in the rumen, with Methanobrevibacter smithii being the most abundant species. Differences in the abundance of Methanobrevibacter smithii and Methanosphaera stadtmanae genotypes were detected in the rumen of animals offered the LF compared to the HF diet while the abundance of Methanobrevibacter smithii genotypes was different between HRFI and LRFI animals irrespective of diet. Our results demonstrate that while a core group of methanogen operational taxonomic units (OTUs) exist across diet and phenotype, significant differences were observed in the distribution of genotypes within those OTUs. These changes in genotype abundance may contribute to the observed differences in methane emissions between efficient and inefficient animals.
Collapse
|
23
|
Krause DO, Nagaraja TG, Wright ADG, Callaway TR. Board-invited review: Rumen microbiology: leading the way in microbial ecology. J Anim Sci 2013; 91:331-41. [PMID: 23404990 DOI: 10.2527/jas.2012-5567] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Robert Hungate, considered the father of rumen microbiology, was the first to initiate a systematic exploration of the microbial ecosystem of the rumen, but he was not alone. The techniques he developed to isolate and identify cellulose-digesting bacteria from the rumen have had a major impact not only in delineating the complex ecosystem of the rumen but also in clinical microbiology and in the exploration of a number of other anaerobic ecosystems, including the human hindgut. Rumen microbiology has pioneered our understanding of much of microbial ecology and has broadened our knowledge of ecology in general, as well as improved the ability to feed ruminants more efficiently. The discovery of anaerobic fungi as a component of the ruminal flora disproved the central dogma in microbiology that all fungi are aerobic organisms. Further novel interactions between bacterial species such as nutrient cross feeding and interspecies H2 transfer were first described in ruminal microorganisms. The complexity and diversity present in the rumen make it an ideal testing ground for microbial theories (e.g., the effects of nutrient limitation and excess) and techniques (such as 16S rRNA), which have rewarded the investigators that have used this easily accessed ecosystem to understand larger truths. Our understanding of characteristics of the ruminal microbial population has opened new avenues of microbial ecology, such as the existence of hyperammonia-producing bacteria and how they can be used to improve N efficiency in ruminants. In this review, we examine some of the contributions to science that were first made in the rumen, which have not been recognized in a broader sense.
Collapse
Affiliation(s)
- D O Krause
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | | |
Collapse
|
24
|
Saengkerdsub S, Ricke SC. Ecology and characteristics of methanogenic archaea in animals and humans. Crit Rev Microbiol 2013; 40:97-116. [PMID: 23425063 DOI: 10.3109/1040841x.2013.763220] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review, the molecular techniques used in animal-based-methanogen studies will be discussed along with how methanogens interact not only with other microorganisms but with their animal hosts as well. These methods not only indicate the diversity and levels of methanogens, but also provide insight on their ecological functions. Most molecular techniques have been based on either 16S rRNA genes or methyl-coenzyme M reductase, a ubiquitous enzyme in methanogens. The most predominant methanogens in animals belong to the genus Methanobrevibacter. Besides methanogens contributing to overall H2 balance, methanogens also have mutual interactions with other bacteria. In addition to shared metabolic synergism, the host animal retrieves additional energy from the diet when methanogens are co-colonized with other normal flora. By comparing genes in methanogens with other bacteria, possible gene transfer between methanogens and other bacteria in the same environments appears to occur. Finally, diets in conjunction with the genetics of methanogens and hosts may represent the biological framework that dictate the extent of methanogen prevalence in these ecosystems. In addition, host evolution including the immune system could serve as an additional selective pressure for methanogen colonization.
Collapse
Affiliation(s)
- Suwat Saengkerdsub
- Department of Food Science, Center for Food Safety, University of Arkansas , Fayetteville, AR , USA , and
| | | |
Collapse
|
25
|
Kong Y, Xia Y, Seviour R, Forster R, McAllister TA. Biodiversity and composition of methanogenic populations in the rumen of cows fed alfalfa hay or triticale straw. FEMS Microbiol Ecol 2013; 84:302-15. [PMID: 23278338 DOI: 10.1111/1574-6941.12062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/06/2012] [Accepted: 12/12/2012] [Indexed: 11/29/2022] Open
Abstract
It is clear that methanogens are responsible for ruminal methane emissions, but quantitative information about the composition of the methanogenic community in the bovine rumen is still limited. The diversity and composition of rumen methanogens in cows fed either alfalfa hay or triticale straw were examined using a full-cycle rRNA approach. Quantitative fluorescence in situ hybridization undertaken applying oligonucleotide probes designed here identified five major methanogenic populations or groups in these animals: the Methanobrevibacter TMS group (consisting of Methanobrevibacter thaueri, Methanobrevibacter millerae and Methanobrevibacter smithii), Methanbrevibacter ruminantium-, Methanosphaera stadtmanae-, Methanomicrobium mobile-, and Methanimicrococcus-related methanogens. The TMS- and M. ruminantium-related methanogens accounted for on average 46% and 41% of the total methanogenic cells in liquid (Liq) and solid (Sol) phases of the rumen contents, respectively. Other prominent methanogens in the Liq and Sol phases included members of M. stadtmanae (15% and 33%), M. mobile (17% and 12%), and Methanimicrococcus (23% and 9%). The relative abundances of these methanogens in the community varied among individual animals and across diets. No clear differences in community composition could be observed with dietary change using cloning techniques. This study extends the known biodiversity levels of the methanogenic communities in the rumen of cows.
Collapse
Affiliation(s)
- Yunhong Kong
- Department of Biological Science and Technology, Kunming University, Kunming, China
| | | | | | | | | |
Collapse
|
26
|
Methanogens and methanogenesis in the rumens and ceca of lambs fed two different high-grain-content diets. Appl Environ Microbiol 2012; 79:1777-86. [PMID: 23241983 DOI: 10.1128/aem.03115-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The amount and nature of dietary starch are known to influence the extent and site of feed digestion in ruminants. However, how starch degradability may affect methanogenesis and methanogens along the ruminant's digestive tract is poorly understood. This study examined the diversity and metabolic activity of methanogens in the rumen and cecum of lambs receiving wheat or corn high-grain-content diets. Methane production in vivo and ex situ was also monitored. In vivo daily methane emissions (CH(4) g/day) were 36% (P < 0.05) lower in corn-fed lambs than in wheat-fed lambs. Ex situ methane production (μmol/h) was 4-fold higher for ruminal contents than for cecal contents (P < 0.01), while methanogens were 10-fold higher in the rumen than in the cecum (mcrA copy numbers; P < 0.01). Clone library analysis indicated that Methanobrevibacter was the dominant genus in both sites. Diet induced changes at the species level, as the Methanobrevibacter millerae-M. gottschalkii-M. smithii clade represented 78% of the sequences from the rumen of wheat-fed lambs and just about 52% of the sequences from the rumen of the corn-fed lambs. Diet did not affect mcrA expression in the rumen. In the cecum, however, expression was 4-fold and 2-fold lower than in the rumen for wheat- and corn-fed lambs, respectively. Though we had no direct evidence for compensation of reduced rumen methane production with higher cecum methanogenesis, the ecology of methanogens in the cecum should be better considered.
Collapse
|
27
|
Lwin KO, Matsui H, Ban-Tokuda T, Kondo M, Lapitan RM, Herrera JRV, Del-Barrio AN, Fujihara T. Comparative analysis of methanogen diversity in the rumen of crossbred buffalo and cattle in the Philippines by using the functional gene mcrA. Mol Biol Rep 2012; 39:10769-74. [PMID: 23053974 DOI: 10.1007/s11033-012-1969-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/01/2012] [Indexed: 11/27/2022]
Abstract
Comparative analyses of methanogen diversity in the rumen of crossbred buffalo and cattle fed the same diet in the Philippines was performed by cloning the methyl coenzyme M reductase A (mcrA) gene. The cattle and buffalo libraries consisted of 50 clones each. Comparative analysis of the amino acid sequence revealed that these 2 libraries differed significantly (P < 0.01). The deduced amino acid sequences of the clones were classified into 9 operational taxonomic units (OTUs) in buffalo and 11 OTUs in cattle. Sequence similarity between the clones and known cultured methanogens ranged from 86 to 97 % for buffalo and 84 to 99 % for cattle. Methanobrevibacter species were predominant in buffalo (64 % of the clones), and an unknown mcrA was predominant in cattle (52 % of the clones). A large number of clones with low similarity to cultivated methanogens was observed in both buffalo and cattle, suggesting the presence of an unknown methanogen species in their rumen.
Collapse
Affiliation(s)
- Khin-Ohnmar Lwin
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie, 514-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Diversity, abundance and novel 16S rRNA gene sequences of methanogens in rumen liquid, solid and epithelium fractions of Jinnan cattle. Animal 2012; 4:20-9. [PMID: 22443614 DOI: 10.1017/s1751731109990681] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three methanogen 16S rRNA gene clone libraries were constructed from liquid (LM), solid (SM) and epithelium (EM) fractions taken from the rumen of Jinnan cattle in China. After the amplification by PCR using methanogen-specific primers Met86F and Met1340R, equal quantities of PCR products from the same fractions from each of the four cattle were mixed together and used to construct the three libraries. Sequence analysis showed that the 268 LM clones were divided into 35 phylotypes with 18 sequences of phylotypes affiliated with the genus Methanobrevibacter (84.3% of clones). The 135 SM clones were divided into 19 phylotypes with 11 phylotypes affiliated with the genus Methanobrevibacter (77.8%). The 267 EM clones were divided into 33 phylotypes with 15 phylotypes affiliated with the genus Methanobrevibacter (77.2%). Clones closely related to Methanomicrobium mobile and Methanobrevibacter wolinii were only found in the LM library, and those to Methanobrevibacter ruminantium and Methanobrevibacter gottschalkii only in the SM library. LM library comprised 12.4% unidentified euryarchaeal clones, SM library 23.7% and EM library 25.5%, respectively. Five phylotypes (accession number: EF055528 and EF055531-EF055534) did not belong to the Euryarchaeota sequences we had known. One possible new genus (represented by phylotype E17, accession number EF055528) belonging to Methanobacteriaceae was identified from EM library. Quantitative real-time PCR for the first time revealed that epithelium fraction had significantly higher density of methanogens, with methanogenic mcrA gene copies (9.95 log 10 (copies per gram of wet weight)) than solid (9.26, P < 0.01) and the liquid (8.44, P < 0.001). The three clone libraries also appeared different in Shannon index (EM library 2.12, LM library 2.05 and SM library 1.73). Our results showed that there were apparent differences in the methanogenic diversity and abundance in the three different fractions within the rumen of Jinnan cattle, with Methanobrevibacter species predominant in all the three libraries and with epithelium fraction having more unknown species and higher density of methanogens.
Collapse
|
29
|
Comparative survey of rumen microbial communities and metabolites across one caprine and three bovine groups, using bar-coded pyrosequencing and ¹H nuclear magnetic resonance spectroscopy. Appl Environ Microbiol 2012; 78:5983-93. [PMID: 22706048 DOI: 10.1128/aem.00104-12] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pyrosequencing of 16S rRNA genes (targeting Bacteria and Archaea) and (1)H nuclear magnetic resonance were applied to investigate the rumen microbiota and metabolites of Hanwoo steers in the growth stage (HGS), Hanwoo steers in the late fattening stage (HFS), Holstein-Friesian dairy cattle (HDC), and Korean native goats (KNG) in the late fattening stage. This was a two-part investigation. We began by comparing metabolites and microbiota of Hanwoo steers at two stages of husbandry. Statistical comparisons of metabolites and microbial communities showed no significant differences between HFS and HGS (differing by a dietary shift at 24 months and age [67 months versus 12 months]). We then augmented the study by extending the investigation to HDC and KNG. Overall, pyrosequencing of 16S rRNA genes showed that the rumens had highly diverse microbial communities containing many previously undescribed microorganisms. Bioinformatic analysis revealed that the bacterial sequences were predominantly affiliated with four phyla-Bacteroidetes, Firmicutes, Fibrobacteres, and Proteobacteria-in all ruminants. However, interestingly, the bacterial reads belonging to Fibrobacteres were present at a very low abundance (<0.1%) in KNG. Archaeal community analysis showed that almost all of these reads fell into a clade related to, but distinct from, known cultivated methanogens. Statistical analyses showed that the microbial communities and metabolites of KNG were clearly distinct from those of other ruminants. In addition, bacterial communities and metabolite profiles of HGS and HDC, fed similar diets, were distinctive. Our data indicate that bovine host breeds override diet as the key factor that determines bacterial community and metabolite profiles in the rumen.
Collapse
|
30
|
Zmora P, Cieslak A, Pers-Kamczyc E, Nowak A, Szczechowiak J, Szumacher-Strabel M. Effect ofMentha piperitaL. onin vitrorumen methanogenesis and fermentation. ACTA AGR SCAND A-AN 2012. [DOI: 10.1080/09064702.2012.703228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Zmora P, Cieslak A, Jedrejek D, Stochmal A, Pers-Kamczyc E, Oleszek W, Nowak A, Szczechowiak J, Lechniak D, Szumacher-Strabel M. Preliminaryin vitrostudy on the effect of xanthohumol on rumen methanogenesis. Arch Anim Nutr 2012; 66:66-71. [DOI: 10.1080/1745039x.2011.644917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Tan H, Sieo C, Abdullah N, Liang J, Huang X, Ho Y. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.07.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Monteils V, Rey M, Cauquil L, Troegeler-Meynadier A, Silberberg M, Combes S. Random changes in the heifer rumen in bacterial community structure, physico-chemical and fermentation parameters, and in vitro fiber degradation. Livest Sci 2011. [DOI: 10.1016/j.livsci.2011.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Tan HY, Sieo CC, Lee CM, Abdullah N, Liang JB, Ho YW. Diversity of bovine rumen methanogens In vitro in the presence of condensed tannins, as determined by sequence analysis of 16S rRNA gene library. J Microbiol 2011; 49:492-8. [PMID: 21717338 DOI: 10.1007/s12275-011-0319-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 01/05/2011] [Indexed: 11/28/2022]
Abstract
Molecular diversity of rumen archaeal populations from bovine rumen fluid incubated with or without condensed tannins was investigated using 16S rRNA gene libraries. The predominant order of rumen archaea in the 16S rRNA gene libraries of the control and condensed tannins treatment was found to belong to a novel group of rumen archaea that is distantly related to the order Thermoplasmatales, with 59.5% (15 phylotypes) and 81.43% (21 phylotypes) of the total clones from the control and treatment clone libraries, respectively. The 16S rRNA gene library of the control was found to have higher proportions of methanogens from the orders Methanomicrobiales (32%) and Methanobacteriales (8.5%) as compared to those found in the condensed tannins treatment clone library in both orders (16.88% and 1.68% respectively). The phylotype distributed in the order Methanosarcinales was only found in the control clone library. The study indicated that condensed tannins could alter the diversity of bovine rumen methanogens.
Collapse
Affiliation(s)
- Hui Yin Tan
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia
| | | | | | | | | | | |
Collapse
|
35
|
Wright ADG, Klieve AV. Does the complexity of the rumen microbial ecology preclude methane mitigation? Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.04.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Zhou M, McAllister T, Guan L. Molecular identification of rumen methanogens: Technologies, advances and prospects. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
37
|
Gill F, Dewhurst R, Evershed R, McGeough E, O’Kiely P, Pancost R, Bull I. Analysis of archaeal ether lipids in bovine faeces. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Kumar S, Dagar SS, Mohanty AK, Sirohi SK, Puniya M, Kuhad RC, Sangu KPS, Griffith GW, Puniya AK. Enumeration of methanogens with a focus on fluorescence in situ hybridization. Naturwissenschaften 2011; 98:457-72. [PMID: 21475941 DOI: 10.1007/s00114-011-0791-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/19/2011] [Accepted: 03/20/2011] [Indexed: 10/18/2022]
Abstract
Methanogens, the members of domain Archaea are potent contributors in global warming. Being confined to the strict anaerobic environment, their direct cultivation as pure culture is quite difficult. Therefore, a range of culture-independent methods have been developed to investigate their numbers, substrate uptake patterns, and identification in complex microbial communities. Unlike other approaches, fluorescence in situ hybridization (FISH) is not only used for faster quantification and accurate identification but also to reveal the physiological properties and spatiotemporal dynamics of methanogens in their natural environment. Aside from the methodological aspects and application of FISH, this review also focuses on culture-dependent and -independent techniques employed in enumerating methanogens along with associated problems. In addition, the combination of FISH with micro-autoradiography that could also be an important tool in investigating the activities of methanogens is also discussed.
Collapse
Affiliation(s)
- Sanjay Kumar
- Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, India
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Quantitative fluorescence in situ hybridization of microbial communities in the rumens of cattle fed different diets. Appl Environ Microbiol 2010; 76:6933-8. [PMID: 20802069 DOI: 10.1128/aem.00217-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At present there is little quantitative information on the identity and composition of bacterial populations in the rumen microbial community. Quantitative fluorescence in situ hybridization using newly designed oligonucleotide probes was applied to identify the microbial populations in liquid and solid fractions of rumen digesta from cows fed barley silage or grass hay diets with or without flaxseed. Bacteroidetes, Firmicutes, and Proteobacteria were abundant in both fractions, constituting 31.8 to 87.3% of the total cell numbers. They belong mainly to the order Bacteroidales (0.1 to 19.2%), hybridizing with probe BAC1080; the families Lachnospiraceae (9.3 to 25.5%) and Ruminococcaceae (5.5 to 23.8%), hybridizing with LAC435 and RUM831, respectively; and the classes Deltaproteobacteria (5.8 to 28.3%) and Gammaproteobacteria (1.2 to 8.2%). All were more abundant in the rumen communities of cows fed diets containing silage (75.2 to 87.3%) than in those of cows fed diets containing hay (31.8 to 49.5%). The addition of flaxseed reduced their abundance in the rumens of cows fed silage-based diets (to 45.2 to 58.7%) but did not change markedly their abundance in the rumens of cows fed hay-based diets (31.8 to 49.5%). Fibrolytic species, including Fibrobacter succinogenes and Ruminococcus spp., and archaeal methanogens accounted for only a small proportion (0.4 to 2.1% and 0.2 to 0.6%, respectively) of total cell numbers. Depending on diet, between 37.0 and 91.6% of microbial cells specifically hybridized with the probes used in this study, allowing them to be identified in situ. The identities of other microbial populations (8.4 to 63.0%) remain unknown.
Collapse
|
40
|
Michelland RJ, Monteils V, Combes S, Cauquil L, Gidenne T, Fortun-Lamothe L. Comparison of the archaeal community in the fermentative compartment and faeces of the cow and the rabbit. Anaerobe 2010; 16:396-401. [PMID: 20417714 DOI: 10.1016/j.anaerobe.2010.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/18/2010] [Accepted: 04/15/2010] [Indexed: 12/01/2022]
Abstract
The archaeal community in the fermentative compartment and faeces of the cow and the rabbit were compared by analysis capillary electrophoresis single-stranded conformation polymorphism (CE-SSCP) profiles of 16S rRNA genes. Ruminal and faecal contents were sampled in five cows for three weeks. Hard and soft faeces were collected in 14 rabbits for three consecutive weeks and caecal contents were sampled in the third week. The archaeal community differed according to the host species (ANOSIM-R=0.53 and 0.72 respectively for the comparison of the fermentative compartments and faeces; P<0.001) and to the location within the digestive tract of both species (ANOSIM-R=0.37, 0.52 respectively for the cow and the rabbit; P<0.001). In both species, the archaeal community of the digestive tract was stable over weeks and varied very little between individual animals. The structure (NS) and the richness index (9.9+/-2.7, 10.1+/-3.1 respectively, NS) of the archaeal community were similar for the caecal content and the soft faeces which permitted to use the latter as a representative indicator.
Collapse
Affiliation(s)
- Rory Julien Michelland
- Institut National de la Recherche Agronomique-UMR 1289, Tissus Animaux, Nutrition, Digestion, Ecosystème et Métabolisme, Castanet-Tolosan, France
| | | | | | | | | | | |
Collapse
|
41
|
Bretschger O, Osterstock JB, Pinchak WE, Ishii S, Nelson KE. Microbial fuel cells and microbial ecology: applications in ruminant health and production research. MICROBIAL ECOLOGY 2010; 59:415-27. [PMID: 20024685 PMCID: PMC2855437 DOI: 10.1007/s00248-009-9623-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 11/27/2009] [Indexed: 05/28/2023]
Abstract
Microbial fuel cell (MFC) systems employ the catalytic activity of microbes to produce electricity from the oxidation of organic, and in some cases inorganic, substrates. MFC systems have been primarily explored for their use in bioremediation and bioenergy applications; however, these systems also offer a unique strategy for the cultivation of synergistic microbial communities. It has been hypothesized that the mechanism(s) of microbial electron transfer that enable electricity production in MFCs may be a cooperative strategy within mixed microbial consortia that is associated with, or is an alternative to, interspecies hydrogen (H(2)) transfer. Microbial fermentation processes and methanogenesis in ruminant animals are highly dependent on the consumption and production of H(2)in the rumen. Given the crucial role that H(2) plays in ruminant digestion, it is desirable to understand the microbial relationships that control H(2) partial pressures within the rumen; MFCs may serve as unique tools for studying this complex ecological system. Further, MFC systems offer a novel approach to studying biofilms that form under different redox conditions and may be applied to achieve a greater understanding of how microbial biofilms impact animal health. Here, we present a brief summary of the efforts made towards understanding rumen microbial ecology, microbial biofilms related to animal health, and how MFCs may be further applied in ruminant research.
Collapse
Affiliation(s)
- Orianna Bretschger
- J. Craig Venter Institute, 10355 Science Center Dr., San Diego, CA 92121 USA
| | | | | | - Shun’ichi Ishii
- J. Craig Venter Institute, 10355 Science Center Dr., San Diego, CA 92121 USA
| | | |
Collapse
|
42
|
Composition of the landfill microbial community as determined by application of domain- and group-specific 16S and 18S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 2009; 76:1301-6. [PMID: 20023104 DOI: 10.1128/aem.01783-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microbial community composition of colonized cotton and leachate samples from a landfill was quantified using small subunit (SSU) rRNA probes (quantitative rRNA hybridization). Relative quantification of bacteria, eukaryotes, and archaea revealed variations in the landfill microbial community between samples from different areas of the landfill site and indicated the presence of potentially novel archaea. Anaerobic fungi were quantified in rumen fluid samples but were not sufficiently abundant for direct detection in the landfill samples.
Collapse
|
43
|
Daly K, Shirazi-Beechey SP. Design and evaluation of group-specific oligonucleotide probes for quantitative analysis of intestinal ecosystems: their application to assessment of equine colonic microflora. FEMS Microbiol Ecol 2009; 44:243-52. [PMID: 19719641 DOI: 10.1016/s0168-6496(03)00032-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nine oligonucleotide probes complementary to conserved regions of small subunit rRNA from phylogenetically defined clusters of intestinal anaerobic bacteria were designed and evaluated for use in quantitative analysis of intestinal microflora. Optimum wash temperatures (T(w)) were determined according to the temperature of dissociation (T(d)) of each probe and target group specificity was demonstrated by comparing hybridisation to target and non-target rRNA immobilised on nylon membranes. Three probes are targeted to phylogenetic clusters of Clostridiaceae, clusters III, IV and IX, with three probes designed to target previously undefined clusters within the low %G+C Gram-positive phyla. The remaining three probes encompass the Cytophaga-Flexibacter-Bacteroides assemblage, the Bacillus-Lactobacillus-Streptococcus group and the Spirochaetaceae. Application of these probes, alongside available probes targeted to other intestinal bacterial groups, against rRNA extracted from equine colonic samples has provided the first quantitative data on the predominant bacterial populations inhabiting the equine large intestine. Results show the Spirochaetaceae, the Cytophaga-Flexibacter-Bacteroides assemblage, the Eubacterium rectale-Clostridium coccoides group, and 'Unknown cluster C' of the Clostridiaceae to be the largest populations in the equine gut, each comprising 10-30% of the total microflora in each horse sampled. Other detected notable populations were the Bacillus-Lactobacillus-Streptococcus group, Fibrobacter and 'Unknown cluster B', each comprising 1-10% of the total flora. Average coverage using the suite of probes described here exceeded 75% of the total microbial community.
Collapse
Affiliation(s)
- Kristian Daly
- Epithelial Function and Development Group, Department of Veterinary Preclinical Sciences, University of Liverpool, Liverpool L69 7ZJ, UK.
| | | |
Collapse
|
44
|
Li M, Yang H, Gu JD. Phylogenetic diversity and axial distribution of microbes in the intestinal tract of the polychaete Neanthes glandicincta. MICROBIAL ECOLOGY 2009; 58:892-902. [PMID: 19572164 DOI: 10.1007/s00248-009-9550-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 06/06/2009] [Indexed: 05/28/2023]
Abstract
The phylogenetic diversity and axial distribution of microorganisms in three sections of the gastrointestinal tracts of the polychaete Neanthes glandicincta was evaluated using both most probable number method and cloning analyses of 16S rRNA genes in this study. Quantification of the density of microorganisms in the gut showed that aerobic microorganisms decreased from anterior to posterior, while anaerobic ones showed a reverse trend. The total numbers of microorganisms decreased significantly (p < 0.05, analysis of variance) but more rapidly from the anterior to the middle segment. Phylogenetic analysis showed that the dominating phylogenetic groups included Methanomicrobiales I: Methanosaetaceae (up to 66% of archaeal clones), delta-Proteobacteria (up to 42% of bacterial clones), and gamma-Proteobacteria (up to 30% of bacterial clones) widely distributed throughout the entire gut. Other microbiota distributed in different gut sections were Methanomicrobiales II: Methanospirillaceae, Methanomicrobiales III, Thermoplasmatales, Crenarchaea, Methanobacteriaceae, and Methanosarcinales for archaea; and alpha-Proteobacteria, beta-Proteobacteria, Fusobacteria, Clostridia, Chloroflexi, and Planctomycetes for bacteria. The results reveal a difference in microbial community structure along the gut of N. glandicincta. The various phylogenetic diversity and axial distribution of microbes along the gut might indicate an environmental gradient from anterior to posterior sections affecting the structure of the microbial community.
Collapse
Affiliation(s)
- Meng Li
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | | | | |
Collapse
|
45
|
Michelland R, Monteils V, Zened A, Combes S, Cauquil L, Gidenne T, Hamelin J, Fortun-Lamothe L. Spatial and temporal variations of the bacterial community in the bovine digestive tract. J Appl Microbiol 2009; 107:1642-50. [DOI: 10.1111/j.1365-2672.2009.04346.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Frey JC, Pell AN, Berthiaume R, Lapierre H, Lee S, Ha JK, Mendell JE, Angert ER. Comparative studies of microbial populations in the rumen, duodenum, ileum and faeces of lactating dairy cows. J Appl Microbiol 2009; 108:1982-93. [PMID: 19863686 DOI: 10.1111/j.1365-2672.2009.04602.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Understanding factors that influence the composition of microbial populations of the digestive system of dairy cattle will be key in regulating these populations to improve animal performance. Although rumen microbes are well studied, little is known of the dynamics and role of microbial populations in the small intestine of cows. Comparisons of fingerprints of microbial populations were used to investigate the effects of gastrointestinal (GI) segment and animal on community structure. METHODS AND RESULTS Samples from four lactating dairy cows with ruminal, duodenal and ileal cannulae were collected. Terminal-restriction fragment length polymorphism (T-RFLP) comparisons of small subunit rRNA genes revealed differences in microbial populations between GI segments (P < 0.05). No significant differences in either methanogen populations or microbial community profiles between animals were observed. Quantitative PCR was used to assay relative changes in methanogen numbers compared to procaryote rRNA gene numbers, and direct microscopic counts were used to enumerate total procaryote numbers of the duodenal and ileal samples. CONCLUSIONS T-RFLP comparisons illustrate significant changes in microbial diversity as digesta passes from one segment to another. Direct counts indicate that microbial numbers are reduced by eight orders of magnitude from the rumen, through the abomasum, and into the duodenum (from c. 10(12) to c. 3.6 x 10(4) cells per ml). Quantitative PCR analyses of rRNA genes indicate that methanogens are present in the duodenum and ileum. SIGNIFICANCE AND IMPACT OF THE STUDY The contribution of microbial populations of the small intestine to the nutrition and health of cattle is seldom addressed but warrants further investigation.
Collapse
Affiliation(s)
- J C Frey
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bennegadi N, Fonty G, Millet L, Gidenne T, Licois D. Effects of Age and Dietary Fibre Level on Caecal Microbial Communities of Conventional and Specific Pathogen-Free Rabbits. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/08910600310015574] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nadia Bennegadi
- Station de Recherches Cunicoles INRA CR Toulouse, BP 27 31326 Castanet-Tolosan
| | - Gérard Fonty
- Laboratoire de Microbiologie INRA CR Clermont-Ferrand, Theix 63122 Saint-Genès-Champanelle
| | - Liliane Millet
- Laboratoire de Microbiologie INRA CR Clermont-Ferrand, Theix 63122 Saint-Genès-Champanelle
| | - Thierry Gidenne
- Station de Recherches Cunicoles INRA CR Toulouse, BP 27 31326 Castanet-Tolosan
| | - Dominique Licois
- Laboratoire de Pathologie du Lapin Station de Pathologie Aviaire et de Parasitologie, INRA CR Tours 37380 Nouzilly
| |
Collapse
|
48
|
Sundset MA, Edwards JE, Cheng YF, Senosiain RS, Fraile MN, Northwood KS, Praesteng KE, Glad T, Mathiesen SD, Wright ADG. Molecular diversity of the rumen microbiome of Norwegian reindeer on natural summer pasture. MICROBIAL ECOLOGY 2009; 57:335-348. [PMID: 18604648 DOI: 10.1007/s00248-008-9414-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 05/21/2008] [Indexed: 05/26/2023]
Abstract
The molecular diversity of the rumen microbiome was investigated in five semi-domesticated adult female Norwegian reindeer (Rangifer tarandus tarandus) grazing on natural summer pastures on the coast of northern Norway (71.00 degrees N, 25.30 degrees E). Mean population densities (numbers per gram wet weight) of methanogenic archaea, rumen bacteria and ciliate protozoa, estimated using quantitative real-time polymerase chain reaction (PCR), were 3.17x10(9), 5.17x10(11) and 4.02x10(7), respectively. Molecular diversity of rumen methanogens was revealed using a 16S rRNA gene library (54 clones) constructed using pooled PCR products from the whole rumen contents of the five individual reindeer. Based upon a similarity criterion of <97%, a total of 19 distinct operational taxonomic units (OTUs) were identified, nine of which are potential new species. The 16S rRNA sequences generated from the reindeer rumen exhibited a high degree of sequence similarity to methanogens affiliated with the families Methanobacteriaceae (14 OTUs) and Methanosarcinaceae (one OTU). Four of the OTUs detected belonged to a group of uncultivated archaea previously found in domestic ruminants and thought to be dominant in the rumen together with Methanobrevibacter spp. Denaturing gradient gel electrophoresis profiling of the rumen bacterial 16S rRNA gene and the protozoal 18S rRNA gene indicated a high degree of animal variation, although some bands were common to all individuals. Automated ribosomal intergenic spacer analysis (ARISA) profiling of the ruminal Neocallimastigales population indicated that the reindeer are likely to contain more than one type of anaerobic fungus. The ARISA profile from one animal was distinct from the other four. This is the first molecular investigation of the ruminal methanogenic archaea in reindeer, revealing higher numbers than expected based on methane emission data available. Also, many of the reindeer archaeal 16S rRNA gene sequences were similar to those reported in domesticated ruminants in Australia, Canada, China, New Zealand and Venezuela, supporting previous findings that there seems to be no host type or geographical effect on the methanogenic archaea community structure in ruminants.
Collapse
Affiliation(s)
- Monica A Sundset
- Department of Arctic Biology and Institute of Medical Biology, University of Tromsø, 9037, Tromsø, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci U S A 2009; 106:1948-53. [PMID: 19181843 DOI: 10.1073/pnas.0806191105] [Citation(s) in RCA: 469] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complex microbiome of the rumen functions as an effective system for the conversion of plant cell wall biomass to microbial protein, short chain fatty acids, and gases. As such, it provides a unique genetic resource for plant cell wall degrading microbial enzymes that could be used in the production of biofuels. The rumen and gastrointestinal tract harbor a dense and complex microbiome. To gain a greater understanding of the ecology and metabolic potential of this microbiome, we used comparative metagenomics (phylotype analysis and SEED subsystems-based annotations) to examine randomly sampled pyrosequence data from 3 fiber-adherent microbiomes and 1 pooled liquid sample (a mixture of the liquid microbiome fractions from the same bovine rumens). Even though the 3 animals were fed the same diet, the community structure, predicted phylotype, and metabolic potentials in the rumen were markedly different with respect to nutrient utilization. A comparison of the glycoside hydrolase and cellulosome functional genes revealed that in the rumen microbiome, initial colonization of fiber appears to be by organisms possessing enzymes that attack the easily available side chains of complex plant polysaccharides and not the more recalcitrant main chains, especially cellulose. Furthermore, when compared with the termite hindgut microbiome, there are fundamental differences in the glycoside hydrolase content that appear to be diet driven for either the bovine rumen (forages and legumes) or the termite hindgut (wood).
Collapse
|
50
|
Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl Environ Microbiol 2008; 75:374-80. [PMID: 19028912 DOI: 10.1128/aem.01672-08] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A long-term monensin supplementation trial involving lactating dairy cattle was conducted to determine the effect of monensin on the quantity and diversity of rumen methanogens in vivo. Fourteen cows were paired on the basis of days in milk and parity and allocated to one of two treatment groups, receiving (i) a control total mixed ration (TMR) or (ii) a TMR with 24 mg of monensin premix/kg of diet dry matter. Rumen fluid was obtained using an ororuminal probe on day -15 (baseline) and days 20, 90, and 180 following treatment. Throughout the 6-month experiment, the quantity of rumen methanogens was not significantly affected by monensin supplementation, as measured by quantitative real-time PCR. The diversity of the rumen methanogen population was investigated using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA clone gene libraries. DGGE analysis at each sampling point indicated that the molecular diversity of rumen methanogens from monensin-treated cattle was not significantly different from that of rumen methanogens from control cattle. 16S rRNA gene libraries were constructed from samples obtained from the rumen fluids of five cows, with a total of 166 clones examined. Eleven unique 16S rRNA sequences or phylotypes were identified, five of which have not been recognized previously. The majority of clones (98.2%) belonged to the genus Methanobrevibacter, with all libraries containing Methanobrevibacter strains M6 and SM9 and a novel phylotype, UG3322.2. Overall, long-term monensin supplementation was not found to significantly alter the quantity or diversity of methanogens in the rumens of lactating dairy cattle in the present study.
Collapse
|