1
|
Park T, Kim M, Lee EK, Hur J, Yoo H. Overcoming Downscaling Limitations in Organic Semiconductors: Strategies and Progress. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306468. [PMID: 37857588 DOI: 10.1002/smll.202306468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/30/2023] [Indexed: 10/21/2023]
Abstract
Organic semiconductors have great potential to revolutionize electronics by enabling flexible and eco-friendly manufacturing of electronic devices on plastic film substrates. Recent research and development led to the creation of printed displays, radio-frequency identification tags, smart labels, and sensors based on organic electronics. Over the last 3 decades, significant progress has been made in realizing electronic devices with unprecedented features, such as wearable sensors, disposable electronics, and foldable displays, through the exploitation of desirable characteristics in organic electronics. Neverthless, the down-scalability of organic electronic devices remains a crucial consideration. To address this, efforts are extensively explored. It is of utmost importance to further develop these alternative patterning methods to overcome the downscaling challenge. This review comprehensively discusses the efforts and strategies aimed at overcoming the limitations of downscaling in organic semiconductors, with a particular focus on four main areas: 1) lithography-compatible organic semiconductors, 2) fine patterning of printing methods, 3) organic material deposition on pre-fabricated devices, and 4) vertical-channeled organic electronics. By discussing these areas, the full potential of organic semiconductors can be unlocked, and the field of flexible and sustainable electronics can be advanced.
Collapse
Affiliation(s)
- Taehyun Park
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Minseo Kim
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Eun Kwang Lee
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jaehyun Hur
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| |
Collapse
|
2
|
Zhang L, Biesold GM, Zhao C, Xu H, Lin Z. Necklace-Like Nanostructures: From Fabrication, Properties to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200776. [PMID: 35749232 DOI: 10.1002/adma.202200776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The shape-controlled synthesis of nanocrystals remains a hot research topic in nanotechnology. Particularly, the fabrication of 1D structures such as wires, rods, belts, and tubes has been an interesting and important subject within nanoscience in the last few decades. 1D necklace-like micro/nanostructures are a sophisticated geometry that has attracted increasing attention due to their anisotropic and periodic structure, intrinsic high surface area, abundant transport channels, exposure of each component to the surface, and multiscale roughness of the surface. These characteristics enable their unique electrical, optical, and catalytic properties. This review provides a comprehensive summary of the advanced research progress on the fabrication strategies, novel properties, and various applications of necklace-like structures. It begins with the main fabrication methods of necklace-like structures and subsequently details a variety of their properties and applications. It concludes with the authors' perspectives on future research and development of the necklace-like structures.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Chunyan Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hui Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
3
|
Estrader M, Soulantica K, Chaudret B. Organometallic Synthesis of Magnetic Metal Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202207301. [DOI: 10.1002/anie.202207301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Marta Estrader
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS Université de Toulouse 31077 Toulouse France
| | - Katerina Soulantica
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS Université de Toulouse 31077 Toulouse France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS Université de Toulouse 31077 Toulouse France
| |
Collapse
|
4
|
Moulik SP, Chakraborty I, Rakshit AK. Role of surface‐active materials (amphiphiles and surfactants) in the formation of nanocolloidal dispersions, and their applications. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Satya Priya Moulik
- Center for Surface Science, Department of Chemistry Jadavpur University Kolkata India
| | | | - Animesh Kumar Rakshit
- Indian Society for Surface Science and Technology, Department of Chemistry Jadavpur University Kolkata India
| |
Collapse
|
5
|
Burazer S, Horák L, Filinchuk Y, Černý R, Popović J. Abrupt change from moderate positive to colossal negative thermal expansion caused by imidazolate composite formation. JOURNAL OF MATERIALS SCIENCE 2022; 57:11563-11581. [PMID: 35789923 PMCID: PMC9246808 DOI: 10.1007/s10853-022-07360-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED This work describes temperature-induced crystallization processes and reaction mechanisms occurring in the borohydride-imidazolate system. In the course of thermal evolution, crystal structures of two novel bimetallic imidazolates AMnIm3 (A = Na, K) were solved using synchrotron radiation powder diffraction data. Both the alkali metal cation and the Mn cations exhibit distorted octahedral coordination while each imidazolate is surrounded by two alkali metal and two manganese atoms. Extensive study of the thermal expansion behaviour revealed that the expansion of the bimetallic imidazolates does not proceed uniformly over the entire temperature range but rather abruptly changes from a colossal negative to a moderate positive volume expansion. Such behaviour is caused by the coherent intergrowth of the coexisting phases which form a composite, a positive lattice mismatch and a tensile strain during the coexistence of NaMIm3 (M = Mg and Mn) and NaIm or HT-NaIm. Such coherent coalescence of two materials opens the possibility for targeted design of zero thermal expansion materials. GRAPHICAL ABSTRACT Crystal structures of AMnIm3 (A = Na, K) were determined. Coherently intergrown NaMIm3/NaIm (M = Mg, Mn) present colossal negative thermal expansion. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10853-022-07360-z.
Collapse
Affiliation(s)
- Sanja Burazer
- Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2, Czech Republic
| | - Lukáš Horák
- Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2, Czech Republic
| | - Yaroslav Filinchuk
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Radovan Černý
- Laboratory of Crystallography, DQMP, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland
| | - Jasminka Popović
- Laboratory for Synthesis and Crystallography of Functional Materials, Division for Materials Physics, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Estrader M, Soulantica K, Chaudret B. Organometallic Synthesis of Magnetic Metal Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marta Estrader
- CNRS: Centre National de la Recherche Scientifique LPCNO FRANCE
| | | | - Bruno Chaudret
- CNRS: Centre National de la Recherche Scientifique LPCNO (Laboratoire de Physique et Chimie des Nano-Objets) 135 Avenue de Rangueil 31077 Toulouse FRANCE
| |
Collapse
|
7
|
Palazzolo A, Poucin C, Freitas AP, Ropp A, Bouillet C, Ersen O, Carenco S. The delicate balance of phase speciation in bimetallic nickel cobalt nanoparticles. NANOSCALE 2022; 14:7547-7560. [PMID: 35412546 DOI: 10.1039/d2nr00917j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bimetallic nickel-cobalt nanoparticles are highly sought for their potential as catalytic and magnetic nanoparticles. These are typically prepared in organic solvents in the presence of strong stabilizing ligands such as tri-n-octylphosphine (TOP). Due to the variety of cobalt crystallographic phases and to the strong interaction of the ligands with the metallic surfaces, forming fcc nanoparticles rather than a phase mixture is a challenging endeavor. Here, using a two-step synthesis strategy that aims at a core-shell nickel-cobalt morphology, we demonstrated that many parameters have to be adjusted: concentration of the metal precursors, stoichiometry of TOP, and heating program from room temperature to 180 °C. We found optimized conditions to form size-controlled fcc NiCo nanoparticles from preformed Ni nanoparticles, and the phase attribution was confirmed with a combination of X-Ray diffraction on powder and X-Ray absorption spectroscopy at the Co K edge. We then investigated the early stages of Co nucleation on the nickel using a lower stoichiometry of Co, down to 0.05 equiv. vs. Ni. Using X-ray photoelectron spectroscopy and scanning transmission electron microscopy coupled to energy-dispersive X-Ray spectroscopy and electron energy loss spectroscopy, we showed that cobalt reacts first on the nickel nanoparticles but easily forms cobalt-rich larger aggregates in the further steps of the reaction.
Collapse
Affiliation(s)
- Alberto Palazzolo
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Cyprien Poucin
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Alexy P Freitas
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Anthony Ropp
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Corinne Bouillet
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, BP 43, Strasbourg Cedex 2, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, BP 43, Strasbourg Cedex 2, France
| | - Sophie Carenco
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75005 Paris, France.
| |
Collapse
|
8
|
Keller AW, Marino E, An D, Neuhaus SJ, Elbert KC, Murray CB, Kagan CR. Sub-5 nm Anisotropic Pattern Transfer via Colloidal Lithography of a Self-Assembled GdF 3 Nanocrystal Monolayer. NANO LETTERS 2022; 22:1992-2000. [PMID: 35226509 DOI: 10.1021/acs.nanolett.1c04761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Patterning materials with nanoscale features opens many research opportunities ranging from fundamental science to technological applications. However, current nanofabrication methods are ill-suited for sub-5 nm patterning and pattern transfer. We demonstrate the use of colloidal lithography to transfer an anisotropic pattern of discrete features into substrates with a critical dimension below 5 nm. The assembly of monodisperse, anisotropic nanocrystals (NCs) with a rhombic-plate morphology spaced by dendrimer ligands results in a well-ordered monolayer that serves as a 2D anisotropic hard mask pattern. This pattern is transferred into the underlying substrate using dry etching followed by removal of the NC mask. We exemplify this approach by fabricating an array of pillars with a rhombic cross-section and edge-to-edge spacing of 4.4 ± 1.1 nm. The fabrication approach enables broader access to patterning materials at the deep nanoscale by implementing innovative processes into well-established fabrication methods while minimizing process complexity.
Collapse
|
9
|
Luo S, Hoff BH, Maier SA, de Mello JC. Scalable Fabrication of Metallic Nanogaps at the Sub-10 nm Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102756. [PMID: 34719889 PMCID: PMC8693066 DOI: 10.1002/advs.202102756] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Indexed: 06/01/2023]
Abstract
Metallic nanogaps with metal-metal separations of less than 10 nm have many applications in nanoscale photonics and electronics. However, their fabrication remains a considerable challenge, especially for applications that require patterning of nanoscale features over macroscopic length-scales. Here, some of the most promising techniques for nanogap fabrication are evaluated, covering established technologies such as photolithography, electron-beam lithography (EBL), and focused ion beam (FIB) milling, plus a number of newer methods that use novel electrochemical and mechanical means to effect the patterning. The physical principles behind each method are reviewed and their strengths and limitations for nanogap patterning in terms of resolution, fidelity, speed, ease of implementation, versatility, and scalability to large substrate sizes are discussed.
Collapse
Affiliation(s)
- Sihai Luo
- Department of ChemistryNorwegian University of Science and Technology (NTNU)TrondheimNO‐7491Norway
| | - Bård H. Hoff
- Department of ChemistryNorwegian University of Science and Technology (NTNU)TrondheimNO‐7491Norway
| | - Stefan A. Maier
- Nano‐Institute MunichFaculty of PhysicsLudwig‐Maximilians‐Universität MünchenMünchen80539Germany
- Blackett LaboratoryDepartment of PhysicsImperial College LondonLondonSW7 2AZUK
| | - John C. de Mello
- Department of ChemistryNorwegian University of Science and Technology (NTNU)TrondheimNO‐7491Norway
| |
Collapse
|
10
|
Miao BQ, Liu YM, Wang TJ, Ding Y, Chen Y. One-dimensional cobalt oxide nanotubes with rich defect for oxygen evolution reaction. NANOTECHNOLOGY 2021; 33:075401. [PMID: 34740207 DOI: 10.1088/1361-6528/ac3702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
For the electrochemcial hydrogen production, the oxygen evolution reaction (OER) is a pivotal half-reaction in water splitting. However, OER suffers sluggish kinetics and high overpotential, leading to the increase of overall energy consumption and decrease of the energy efficiency. In this work, high-quality cobalt oxide porous nanotubes (Co3O4-PNTs) are easily obtained by simple self-template approach. One-dimensional (1D) porous structure provides the large specific surface area, enough abundant active atoms and effective mass transfer. In addition, Co3O4-PNTs also own self-stability of 1D architecture, benefitting the their durability for electrocatalytic reaction. Thus, Co3O4-PNTs with optimal annealing temperature and time reveal the attractive alkaline OER performance (Tafel slope of 56 mV dec-1and 323 mV overpotential at 10 mA cm-2), which outperform the Co3O4nanoparticles and benchmark commercial RuO2nanoparticles. Furthermore, Co3O4-PNTs also exhibit excellent OER durability for least 10 h at the 10 mA cm-2. Overall, Co3O4-PNTs with low cost can be serve as a highly reactive and economical catalyst for OER.
Collapse
Affiliation(s)
- Bo-Qiang Miao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yi-Ming Liu
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Tian-Jiao Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yu Ding
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| |
Collapse
|
11
|
Ni nanodendrites prepared by a low-temperature process as electrocatalysts for hydrogen evolution reaction in alkaline solution. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.112006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Yao J, Yin H, Zhang M, Liu X. Formation of nanomaterial internal cavity based on process similar to bread-baking. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Andreu I, Ngo TM, Perez V, Bilton MW, Cadieux KEC, Paul MTY, Hidalgo Castillo TC, Bright Davies C, Gates BD. Contact transfer of engineered nanomaterials in the workplace. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210141. [PMID: 34457334 PMCID: PMC8371374 DOI: 10.1098/rsos.210141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
This study investigates the potential spread of cadmium selenide quantum dots in laboratory environments through contact of gloves with simulated dry spills on laboratory countertops. Secondary transfer of quantum dots from the contaminated gloves to other substrates was initiated by contact of the gloves with different materials found in the laboratory. Transfer of quantum dots to these substrates was qualitatively evaluated by inspection under ultraviolet illumination. This secondary contact resulted in the delivery of quantum dots to all the evaluated substrates. The amount of quantum dots transferred was quantified by elemental analysis. The residue containing quantum dots picked up by the glove was transferred to at least seven additional sections of the pristine substrate through a series of sequential contacts. These results demonstrate the potential for contact transfer as a pathway for spreading nanomaterials throughout the workplace, and that 7-day-old dried spills are susceptible to the propagation of nanomaterials by contact transfer. As research and commercialization of engineered nanomaterials increase worldwide, it is necessary to establish safe practices to protect workers from the potential for chronic exposure to potentially hazardous materials. Similar experimental procedures to those described herein can be adopted by industries or regulatory agencies to guide the development of their nanomaterial safety programmes.
Collapse
Affiliation(s)
- Irene Andreu
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Tuan M. Ngo
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Viridiana Perez
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Matthew W. Bilton
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Kelly E. C. Cadieux
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Michael T. Y. Paul
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Tania C. Hidalgo Castillo
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Clifton Bright Davies
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Byron D. Gates
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
14
|
Liu W, Wang J, Xu X, Zhao C, Xu X, Weiss PS. Single-Step Dual-Layer Photolithography for Tunable and Scalable Nanopatterning. ACS NANO 2021; 15:12180-12188. [PMID: 34170108 DOI: 10.1021/acsnano.1c03703] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conventional photolithography, due to its scalability, robustness, and straightforward processes, has been widely applied to micro- and nanostructure manufacturing in electronics, optics, and biology. However, optical diffraction limits the ultimate resolution of conventional photolithography, which hinders its potential in nanoscale patterning for broader applications. Here, we introduce a derivative of conventional photolithography for nanoscale patterning called dual-layer photolithography (DLPL), which is based on the controlled exposure and development of overlapping positive and negative photoresists. In a typical experiment, substrates are sequentially coated by two layers of photoresists (both positive and negative). Then, we purposefully control the exposure time to generate slightly larger features in the positive photoresist than those in the negative photoresist. After development, their overlapping areas become the final features, which outline the original features. We demonstrate line widths down to 300 nm here, which can be readily improved with more precise control. By adjusting the lithography parameters and material deposition, the feature sizes, shapes (e.g., rings, numbers, letters), line widths (300-900 nm), and materials (e.g., SiO2, Cr, and Ag) of these features can be independently controlled. Combined with anisotropic etching, more complex three-dimensional nanostructures can be fabricated as well, as we demonstrate here with Si. We further fabricate photodetectors as an example application to show that these nanostructures fabricated by DLPL can be used to promote light-trapping MAPbI3 perovskite films to achieve good photoelectric properties. This strategy is not limited to ultraviolet photolithography and may also be incorporated into other energetic beam-based lithographic approaches, including deep and extreme ultraviolet photolithographies and electron beam lithography, to enhance their resolution.
Collapse
Affiliation(s)
- Wenfei Liu
- California NanoSystems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jiabao Wang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, & Institute for Advanced Study, Tongji University, Shanghai 201804, China
| | - Xiuzhen Xu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, & Institute for Advanced Study, Tongji University, Shanghai 201804, China
| | - Chuanzhen Zhao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xiaobin Xu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, & Institute for Advanced Study, Tongji University, Shanghai 201804, China
| | - Paul S Weiss
- California NanoSystems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
15
|
Li G, Zhang W, Luo N, Xue Z, Hu Q, Zeng W, Xu J. Bimetallic Nanocrystals: Structure, Controllable Synthesis and Applications in Catalysis, Energy and Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1926. [PMID: 34443756 PMCID: PMC8401639 DOI: 10.3390/nano11081926] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
In recent years, bimetallic nanocrystals have attracted great interest from many researchers. Bimetallic nanocrystals are expected to exhibit improved physical and chemical properties due to the synergistic effect between the two metals, not just a combination of two monometallic properties. More importantly, the properties of bimetallic nanocrystals are significantly affected by their morphology, structure, and atomic arrangement. Reasonable regulation of these parameters of nanocrystals can effectively control their properties and enhance their practicality in a given application. This review summarizes some recent research progress in the controlled synthesis of shape, composition and structure, as well as some important applications of bimetallic nanocrystals. We first give a brief introduction to the development of bimetals, followed by the architectural diversity of bimetallic nanocrystals. The most commonly used and typical synthesis methods are also summarized, and the possible morphologies under different conditions are also discussed. Finally, we discuss the composition-dependent and shape-dependent properties of bimetals in terms of highlighting applications such as catalysis, energy conversion, gas sensing and bio-detection applications.
Collapse
Affiliation(s)
- Gaojie Li
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenshuang Zhang
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China;
| | - Na Luo
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Zhenggang Xue
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Qingmin Hu
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Wen Zeng
- School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jiaqiang Xu
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
16
|
Khusnuriyalova AF, Caporali M, Hey‐Hawkins E, Sinyashin OG, Yakhvarov DG. Preparation of Cobalt Nanoparticles. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Aliya F. Khusnuriyalova
- Alexander Butlerov Institute of Chemistry Kazan Federal University Kremlyovskaya 18 420008 Kazan Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center Russian Academy of Sciences Arbuzov Street 8 420088 Kazan Russian Federation
| | - Maria Caporali
- Institute of Chemistry of Organometallic Compounds (ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Evamarie Hey‐Hawkins
- Faculty of Chemistry and Mineralogy Institute of Inorganic Chemistry Leipzig University Johannisallee 29 04103 Leipzig Germany
| | - Oleg G. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center Russian Academy of Sciences Arbuzov Street 8 420088 Kazan Russian Federation
| | - Dmitry G. Yakhvarov
- Alexander Butlerov Institute of Chemistry Kazan Federal University Kremlyovskaya 18 420008 Kazan Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center Russian Academy of Sciences Arbuzov Street 8 420088 Kazan Russian Federation
| |
Collapse
|
17
|
Luo S, Mancini A, Berté R, Hoff BH, Maier SA, de Mello JC. Massively Parallel Arrays of Size-Controlled Metallic Nanogaps with Gap-Widths Down to the Sub-3-nm Level. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100491. [PMID: 33939199 PMCID: PMC11468177 DOI: 10.1002/adma.202100491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Metallic nanogaps (MNGs) are fundamental components of nanoscale photonic and electronic devices. However, the lack of reproducible, high-yield fabrication methods with nanometric control over the gap-size has hindered practical applications. A patterning technique based on molecular self-assembly and physical peeling is reported here that allows the gap-width to be tuned from more than 30 nm to less than 3 nm. The ability of the technique to define sub-3-nm gaps between dissimilar metals permits the easy fabrication of molecular rectifiers, in which conductive molecules bridge metals with differing work functions. A method is further described for fabricating massively parallel nanogap arrays containing hundreds of millions of ring-shaped nanogaps, in which nanometric size control is maintained over large patterning areas of up to a square centimeter. The arrays exhibit strong plasmonic resonances under visible light illumination and act as high-performance substrates for surface-enhanced Raman spectroscopy, with high enhancement factors of up to 3 × 108 relative to thin gold films. The methods described here extend the range of metallic nanostructures that can be fabricated over large areas, and are likely to find many applications in molecular electronics, plasmonics, and biosensing.
Collapse
Affiliation(s)
- Sihai Luo
- Department of ChemistryNorwegian University of Science and Technology (NTNU)NO‐7491TrondheimNorway
| | - Andrea Mancini
- Nano‐Institute MunichFaculty of PhysicsLudwig‐Maximilians‐Universität MünchenMünchen80539Germany
| | - Rodrigo Berté
- Nano‐Institute MunichFaculty of PhysicsLudwig‐Maximilians‐Universität MünchenMünchen80539Germany
| | - Bård H. Hoff
- Department of ChemistryNorwegian University of Science and Technology (NTNU)NO‐7491TrondheimNorway
| | - Stefan A. Maier
- Nano‐Institute MunichFaculty of PhysicsLudwig‐Maximilians‐Universität MünchenMünchen80539Germany
- Blackett Laboratory, Department of PhysicsImperial College LondonLondonSW7 2AZUK
| | - John C. de Mello
- Department of ChemistryNorwegian University of Science and Technology (NTNU)NO‐7491TrondheimNorway
| |
Collapse
|
18
|
Kalaiselvan C, Thorat ND, Sahu NK. Carboxylated PEG-Functionalized MnFe 2O 4 Nanocubes Synthesized in a Mixed Solvent: Morphology, Magnetic Properties, and Biomedical Applications. ACS OMEGA 2021; 6:5266-5275. [PMID: 33681567 PMCID: PMC7931194 DOI: 10.1021/acsomega.0c05382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/12/2021] [Indexed: 05/08/2023]
Abstract
Ferrites are one of the most studied materials around the globe due to their distinctive biological and magnetic properties. In the same line, anisotropic MnFe2O4 nanoparticles have been explored as a potential candidate possessing excellent magnetic properties, biocompatibility, and strong magnetic resonance imaging (MRI) properties such as r2 relaxivity for magnetic field-guided biomedical applications. The current work reports the synthesis and morphological evolution of MnFe2O4 nanocubes (MNCs) in a hydrothermal process using different volume ratios of water and ethanol. The synthesis protocol was designed to influence the properties of the ferrite nanocubes, for example, the variation in surface tension, dielectric properties, and the ionic character of the solvent, and this has been achieved by adding ethanol into water during the synthesis. Pristine MnFe2O4 is formed with well-defined cubic to irregular cubic shapes with the addition of ethanol, as evidenced from XRD, field emission scanning electron microscopy, and porosity measurements. MNCs have been investigated for magnetic hyperthermia and MRI applications. Well-defined cubic-shaped MNCs with uniform size distribution possessed a high saturation magnetization of 63 emu g-1 and a transverse relaxivity (r2) of 216 mM-1 s-1 (Mn + Fe). Furthermore, the colloidal nanocubes showed concentration-dependent hyperthermic response under an alternating magnetic field. The MNCs are biocompatible but advantageously show anticancer activities on breast cancer MCF 7 and MDA-MB-231 cells.
Collapse
Affiliation(s)
- Chandunika
R. Kalaiselvan
- Centre
for Nanotechnology Research, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Nanasaheb D. Thorat
- Medical
Science Division, Nuffield Department of Women’s & Reproductive
Health, John Radcliffe Hospital, University
of Oxford, Oxford OX3 9DU, U.K.
| | - Niroj Kumar Sahu
- Centre
for Nanotechnology Research, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
19
|
Yadav N, Ganguli AK. Mechanistic understanding of growth of nanorods in microemulsions. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Parker AJ, Motevalli B, Opletal G, Barnard AS. The pure and representative types of disordered platinum nanoparticles from machine learning. NANOTECHNOLOGY 2021; 32:095404. [PMID: 33212430 DOI: 10.1088/1361-6528/abcc23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of interpretable structure/property relationships is a cornerstone of nanoscience, but can be challenging when the structural diversity and complexity exceeds our ability to characterise it. This is often the case for imperfect, disordered and amorphous nanoparticles, where even the nomenclature can be unspecific. Disordered platinum nanoparticles have exhibited superior performance for some reactions, which makes a systematic way of describing them highly desirable. In this study we have used a diverse set of disorder platinum nanoparticles and machine learning to identify the pure and representative structures based on their similarity in 121 dimensions. We identify two prototypes that are representative of separable classes, and seven archetypes that are the pure structures on the convex hull with which all other possibilities can be described. Together these nine nanoparticles can explain all of the variance in the set, and can be described as either single crystal, twinned, spherical or branched; with or without roughened surfaces. This forms a robust sub-set of platinum nanoparticle upon which to base further work, and provides a theoretical basis for discussing structure/property relationships of platinum nanoparticles that are not geometrically ideal.
Collapse
Affiliation(s)
| | | | | | - Amanda S Barnard
- ANU Research School of Computer Science, Acton ACT 2601, Australia
| |
Collapse
|
21
|
Bedair TM, Heo Y, Ryu J, Bedair HM, Park W, Han DK. Biocompatible and functional inorganic magnesium ceramic particles for biomedical applications. Biomater Sci 2021; 9:1903-1923. [PMID: 33506843 DOI: 10.1039/d0bm01934h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnesium ceramics hold promise for numerous biological applications. This review covers the synthesis of magnesium ceramic particles with specific morphologies and potential modification techniques. Magnesium ceramic particles possess multiple characteristics directly applicable to human biology; they are anti-inflammatory, antibacterial, antiviral, and offer anti-cancer effects. Based on these advantages, magnesium hydroxide nanoparticles have been extensively utilized across biomedical fields. In a vascular stent, the incorporation of magnesium ceramic nanoparticles enhances re-endothelialization. Additionally, tissue regeneration for bone, cartilage, and kidney can be promoted by magnesium ceramics. This review enables researchers to identify the optimum synthetic conditions to prepare magnesium ceramics with specific morphologies and sizes and select the appropriate modification protocols. It is also intended to elucidate the desirable physicochemical properties and biological benefits of magnesium ceramics.
Collapse
Affiliation(s)
- Tarek M Bedair
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Korea.
| | | | | | | | | | | |
Collapse
|
22
|
Kim CW, Kim IH, Kang YS. Magnetic spin exchange interaction in SmCo 5/Co nanocomposite magnet for large energy product. J Colloid Interface Sci 2021; 589:157-165. [PMID: 33460847 DOI: 10.1016/j.jcis.2020.12.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
Magnetic spin exchange-coupled magnets have been investigated for obtaining an enhanced energy product, however, approaches at the nanoscale have been greatly restricted because of the lack of consideration of the relationships among the individual components. Here, we suggest a facile strategy for fabricating exchange-coupled nanomagnets with a large energy product. As a bottom-up approach, this work introduces a combined thermal decomposition and reduction/diffusion process to obtain a magnetic spin exchange coupled SmCo5/Co nanocomposite magnet. The SmCo5/Co nanocomposite magnet was fabricated through a three-step approach: (1) chemical synthesis of Co@SmOx nanoparticles and Co nanoparticles as hard and soft magnetic phases, respectively, (2) 3-dimensional alternating arrangement of both magnetic phases and (3) a reduction/diffusion process for the magnetic spin exchange interaction. Our results demonstrate that an effective magnetic spin exchange interaction strongly depends on the dimension and arrangement of the hard and soft phases, which were synthetically tuned to be within the magnetic domain wall size.
Collapse
Affiliation(s)
- Chang Woo Kim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; Department of Graphic Arts Information Engineering, College of Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - In Ho Kim
- Korea Center for Artificial Photosynthesis and Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Young Soo Kang
- Korea Center for Artificial Photosynthesis and Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| |
Collapse
|
23
|
Xu J, Zhu K, Gao S, Hou Y. Rare earth permanent magnetic nanostructures: chemical design and microstructure control to optimize magnetic properties. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00777c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The routes for the optimization of the magnetic properties of rare earth permanent magnetic nanostructures are discussed, i.e. the control of microstructure, such as size and shape as well as the exchange-coupling interactions.
Collapse
Affiliation(s)
- Junjie Xu
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MEMD)
- Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT)
- Department of Materials Science and Engineering College of Engineering
- Peking University
- Beijing 100871
| | - Kai Zhu
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MEMD)
- Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT)
- Department of Materials Science and Engineering College of Engineering
- Peking University
- Beijing 100871
| | - Song Gao
- College of Chemistry and Molecular Engineering
- Peking University
- China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MEMD)
- Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT)
- Department of Materials Science and Engineering College of Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
24
|
Agrawal A, Goyal R, Abraham BM, Singh O, Tripathi S, Poddar MK, Bal R, Sarkar B. Synthesis of sub-nanometric Cu2O catalysts for Pd-free C–C coupling reactions. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00054c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The current template route provides Cu2O nanocrystals with various shapes and depends on the homologues of glucose. These morphology-controlled Cu2O nanocrystals show high activity for the external base-free Ullmann homocoupling of aryl halides.
Collapse
Affiliation(s)
- Ankit Agrawal
- Catalytic Depolymerization Area
- Upstream & Wax Rheology Division
- CSIR-Indian Institute of Petroleum
- Dehradun 248005
- India
| | - Reena Goyal
- Department of Chemical Engineering
- Indian Institute of Technology-Roorkee
- Roorkee 247667
- India
- Nano Catalysis Area
| | - B. Moses Abraham
- Advanced Centre of Research in High Energy Materials (ACRHEM)
- University of Hyderabad
- Hyderabad 500046
- India
| | - Omvir Singh
- Catalytic Depolymerization Area
- Upstream & Wax Rheology Division
- CSIR-Indian Institute of Petroleum
- Dehradun 248005
- India
| | - Shailendra Tripathi
- Catalytic Depolymerization Area
- Upstream & Wax Rheology Division
- CSIR-Indian Institute of Petroleum
- Dehradun 248005
- India
| | - Mukesh K. Poddar
- Nano Catalysis Area
- Light Stock Processing Division
- CSIR-Indian Institute of Petroleum
- Dehradun 248005
- India
| | - Rajaram Bal
- Nano Catalysis Area
- Light Stock Processing Division
- CSIR-Indian Institute of Petroleum
- Dehradun 248005
- India
| | - Bipul Sarkar
- Catalytic Depolymerization Area
- Upstream & Wax Rheology Division
- CSIR-Indian Institute of Petroleum
- Dehradun 248005
- India
| |
Collapse
|
25
|
Shepit M, Paidi VK, Roberts CA, van Lierop J. Competing ferro- and antiferromagnetic exchange drives shape-selective [Formula: see text] nanomagnetism. Sci Rep 2020; 10:20990. [PMID: 33268828 PMCID: PMC7710736 DOI: 10.1038/s41598-020-77650-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/13/2020] [Indexed: 11/08/2022] Open
Abstract
We have synthesized three different shapes of [Formula: see text] nanoparticles to investigate the relationships between the surface Co[Formula: see text] and Co[Formula: see text] bonding quantified by exploiting the known exposed surface planes, terminations, and coordiations of [Formula: see text] nanoparticle spheres, cubes and plates. Subsequently this information is related to the unusual behaviour observed in the magnetism. The competition of exchange interactions at the surface provides the mechanism for different behaviours in the shapes. The cubes display weakened antiferromagnetic interactions in the form of a spin-flop that occurs at the surface, while the plates show distinct ferromagnetic behaviour due to the strong competition between the interactions. We elucidate the spin properties which are highly sensitive to bonding and crystal field environments. This work provides a new window into the mechanisms behind surface magnetism.
Collapse
Affiliation(s)
- Michael Shepit
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Vinod K. Paidi
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Charles A. Roberts
- Toyota Motor Engineering and Manufacturing North America Inc., 1555 Woodridge Avenue, Ann Arbor, MI 48105 USA
| | - Johan van Lierop
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
- Manitoba Institute for Materials, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
26
|
Maximov AL, Kulikova MV, Dementyeva OS, Ponomareva AK. Cobalt-Containing Dispersion Catalysts for Three-Phase Fischer-Tropsch Synthesis. Front Chem 2020; 8:567848. [PMID: 33304880 PMCID: PMC7701272 DOI: 10.3389/fchem.2020.567848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022] Open
Abstract
Nanosized catalyst dispersions have significant potential for improving hydrocarbon production from carbon monoxide and hydrogen via Fischer–Tropsch synthesis, an essential alternative to the use of petroleum as a raw material. New dispersed cobalt catalysts and dispersed-phase cobalt-based catalysts with Pd, Al2O3, or ZrO2 additives for the Fischer–Tropsch synthesis were synthesized in the present work. A dispersed cobalt phase was prepared in a heavy paraffin medium using ex situ and in situ approaches through thermal decomposition of a nitrate precursor at various temperatures. Analyses showed that an increase in the temperature for catalytic suspension formation from 215 to 260°C enlarged the particles in the dispersed phase from 190 to 264 nm, which was probably due to increased agglomeration at elevated temperatures. The rheological properties of the obtained catalytic suspensions can be described by the Bingham equation. Furthermore, the concentration of the dispersed phase had a direct impact on the structure of the entire catalytic system. Ultrafine suspensions of palladium-promoted catalytic systems were tested for the Fischer–Tropsch synthesis. The overall yield of C5+ hydrocarbons was as high as 50 g/m3, and the productivity of the Pd-promoted catalytic systems reached 270–290 g/(kgCo · h).
Collapse
Affiliation(s)
- Anton Lvovich Maximov
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Mayya Valerevna Kulikova
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences (RAS), Moscow, Russia
| | | | - Anna Konstantinovna Ponomareva
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences (RAS), Moscow, Russia.,Faculty of Fundamental Physics and Chemical Engineering, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
27
|
Mantella V, Castilla-Amorós L, Buonsanti R. Shaping non-noble metal nanocrystals via colloidal chemistry. Chem Sci 2020; 11:11394-11403. [PMID: 34094381 PMCID: PMC8162465 DOI: 10.1039/d0sc03663c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Non-noble metal nanocrystals with well-defined shapes have been attracting increasingly more attention in the last decade as potential alternatives to noble metals, by virtue of their earth abundance combined with intriguing physical and chemical properties relevant for both fundamental studies and technological applications. Nevertheless, their synthesis is still primitive when compared to noble metals. In this contribution, we focus on third row transition metals Mn, Fe, Co, Ni and Cu that are recently gaining interest because of their catalytic properties. Along with providing an overview on the state-of-the-art, we discuss current synthetic strategies and challenges. Finally, we propose future directions to advance the synthetic development of shape-controlled non-noble metal nanocrystals in the upcoming years.
Collapse
Affiliation(s)
- Valeria Mantella
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne CH-1950 Sion Switzerland
| | - Laia Castilla-Amorós
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne CH-1950 Sion Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne CH-1950 Sion Switzerland
| |
Collapse
|
28
|
Siddiqui MA, Wahab R, Ahmad J, Farshori NN, Al-Khedhairy AA. Single and Multi-metal Oxide Nanoparticles Induced Cytotoxicity and ROS Generation in Human Breast Cancer (MCF-7) Cells. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01564-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Sodreau A, Vivien A, Moisset A, Salzemann C, Petit C, Petit M. Simpler and Cleaner Synthesis of Variously Capped Cobalt Nanocrystals Applied in the Semihydrogenation of Alkynes. Inorg Chem 2020; 59:13972-13978. [DOI: 10.1021/acs.inorgchem.0c01641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- A. Sodreau
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - A. Vivien
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - A. Moisset
- Sorbonne Université, MONARIS, UMR 8233, 4 place Jussieu, 75005 Paris, France
| | - C. Salzemann
- Sorbonne Université, MONARIS, UMR 8233, 4 place Jussieu, 75005 Paris, France
| | - C. Petit
- Sorbonne Université, MONARIS, UMR 8233, 4 place Jussieu, 75005 Paris, France
| | - M. Petit
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
30
|
Zhou M, Li C, Fang J. Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chem Rev 2020; 121:736-795. [DOI: 10.1021/acs.chemrev.0c00436] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ming Zhou
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
31
|
Ivanov AO, Zubarev A. Chain Formation and Phase Separation in Ferrofluids: The Influence on Viscous Properties. MATERIALS 2020; 13:ma13183956. [PMID: 32906703 PMCID: PMC7559013 DOI: 10.3390/ma13183956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
Ferrofluids have attracted considerable interest from researchers and engineers due to their rich set of unique physical properties that are valuable for many industrial and biomedical applications. Many phenomena and features of ferrofluids' behavior are determined by internal structural transformations in the ensembles of particles, which occur due to the magnetic interaction between the particles. An applied magnetic field induces formations, such as linear chains and bulk columns, that become elongated along the field. In turn, these structures dramatically change the rheological and other physical properties of these fluids. A deep and clear understanding of the main features and laws of the transformations is necessary for the understanding and explanation of the macroscopic properties and behavior of ferrofluids. In this paper, we present an overview of experimental and theoretical works on the internal transformations in these systems, as well as on the effect of the internal structures on the rheological effects in the fluids.
Collapse
Affiliation(s)
- Alexey O. Ivanov
- Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave. 51, 620000 Ekaterinburg, Russia;
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg, Russia
| | - Andrey Zubarev
- Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave. 51, 620000 Ekaterinburg, Russia;
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg, Russia
- Correspondence: ; Tel.: +7-343-2160-765
| |
Collapse
|
32
|
Shamloo A, Rodrigue D, Soldera A. Melting of alkane nanocrystals: towards a representation of polyethylene. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1797020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Azar Shamloo
- Laboratory of Physical Chemistry of Matters, Department of chemistry, Université de Sherbrooke, Sherbrooke, Canada
| | - Denis Rodrigue
- Department of chemical engineering, Université Laval, Quebec City, Canada
| | - Armand Soldera
- Laboratory of Physical Chemistry of Matters, Department of chemistry, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
33
|
Monego D, Kister T, Kirkwood N, Doblas D, Mulvaney P, Kraus T, Widmer-Cooper A. When Like Destabilizes Like: Inverted Solvent Effects in Apolar Nanoparticle Dispersions. ACS NANO 2020; 14:5278-5287. [PMID: 32298080 DOI: 10.1021/acsnano.9b03552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We report on the colloidal stability of nanoparticles with alkanethiol shells in apolar solvents. Small-angle X-ray scattering and molecular dynamics simulations were used to characterize the interaction between nanoparticles in linear alkane solvents ranging from hexane to hexadecane, including 4 nm gold cores with hexadecanethiol shells and 6 nm cadmium selenide cores with octadecanethiol shells. We find that the agglomeration is enthalpically driven and that, contrary to what one would expect from classical colloid theory, the temperature at which the particles agglomerate increases with increasing solvent chain length. We demonstrate that the inverted trend correlates with the temperatures at which the ligands order in the different solvents and show that the inversion is due to a combination of enthalpic and entropic effects that enhance the stability of the ordered ligand state as the solvent length increases. We also explain why cyclohexane is a better solvent than hexadecane despite the two having very similar solvation parameters.
Collapse
Affiliation(s)
- Debora Monego
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas Kister
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Nicholas Kirkwood
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David Doblas
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tobias Kraus
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Colloid and Interface Chemistry, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
34
|
Almeida AS, Sahu A, Norris DJ, Kakazei GN, Kannan H, Brandt MS, Stutzmann M, Pereira RN. Anisotropic Magnetic Resonance in Random Nanocrystal Quantum Dot Ensembles. ACS OMEGA 2020; 5:11333-11341. [PMID: 32478221 PMCID: PMC7254520 DOI: 10.1021/acsomega.0c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Magnetic anisotropy critically determines the utility of magnetic nanocrystals (NCs) in new nanomagnetism technologies. Using angular-dependent electron magnetic resonance (EMR), we observe magnetic anisotropy in isotropically arranged NCs of a nonmagnetic material. We show that the shape of the EMR angular variation can be well described by a simple model that considers magnetic dipole-dipole interactions between dipoles randomly located in the NCs, most likely due to surface dangling bonds. The magnetic anisotropy results from the fact that the energy term arising from the magnetic dipole-dipole interactions between all magnetic moments in the system is dominated by only a few dipole pairs, which always have an anisotropic geometric arrangement. Our work shows that magnetic anisotropy may be a general feature of NC systems containing randomly distributed magnetic dipoles.
Collapse
Affiliation(s)
- António
J. S. Almeida
- i3N—Institute
for Nanostructures, Nanomodelling and Nanofabrication, Department
of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
- NanoElectronics
Group, MESA+ Institute for Nanotechnology, University of Twente, 7522
NB Enschede, The Netherlands
| | - Ayaskanta Sahu
- Optical
Materials Engineering Laboratory, ETH Zurich, 8092 Zurich, Switzerland
- Department
of Chemical and Biomolecular Engineering, New York University, Brooklyn, 11201 New York, United States
| | - David J. Norris
- Optical
Materials Engineering Laboratory, ETH Zurich, 8092 Zurich, Switzerland
| | - Gleb N. Kakazei
- Departamento
de Física e Astronomia, IFIMUP and IN-Institute of Nanoscience
and Nanotechnology, Universidade do Porto, 4169-007 Porto, Portugal
| | - Haripriya Kannan
- Department
of Chemical and Biomolecular Engineering, New York University, Brooklyn, 11201 New York, United States
| | - Martin S. Brandt
- Walter
Schottky Institut and Physik-Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Martin Stutzmann
- Walter
Schottky Institut and Physik-Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Rui N. Pereira
- i3N—Institute
for Nanostructures, Nanomodelling and Nanofabrication, Department
of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
35
|
Disk-Shaped Cobalt Nanocrystals as Fischer–Tropsch Synthesis Catalysts Under Industrially Relevant Conditions. Top Catal 2020. [DOI: 10.1007/s11244-020-01270-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractColloidal synthesis of metal nanocrystals (NC) offers control over size, crystal structure and shape of nanoparticles, making it a promising method to synthesize model catalysts to investigate structure-performance relationships. Here, we investigated the synthesis of disk-shaped Co-NC, their deposition on a support and performance in the Fischer–Tropsch (FT) synthesis under industrially relevant conditions. From the NC synthesis, either spheres only or a mixture of disk-shaped and spherical Co-NC was obtained. The disks had an average diameter of 15 nm, a thickness of 4 nm and consisted of hcp Co exposing (0001) on the base planes. The spheres were 11 nm on average and consisted of ε-Co. After mild oxidation, the CoO-NC were deposited on SiO2 with numerically 66% of the NC being disk-shaped. After reduction, the catalyst with spherical plus disk-shaped Co-NC had 50% lower intrinsic activity for FT synthesis (20 bar, 220 °C, H2/CO = 2 v/v) than the catalyst with spherical NC only, while C5+-selectivity was similar. Surprisingly, the Co-NC morphology was unchanged after catalysis. Using XPS it was established that nitrogen-containing ligands were largely removed and in situ XRD revealed that both catalysts consisted of 65% hcp Co and 21 or 32% fcc Co during FT. Furthermore, 3–5 nm polycrystalline domains were observed. Through exclusion of several phenomena, we tentatively conclude that the high fraction of (0001) facets in disk-shaped Co-NC decrease FT activity and, although very challenging to pursue, that metal nanoparticle shape effects can be studied at industrially relevant conditions.
Collapse
|
36
|
Rahmati M, Safdari MS, Fletcher TH, Argyle MD, Bartholomew CH. Chemical and Thermal Sintering of Supported Metals with Emphasis on Cobalt Catalysts During Fischer–Tropsch Synthesis. Chem Rev 2020; 120:4455-4533. [DOI: 10.1021/acs.chemrev.9b00417] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mahmood Rahmati
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Mohammad-Saeed Safdari
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | | | - Morris D. Argyle
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Calvin H. Bartholomew
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
37
|
Lee D, Kim M, Woo HY, Chae J, Lee D, Jeon S, Oh SJ, Paik T. Heating-up synthesis of cesium bismuth bromide perovskite nanocrystals with tailored composition, morphology, and optical properties. RSC Adv 2020; 10:7126-7133. [PMID: 35493861 PMCID: PMC9049756 DOI: 10.1039/c9ra10106c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/08/2020] [Indexed: 11/29/2022] Open
Abstract
This study represents the heating-up synthesis of lead-free cesium bismuth bromide perovskite nanocrystals (NCs). CsBr and BiBr3 precursors are used to synthesize uniform and phase-pure cesium bismuth bromide NCs, and the reaction is performed via an injection-free, heating-up method in the presence of a solvent mixture with a high boiling point. The size and composition of cesium bismuth bromide NCs are readily controlled by changing the reaction time, temperature, and amount of surfactant added to the reaction mixture. Upon heating, sequential phase evolution occurs, resulting in the formation of kinetically stable BiOBr in the early reaction stages, which transformed into the thermodynamically stable Cs3BiBr6 and Cs3Bi2Br9 with an increase in either the reaction time or the reaction temperature. Furthermore, the absorption and photoluminescence properties of Cs3BiBr6 and Cs3Bi2Br9 NCs are characterized to investigate their composition-dependent optical properties. This work provides the potential to synthesize various types of lead-free perovskite NCs by tailoring the size and compositions.
Collapse
Affiliation(s)
- Donguk Lee
- Department of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - MinHye Kim
- Department of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Ho-Young Woo
- Department of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Jiyeon Chae
- Department of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Dawon Lee
- Department of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Sanghyun Jeon
- Department of Materials Science and Engineering, Korea University Seoul 02841 Republic of Korea
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University Seoul 02841 Republic of Korea
| | - Taejong Paik
- Department of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| |
Collapse
|
38
|
Microfluidics-enabled acceleration of Fenton oxidation for degradation of organic dyes with rod-like zero-valent iron nanoassemblies. J Colloid Interface Sci 2020; 559:254-262. [DOI: 10.1016/j.jcis.2019.10.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 11/19/2022]
|
39
|
Hierarchically structured Co3O4/SiO2 composites by Co nanocrystals transformation. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Farkaš B, Terranova U, de Leeuw NH. Binding modes of carboxylic acids on cobalt nanoparticles. Phys Chem Chem Phys 2020; 22:985-996. [PMID: 31829369 DOI: 10.1039/c9cp04485j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Owing to their high saturation magnetisation, cobalt nanoparticles hold significant potential for the hyperthermia treatment of tumours. Covalent binding of carboxylic acids to the nanoparticles can induce biocompatibility, whilst also preventing the formation of surface oxides which reduce the magnetic properties of cobalt. Understanding the origin of the acid-metal interaction is key, yet probably the most experimentally challenging step, for the rational design of such entities. In this density functional theory study, we use static calculations to establish that a 57-atom Co cluster is the smallest model able to reproduce the adsorption behaviour of carboxylic acids, and ab initio metadynamics to obtain the structure and the free energy landscape for its interaction with valeric acid. Our simulations show that a bridging bidentate binding mode has a stronger affinity compared to monodentate binding, with energetically high transition barriers between the two. A chelate interaction mode of two carboxyl oxygen atoms can be formed as an intermediate. These results clarify the organic-inorganic interactions in the cobalt-acid system, providing a basis for the rational design of biocompatible metallic nanoparticles.
Collapse
Affiliation(s)
- Barbara Farkaš
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Umberto Terranova
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Nora H de Leeuw
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK. and Department of Earth Sciences, Utrecht University, 3508 TA, Utrecht, The Netherlands
| |
Collapse
|
41
|
Cheung KM, Stemer DM, Zhao C, Young TD, Belling JN, Andrews AM, Weiss PS. Chemical Lift-Off Lithography of Metal and Semiconductor Surfaces. ACS MATERIALS LETTERS 2020; 2:76-83. [PMID: 32405626 PMCID: PMC7220117 DOI: 10.1021/acsmaterialslett.9b00438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chemical lift-off lithography (CLL) is a subtractive soft-lithographic technique that uses polydimethylsiloxane (PDMS) stamps to pattern self-assembled monolayers of functional molecules for applications ranging from biomolecule patterning to transistor fabrication. A hallmark of CLL is preferential cleavage of Au-Au bonds, as opposed to bonds connecting the molecular layer to the substrate, i.e., Au-S bonds. Herein, we show that CLL can be used more broadly as a technique to pattern a variety of substrates composed of coinage metals (Pt, Pd, Ag, Cu), transition and reactive metals (Ni, Ti, Al), and a semiconductor (Ge) using straightforward alkanethiolate self-assembly chemistry. We demonstrate high-fidelity patterning in terms of precise features over large areas on all surfaces investigated. We use patterned monolayers as chemical resists for wet etching to generate metal microstructures. Substrate atoms, along with alkanethiolates, were removed as a result of lift-off, as previously observed for Au. We demonstrate the formation of PDMS-stamp-supported bimetallic monolayers by performing CLL on two different metal surfaces using the same PDMS stamp. By expanding the scope of the surfaces compatible with CLL, we advance and generalize CLL as a method to pattern a wide range of substrates, as well as to produce supported metal monolayers, both with broad applications in surface and materials science.
Collapse
Affiliation(s)
- Kevin M. Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dominik M. Stemer
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Thomas D. Young
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jason N. Belling
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anne M. Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
42
|
Kiremitler NB, Torun I, Altintas Y, Patarroyo J, Demir HV, Puntes VF, Mutlugun E, Onses MS. Writing chemical patterns using electrospun fibers as nanoscale inkpots for directed assembly of colloidal nanocrystals. NANOSCALE 2020; 12:895-903. [PMID: 31833522 DOI: 10.1039/c9nr08056b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Applications that range from electronics to biotechnology will greatly benefit from low-cost, scalable and multiplex fabrication of spatially defined arrays of colloidal inorganic nanocrystals. In this work, we present a novel additive patterning approach based on the use of electrospun nanofibers (NFs) as inkpots for end-functional polymers. The localized grafting of end-functional polymers from spatially defined nanofibers results in covalently bound chemical patterns. The main factors that determine the width of the nanopatterns are the diameter of the NF and the extent of spreading during the thermal annealing process. Lowering the surface energy of the substrates via silanization and a proper choice of the grafting conditions enable the fabrication of nanoscale patterns over centimeter length scales. The fabricated patterns of end-grafted polymers serve as the templates for spatially defined assembly of colloidal metal and metal oxide nanocrystals of varying sizes (15 to 100 nm), shapes (spherical, cube, rod), and compositions (Au, Ag, Pt, TiO2), as well as semiconductor quantum dots, including the assembly of semiconductor nanoplatelets.
Collapse
Affiliation(s)
- N Burak Kiremitler
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wakisaka T, Kusada K, Yamamoto T, Toriyama T, Matsumura S, Ibrahima G, Seo O, Kim J, Hiroi S, Sakata O, Kawaguchi S, Kubota Y, Kitagawa H. Discovery of face-centred cubic Os nanoparticles. Chem Commun (Camb) 2020; 56:372-374. [DOI: 10.1039/c9cc09192k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of the crystal structure control of Os is reported. The fcc-structured Os nanoparticles were synthesized using an Os acetylacetonate complex as a precursor although the fcc structure does not exist in the bulk state.
Collapse
Affiliation(s)
- Takuo Wakisaka
- Division of Chemistry, Graduate School of Science
- Kyoto University
- Kitashirakawa-Oiwakecho
- Sakyo-ku
- Kyoto 606-8502
| | - Kohei Kusada
- Division of Chemistry, Graduate School of Science
- Kyoto University
- Kitashirakawa-Oiwakecho
- Sakyo-ku
- Kyoto 606-8502
| | - Tomokazu Yamamoto
- Department of Applied Quantum Physics and Nuclear Engineering
- Kyushu University
- 744 Motooka
- Nishi-ku
- Fukuoka 819-0395
| | - Takaaki Toriyama
- The Ultramicroscopy Research Center
- Kyushu University
- Motooka 744
- Nishi-ku
- Fukuoka 819-0395
| | - Syo Matsumura
- Department of Applied Quantum Physics and Nuclear Engineering
- Kyushu University
- 744 Motooka
- Nishi-ku
- Fukuoka 819-0395
| | - Gueye Ibrahima
- Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization
- National Institute for Materials Science (NIMS)
- 1-1-1 Kouto
- Sayo-gun
- Hyogo, 679-5148
| | - Okkyun Seo
- Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization
- National Institute for Materials Science (NIMS)
- 1-1-1 Kouto
- Sayo-gun
- Hyogo, 679-5148
| | - Jaemyung Kim
- Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization
- National Institute for Materials Science (NIMS)
- 1-1-1 Kouto
- Sayo-gun
- Hyogo, 679-5148
| | - Satoshi Hiroi
- Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization
- National Institute for Materials Science (NIMS)
- 1-1-1 Kouto
- Sayo-gun
- Hyogo, 679-5148
| | - Osami Sakata
- Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization
- National Institute for Materials Science (NIMS)
- 1-1-1 Kouto
- Sayo-gun
- Hyogo, 679-5148
| | - Shogo Kawaguchi
- Diffraction and Scattering Division
- Japan Synchrotron Radiation Research Institute (JASRI)
- SPring-8
- 1-1-1 Kouto
- Sayo-gun
| | - Yoshiki Kubota
- Department of Physical Science, Graduate School of Science
- Osaka Prefecture University
- Sakai
- Osaka 599-8531
- Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science
- Kyoto University
- Kitashirakawa-Oiwakecho
- Sakyo-ku
- Kyoto 606-8502
| |
Collapse
|
44
|
Mianai RS, Ghasemzadeh MA, Monfared MRZ. Green Fabrication of Cobalt NPs using Aqueous Extract of Antioxidant Rich Zingiber and Their Catalytic Applications for the Synthesis of Pyrano[2,3-c]pyrazoles. Comb Chem High Throughput Screen 2019; 22:18-26. [PMID: 30848196 DOI: 10.2174/1386207322666190307160354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/27/2018] [Accepted: 02/15/2019] [Indexed: 01/27/2023]
Abstract
AIM AND OBJECTIVE In this study, biological synthesis of cobalt nanoparticles was developed in the presence of ginger extract as the reducing and capping agent through the simple and convenient co-precipitation method. MATERIALS AND METHODS The as-synthesized cobalt nanoparticles were characterized by X-ray diffraction (XRD), scanning Electron Microscopy (SEM), spectra energy dispersive analysis of Xray (EDS), Fourier transform infrared (FT-IR), and vibrating sample magnetometer (VSM) techniques. According to the vibrating sample magnetometer, cobalt nanoparticles show paramagnetic behaviour at room temperature. Furthermore, the effect of ginger extract concentration on the UV-Vis absorbance of Co nanoparticles was investigated. Based on the UVVis absorbance spectra, increasing ginger extract concentration causes particle size to decrease. In addition, the catalytic performance of the synthesized cobalt nanoparticles was investigated in the preparation of pyrano[2,3-c]pyrazoles via one-pot four-component reactions of aryl aldehydes, hydrazine hydrate, malononitrile and diethyl acetylenedicarboxylate. RESULT AND CONCLUSION The prepared pyrano[2,3-c]pyrazole derivatives were obtained in high yields within short reaction times and the nanocatalyst was easily separated using an external magnet and reused for several times with no significant loss of its activity.
Collapse
|
45
|
Abstract
Magnetic nanoparticles (MNPs) have attracted growing interest as versatile materials for the development of analytical detection and separation platforms for food safety monitoring. This review discusses recent advances in the synthesis, functionalization and applications of MNPs in bioanalysis. A special emphasis is given to the use of MNPs as an immobilization support for biomolecules and as a target capture and pre-concentration to increase selectivity and sensitivity of analytical platforms for the monitoring of food contaminants. General principles and examples of MNP-based platforms for separation, amplification and detection of analytes of interest in food, including organic and inorganic constituents are discussed.
Collapse
|
46
|
Effects of Precursor Concentration in Solvent and Nanomaterials Room Temperature Aging on the Growth Morphology and Surface Characteristics of Ni–NiO Nanocatalysts Produced by Dendrites Combustion during SCS. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The morphology and surface characteristics of SCS(Solution Combustion Synthesis)-derived Ni–NiO nanocatalysts were studied. The ΤΕΜ results highlighted that the nanomaterial’s microstructure was modified by changing the reactants’ concentrations. The dendrites’ growth conditions were the main factors responsible for the observed changes in the nanomaterials’ crystallite size. Infrared camera measurements demonstrated a new type of combustion through dendrites. The XPS analysis revealed that the NiO structure resulted in the bridging of the oxygen structure that acted as an inhibitor of hydrogen adsorption on the catalytic surface and, consequently, the activity reduction. The RF-IGC indicated three different kinds of active sites with different energies of adsorption on the fresh catalyst and only one type on the aged catalyst. Aging of the nanomaterial was associated with changes in the microstructure of its surface by a gradual change in the chemical composition of the active centers.
Collapse
|
47
|
Lau J, Trojniak AE, Maraugha MJ, VanZanten AJ, Osterbaan AJ, Serino AC, Ohnsorg ML, Cheung KM, Ashby DS, Weiss PS, Dunn BS, Anderson ME. Conformal Ultrathin Film Metal-Organic Framework Analogues: Characterization of Growth, Porosity, and Electronic Transport. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:8977-8986. [PMID: 32536746 PMCID: PMC7291877 DOI: 10.1021/acs.chemmater.9b03141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Thin-film formation and transport properties of two copper-paddlewheel metal-organic framework (MOF) -based systems (MOF-14 and MOF-399) are investigated for their potential integration into electrochemical device architectures. Thin-film analogs of these two systems are fabricated by the sequential, alternating, solution-phase deposition of the inorganic and organic ligand precursors that result in conformal films via van der Merwe-like growth. Atomic force microscopy reveals smooth film morphologies with surface roughnesses determined by the underlying substrates and linear film growth of 1.4 and 2.2 nm per layer for the MOF-14 and MOF-399 systems, respectively. Electrochemical impedance spectroscopy is used to evaluate the electronic transport properties of the thin films, finding that the MOF-14 analog films demonstrate low electronic conductivity, while MOF-399 analog films are electronically insulating. The intrinsic porosities of these ultrathin MOF analog films are confirmed by cyclic voltammetry redox probe characterization using ferrocene. Larger peak currents are observed for MOF-399 analog films compared to MOF-14 analog films, which is consistent with the larger pores of MOF-399. The layer-by-layer deposition of these systems provides a promising route to incorporate MOFs as thin films with nanoscale thickness control and low surface roughness for electrochemical devices.
Collapse
Affiliation(s)
- Jonathan Lau
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ashley E. Trojniak
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Macy J. Maraugha
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Alyssa J. VanZanten
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | | | - Andrew C. Serino
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Monica L. Ohnsorg
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Kevin M. Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - David S. Ashby
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Bruce S. Dunn
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Mary E. Anderson
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
48
|
Luna C, Castañeda-Rodríguez D, Barriga-Castro ED, Núñez NO, Mendoza-Reséndez R. Monodisperse Gold Cuboctahedral Nanocrystals Directly Synthesized in Reverse Micelles: Preparation, Colloidal Dispersion in Organic Solvents and Water, Reversible Self-Assembly and Plasmonic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14291-14299. [PMID: 31565937 DOI: 10.1021/acs.langmuir.9b02374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The synthesis of organic-solvent-dispersible gold nanoparticles in reverse micelles of didodecyldimethylammonium bromide (DDAB) is revisited in the present investigation. Some parameters of synthesis, specifically the reaction volume and the concentration of the reducing agent, were slightly modified obtaining directly monodisperse gold nanocrystals (AuNCs) without the need to use additional active surfactants or additional treatments such as digestive ripening. Interestingly, most of the obtained AuNCs display the same exposed crystalline faces composed of six bounding facets (four {111} faces and two {002} faces), corresponding to single-crystalline face-centered cubic nanoparticles with a cuboctahedron shape. When these AuNCs are subsequently functionalized with 1-decanethiol (C10H21SH) or 1-dodecanethiol (C12H25SH), they don't experience significant changes in their size or crystalline texture, however, they self-aggregate directly in the suspension at room temperature into faceted supramolecular structures and exhibit collective plasmonic excitations. Such self-organization is reversible under heating treatments allowing the observation of the influence of the AuNCs aggregation state on their plasmonic properties. Fourier transform infrared spectroscopy reveals that thiols only replace partially the DDAB molecules, and thus, DDAB molecules remain present in the thiol-capped AuNCs. To turn the thiol-capped nanocrystals into water-dispersible nanocrystals and extend their technological potential, they are stabilized with poloxamer 407 obtaining highly stable purple colloids in water.
Collapse
Affiliation(s)
- Carlos Luna
- Universidad Autónoma de Nuevo León (UANL) , Av. Universidad S/N , San Nicolás de los Garza , 66455 Nuevo León , Mexico
| | - Diana Castañeda-Rodríguez
- Universidad Autónoma de Nuevo León (UANL) , Av. Universidad S/N , San Nicolás de los Garza , 66455 Nuevo León , Mexico
| | - Enrique Díaz Barriga-Castro
- Centro de Investigación en Química Aplicada (CIQA) , Blvd. Enrique Reyna Hermosillo No. 140 , Saltillo , 25294 Coahuila , Mexico
| | - Nuria O Núñez
- Instituto de Ciencia de Materiales de Sevilla, CSIC-US , Avda. Americo Vespucio no. 49, Isla de la Cartuja , 41092 Sevilla , Spain
| | - Raquel Mendoza-Reséndez
- Universidad Autónoma de Nuevo León (UANL) , Av. Universidad S/N , San Nicolás de los Garza , 66455 Nuevo León , Mexico
| |
Collapse
|
49
|
Bottaro F, Takallou A, Chehaiber A, Madsen R. Cobalt-Catalyzed Dehydrogenative Coupling of Amines into Imines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Fabrizio Bottaro
- Department of Chemistry; Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| | - Ahmad Takallou
- Department of Chemistry; Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| | - Ahmad Chehaiber
- Department of Chemistry; Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| | - Robert Madsen
- Department of Chemistry; Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| |
Collapse
|
50
|
Abstract
In recent years, various reports related to sensing application research have suggested that combining the synergistic impacts of optical, electrical or magnetic properties in a single technique can lead to a new multitasking platform. Owing to their unique features of the magnetic moment, biocompatibility, ease of surface modification, chemical stability, high surface area, high mass transference, magnetic nanoparticles have found a wide range of applications in various fields, especially in sensing systems. The present review is comprehensive information about magnetic nanoparticles utilized in the optical sensing platform, broadly categorized into four types: surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence spectroscopy and near-infrared spectroscopy and imaging (NIRS) that are commonly used in various (bio) analytical applications. The review also includes some conclusions on the state of the art in this field and future aspects.
Collapse
|