1
|
Gürkanlı CT. Genetic diversity of rhizobia associated with Pisum sativum L. in the Northern part of Turkey. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00831-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Volpiano CG, Sant’Anna FH, Ambrosini A, de São José JFB, Beneduzi A, Whitman WB, de Souza EM, Lisboa BB, Vargas LK, Passaglia LMP. Genomic Metrics Applied to Rhizobiales ( Hyphomicrobiales): Species Reclassification, Identification of Unauthentic Genomes and False Type Strains. Front Microbiol 2021; 12:614957. [PMID: 33841347 PMCID: PMC8026895 DOI: 10.3389/fmicb.2021.614957] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Taxonomic decisions within the order Rhizobiales have relied heavily on the interpretations of highly conserved 16S rRNA sequences and DNA-DNA hybridizations (DDH). Currently, bacterial species are defined as including strains that present 95-96% of average nucleotide identity (ANI) and 70% of digital DDH (dDDH). Thus, ANI values from 520 genome sequences of type strains from species of Rhizobiales order were computed. From the resulting 270,400 comparisons, a ≥95% cut-off was used to extract high identity genome clusters through enumerating maximal cliques. Coupling this graph-based approach with dDDH from clusters of interest, it was found that: (i) there are synonymy between Aminobacter lissarensis and Aminobacter carboxidus, Aurantimonas manganoxydans and Aurantimonas coralicida, "Bartonella mastomydis," and Bartonella elizabethae, Chelativorans oligotrophicus, and Chelativorans multitrophicus, Rhizobium azibense, and Rhizobium gallicum, Rhizobium fabae, and Rhizobium pisi, and Rhodoplanes piscinae and Rhodoplanes serenus; (ii) Chelatobacter heintzii is not a synonym of Aminobacter aminovorans; (iii) "Bartonella vinsonii" subsp. arupensis and "B. vinsonii" subsp. berkhoffii represent members of different species; (iv) the genome accessions GCF_003024615.1 ("Mesorhizobium loti LMG 6,125T"), GCF_003024595.1 ("Mesorhizobium plurifarium LMG 11,892T"), GCF_003096615.1 ("Methylobacterium organophilum DSM 760T"), and GCF_000373025.1 ("R. gallicum R-602 spT") are not from the genuine type strains used for the respective species descriptions; and v) "Xanthobacter autotrophicus" Py2 and "Aminobacter aminovorans" KCTC 2,477T represent cases of misuse of the term "type strain". Aminobacter heintzii comb. nov. and the reclassification of Aminobacter ciceronei as A. heintzii is also proposed. To facilitate the downstream analysis of large ANI matrices, we introduce here ProKlust ("Prokaryotic Clusters"), an R package that uses a graph-based approach to obtain, filter, and visualize clusters on identity/similarity matrices, with settable cut-off points and the possibility of multiple matrices entries.
Collapse
Affiliation(s)
- Camila Gazolla Volpiano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Hayashi Sant’Anna
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Ambrosini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Anelise Beneduzi
- Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | - William B. Whitman
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Centro Politécnico, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Bruno Brito Lisboa
- Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | - Luciano Kayser Vargas
- Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | | |
Collapse
|
3
|
Shine MB, Gao QM, Chowda-Reddy RV, Singh AK, Kachroo P, Kachroo A. Glycerol-3-phosphate mediates rhizobia-induced systemic signaling in soybean. Nat Commun 2019; 10:5303. [PMID: 31757957 PMCID: PMC6876567 DOI: 10.1038/s41467-019-13318-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/24/2019] [Indexed: 11/09/2022] Open
Abstract
Glycerol-3-phosphate (G3P) is a well-known mobile regulator of systemic acquired resistance (SAR), which provides broad spectrum systemic immunity in response to localized foliar pathogenic infections. We show that G3P-derived foliar immunity is also activated in response to genetically-regulated incompatible interactions with nitrogen-fixing bacteria. Using gene knock-down we show that G3P is essential for strain-specific exclusion of non-desirable root-nodulating bacteria and the associated foliar pathogen immunity in soybean. Grafting studies show that while recognition of rhizobium incompatibility is root driven, bacterial exclusion requires G3P biosynthesis in the shoot. Biochemical analyses support shoot-to-root transport of G3P during incompatible rhizobia interaction. We describe a root-shoot-root signaling mechanism which simultaneously enables the plant to exclude non-desirable nitrogen-fixing rhizobia in the root and pathogenic microbes in the shoot.
Collapse
Affiliation(s)
- M B Shine
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Qing-Ming Gao
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - R V Chowda-Reddy
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Asheesh K Singh
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
4
|
Legocki RP, Legocki M, Baldwin TO, Szalay AA. Bioluminescence in soybean root nodules: Demonstration of a general approach to assay gene expression in vivo by using bacterial luciferase. Proc Natl Acad Sci U S A 2010; 83:9080-4. [PMID: 16593783 PMCID: PMC387078 DOI: 10.1073/pnas.83.23.9080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two plasmid vectors pFIT001 and pPALE001, containing luxAB genes encoding bacterial luciferase [alkanal, reduced-FMN:oxygen oxidoreductase (1-hydroxylating, luminescing), EC 1.14.14.3] from Vibrio harveyi, have been constructed. Escherichia coli carrying derivatives of pFIT001 with DNA inserts in the unique EcoRI site located in luxB form "dark" colonies that can be readily distinguished from the bioluminescent or "bright" colonies. In contrast, promoterless pPALE001 is used as a promoter-search vector based on bioluminescence. The control and regulation of gene expression can be analyzed in vivo using promoter-luxAB fusions by a variety of simple methods, including a technique called "luxdot." As an example, we have introduced nitrogenase nifD and nifH promoter-luxAB fusions into the Bradyrhizobium japonicum chromosome and shown symbiotically regulated bioluminescence in soybean root nodules. B. japonicum transconjugants containing a single copy per genome of the nif promoter-controlled luciferase structural genes did not produce light in free-living cultures, but the same transconjugants did express bioluminescence in root nodules that was strong enough to be detected by the naked eye.
Collapse
Affiliation(s)
- R P Legocki
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853
| | | | | | | |
Collapse
|
5
|
Corbin D, Barran L, Ditta G. Organization and expression of Rhizobium meliloti nitrogen fixation genes. Proc Natl Acad Sci U S A 2010; 80:3005-9. [PMID: 16593313 PMCID: PMC393962 DOI: 10.1073/pnas.80.10.3005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The boundaries of a nif gene cluster in Rhizobium meliloti were determined by Tn5 mutagenesis. These genes are clustered within a 14- to 15-kilobase (kb) region that includes the nitrogenase structural genes. Sequences within 10 kb on either side of this region are devoid of symbiotically essential gene function. RNA blot analysis identified a 5- to 6-kb transcript that corresponds to the nitrogenase structural gene operon. The 5' end of this transcript and its polarity were determined by nuclease S1 mapping. The 5' end of another nif transcript was also identified by nuclease S1 mapping. The promoter regions for these two nif transcripts control transcription in divergent directions and are separated by 1.9 kb of symbiotically unessential DNA. One Tn5 insertion within the nitrogenase operon did not create a polar mutation. The implications of this finding and the overall emerging picture of the genetic organization of this nif region are discussed.
Collapse
Affiliation(s)
- D Corbin
- Department of Biology, University of California at San Diego, La Jolla, California 92093
| | | | | |
Collapse
|
6
|
Sabir JSM, El-Bestawy E. Enhancement of nodulation by some arid climate strains of Rhizobium leguminosarum biovar trifolii using protoplast fusion. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9922-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
|
8
|
Incompatibility behavior of a megaplasmid pMhHN3015c in Mesorhizobium huakuii HN3015. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9611-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Raymond J, Siefert JL, Staples CR, Blankenship RE. The Natural History of Nitrogen Fixation. Mol Biol Evol 2004; 21:541-54. [PMID: 14694078 DOI: 10.1093/molbev/msh047] [Citation(s) in RCA: 447] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent years, our understanding of biological nitrogen fixation has been bolstered by a diverse array of scientific techniques. Still, the origin and extant distribution of nitrogen fixation has been perplexing from a phylogenetic perspective, largely because of factors that confound molecular phylogeny such as sequence divergence, paralogy, and horizontal gene transfer. Here, we make use of 110 publicly available complete genome sequences to understand how the core components of nitrogenase, including NifH, NifD, NifK, NifE, and NifN proteins, have evolved. These genes are universal in nitrogen fixing organisms-typically found within highly conserved operons-and, overall, have remarkably congruent phylogenetic histories. Additional clues to the early origins of this system are available from two distinct clades of nitrogenase paralogs: a group composed of genes essential to photosynthetic pigment biosynthesis and a group of uncharacterized genes present in methanogens and in some photosynthetic bacteria. We explore the complex genetic history of the nitrogenase family, which is replete with gene duplication, recruitment, fusion, and horizontal gene transfer and discuss these events in light of the hypothesized presence of nitrogenase in the last common ancestor of modern organisms, as well as the additional possibility that nitrogen fixation might have evolved later, perhaps in methanogenic archaea, and was subsequently transferred into the bacterial domain.
Collapse
Affiliation(s)
- Jason Raymond
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, USA
| | | | | | | |
Collapse
|
10
|
Jumas-Bilak E, Michaux-Charachon S, Bourg G, Ramuz M, Allardet-Servent A. Unconventional genomic organization in the alpha subgroup of the Proteobacteria. J Bacteriol 1998; 180:2749-55. [PMID: 9573163 PMCID: PMC107230 DOI: 10.1128/jb.180.10.2749-2755.1998] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/1997] [Accepted: 03/02/1998] [Indexed: 02/07/2023] Open
Abstract
Pulsed-field gel electrophoresis was used to analyze the genomic organization of 16 bacteria belonging or related to the family Rhizobiaceae of the alpha subgroup of the class Proteobacteria. The number and sizes of replicons were determined by separating nondigested DNA. Hybridization of an rrn gene probe was used to distinguish between chromosomes and plasmids. Members of the genus Agrobacterium all possess two chromosomes, and each biovar has a specific genome size. As previously demonstrated for Agrobacterium tumefaciens C58, the smaller chromosomes of Agrobacterium biovar 1 and Agrobacterium rubi strains appear to be linear. The genomes of Rhizobium strains were all of similar sizes but were seen to contain either one, two, or three megareplicons. Only one chromosome was present in the member of the related genus Phyllobacterium. We found one or two chromosomes in Rhodobacter and Brucella species, two chromosomes in Ochrobactrum anthropi, and one chromosome in Mycoplana dimorpha and Bartonella quintana; all of these genera are related to the Rhizobiaceae. The presence of multiple chromosomes is discussed from a phylogenetic and taxonomic point of view.
Collapse
Affiliation(s)
- E Jumas-Bilak
- Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale, Unité 431, 30900 Nimes, France
| | | | | | | | | |
Collapse
|
11
|
Rigottier-Gois L, Turner SL, Young JPW, Amarger N. Distribution of repC plasmid-replication sequences among plasmids and isolates of Rhizobium leguminosarum bv. viciae from field populations. Microbiology (Reading) 1998; 144:771-780. [DOI: 10.1099/00221287-144-3-771] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The distribution of four classes of related plasmid replication genes (repC) within three field populations of Rhizobium leguminosarum in France, Germany and the UK was investigated using RFLP, PCR-RFLP and plasmid profile analysis. The results suggest that the four repC classes are compatible: when two or more different repC sequences are present in a strain they are usually associated with different plasmids. Furthermore, classical incompatibility studies in which a Tn5-labelled plasmid with a group IV repC sequence was transferred into field isolates by conjugation demonstrated that group IV sequences are incompatible with each other, but compatible with the other repC groups. This supports the idea that the different repC groups represent different incompatibility groups. The same field isolates were also screened for chromosomal (plac12) and symbiotic gene (nodD-F region) variation. Comparison of these and the plasmid data suggest that plasmid transfer does occur within field populations of R. leguminosarum but that certain plasmid-chromosome combinations are favoured.
Collapse
Affiliation(s)
- Lionel Rigottier-Gois
- Laboratoire de Microbiologie des Sols, Institut National de la Recherche Agronomique,17 rue Sully, BV 1540, 21034 Dijon cedex,France
| | - Sarah L. Turner
- Department of Biology, University of York,PO Box 373, York YO1 5YW,UK
| | - J. Peter W. Young
- Department of Biology, University of York,PO Box 373, York YO1 5YW,UK
| | - Noëlle Amarger
- Laboratoire de Microbiologie des Sols, Institut National de la Recherche Agronomique,17 rue Sully, BV 1540, 21034 Dijon cedex,France
| |
Collapse
|
12
|
Abstract
Soil bacteria of the genera Azorhizobium, Bradyrhizobium, and Rhizobium are collectively termed rhizobia. They share the ability to penetrate legume roots and elicit morphological responses that lead to the appearance of nodules. Bacteria within these symbiotic structures fix atmosphere nitrogen and thus are of immense ecological and agricultural significance. Although modern genetic analysis of rhizobia began less than 20 years ago, dozens of nodulation genes have now been identified, some in multiple species of rhizobia. These genetic advances have led to the discovery of a host surveillance system encoded by nodD and to the identification of Nod factor signals. These derivatives of oligochitin are synthesized by the protein products of nodABC, nodFE, NodPQ, and other nodulation genes; they provoke symbiotic responses on the part of the host and have generated immense interest in recent years. The symbiotic functions of other nodulation genes are nonetheless uncertain, and there remain significant gaps in our knowledge of several large groups of rhizobia with interesting biological properties. This review focuses on the nodulation genes of rhizobia, with particular emphasis on the concept of biological specificity of symbiosis with legume host plants.
Collapse
Affiliation(s)
- S G Pueppke
- Department of Plant Pathology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
13
|
Xu Y, Murooka Y. A large plasmid isolated from Rhizobium huakuii bv. renge that includes genes for both nodulation of Astragalus sinicus cv. Japan and nitrogen fixation. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0922-338x(95)90829-o] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Collard JM, Provoost A, Taghavi S, Mergeay M. A new type of Alcaligenes eutrophus CH34 zinc resistance generated by mutations affecting regulation of the cnr cobalt-nickel resistance system. J Bacteriol 1993; 175:779-84. [PMID: 8423150 PMCID: PMC196217 DOI: 10.1128/jb.175.3.779-784.1993] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spontaneous mutants that were resistant to zinc were isolated from Alcaligenes eutrophus CH34 containing either the native plasmid pMOL28 or a derivative derepressed for its self-transfer, pMOL50. With the cured plasmid-free derivative of CH34, strain AE104, such mutants were not detected. The mutations, which were shown to be located in the plasmid, increased the level of the nickel and cobalt resistance determined by the cnr locus. The chromate resistance closely linked to the cnr locus was not affected by these mutations. In the Znr mutants, the resistance to zinc and nickel was constitutively expressed. Uptake studies showed that the zinc resistance in a Znr mutant resulted from reduced accumulation of zinc ions in comparison with that in the plasmid-free strain. Reduced accumulation of zinc was also observed to a lesser degree in the parental strain induced with nickel, suggesting that zinc interferes with the Ni2+ and Co2+ efflux system. A 12.2-kb EcoRI-XbaI restriction endonuclease fragment containing the cnr locus was cloned from plasmid pMOL28 harboring the mutation and shortened to an 8.5-kb EcoRI-PstI-PstI fragment conferring resistance to zinc, nickel, and cobalt. The 12.2-kb EcoRI-XbaI fragment was also reduced to a 9.7-kb BamHI fragment still encoding weak resistance to nickel and cobalt but not to zinc. Complementation studies demonstrated the recessivity of the cnr mutations with a Znr phenotype. Such mutations thus allow positive selection of mutants affected in the expression of the cnr operon.
Collapse
Affiliation(s)
- J M Collard
- Laboratory of Genetics and Biotechnology, Center of Studies for Nuclear Energy, Mol, Belgium
| | | | | | | |
Collapse
|
15
|
Dong Q, Sadouk A, van der Lelie D, Taghavi S, Ferhat A, Nuyten JM, Borremans B, Mergeay M, Toussaint A. Cloning and sequencing of IS1086, an Alcaligenes eutrophus insertion element related to IS30 and IS4351. J Bacteriol 1992; 174:8133-8. [PMID: 1334071 PMCID: PMC207552 DOI: 10.1128/jb.174.24.8133-8138.1992] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A new insertion sequence (IS), designated IS1086, was isolated from Alcaligenes eutrophus CH34 by being trapped in plasmid pJV240, which contains the Bacillus subtilis sacB and sacR genes. The 1,106-bp IS1086 element contains partially matched (22 of 28 bp) terminal-inverted repeats and a long open reading frame. Hybridization data suggest the presence of one copy of IS1086 in the strain CH34 heavy-metal resistance plasmid pMOL28 and at least two copies in its chromosome. Analysis of the IS1086 nucleotide sequence revealed striking homology with two other IS elements, IS30 and IS4351, suggesting that they are three close members in a family of phylogenetically related insertion sequences. One open reading frame of the Spiroplasma citri phage SpV1-R8A2 B was also found to be related to this IS family but to a lesser extent. Comparison of the G+C contents of IS30 and IS1086 revealed that they conform to their respective hosts (46 versus 50% for IS30 and Escherichia coli and 64.5% for IS1086 and A. eutrophus). The pressure on the AT/GC ratio led to a very different codon usage in these two closely related IS elements. Results suggesting that IS1086 transposition might be activated by some forms of stress are discussed.
Collapse
Affiliation(s)
- Q Dong
- Laboratoire de Génétique & Biotechnologie, SCK/CEN-Vlaamse Instelling voor Technologisch Onderzoek, Mol, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tombolini R, Nuti M. Poly(β-hydroxyalkanoate) biosynthesis and accumulation by different Rhizobiumspecies. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03490.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
O'Brian MR, Maier RJ. Hydrogen metabolism in Rhizobium: energetics, regulation, enzymology and genetics. Adv Microb Physiol 1988; 29:1-52. [PMID: 3132815 DOI: 10.1016/s0065-2911(08)60345-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- M R O'Brian
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
18
|
Flores M, González V, Brom S, Martínez E, Piñero D, Romero D, Dávila G, Palacios R. Reiterated DNA sequences in Rhizobium and Agrobacterium spp. J Bacteriol 1987; 169:5782-8. [PMID: 3450286 PMCID: PMC214138 DOI: 10.1128/jb.169.12.5782-5788.1987] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Repeated DNA sequences are a general characteristic of eucaryotic genomes. Although several examples of DNA reiteration have been found in procaryotic organisms, only in the case of the archaebacteria Halobacterium halobium and Halobacterium volcanii [C. Sapienza and W. F. Doolittle, Nature (London) 295:384-389, 1982], has DNA reiteration been reported as a common genomic feature. The genomes of two Rhizobium phaseoli strains, one Rhizobium meliloti strain, and one Agrobacterium tumefaciens strain were analyzed for the presence of repetitive DNA. Rhizobium and Agrobacterium spp. are closely related soil bacteria that interact with plants and that belong to the taxonomical family Rhizobiaceae. Rhizobium species establish a nitrogen-fixing symbiosis in the roots of legumes, whereas Agrobacterium species is a pathogen in different plants. The four strains revealed a large number of repeated DNA sequences. The family size was usually small, from 2 to 5 elements, but some presented more than 10 elements. Rhizobium and Agrobacterium spp. contain large plasmids in addition to the chromosomes. Analysis of the two Rhizobium strains indicated that DNA reiteration is not confined to the chromosome or to some plasmids but is a property of the whole genome.
Collapse
Affiliation(s)
- M Flores
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernay Morelos
| | | | | | | | | | | | | | | |
Collapse
|
19
|
von Bodman SB, Shaw PD. Conservation of plasmids among plant-pathogenic Pseudomonas syringae isolates of diverse origins. Plasmid 1987; 17:240-7. [PMID: 3628554 DOI: 10.1016/0147-619x(87)90032-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thirty isolates of Pseudomonas syringae pv. tabaci, pv. angulata (pathogens on tobacco), pv. coronafaciens, and pv. striafaciens (pathogens on oats) were examined for plasmid DNAs. The strains were obtained from plants throughout the world, some over 50 years ago. Of the 22 tobacco pathogens, 16 contain predominantly one type of plasmid, the pJP27.00 type. The remaining six tobacco-specific strains do not harbor detectable plasmids. The oat pathogens contain one, two, or three plasmids. DNA homology studies indicate that the plasmid DNAs are highly conserved. More importantly, the plasmids harbored by strains isolated from one host plant are conserved most stringently; e.g., the plasmids from the tobacco pathogens are, with one exception, indistinguishable by restriction endonuclease digestion and Southern hybridization. There is also extensive homology among plasmids indigenous to the oat-specific P. syringae pv. coronafaciens and pv. striafaciens strains.
Collapse
|
20
|
Gardiol AE, Hollingsworth RI, Dazzo FB. Alteration of surface properties in a Tn5 mutant strain of Rhizobium trifolii 0403. J Bacteriol 1987; 169:1161-7. [PMID: 3029022 PMCID: PMC211914 DOI: 10.1128/jb.169.3.1161-1167.1987] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A symbiotically defective mutant strain of Rhizobium trifolii, UR251, was obtained by transposon Tn5 mutagenesis of R. trifolii 0403 rif and recognized by its partially ineffective (Fix +/-) phenotype on white clover plants. UR251 had a single Tn5 insertion in plasmid DNA, a wild-type plasmid pattern, and no detectable Mu DNA sequences originally present in the vector used for Tn5 mutagenesis. Agglutination by the clover lectin trifoliin A and attachment to clover root hairs was higher with UR251 than with the wild-type strain. The capsular polysaccharide (CPS) of UR251 was altered, as shown by a slower rate of CPS depolymerization with a CPS beta-lyase, PD-I; more pyruvate and less acetate and 3-hydroxybutanoate noncarbohydrate substitutions as quantitated by 1H nuclear magnetic resonance; and a higher pyruvyl transferase activity (enzymatic pyruvylation of lipid-bound saccharides). The site of increased pyruvylation in the CPS of UR251 was on the terminal galactose of the branch of the repeating oligosaccharide unit. These results show that the level of noncarbohydrate substitutions of the CPS as well as pyruvyl transferase activity are altered in R. trifolii UR251 and that trifoliin A-binding ability and clover root hair attachment are improved in this mutant strain of R. trifolii 0403 rif.
Collapse
|
21
|
Isolation and characterization of Rhodobacter capsulatus strains lacking endogenous plasmids. Arch Microbiol 1987. [DOI: 10.1007/bf00415274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
|
23
|
|
24
|
Spaink HP, Okker RJ, Wijffelman CA, Pees E, Lugtenberg BJ. Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. PLANT MOLECULAR BIOLOGY 1987; 9:27-39. [PMID: 24276795 DOI: 10.1007/bf00017984] [Citation(s) in RCA: 535] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/1986] [Revised: 02/17/1987] [Accepted: 03/31/1987] [Indexed: 06/02/2023]
Abstract
A region of 16.8 kb of the Sym(biosis) plasmid pRL1JI of Rhizobium leguminosarum, consisting of the established 9.7 kb nodulation region which confers nodulation ability on Vicia hirsuta and a region of 7.1 kb which appeared to be necessary for nodulation on V. sativa and Trifolium subterraneum, was subcloned as fragments of maximally 2.5 kb in a newly developed IncQ transcriptional fusion vector. The expression of these fragments was studied in Rhizobium. One constitutive promoter, pr.nodD, and three plant-exudate inducible promoters were found, namely the known pr.nodA and pr.nodF as well as a new promoter designated pr.nodM. The latter promoters were localized within 114 bp, 330 bp and 630 bp respectively and they regulate the transcription of the operons nodA, B, C, I, J, nodF, E and of an operon of at least 2.5 kb located in the 7.1 kb region. Induction of the three inducible operons required plant exudate and a functional nodD product. The flavanone naringenin could replace plant exudate. Each of the three inducible promoters contained a nod-box. A consensus for the nod-box sequence, based on known sequences, is proposed. The 114 bp fragment which contains pr.nodA activity was used to localize pr.nodA by means of deletion mapping. The fragment which appeared necessary for complete pr.nodA activity is 72 bp in size, contains the complete nod-box and in addition a region of 21 bp downstream of the nod-box, in which the loosely conserved sequence AT(T)AG appears to be important for promoter activity.
Collapse
Affiliation(s)
- H P Spaink
- Department of Plant Molecular Biology, Leiden University, Nonnensteeg 3, 2311 VJ, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Ramakrishnan N, Prakash RK, Atherly AG. Conservation of IS66 homologue of octopine Ti plasmid DNA in Rhizobium fredii plasmid DNA. PLANT MOLECULAR BIOLOGY 1986; 7:177-188. [PMID: 24302303 DOI: 10.1007/bf00021329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/1985] [Revised: 06/02/1986] [Accepted: 06/10/1986] [Indexed: 06/02/2023]
Abstract
DNA sequences homologous to the T-DNA region of the octopine Ti plasmid from Agrobacterium tumefaciens are found in various fast-growing Rhizobium fredii strains. The largest fragment (BamHI fragment 2) at the right-boundary region of the 'core' T-DNA hybridizes to more than one plasmid present in R. fredii. However, one smaller fragment (EcoRI fragment 19a) adjacent to the 'core' T-DNA shows homology only with the plasmid carrying the symbiotic nitrogen-fixation genes (pSym). Hybridization data obtained with digested R. fredii USDA193 pSym DNA suggests that the homology is mainly with two HindIII fragments, 1.7 kb and 8.8 kb in size, of the plasmid. The 1.7 kb HindIII fragment also hybridizes to two regions of the virulence plasmid of A. tumefaciens, pAL1819, a deletion plasmid derived from the octopine Ti plasmid, pTiAch5. Hybridization studies with an insertion element IS66 from A. tumefaciens indicate that the 1.7 kb HindIII fragment of R. fredii plasmid, homologous to the T-DNA and the virulence region of Ti plasmid, is itself an IS66 homologue.
Collapse
Affiliation(s)
- N Ramakrishnan
- Department of Genetics, Iowa State University, 50011, Ames, IA, U.S.A
| | | | | |
Collapse
|
26
|
Prakash R, Atherly† AG. Plasmids of Rhizobium and Their Role in Symbiotic Nitrogen Fixation. INTERNATIONAL REVIEW OF CYTOLOGY 1986. [DOI: 10.1016/s0074-7696(08)61921-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Engwall KS, Atherly AG. The formation of R-prime deletion mutants and the identification of the symbiotic genes in Rhizobium fredii strain USDA191. PLANT MOLECULAR BIOLOGY 1986; 6:41-51. [PMID: 24307153 DOI: 10.1007/bf00021305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/1985] [Revised: 09/13/1985] [Accepted: 09/23/1985] [Indexed: 06/02/2023]
Abstract
R-prime plasmids were formed between the plasmid of Rhizobium fredii strain USDA191 containing nodulation and nitrogen-fixation genes, pRjaUSDA191c, and pRL180, and RP1 derivative. R. fredii USDA191 contains four HindIII fragments that hybridize with an 8.7 kb EcoRI fragment that contains nodulation genes from R. meliloti. These four fragments are on pRjaUSDA191c and are 15.5 kb, 12.5 kb, 6.8 kb, and 5.2 kb in size. A series of R-primes generated in E. coli of pRjaUSDA191c were transferred into a Nod(-) Nif(-) derivative of strain USDA191 to determine which nodulation region is necessary for nodule formation. Transconjugants containing the 12.5 kb and the 6.8 kb HindIII fragments on segments of pRjaUSDA191c produced nodules on soybean plants. However, transconjugants containing the 12.5 kb HindIII fragment alone were unable to form nodules, suggesting that the 6.8 kb HindIII fragment or the 6.8 kb and the 12.5 kb HindIII fragments together were needed for nodule formation. The 6.8 kb HindIII fragment was subcloned into the vector pVK102 and transferred into transconjugants containing no sequences homologous to R. meliloti nodulation DNA or to transconjugants containing only the 12.5 kb HindIII fragment. Nodules were formed on soybeans only when both the 12.5 kb and the 6.8 kb HindIII fragments were present in R. frediistrain USDA191.
Collapse
Affiliation(s)
- K S Engwall
- Dept. of Genetics, Iowa State University, 50011, Ames, IA, U.S.A
| | | |
Collapse
|
28
|
Barbour WM, Mathis JN, Elkan GH. Evidence for plasmid- and chromosome-borne multiple nif genes in Rhizobium fredii. Appl Environ Microbiol 1985; 50:41-4. [PMID: 2992376 PMCID: PMC238570 DOI: 10.1128/aem.50.1.41-44.1985] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rhizobium fredii is a fast-growing rhizobium isolated from the primitive Chinese soybean cultivar Peking and from the wild soybean Glycine soja. This rhizobium harbors nif genes on 150- to 200-megadalton plasmids. By passage on acridine orange plates, we obtained a mutant of R. fredii USDA 206 cured of the 197-megadalton plasmid (USDA 206C) which carries both nif and nod genes. This strain, however, has retained its symbiotic effectiveness. Probing EcoRI digests of wild-type and cured plasmid DNA with a 2.2-kilobase nif DH fragment from Rhizobium meliloti has shown four homologous fragments in the wild-type strain (4.2, 4.9, 10, and 11 kilobases) and two fragments in the cured strain (4.2 and 10 kilobases). EcoRI digests of total DNA show four major bands of homology (4.2, 4.9, 5.8, and 13 kilobases) in both the wild-type and cured strains. The presence of major bands of homology in the total DNA not present in the plasmid DNA indicated chromosomal nif genes. Probing of HindIII digests of total and plasmid DNA led to the same conclusion. Hybridization to the smaller plasmids of USDA 206 and USDA 206C showed the presence of nif genes on at least one of these plasmids, explaining the nif homology in the USDA 206C plasmid digests.
Collapse
|
29
|
Krone WJ, Koningstein G, de Graaf FK, Oudega B. Plasmid-determined cloacin DF13-susceptibility in Enterobacter cloacae and Klebsiella edwardsii; identification of the cloacin DF13/aerobactin outer membrane receptor proteins. Antonie Van Leeuwenhoek 1985; 51:203-18. [PMID: 4037784 DOI: 10.1007/bf02310013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Both Enterobacter cloacae H478 and Klebsiella edwardsii S15 were shown to harbour a relatively large conjugative plasmid that coded for cloacin DF13-susceptibility and the production and uptake of a hydroxamate iron chelator, most probably aerobactin. Protein-blotting experiments with antiserum raised against the purified cloacin DF13/aerobactin receptor protein from Escherichia coli (Co1V-K30) revealed that the corresponding outer membrane receptor proteins of Ent. cloacae H478 and K. edwardsii S15 had apparent mol wts of 85 000 and 76 000, respectively. E. coli transconjugants harbouring either the plasmid from Ent. cloacae H478 or K. edwardsii S15 expressed a cloacin DF13/aerobactin outer membrane receptor protein with a mol wt of 74 000. The receptor protein encoded by the Ent. cloacae and K. edwardsii plasmids were immunologically more related to each other than to the pCo1V-K30-encoded receptor protein.
Collapse
|
30
|
Masterson RV, Prakash RK, Atherly AG. Conservation of symbiotic nitrogen fixation gene sequences in Rhizobium japonicum and Bradyrhizobium japonicum. J Bacteriol 1985; 163:21-6. [PMID: 4008441 PMCID: PMC219075 DOI: 10.1128/jb.163.1.21-26.1985] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Southern hybridization with nif (nitrogen fixation) and nod (nodulation) DNA probes from Rhizobium meliloti against intact plasmid DNA of Rhizobium japonicum and Bradyrhizobium japonicum strains indicated that both nif and nod sequences are on plasmid DNA in most R. japonicum strains. An exception is found with R. japonicum strain USDA194 and all B. japonicum strains where nif and nod sequences are on the chromosome. In R. japonicum strains, with the exception of strain USDA205, both nif and nod sequences are on the same plasmid. In strain USDA205, the nif genes are on a 112-megadalton plasmid, and nod genes are on a 195-megadalton plasmid. Hybridization to EcoRI digests of total DNA to nif and nod probes from R. meliloti show that the nif and nod sequences are conserved in both R. japonicum and B. japonicum strains regardless of the plasmid or chromosomal location of these genes. In addition, nif DNA hybridization patterns were identical among all R. japonicum strains and with most of the B. japonicum strains examined. Similarly, many of the bands that hybridize to the nodulation probe isolated from R. meliloti were found to be common among R. japonicum strains. Under reduced hybridization stringency conditions, strong conservation of nodulation sequences was observed in strains of B. japonicum. We have also found that the plasmid pRjaUSDA193, which possess nif and nod sequences, does not possess sequence homology with any plasmid of USDA194, but is homologous to parts of the chromosome of USDA194. Strain USDA194 is unique, since nif and nod sequences are present on the chromosome instead of on a plasmid as observed with all other strains examined.
Collapse
|
31
|
Hooykaas PJ, den Dulk-Ras H, Regensburg-Tuïnk AJ, van Brussel AA, Schilperoort RA. Expression of a Rhizobium phaseoli Sym plasmid in R. trifolii and Agrobacterium tumefaciens: incompatibility with a R. trifolii Sym plasmid. Plasmid 1985; 14:47-52. [PMID: 2994130 DOI: 10.1016/0147-619x(85)90031-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Identification of the Sym plasmid in Rhizobium phaseoli strain RCC3622 is described. Introduction of this plasmid into R. trifolii or Agrobacterium tumefaciens strains resulted in bacteria capable of forming characteristic spherical root nodules on beans. This Sym plasmid, designated pSym9, was characterized as 275 MDa and nonconjugative. pSym9 was incompatible with the R. trifolii Sym plasmid pSym5, and carries genes determining a melanin-like black pigment. A second plasmid of 135 MDa, pRph3622a, was also transferred from R. phaseoli to R. trifolii and A. tumefaciens. Transconjugants carrying this plasmid did not form root nodules on beans. In contrast to other Rhizobium plasmids, pRph3622a was unstable in A. tumefaciens.
Collapse
|
32
|
Batut J, Terzaghi B, Ghérardi M, Huguet M, Terzaghi E, Garnerone AM, Boistard P, Huguet T. Localization of a symbiotic fix region on Rhizobium meliloti pSym megaplasmid more than 200 kilobases from the nod-nif region. ACTA ACUST UNITED AC 1985. [DOI: 10.1007/bf00330264] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Isolation and characterization of transposon Tn5-induced symbiotic mutants of Rhizobium loti. J Bacteriol 1985; 162:335-43. [PMID: 2984178 PMCID: PMC218994 DOI: 10.1128/jb.162.1.335-343.1985] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rhizobium loti NZP2037 and NZP2213, each cured of its single large indigenous plasmid, formed effective nodules on Lotus spp., suggesting that the symbiotic genes are carried on the chromosome of these strains. By using pSUP1011 as a vector for introducing transposon Tn5 into R. loti NZP2037, symbiotic mutants blocked in hair curling (Hac), nodule initiation (Noi), bacterial release (Bar), and nitrogen fixation (Nif/Cof) on Lotus pedunculatus were isolated. Cosmids complementing the Hac, Noi, and Bar mutants were isolated from a pLAFR1 gene library of NZP2037 DNA by in planta complementation and found to contain EcoRI fragments of identical sizes to those into which Tn5 had inserted in the mutants. The cosmids that complemented the mutants of these phenotypic classes did not share common fragments, nor did cosmids that complemented four mutants within the Noi class, suggesting that these symbiotically important regions are not tightly linked on the R. loti chromosome.
Collapse
|
34
|
Plazinski J, Cen YH, Rolfe BG. General Method for the Identification of Plasmid Species in Fast-Growing Soil Microorganisms. Appl Environ Microbiol 1985; 49:1001-3. [PMID: 16346763 PMCID: PMC238487 DOI: 10.1128/aem.49.4.1001-1003.1985] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a horizontal gel electrophoresis method, we demonstrated reproducibly the presence of indigenous plasmids in different
Rhizobium, Agrobacterium
, and
Pseudomonas
strains. The method yields a large amount of plasmid DNA and is sensitive in detecting megaplasmids with molecular weights higher than 5 × 10
8
. In two
Rhizobium meliloti
strains, a megaplasmid other than the low-mobility plasmid already known was detected.
Collapse
Affiliation(s)
- J Plazinski
- Department of Genetics, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | | | | |
Collapse
|
35
|
Hoekema A, van Haaren MJ, Fellinger AJ, Hooykaas PJ, Schilperoort RA. Non-oncogenic plant vectors for use in the agrobacterium binary system. PLANT MOLECULAR BIOLOGY 1985; 5:85-89. [PMID: 24306567 DOI: 10.1007/bf00020090] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/1985] [Revised: 05/30/1985] [Accepted: 06/11/1985] [Indexed: 06/02/2023]
Abstract
Agrobacterium strains harbouring the T-region and the virulence-region of the Ti plasmid on separate replicons still display efficient T-DNA transfer to plants. Based on this binary vector strategy we have constructed T-region derived gene vectors for the introduction of foreign DNA into plants. The vectors constructed can replicate in E. coli, thus the genetic manipulations with them can be performed with E. coli as a host. They can be transferred to Agrobacterium as a cointegrate with the wide host range plasmid R772. Their T-regions are transferred to plant cells from Agrobacterium strains conferring virulence functions.The plasmid pRAL 3940 reported here is 11.5 kb large, contains a marker to identify transformed plant cells and unique restriction sites for direct cloning of passenger DNA, flanked by the left- and right-hand border fragments of the T-region (including the 25 bp border repeats). The plasmid is free of onc-genes. Therefore, is does not confer tumorigenic traits on the transformed plant cells and mature, fertile plants can thus be regenerated from them.
Collapse
Affiliation(s)
- A Hoekema
- Department of Plant Molecular Biology, University of Leiden, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Prakash RK, Atherly AG. Reiteration of genes involved in symbiotic nitrogen fixation by fast-growing Rhizobium japonicum. J Bacteriol 1984; 160:785-7. [PMID: 6094491 PMCID: PMC214806 DOI: 10.1128/jb.160.2.785-787.1984] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
By using cloned Rhizobium meliloti nodulation (nod) genes and nitrogen fixation (nif) genes, we found that the genes for both nodulation and nitrogen fixation were on a plasmid present in fast-growing Rhizobium japonicum strains. Two EcoRI restriction fragments from a plasmid of fast-growing R. japonicum hybridized with nif structural genes of R. meliloti, and three EcoRI restriction fragments hybridized with the nod clone of R. meliloti. Cross-hybridization between the hybridizing fragments revealed a reiteration of nod and nif DNA sequences in fast-growing R. japonicum. Both nif structural genes D and H were present on 4.2- and 4.9-kilobase EcoRI fragments, whereas nifK was present only on the 4.2-kilobase EcoR2 fragment. These results suggest that the nif gene organizations in fast-growing and in slow-growing R. japonicum strains are different.
Collapse
|
38
|
|
39
|
Organisation of nodulation and nitrogen fixation genes on a Rhizobium trifolii symbiotic plasmid. Arch Microbiol 1984. [DOI: 10.1007/bf00401991] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Toro N, Herrera MA, Olivares J. Location ofnifgenes on large plasmids inRhizobiumstrains isolated from legume tree root nodules. FEMS Microbiol Lett 1984. [DOI: 10.1111/j.1574-6968.1984.tb01255.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Jagadish MN, Szalay AA. Directed transposon Tn5 mutagenesis and complementation in slow-growing, broad host range cowpea Rhizobium. ACTA ACUST UNITED AC 1984. [DOI: 10.1007/bf00328062] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
|
43
|
|
44
|
|
45
|
Truchet G, Rosenberg C, Vasse J, Julliot JS, Camut S, Denarie J. Transfer of Rhizobium meliloti pSym genes into Agrobacterium tumefaciens: host-specific nodulation by atypical infection. J Bacteriol 1984; 157:134-42. [PMID: 6690420 PMCID: PMC215142 DOI: 10.1128/jb.157.1.134-142.1984] [Citation(s) in RCA: 79] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The pSym megaplasmid of Rhizobium meliloti 2011 mobilized by plasmid RP4, or plasmid pGMI42, an RP4-prime derivative which carries a 290-kilobase pSym fragment including nitrogenase and nod genes, was introduced into Agrobacterium tumefaciens. The resulting transconjugants induced root deformations specifically on the homologous hosts Medicago sativa and Melilotus alba and not on the heterologous hosts Trifolium pratense and Trifolium repens. The root deformations were shown to be genuine nodules by physiological and cytological studies. Thus, host specificity nodulation genes are located on the pSym megaplasmid. Host nodulation specificity did not seem to require recognition at the root hair level since no infection threads could be detected in the root hairs. Cytological observations indicated that bacteria penetrated only the superficial layers of the host root tissue by an atypical infection process. The submeristematic zone and the central tissue of the nodules were bacteria free. Thus, nodule organogenesis was probably triggered from a distance by the bacteria. Agrobacterium transconjugants carrying pSym induced the formation of more numerous and larger nodules than those carrying the RP4-prime plasmid pGMI42, suggesting that some genes influencing nodule organogenesis are located in a pSym region(s) outside that which has been cloned into pGMI42.
Collapse
|
46
|
|
47
|
Hooykaas PJ, Schilperoort RA. The Molecular Genetics Of Crown Gall Tumorigenesis. ADVANCES IN GENETICS 1984; 22:209-83. [PMID: 15633289 DOI: 10.1016/s0065-2660(08)60041-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- P J Hooykaas
- Laboratory of Biochemistry, University of Leiden, Leiden, The Netherlands
| | | |
Collapse
|
48
|
Christensen AH, Schubert KR. Identification of a Rhizobium trifolii plasmid coding for nitrogen fixation and nodulation genes and its interaction with pJB5JI, a Rhizobium leguminosarum plasmid. J Bacteriol 1983; 156:592-9. [PMID: 6630147 PMCID: PMC217872 DOI: 10.1128/jb.156.2.592-599.1983] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Rhizobium trifolii T37 contains at least three plasmids with sizes of greater than 250 megadaltons. Southern blots of agarose gels of these plasmids probed with Rhizobium meliloti nif DNA indicated that the smallest plasmid, pRtT37a, contains the nif genes. Transfer of the Rhizobium leguminosarum plasmid pJB5JI, which codes for pea nodulation and the nif genes and is genetically marked with Tn5, into R. trifolii T37 generated transconjugants containing a variety of plasmid profiles. The plasmid profiles and symbiotic properties of all of the transconjugants were stably maintained even after reisolation from nodules. The transconjugant strains were placed into three groups based on their plasmid profiles and symbiotic properties. The first group harbored a plasmid similar in size to pJB5JI (130 megadaltons) and lacked a plasmid corresponding to pRtT37a. These strains formed effective nodules on peas but were unable to nodulate clover and lacked the R. trifolii nif genes. This suggests that genes essential for clover nodulation as well as the R. trifolii nif genes are located on pRtT37a and have been deleted. The second group harbored hybrid plasmids formed from pRtT37a and pJB5JI which ranged in size from 140 to ca. 250 megadaltons. These transconjugants had lost the R. leguminosarum nif genes but retained the R. trifolii nif genes. Strains in this group nodulated both peas and clover but formed effective nodules only on clover. The third group of transconjugants contained a hybrid plasmid similar in size to pRtT37b. These strains contained the R. trifolii and R. leguminosarum nif genes and formed N2-fixing nodules on both peas and clover.
Collapse
|
49
|
Kobayashi H, Akazawa T. Biosynthetic mechanism of ribulose-1,5-bisphosphate carboxylase in the purple photosynthetic bacterium, Chromatium vinosum. III. Absence of extrachromosomal DNA. Arch Biochem Biophys 1983; 224:152-60. [PMID: 6870250 DOI: 10.1016/0003-9861(83)90199-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inducible formation of ribulose-1,5-bisphosphate (RuBP) carboxylase in the cells of Chromatium vinosum under autotrophic conditions was not affected by six different inhibitors of DNA synthesis. Photosynthetic CO2 fixation and RuBP carboxylase activities were not influenced by seven reagents known to eliminate plasmids. Plasmids were not detectable by agarose gel electrophoresis employing either the cleared lysate or alkaline sodium dodecyl sulfate method, nor were they detected by ethidium bromide-CsCl density gradient centrifugation. Overall experimental results tend to indicate that plasmids are absent in the Chromatium cells and that the induction of RuBP carboxylase is presumably not regulated in the DNA replication process.
Collapse
|
50
|
Location of nitrogen fixation (nif) genes on indigenous plasmids of Enterobacter agglomerans. ACTA ACUST UNITED AC 1983. [DOI: 10.1007/bf00331061] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|