1
|
Adamopoulou E, Dimitriadis K, Kyriakoulis K, Pyrpyris N, Beneki E, Fragkoulis C, Konstantinidis D, Aznaouridis K, Tsioufis K. Defining "Vulnerable" in coronary artery disease: predisposing factors and preventive measures. Cardiovasc Pathol 2025; 77:107736. [PMID: 40228760 DOI: 10.1016/j.carpath.2025.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/16/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025] Open
Abstract
The likelihood of a plaque to cause an acute coronary syndrome (ACS) depends on several factors, both lesion- and patient-related. One of the most investigated and established contributing factors is the presence of high-risk or "vulnerable plaque" characteristics, which have been correlated with increased incidence of major adverse cardiovascular events (MACE). The recognition, however, that a significant percentage of vulnerable plaques do not result in causing clinical events has led the scientific community towards the more multifaceted concept of "vulnerable patients". Incorporating the morphological features of an atherosclerotic plaque into its hemodynamic surroundings can better predict the chance of its disruption, as altered fluid dynamics play a significant role in plaque destabilization. The advances in coronary imaging and the field of computational fluid dynamics (CFD) can contribute to develop more accurate lesion- and patient-related ACS prediction models that take into account both the morphology of a plaque and the forces applied upon it. The aim of this review is to provide the latest data regarding the aforementioned predictive factors as well as relevant preventive measures.
Collapse
Affiliation(s)
- Eleni Adamopoulou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece.
| | - Konstantinos Kyriakoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Christos Fragkoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Dimitris Konstantinidis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Konstantinos Aznaouridis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| |
Collapse
|
2
|
Tapley JK, Doyle BJ, Bellinge JW, Caddy HT, Blom DC, Churack T, Newby DE, Schultz CJ, Kelsey LJ. Low endothelial shear stress is associated with increased coronary atherosclerotic plaque activity in patients that presented with acute coronary syndrome. J Cardiovasc Comput Tomogr 2025:S1934-5925(25)00063-2. [PMID: 40280791 DOI: 10.1016/j.jcct.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Both coronary atherosclerotic plaque activity and low endothelial shear stress (ESS) are predictive of adverse cardiovascular events. We aimed to investigate their association and relationship with high-risk plaque features. METHODS Coronary computed tomography angiography (CCTA) based flow simulations were used to compute ESS in patients presenting with acute coronary syndrome proceeding percutaneous coronary intervention. Associations between ESS, CCTA plaque features and coronary plaque activity, measured by 18F-sodium fluoride (18F-NaF) positron emission tomography (PET), were investigated at the coronary segment and vessel level. RESULTS ESS and coronary plaque activity were both analyzed in 330 coronary segments and 123 vessels. The area of low ESS (<0.4 Pa), termed low shear area (LSA), was larger in 18F-NaF positive regions increasing from median 11.7 mm2 (IQR: 4.6-27.4) to 29.0 mm2 (IQR: 14.1-55.2) at the segment level (P < 0.0001) and from median 27.3 mm2 (IQR: 8.6-65.3) to 57.8 mm2 (26.6-108.2) at the vessel level (P = 0.0049). The maximum tissue-to-background ratio of 18F-NaF activity positively correlated with LSA at the segment level (rs = 0.27; P < 0.0001) and at the vessel level (rs = 0.38; P < 0.0001). LSA was associated with spotty calcification at both the segment (P <0.0001) and vessel level (P = 0.0042) and positive remodeling at the vessel level (P = 0.025). CONCLUSIONS In patients with acute coronary syndrome, LSA is associated with increased coronary atherosclerotic plaque activity, as measured by 18F-NaF PET.
Collapse
Affiliation(s)
- Jonathan K Tapley
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; Navier Medical Ltd., Perth, Australia; Royal Perth Hospital, Perth, Australia.
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; Navier Medical Ltd., Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia
| | - Jamie W Bellinge
- School of Medicine, The University of Western Australia, Perth, Australia; Department of Cardiology, Royal Perth Hospital, Perth, Australia; Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Harrison T Caddy
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia; School of Human Sciences, The University of Western Australia, Perth, Australia
| | - Dirk C Blom
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; Curtin Medical School, Curtin University, Perth, Australia
| | | | - David E Newby
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, United Kingdom
| | - Carl J Schultz
- School of Medicine, The University of Western Australia, Perth, Australia; Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | - Lachlan J Kelsey
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; Navier Medical Ltd., Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
Ozkara G, Aslan EI, Malikova F, Aydogan C, Ser OS, Kilicarslan O, Dalgic SN, Yildiz A, Ozturk O, Yilmaz-Aydogan H. Endothelin-converting Enzyme-1b Genetic Variants Increase the Risk of Coronary Artery Ectasia. Biochem Genet 2025; 63:1806-1823. [PMID: 38625594 DOI: 10.1007/s10528-024-10810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Coronary artery ectasia (CAE), defined as a 1.5-fold or greater enlargement of a coronary artery segment compared to the adjacent normal coronary artery, is frequently associated with atherosclerotic coronary artery disease (CAD). Membrane-bound endothelin converting enzyme-1 (ECE-1) is involved in the maturation process of the most potent vasoconstrictor ET-1. Polymorphisms in the endothelin (ET) gene family have been shown associated with the development of atherosclerosis. This study aims to investigate the effects of rs213045 and rs2038089 polymorphisms in the ECE-1 gene which have been previously shown to be associated with atherosclerosis and hypertension (HT), in CAE patients. Ninety-six CAE and 175 patients with normal coronary arteries were included in the study. ECE-1b gene variations rs213045 and rs2038089 were determined by real-time PCR. The frequencies of rs213045 C > A (C338A) CC genotype (60.4% vs. 35.4%, p < 0.001) and rs2038089 T > C T allele (64.58% vs. 35.42%, p = 0.017) were higher in the CAE group compared to the control group. The multivariate regression analysis showed that the ECE-1b rs213045 CC genotype (p = 0.001), rs2038089 T allele (p = 0.017), and hypercholesterolemia (HC) (p = 0.001) are risk factors for CAE. Moreover, in nondiabetic individuals of the CAE and control groups, it was observed that the rs213045 CC genotype (p < 0.001), and rs2038089 T allele (p = 0.003) were a risk factor for CAE, but this relationship was not found in the diabetic subgroups of the study groups (p > 0.05). These results show that ECE-1b polymorphisms may be associated with the risk of CAE and this relationship may change according to the presence of type II diabetes.
Collapse
Affiliation(s)
- Gulcin Ozkara
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
- Department of Medical Biology, Bezmialem Vakif University, Faculty of Medicine, Topkapi Mahallesi, Adnan Menderes Vatan Bulvari, No:113, Istanbul, Turkey.
| | - Ezgi Irmak Aslan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Medical Biochemistry, Istanbul Nisantasi University, Faculty of Medicine, Istanbul, Turkey
| | - Fidan Malikova
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Cagatay Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ozgur Selim Ser
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Onur Kilicarslan
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sadiye Nur Dalgic
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Yildiz
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Oguz Ozturk
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hulya Yilmaz-Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
Zhang J, Ma H, Song G, Ding Y, Guo S. Experimental investigation on the mechanism of the effect of flow velocity on Cyclotella meneghiniana. Sci Rep 2025; 15:9846. [PMID: 40119069 PMCID: PMC11928618 DOI: 10.1038/s41598-025-94468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/13/2025] [Indexed: 03/24/2025] Open
Abstract
To investigate the growth patterns and influencing mechanisms of algal cells in the Henan section of the Middle route of South-to-North Water Transfer project under varying flow velocities, we focused on studying the dominant diatom species in this region. Utilizing self-designed experimental devices, a flow rate range of 0 to 1.0 m s-1 was established, and the growth conditions of Cyclotella meneghiniana were recorded for each group. The findings revealed that under different flow rates, C. meneghiniana exhibited a critical flow rate threshold at 0.4 m s-1, demonstrating an overall trend characterized by 'when the flow velocity is relatively low, an increase in flow velocity will promote the growth of C. meneghiniana. However, when the flow velocity is relatively high, an increase in flow velocity will instead inhibit the growth of C. meneghiniana.' By combining these experimental results with theoretical analysis, we explored the underlying mechanism behind the influence of flow velocity on algal cells. Our experiments demonstrated that below the critical flow rate, increased fluid velocity enhanced nutrient absorption by promoting contact between algal cells and nutrients, thereby facilitating algal cell growth. However, as fluid shear stress intensified with higher flow velocities, it eventually caused mechanical damage to cell structures leading to a critical threshold being reached. These research outcomes provide valuable insights into understanding how water dynamics impact algae cell growth while offering technical support for controlling algae proliferation based on principles derived from water dynamics within the Henan section of South-to-North Water Transfer project.
Collapse
Affiliation(s)
- Jianwei Zhang
- School of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Hongdong Ma
- School of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.
| | - Yitong Ding
- School of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Sitong Guo
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| |
Collapse
|
5
|
De Filippo O, Kang J, Bruno F, Song YB, Campagnuolo S, Choi KH, Pinxterhuis TH, Kim HK, Mattesini A, Cho YK, Piccolo R, Lee HJ, Wańha W, Cortese B, Han SH, Perl L, Hur SH, Tuttolomondo D, Iannaccone M, Chun WJ, Greco A, Leone A, Giachet AT, Gwon HC, Stefanini G, Kim HS, Escaned J, Carmeci A, Campo G, Patti G, Capodanno D, von Birgelen C, Koo BK, de Ferrari GM, Nam CW, D'Ascenzo F. Final kissing balloon dilatation in patients with coronary bifurcation lesions treated with an upfront provisional stenting strategy. EUROINTERVENTION 2025; 21:e318-e328. [PMID: 40091870 PMCID: PMC11895841 DOI: 10.4244/eij-d-24-00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/09/2024] [Indexed: 03/19/2025]
Abstract
BACKGROUND The impact of final kissing balloon inflation (FKB) in patients treated with an upfront provisional strategy for coronary bifurcation lesions is controversial. AIMS We aimed to assess the impact of FKB on patient- and lesion-oriented outcomes in a large real-world cohort. METHODS The ULTRA-BIFURCAT registry was obtained by patient-level merging the BIFURCAT and ULTRA registries. Pairs of patients were generated with propensity score matching (PSM). The primary outcome of interest was major adverse cardiac events (MACE) - a composite of all-cause death, myocardial infarction (MI), target lesion revascularisation (TLR) or stent thrombosis. A lesion-oriented composite outcome (LOCO) - a composite of target vessel MI (TVMI) or TLR - along with each single component of MACE represented the secondary outcomes. Subgroup analyses included the site of bifurcation (unprotected left main [ULM] vs non-ULM), side branch involvement (true bifurcation vs non-true bifurcation), side branch diameter and lesion length. Follow-up was censored at 800 days. RESULTS A total of 5,607 patients undergoing a provisional stenting technique were selected for the present analysis. PSM generated 1,784 pairs. Between the matched patients with FKB versus no FKB, no significant difference in MACE was observed (9.0% vs 8.6%; p=0.68). FKB was associated with a lower rate of the LOCO (1.9% vs 2.9%; p=0.04) compared to the no FKB group, driven by lower rates of TVMI (0.2% vs 0.5%; p=0.03) and TLR (1.8% vs 2.6%; p=0.14). These results were confirmed in the subgroups of patients treated for bifurcations with side branches with a diameter >2.5 mm and for true coronary bifurcation lesions. CONCLUSIONS Among patients treated for coronary bifurcation lesions with provisional stenting, FKB had no significant impact on MACE but was associated with a mild reduction in the incidence of the LOCO.
Collapse
Affiliation(s)
- Ovidio De Filippo
- Division of Cardiology, Cardiovascular and Thoracic Department, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Jeehoon Kang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Francesco Bruno
- Division of Cardiology, Cardiovascular and Thoracic Department, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Young Bin Song
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | - Ki Hong Choi
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tineke H Pinxterhuis
- Department of Cardiology, Thorax Centrum Twente, Medisch Spectrum Twente, Enschede, the Netherlands
- Department of Health Technology and Services Research, BMS Faculty, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Hyun Kuk Kim
- Department of Internal Medicine and Cardiovascular Center, Chosun University Hospital, University of Chosun College of Medicine, Gwangju, Republic of Korea
| | - Alessio Mattesini
- Cardiologia Interventistica, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Yun-Kyeong Cho
- Division of Cardiology, Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Raffaele Piccolo
- Department of Advanced Biomedical Sciences, Division of Cardiology, University of Naples Federico II, Naples, Italy
| | - Hyun-Jong Lee
- Department of Cardiology, Department of Internal Medicine, Sejong General Hospital, Bucheon, Republic of Korea
| | - Wojciech Wańha
- Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Bernardo Cortese
- Fondazione Ricerca e Innovazione Cardiovascolare, Milan, Italy and DCB Academy, Milan, Italy
- University Hospitals Harrington Heart & Vascular Institute, Cleveland, OH
| | - Seung Hwan Han
- Department of Internal Medicine, Gachon University Gil Hospital, Incheon, Republic of Korea
| | - Leor Perl
- Cardiology Department, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Seung-Ho Hur
- Division of Cardiology, Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | | | - Mario Iannaccone
- Division of Cardiology, Ospedale San Giovanni Bosco, Turin, Italy
| | - Woo Jung Chun
- Department of Internal Medicine, Samsung Changwon Hospital, Changwon, Republic of Korea
| | - Antonio Greco
- Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy
| | - Attilio Leone
- Department of Advanced Biomedical Sciences, Division of Cardiology, University of Naples Federico II, Naples, Italy
| | | | - Hyeon-Cheol Gwon
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Giulio Stefanini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Hyo-Soo Kim
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Javier Escaned
- Hospital Clínico San Carlos IdISSC, Complutense University of Madrid and CIBER-CV, Madrid, Spain
| | - Antonino Carmeci
- Division of Cardiology, Cardiovascular and Thoracic Department, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Gianluca Campo
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Cona, Italy
| | - Giuseppe Patti
- University of Eastern Piedmont "Amedeo Avogadro", Novara, Italy
| | - Davide Capodanno
- Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy
| | - Clemens von Birgelen
- Department of Cardiology, Thorax Centrum Twente, Medisch Spectrum Twente, Enschede, the Netherlands
- Department of Health Technology and Services Research, BMS Faculty, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gaetano Maria de Ferrari
- Division of Cardiology, Cardiovascular and Thoracic Department, A.O.U. Città della Salute e della Scienza, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Chang-Wook Nam
- Division of Cardiology, Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Fabrizio D'Ascenzo
- Division of Cardiology, Cardiovascular and Thoracic Department, A.O.U. Città della Salute e della Scienza, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Liu Y, Wu B, Wu S, Liu Z, Wang P, Lv Y, Wu R, Ji B, Peng Z, Lu C, Wei D, Li G, Liu J, Wu G. Comparison of stable carotid plaques in patients with mild-to-moderate carotid stenosis with vulnerable plaques in patients with significant carotid stenosis. Medicine (Baltimore) 2024; 103:e40613. [PMID: 39612378 PMCID: PMC11608718 DOI: 10.1097/md.0000000000040613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 11/01/2024] [Indexed: 12/01/2024] Open
Abstract
To compare the characteristics of stable and vulnerable carotid plaques, and investigate the diagnostic performance of wall shear stress (WSS) based on magnetic resonance plaque imaging in carotid plaques. Retrospectively analyzed and divided 64 atherosclerotic plaques into stable carotid plaque groups with mild-to-moderate stenosis and vulnerable carotid plaque groups with significant stenosis. Computational fluid dynamics simulations were performed to calculate WSS parameters by using three-dimensional wall geometry based on high-resolution magnetic resonance plaque imaging of carotid bifurcation and patient specific boundary conditions obtained through color Doppler ultrasound. WSS parameters including upstream (WSSup), downstream (WSSdown), and core (WSScore) of plaque. The WSS parameters values were compared between the stable and vulnerable carotid plaque groups. Receiver operating characteristic curves and area under the curve (ROC-AUC) and Python were used to evaluate discriminative efficacy of WSS. WSSdown exhibited significant decrease in the vulnerable carotid plaque group (2.88 ± 0.41 Pa) compared to the stable carotid plaque group (4.47 ± 0.84 Pa) (P = .003). The difference of WSSup (3.28 ± 0.85 Pa vs 4.02 ± 0.74 Pa) and WSScore (1.12 ± 0.18 Pa vs 1.38 ± 0.38 Pa) between the two groups were also pronounced (P = .02, 0.01, respectively). The ROC-AUC values for WSSup, WSSdown, WSScore were 0.75 (95% CI, 0.58-0.93), 0.96 (95% CI, 0.79-1.14), 0.69 (95% CI, 0.56-0.83) respectively. When the value of WSSdown was 3.5 Pa, the sensitivity was 93.7% (95% CI, 76.1-111), specificity and accuracy was 87.5% (95% CI, 70.0-105), 88.4% (95% CI, 70.6-105) respectively. Notably, among these parameters, WSSdown demonstrated the highest discriminative efficiency with a F1 Score of 0.90, Diagnostic Odds Ratio of 105.0 and Matthews Correlation Coefficient of 0.81. Vulnerable carotid plaques with significant stenosis have lower WSS compared to stable plaques with mild-to-moderate stenosis, and downstream WSS showing the highest diagnostic efficacy.
Collapse
Affiliation(s)
- Yumeng Liu
- Department of Radiology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Bokai Wu
- Laboratory for Engineering and Scientific Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Songxiong Wu
- Department of Radiology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Zhenyu Liu
- Department of Radiology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Panying Wang
- Department of Radiology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Yungang Lv
- Department of Radiology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Ruodai Wu
- Department of Radiology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Bin Ji
- Department of Radiology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Zhengkun Peng
- Department of Radiology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Chao Lu
- Department of Radiology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Dazhong Wei
- Department of Radiology, Luocheng People Hospital, Luocheng, China
| | - Guangyao Li
- Department of Radiology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Jia Liu
- Laboratory for Engineering and Scientific Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guangyao Wu
- Department of Radiology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| |
Collapse
|
7
|
Chamié D, Pfau S. Following the Dynamic Changes of Coronary Atherosclerosis: An Uphill Battle. J Am Heart Assoc 2024; 13:e037395. [PMID: 39435716 PMCID: PMC11935670 DOI: 10.1161/jaha.124.037395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Daniel Chamié
- Section of Cardiovascular Medicine, Yale School of MedicineYale UniversityNew HavenCT
| | - Steven Pfau
- Section of Cardiovascular Medicine, Yale School of MedicineYale UniversityNew HavenCT
- VA ConnecticutWest HavenCT
| |
Collapse
|
8
|
Han L, Like L, Wang M, Zhou M, Xu Z, Yan F, Zhao Q, Yang W. Investigating the peri-saphenous vein graft fat attenuation index on computed tomography angiography: relationship with progression of venous coronary artery bypass graft disease and temporal trends. BMC Cardiovasc Disord 2024; 24:597. [PMID: 39462356 PMCID: PMC11515235 DOI: 10.1186/s12872-024-04257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND To clarify the fat attenuation index (FAI) change trend of peri-saphenous vein graft (SVG) and determine the association between FAI and graft disease progression based on CCTA images. METHODS Patients with venous coronary artery bypass grafts (CABGs) were consecutively enrolled in this retrospective study. In study 1, 72 patients who had undergone 1, 3, and 5 years of CCTA examinations without graft occlusion were recruited, and generalized estimation equation was used to analyze the peri-SVG FAI change trend over time. In study 2, 42 patients with graft disease progression and 84 patients as controls were propensity score-matched. Generalized linear mixed model and continuous net reclassification improvement (NRI) were used for assessing the associations with graft disease progression. Multivariable Cox regression analysis was used for assessing risk factors predicting cardiac events. RESULTS In study 1, both the FAI of proximal right coronary artery and SVG decreased over time. In study 2, the 1-year CTA-derived FAI of grafts and graft anastomosis were independent indicators of graft disease progression at the 3-year CCTA follow-up (graft: odds ratio [OR] = 1.106; 95% confidence interval [CI] = 1.030-1.188, P = 0.006; graft anastomosis: OR = 1.170, 95% CI = 1.091-1.254, P < 0.001). Inclusion of the graft anastomosis FAI significantly improved reclassification compared with graft FAI (continuous NRI = 0.638, 95% CI: 0.345-0.931, P < 0.001). Moreover, The graft anastomosis FAI was found to be a risk factor for cardiac events after CABG and no statistically significant difference was found in the graft FAI (graft anastomosis: HR = 1.158, 95% CI = 1.034-1.297, P = 0.011; graft: HR = 1.116, 95% CI = 0.995-1.251, P = 0.061). CONCLUSIONS A synchronism was found in the FAI change trend between native coronary artery and venous graft, which both decreased over time. The CCTA-derived FAI of venous grafts showed the potential of demonstrating SVG disease progression and graft anastomosis served as the optimal measured location.
Collapse
Affiliation(s)
- Liwen Han
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lahu Like
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengzhen Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mi Zhou
- Department of Cardiovascular surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihan Xu
- Siemens Healthineers Computed Tomography (CT) Collaboration, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Zhao
- Department of Cardiovascular surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Shuto T, Anai H, Wada T, Kawashima T, Mori K, Miyamoto S. Low-flow perfusion technique for shaggy aortic arch. Gen Thorac Cardiovasc Surg 2024; 72:439-446. [PMID: 37995016 DOI: 10.1007/s11748-023-01988-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/28/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND The most common complication of thoracic aortic disease with shaggy aorta is cerebral infarction. We have performed "low-flow perfusion" as a method of extracorporeal circulation to prevent cerebral embolism in patients with strong atherosclerotic lesions in the aortic arch. METHODS "Low-flow perfusion" is a method in which cardiopulmonary bypass is started by partial blood removal, approaching deep hypothermia while maintaining self-cardiac output. We compared the outcomes of 12 patients who underwent the "low-flow perfusion" method (Group L) with those of 12 who underwent normal extracorporeal circulation (Group N) during aortic arch surgery since 2019. RESULTS Group L consisted of 8 males with an average age of 73 years old, and Group N consisted of 6 males with an average age of 73 years old. The average time from the start of cooling to ventricular fibrillation was 9.5 min in Group L and 3.6 min in Group N (p < 0.01). The eardrum temperature when ventricular fibrillation was reached was 28.2 °C in Group L and 32.5 °C in Group N (p = 0.01). A blood flow analysis also revealed low wall shear stress on the lesser curvature of the aortic arch. CONCLUSION With this method, the intracranial temperature was sufficiently low at the time of ventricular fibrillation, and there was no need to increase the total pump flow. The low-flow perfusion method can prevent cerebral embolism by preventing atheroma destruction by the blood flow jet while maintaining the self-cardiac output during the cooling process.
Collapse
Affiliation(s)
- Takashi Shuto
- Department of Cardiovascular Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Yufu-Shi, Oita, 879-5593, Japan.
| | - Hirofumi Anai
- Department of Cardiovascular Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Yufu-Shi, Oita, 879-5593, Japan
| | - Tomoyuki Wada
- Department of Cardiovascular Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Yufu-Shi, Oita, 879-5593, Japan
| | - Takayuki Kawashima
- Department of Cardiovascular Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Yufu-Shi, Oita, 879-5593, Japan
| | - Kazuki Mori
- Department of Cardiovascular Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Yufu-Shi, Oita, 879-5593, Japan
| | - Shinji Miyamoto
- Department of Cardiovascular Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Yufu-Shi, Oita, 879-5593, Japan
| |
Collapse
|
10
|
Gurovich AN, Montalvo S, Hassan PF, Gomez M. Carotid Arterial Compliance during Different Intensities of Submaximal Endurance Exercise. J Clin Med 2024; 13:3316. [PMID: 38893027 PMCID: PMC11173299 DOI: 10.3390/jcm13113316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Background: The purpose of this investigation was to determine the elastic characteristics of the common carotid artery (CCA) during endurance exercise at 3 different intensities. Methods: Twenty young healthy participants (10 males and 10 females) participated in this quasi-experimental cross-sectional study. Participants were tested in two sessions: (1) we took resting measurements of the elastic characteristics of the CCA and performed a cardiopulmonary exercise test (CPET) on a cycle ergometer to determine submaximal exercise intensities, and we conducted (2) measurements of the elastic characteristics of the CCA while exercising in a cycle ergometer at 3 intensities based on blood lactate levels of low (<2 mmol/L), moderate (2-4 mmol/L), and high (>4 mmol/L). Beta stiffness was calculated using CCA diameters during systole and diastole, measured with high-definition ultrasound imaging, and CCA systolic and diastolic pressures were measured via applanation tonometry. Results: Overall, there were no differences between males and females in terms of any of the studied variables (p > 0.05). In addition, no significant changes were found in the CCA beta stiffness and vessel diameter (p > 0.05) between exercise intensities. There was a significant exercise intensity effect on CCA systolic pressure (p < 0.05), but not on CCA diastolic pressure (p > 0.05). Conclusions: The biomechanical characteristics of the CCA, determined via compliance and beta-stiffness, do not change during cyclical aerobic exercise, regardless of exercise intensity.
Collapse
Affiliation(s)
- Alvaro N. Gurovich
- Clinical Applied Physiology Laboratory, College of Health Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA; (P.F.H.); (M.G.)
- Department of Physical Therapy and Movement Science, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Samuel Montalvo
- Wu-Tsai Human Performance Alliance, Division of Cardiovascular Medicine, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Progga F. Hassan
- Clinical Applied Physiology Laboratory, College of Health Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA; (P.F.H.); (M.G.)
| | - Manuel Gomez
- Clinical Applied Physiology Laboratory, College of Health Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA; (P.F.H.); (M.G.)
| |
Collapse
|
11
|
Candreva A, Gallo D, Munhoz D, Rizzini ML, Mizukami T, Seki R, Sakai K, Sonck J, Mazzi V, Ko B, Nørgaard BL, Jensen JM, Maeng M, Otake H, Koo BK, Shinke T, Aben JP, Andreini D, Gallinoro E, Stähli BE, Templin C, Chiastra C, De Bruyne B, Morbiducci U, Collet C. Influence of intracoronary hemodynamic forces on atherosclerotic plaque phenotypes. Int J Cardiol 2024; 399:131668. [PMID: 38141723 DOI: 10.1016/j.ijcard.2023.131668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/21/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AND AIMS Coronary hemodynamics impact coronary plaque progression and destabilization. The aim of the present study was to establish the association between focal vs. diffuse intracoronary pressure gradients and wall shear stress (WSS) patterns with atherosclerotic plaque composition. METHODS Prospective, international, single-arm study of patients with chronic coronary syndromes and hemodynamic significant lesions (fractional flow reserve [FFR] ≤ 0.80). Motorized FFR pullback pressure gradient (PPG), optical coherence tomography (OCT), and time-average WSS (TAWSS) and topological shear variation index (TSVI) derived from three-dimensional angiography were obtained. RESULTS One hundred five vessels (median FFR 0.70 [Interquartile range (IQR) 0.56-0.77]) had combined PPG and WSS analyses. TSVI was correlated with PPG (r = 0.47, [95% Confidence Interval (95% CI) 0.30-0.65], p < 0.001). Vessels with a focal CAD (PPG above the median value of 0.67) had significantly higher TAWSS (14.8 [IQR 8.6-24.3] vs. 7.03 [4.8-11.7] Pa, p < 0.001) and TSVI (163.9 [117.6-249.2] vs. 76.8 [23.1-140.9] m-1, p < 0.001). In the 51 vessels with baseline OCT, TSVI was associated with plaque rupture (OR 1.01 [1.00-1.02], p = 0.024), PPG with the extension of lipids (OR 7.78 [6.19-9.77], p = 0.003), with the presence of thin-cap fibroatheroma (OR 2.85 [1.11-7.83], p = 0.024) and plaque rupture (OR 4.94 [1.82 to 13.47], p = 0.002). CONCLUSIONS Focal and diffuse coronary artery disease, defined using coronary physiology, are associated with differential WSS profiles. Pullback pressure gradients and WSS profiles are associated with atherosclerotic plaque phenotypes. Focal disease (as identified by high PPG) and high TSVI are associated with high-risk plaque features. CLINICAL TRIAL REGISTRATION https://clinicaltrials,gov/ct2/show/NCT03782688.
Collapse
Affiliation(s)
- Alessandro Candreva
- Department of Cardiology, Zurich University Hospital, Zurich, Switzerland; Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; PoliTo(BIO) Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Diego Gallo
- PoliTo(BIO) Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Daniel Munhoz
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy; Department of internal medicine, University of Campinas (Unicamp), Campinas, Brazil
| | - Maurizio Lodi Rizzini
- PoliTo(BIO) Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Takuya Mizukami
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Ruiko Seki
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Koshiro Sakai
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Jeroen Sonck
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Valentina Mazzi
- PoliTo(BIO) Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Brian Ko
- Monash Cardiovascular Research Centre, Monash University and Monash Heart, Monash Health, Clayton, Victoria, Australia
| | | | | | - Michael Maeng
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Hiromasa Otake
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Cardiology, Aichi Medical University, Aichi, Japan
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea
| | - Toshiro Shinke
- Department of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | | | - Daniele Andreini
- Department of Cardiology, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy and Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Emanuele Gallinoro
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Cardiology, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy and Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Barbara E Stähli
- Department of Cardiology, Zurich University Hospital, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Christian Templin
- Department of Cardiology, Zurich University Hospital, Zurich, Switzerland
| | - Claudio Chiastra
- PoliTo(BIO) Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Umberto Morbiducci
- PoliTo(BIO) Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium.
| |
Collapse
|
12
|
Chidyagwai SG, Kaplan MS, Jensen CW, Chen JS, Chamberlain RC, Hill KD, Barker PCA, Slesnick TC, Randles A. Surgical Modulation of Pulmonary Artery Shear Stress: A Patient-Specific CFD Analysis of the Norwood Procedure. Cardiovasc Eng Technol 2024:10.1007/s13239-024-00724-3. [PMID: 38459240 DOI: 10.1007/s13239-024-00724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
PURPOSR This study created 3D CFD models of the Norwood procedure for hypoplastic left heart syndrome (HLHS) using standard angiography and echocardiogram data to investigate the impact of shunt characteristics on pulmonary artery (PA) hemodynamics. Leveraging routine clinical data offers advantages such as availability and cost-effectiveness without subjecting patients to additional invasive procedures. METHODS Patient-specific geometries of the intrathoracic arteries of two Norwood patients were generated from biplane cineangiograms. "Virtual surgery" was then performed to simulate the hemodynamics of alternative PA shunt configurations, including shunt type (modified Blalock-Thomas-Taussig shunt (mBTTS) vs. right ventricle-to-pulmonary artery shunt (RVPAS)), shunt diameter, and pulmonary artery anastomosis angle. Left-right pulmonary flow differential, Qp/Qs, time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) were evaluated. RESULTS There was strong agreement between clinically measured data and CFD model output throughout the patient-specific models. Geometries with a RVPAS tended toward more balanced left-right pulmonary flow, lower Qp/Qs, and greater TAWSS and OSI than models with a mBTTS. For both shunt types, larger shunts resulted in a higher Qp/Qs and higher TAWSS, with minimal effect on OSI. Low TAWSS areas correlated with regions of low flow and changing the PA-shunt anastomosis angle to face toward low TAWSS regions increased TAWSS. CONCLUSION Excellent correlation between clinically measured and CFD model data shows that 3D CFD models of HLHS Norwood can be developed using standard angiography and echocardiographic data. The CFD analysis also revealed consistent changes in PA TAWSS, flow differential, and OSI as a function of shunt characteristics.
Collapse
Affiliation(s)
- Simbarashe G Chidyagwai
- Department of Biomedical Engineering, Duke University, 534 Research Drive, 27708, Durham, NC, USA
| | - Michael S Kaplan
- Department of Biomedical Engineering, Duke University, 534 Research Drive, 27708, Durham, NC, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Christopher W Jensen
- Department of Biomedical Engineering, Duke University, 534 Research Drive, 27708, Durham, NC, USA
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - James S Chen
- Department of Biomedical Engineering, Duke University, 534 Research Drive, 27708, Durham, NC, USA
| | - Reid C Chamberlain
- Division of Pediatric Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Kevin D Hill
- Division of Pediatric Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Piers C A Barker
- Division of Pediatric Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Timothy C Slesnick
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Amanda Randles
- Department of Biomedical Engineering, Duke University, 534 Research Drive, 27708, Durham, NC, USA.
| |
Collapse
|
13
|
Paloschi V, Pauli J, Winski G, Wu Z, Li Z, Botti L, Meucci S, Conti P, Rogowitz F, Glukha N, Hummel N, Busch A, Chernogubova E, Jin H, Sachs N, Eckstein H, Dueck A, Boon RA, Bausch AR, Maegdefessel L. Utilization of an Artery-on-a-Chip to Unravel Novel Regulators and Therapeutic Targets in Vascular Diseases. Adv Healthc Mater 2024; 13:e2302907. [PMID: 37797407 PMCID: PMC11468405 DOI: 10.1002/adhm.202302907] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Indexed: 10/07/2023]
Abstract
In this study, organ-on-chip technology is used to develop an in vitro model of medium-to-large size arteries, the artery-on-a-chip (AoC), with the objective to recapitulate the structure of the arterial wall and the relevant hemodynamic forces affecting luminal cells. AoCs exposed either to in vivo-like shear stress values or kept in static conditions are assessed to generate a panel of novel genes modulated by shear stress. Considering the crucial role played by shear stress alterations in carotid arteries affected by atherosclerosis (CAD) and abdominal aortic aneurysms (AAA) disease development/progression, a patient cohort of hemodynamically relevant specimens is utilized, consisting of diseased and non-diseased (internal control) vessel regions from the same patient. Genes activated by shear stress follow the same expression pattern in non-diseased segments of human vessels. Single cell RNA sequencing (scRNA-seq) enables to discriminate the unique cell subpopulations between non-diseased and diseased vessel portions, revealing an enrichment of flow activated genes in structural cells originating from non-diseased specimens. Furthermore, the AoC served as a platform for drug-testing. It reproduced the effects of a therapeutic agent (lenvatinib) previously used in preclinical AAA studies, therefore extending the understanding of its therapeutic effect through a multicellular structure.
Collapse
Affiliation(s)
- Valentina Paloschi
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
| | - Jessica Pauli
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
| | - Greg Winski
- Department of Medicine, Cardiovascular UnitKarolinska Institute171 77StockholmSweden
| | - Zhiyuan Wu
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- Department of Vascular SurgeryBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical ScienceBeijing10073P. R. China
| | - Zhaolong Li
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Lorenzo Botti
- Department of Engineering and Applied SciencesUniversity of BergamoBergamo24129Italy
| | - Sandro Meucci
- Micronit MicrotechnologiesEnschede15 7521The Netherlands
| | - Pierangelo Conti
- Department of Engineering and Applied SciencesUniversity of BergamoBergamo24129Italy
| | | | - Nadiya Glukha
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Nora Hummel
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Albert Busch
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- Division of Vascular and Endovascular SurgeryDepartment for VisceralThoracic and Vascular SurgeryMedical Faculty Carl Gustav Carus and University HospitalTechnical University Dresden01069DresdenGermany
| | | | - Hong Jin
- Department of Medicine, Cardiovascular UnitKarolinska Institute171 77StockholmSweden
| | - Nadja Sachs
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Hans‐Henning Eckstein
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Anne Dueck
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
- Institute of Pharmacology and ToxicologyTechnical University of Munich80333MunichGermany
| | - Reinier A. Boon
- Department of PhysiologyAmsterdam Cardiovascular Sciences (ACS)Amsterdam UMCVU University Medical CenterAmsterdam1081 HVThe Netherlands
- Institute of Cardiovascular RegenerationCenter of Molecular MedicineGoethe‐University60323FrankfurtGermany
- German Center for Cardiovascular Research DZHKPartner Site Frankfurt Rhine‐Main10785BerlinGermany
| | - Andreas R. Bausch
- Department of Cellular BiophysicsTechnical University of Munich80333MunichGermany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
- Department of Medicine, Cardiovascular UnitKarolinska Institute171 77StockholmSweden
| |
Collapse
|
14
|
Iannuzzi J, Conte M. Peripheral Arterial Disease. GERIATRIC MEDICINE 2024:429-450. [DOI: 10.1007/978-3-030-74720-6_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
15
|
Wakako A, Sadato A, Oeda M, Higashiguchi S, Hayakawa M, Oshima M, Hirose Y. Development of a Model for Plaque Induction in Rat Carotid Arteries. Asian J Neurosurg 2023; 18:499-507. [PMID: 38152536 PMCID: PMC10749859 DOI: 10.1055/s-0043-1763522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Objective Plaque induction through intimal injury using a balloon catheter in small animals and by artificial ligation of the carotid artery in large animals have been reported. However, these reports have not yet succeeded in inducing stable plaques nor creating a high degree of intimal thickening to be used as animal models. We have previously developed a plaque induction model in rats but have failed to obtain a plaque incidence frequency that can be used as a model. Thus, in the current study, we aimed to create a versatile disease model to examine the pharmacokinetics of drug administration, determine the efficacy of treatment, and examine the process of intimal thickening. We also attempted to create an improved model with shorter, more frequent, and more severe intimal thickening. Materials and Methods The common carotid artery of male Wistar rats was surgically exposed and completely ligated with a wire and 6-0 nylon thread. Then, the wire was removed to create a partial ligation. To create a high frequency and high degree of intimal thickening, 72 rats were divided into two groups: a single lesion group with a 0.25-mm wire and a single ligature point, and a tandem lesion group with a 0.3-mm wire and two ligature points. Each group was further divided into normal diet and high cholesterol diet groups. The presence and frequency of intimal thickening were examined for each group after 4, 8, and 16 weeks of growth. Results In the single lesion group, intimal thickening was observed in 42% of the 4-week group and 75% of the 8-week group. In the tandem lesion group, intimal thickening was observed in 75% of the 4-week group and 50% of the 8-week group. In addition, 50% of the individuals reared for 16 weeks developed intimal thickening. Conclusion We successfully induced intimal thickening in the carotid arteries of rats with high frequency in the single lesion and tandem lesion groups. The results also showed that the tandem lesion group tended to induce intimal thickening earlier than the single lesion group.
Collapse
Affiliation(s)
- Akira Wakako
- Department of Neurosurgery, Fujita Medical University Okazaki Medical Center, Okazaki, Aichi, Japan
| | - Akiyo Sadato
- Department of Neurosurgery, Fujita Medical University, Toyoake, Aichi, Japan
| | - Motoki Oeda
- Department of Neurosurgery, Toyota Memorial Hospital, Toyota, Aichi, Japan
| | - Saeko Higashiguchi
- Department of Neurosurgery, Fujita Medical University Okazaki Medical Center, Okazaki, Aichi, Japan
| | - Motoharu Hayakawa
- Department of Neurosurgery, Fujita Medical University Okazaki Medical Center, Okazaki, Aichi, Japan
| | - Marie Oshima
- Institute of Industrial Science/Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo, Japan
| | - Yuichi Hirose
- Department of Neurosurgery, Fujita Medical University, Toyoake, Aichi, Japan
| |
Collapse
|
16
|
Xu S, Wang F, Mai P, Peng Y, Shu X, Nie R, Zhang H. Mechanism Analysis of Vascular Calcification Based on Fluid Dynamics. Diagnostics (Basel) 2023; 13:2632. [PMID: 37627891 PMCID: PMC10453151 DOI: 10.3390/diagnostics13162632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Vascular calcification is the abnormal deposition of calcium phosphate complexes in blood vessels, which is regarded as the pathological basis of multiple cardiovascular diseases. The flowing blood exerts a frictional force called shear stress on the vascular wall. Blood vessels have different hydrodynamic properties due to discrepancies in geometric and mechanical properties. The disturbance of the blood flow in the bending area and the branch point of the arterial tree produces a shear stress lower than the physiological magnitude of the laminar shear stress, which can induce the occurrence of vascular calcification. Endothelial cells sense the fluid dynamics of blood and transmit electrical and chemical signals to the full-thickness of blood vessels. Through crosstalk with endothelial cells, smooth muscle cells trigger osteogenic transformation, involved in mediating vascular intima and media calcification. In addition, based on the detection of fluid dynamics parameters, emerging imaging technologies such as 4D Flow MRI and computational fluid dynamics have greatly improved the early diagnosis ability of cardiovascular diseases, showing extremely high clinical application prospects.
Collapse
Affiliation(s)
- Shuwan Xu
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; (S.X.); (F.W.); (P.M.)
| | - Feng Wang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; (S.X.); (F.W.); (P.M.)
| | - Peibiao Mai
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; (S.X.); (F.W.); (P.M.)
| | - Yanren Peng
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510120, China; (Y.P.); (X.S.)
| | - Xiaorong Shu
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510120, China; (Y.P.); (X.S.)
| | - Ruqiong Nie
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510120, China; (Y.P.); (X.S.)
| | - Huanji Zhang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; (S.X.); (F.W.); (P.M.)
| |
Collapse
|
17
|
Shao S, Shi H, Wang G, Li R, Sun Q, Yao B, Watase H, Hippe DS, Yuan C, Zhao X. Differences in left and right carotid plaque vulnerability in patients with bilateral carotid plaques: a CARE-II study. Stroke Vasc Neurol 2023; 8:284-291. [PMID: 36596656 PMCID: PMC10512039 DOI: 10.1136/svn-2022-001937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/22/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Atherosclerosis is a very complex process influenced by various systemic and local factors. Therefore, in patients with bilateral carotid plaques (BCPs), there may be differences in carotid plaque vulnerability between the sides. We aimed to investigate the differences in BCP characteristics in patients with BCPs using magnetic resonance vessel wall imaging (MR-VWI). METHODS Participants with BCPs were selected for subanalysis from a multicentre study of Chinese Atherosclerosis Risk Evaluation II. We measured carotid plaque burden, identified each plaque component and measured their volume or area bilaterally on MR-VWI. Paired comparisons of the burden and components of BCPs were performed. RESULTS In all, 540 patients with BCPs were eligible for analysis. Compared with the right carotid artery (CA), larger mean lumen area (p<0.001), larger mean wall area (p=0.025), larger mean total vessel area (p<0.001) and smaller normalised wall index (p=0.006) were found in the left CA. Regarding plaque components, only the prevalence of lipid-rich necrotic core (LRNC) in the left CA was higher (p=0.026). For patients with a vulnerable plaque component coexisting on both sides, only the intraplaque haemorrhage (IPH) volume (p=0.011) was significantly greater in the left CA than in the right CA. CONCLUSIONS There were asymmetries in plaque growth and evolution between BCPs. The left carotid plaques were more likely to have larger plaque burden, higher prevalence of LRNC and greater IPH volume, which may contribute to the lateralisation of ischaemic stroke in the cerebral hemispheres.
Collapse
Affiliation(s)
- Sai Shao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Honglu Shi
- Department of Medical Imaging and Intervention, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Qinjian Sun
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bin Yao
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hiroko Watase
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Daniel S Hippe
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| |
Collapse
|
18
|
Cha MJ, An DG, Kang M, Kim HM, Kim SW, Cho I, Hong J, Choi H, Cho JH, Shin SY, Song S. Correct Closure of the Left Atrial Appendage Reduces Stagnant Blood Flow and the Risk of Thrombus Formation: A Proof-of-Concept Experimental Study Using 4D Flow Magnetic Resonance Imaging. Korean J Radiol 2023; 24:647-659. [PMID: 37404107 DOI: 10.3348/kjr.2023.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE The study was conducted to investigate the effect of correct occlusion of the left atrial appendage (LAA) on intracardiac blood flow and thrombus formation in patients with atrial fibrillation (AF) using four-dimensional (4D) flow magnetic resonance imaging (MRI) and three-dimensional (3D)-printed phantoms. MATERIALS AND METHODS Three life-sized 3D-printed left atrium (LA) phantoms, including a pre-occlusion (i.e., before the occlusion procedure) model and correctly and incorrectly occluded post-procedural models, were constructed based on cardiac computed tomography images from an 86-year-old male with long-standing persistent AF. A custom-made closed-loop flow circuit was set up, and pulsatile simulated pulmonary venous flow was delivered by a pump. 4D flow MRI was performed using a 3T scanner, and the images were analyzed using MATLAB-based software (R2020b; Mathworks). Flow metrics associated with blood stasis and thrombogenicity, such as the volume of stasis defined by the velocity threshold (|V̅| < 3 cm/s), surface-and-time-averaged wall shear stress (WSS), and endothelial cell activation potential (ECAP), were analyzed and compared among the three LA phantom models. RESULTS Different spatial distributions, orientations, and magnitudes of LA flow were directly visualized within the three LA phantoms using 4D flow MRI. The time-averaged volume and its ratio to the corresponding entire volume of LA flow stasis were consistently reduced in the correctly occluded model (70.82 mL and 39.0%, respectively), followed by the incorrectly occluded (73.17 mL and 39.0%, respectively) and pre-occlusion (79.11 mL and 39.7%, respectively) models. The surface-and-time-averaged WSS and ECAP were also lowest in the correctly occluded model (0.048 Pa and 4.004 Pa-1 , respectively), followed by the incorrectly occluded (0.059 Pa and 4.792 Pa-1 , respectively) and pre-occlusion (0.072 Pa and 5.861 Pa-1 , respectively) models. CONCLUSION These findings suggest that a correctly occluded LAA leads to the greatest reduction in LA flow stasis and thrombogenicity, presenting a tentative procedural goal to maximize clinical benefits in patients with AF.
Collapse
Affiliation(s)
- Min Jae Cha
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Don-Gwan An
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, Korea
- Center for Precision Medicine Platform Based-on Smart Hemo-Dynamic Index, Seoul, Korea
| | - Minsoo Kang
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, Korea
- Center for Precision Medicine Platform Based-on Smart Hemo-Dynamic Index, Seoul, Korea
| | - Hyue Mee Kim
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Sang-Wook Kim
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Iksung Cho
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Joonhwa Hong
- Department of Thoracic and Cardiovascular Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hyewon Choi
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jee-Hyun Cho
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Korea
| | - Seung Yong Shin
- Center for Precision Medicine Platform Based-on Smart Hemo-Dynamic Index, Seoul, Korea
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea.
| | - Simon Song
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, Korea
- Center for Precision Medicine Platform Based-on Smart Hemo-Dynamic Index, Seoul, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, Korea.
| |
Collapse
|
19
|
Lionakis N, Briasoulis A, Zouganeli V, Koutoulakis E, Kalpakos D, Xanthopoulos A, Skoularigis J, Kourek C. Coronary Artery Aneurysms: Comprehensive Review and a Case Report of a Left Main Coronary Artery Aneurysm. Curr Probl Cardiol 2023; 48:101700. [PMID: 36931332 DOI: 10.1016/j.cpcardiol.2023.101700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Coronary artery aneurysms (CAAs) are rare anatomical disorders of the coronary arteries. Atherosclerosis and Kawasaki disease are the principal causes of CCAs, while other causes including genetic factors, inflammatory arterial diseases, connective tissue disorders, endothelial damage after cocaine use, iatrogenic complications after interventions and infections, are also common among patients with CAAs. Although there is a variety of noninvasive methods including echocardiography, computed tomography, and magnetic resonance imaging, coronary angiography remains the gold standard diagnostic method. There is still no consensus about the most appropriate therapeutic strategy. Medical therapy including antiplatelets, anticoagulants, statins and ACEs are preferred either in patients with atherosclerosis, inflammatory status and stable CAAs, while percutaneous or surgery interventions are usually applied in patients with acute coronary syndrome due to a CAA culprit, obstructive coronary artery disease or large saccular aneurysms at a high risk of rupturing.
Collapse
Affiliation(s)
- Nikolaos Lionakis
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), Athens 11521, Greece
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, Alexandra Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece; Division of Cardiovascular Medicine, Section of Heart Failure and Transplantation, University of Iowa Hospitals and Clinics, IA 52242, United States
| | - Virginia Zouganeli
- Second Cardiology Department, Attikon University Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens 12462, Greece
| | - Emmanouil Koutoulakis
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), Athens 11521, Greece
| | - Dionisios Kalpakos
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), Athens 11521, Greece
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, Larissa 41110, Greece
| | - John Skoularigis
- Department of Cardiology, University Hospital of Larissa, Larissa 41110, Greece
| | - Christos Kourek
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), Athens 11521, Greece.
| |
Collapse
|
20
|
Schake MA, McCue IS, Curtis ET, Ripperda TJ, Harvey S, Hackfort BT, Fitzwater A, Chatzizisis YS, Kievit FM, Pedrigi RM. Restoration of normal blood flow in atherosclerotic arteries promotes plaque stabilization. iScience 2023; 26:106760. [PMID: 37235059 PMCID: PMC10206490 DOI: 10.1016/j.isci.2023.106760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Blood flow is a key regulator of atherosclerosis. Disturbed blood flow promotes atherosclerotic plaque development, whereas normal blood flow protects against plaque development. We hypothesized that normal blood flow is also therapeutic, if it were able to be restored within atherosclerotic arteries. Apolipoprotein E-deficient (ApoE-/-) mice were initially instrumented with a blood flow-modifying cuff to induce plaque development and then five weeks later the cuff was removed to allow restoration of normal blood flow. Plaques in decuffed mice exhibited compositional changes that indicated increased stability compared to plaques in mice with the cuff maintained. The therapeutic benefit of decuffing was comparable to atorvastatin and the combination had an additive effect. In addition, decuffing allowed restoration of lumen area, blood velocity, and wall shear stress to near baseline values, indicating restoration of normal blood flow. Our findings demonstrate that the mechanical effects of normal blood flow on atherosclerotic plaques promote stabilization.
Collapse
Affiliation(s)
- Morgan A. Schake
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ian S. McCue
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Evan T. Curtis
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Thomas J. Ripperda
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Samuel Harvey
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Bryan T. Hackfort
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Anna Fitzwater
- Institutional Animal Care Program, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Yiannis S. Chatzizisis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Forrest M. Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ryan M. Pedrigi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
21
|
Wang YK, Weng HK, Mo FE. The regulation and functions of the matricellular CCN proteins induced by shear stress. J Cell Commun Signal 2023:10.1007/s12079-023-00760-z. [PMID: 37191841 DOI: 10.1007/s12079-023-00760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
Shear stress is a frictional drag generated by the flow of fluid, such as blood or interstitial fluid, and plays a critical role in regulating cellular gene expression and functional phenotype. The matricellular CCN family proteins are dynamically regulated by shear stress of different flow patterns, and their expression significantly alters the microenvironment of cells. Secreted CCN proteins mainly bind to several cell surface integrin receptors to mediate their diverse functions in regulating cell survival, function, and behavior. Gene-knockout studies indicate major functions of CCN proteins in the cardiovascular and skeletal systems, the two primary systems in which CCN expressions are regulated by shear stress. In the cardiovascular system, the endothelium is directly exposed to vascular shear stress. Unidirectional laminar blood flow generates laminar shear stress, which promotes a mature endothelial phenotype and upregulates anti-inflammatory CCN3 expression. In contrast, disturbed flow generates oscillatory shear stress, which induces endothelial dysfunction through the induction of CCN1 and CCN2. Shear-induced CCN1 binds to integrin α6β1 and promotes superoxide production, NF-κB activation, and inflammatory gene expression in endothelial cells. Although the interaction between shear stress and CCN4-6 is not clear, CCN 4 exhibits a proinflammatory property and CCN5 inhibits vascular cell growth and migration. The crucial roles of CCN proteins in cardiovascular development, homeostasis, and disease are evident but not fully understood. In the skeletal system, mechanical loading on bone generates shear stress from interstitial fluid in the lacuna-canalicular system and promotes osteoblast differentiation and bone formation. CCN1 and CCN2 are induced and potentially mediate fluid shear stress mechanosensing in osteocytes. However, the exact roles of interstitial shear stress-induced CCN1 and CCN2 in bone are still not clear. In contrast to other CCN family proteins, CCN3 inhibits osteoblast differentiation, although its regulation by interstitial shear stress in osteocytes has not been reported. The induction of CCN proteins by shear stress in bone and their functions remain largely unknown and merit further investigation. This review discusses the expression and functions of CCN proteins regulated by shear stress in physiological conditions, diseases, and cell culture models. The roles between CCN family proteins can be compensatory or counteractive in tissue remodeling and homeostasis.
Collapse
Affiliation(s)
- Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hung-Kai Weng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Fan-E Mo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
22
|
Zhong X, Li Z, Xu Q, Peng H, Su Y, Le K, Shu Z, Liao Y, Ma Z, Pan X, Xu S, Zhou S. Short-chain acyl-CoA dehydrogenase is a potential target for the treatment of vascular remodelling. J Hypertens 2023; 41:775-793. [PMID: 36883465 DOI: 10.1097/hjh.0000000000003399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVES Short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme in the fatty acid oxidation process, is not only involved in ATP synthesis but also regulates the production of mitochondrial reactive oxygen species (ROS) and nitric oxide synthesis. The purpose of this study was to investigate the possible role of SCAD in hypertension-associated vascular remodelling. METHODS In-vivo experiments were performed on spontaneously hypertensive rats (SHRs, ages of 4 weeks to 20 months) and SCAD knockout mice. The aorta sections of hypertensive patients were used for measurement of SCAD expression. In-vitro experiments with t-butylhydroperoxide (tBHP), SCAD siRNA, adenovirus-SCAD (MOI 90) or shear stress (4, 15 dynes/cm 2 ) were performed using human umbilical vein endothelial cells (HUVECs). RESULTS Compared with age-matched Wistar rats, aortic SCAD expression decreased gradually in SHRs with age. In addition, aerobic exercise training for 8 weeks could significantly increase SCAD expression and enzyme activity in the aortas of SHRs while decreasing vascular remodelling in SHRs. SCAD knockout mice also exhibited aggravated vascular remodelling and cardiovascular dysfunction. Likewise, SCAD expression was also decreased in tBHP-induced endothelial cell apoptosis models and the aortas of hypertensive patients. SCAD siRNA caused HUVEC apoptosis in vitro , whereas adenovirus-mediated SCAD overexpression (Ad-SCAD) protected against HUVEC apoptosis. Furthermore, SCAD expression was decreased in HUVECs exposed to low shear stress (4 dynes/cm 2 ) and increased in HUVECs exposed to 15 dynes/cm 2 compared with those under static conditions. CONCLUSION SCAD is a negative regulator of vascular remodelling and may represent a novel therapeutic target for vascular remodelling.
Collapse
Affiliation(s)
- Xiaoyi Zhong
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Zhonghong Li
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Qingping Xu
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Huan Peng
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Yongshao Su
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Kang Le
- Sickle Cell Branch, National heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhaohui Shu
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Yingqin Liao
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Zhichao Ma
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Xuediao Pan
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Sigui Zhou
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| |
Collapse
|
23
|
Xenakis A, Ruiz-Soler A, Keshmiri A. Multi-Objective Optimisation of a Novel Bypass Graft with a Spiral Ridge. Bioengineering (Basel) 2023; 10:489. [PMID: 37106676 PMCID: PMC10136357 DOI: 10.3390/bioengineering10040489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The low long-term patency of bypass grafts is a major concern for cardiovascular treatments. Unfavourable haemodynamic conditions in the proximity of distal anastomosis are closely related to thrombus creation and lumen lesions. Modern graft designs address this unfavourable haemodynamic environment with the introduction of a helical component in the flow field, either by means of out-of-plane helicity graft geometry or a spiral ridge. While the latter has been found to lack in performance when compared to the out-of-plane helicity designs, recent findings support the idea that the existing spiral ridge grafts can be further improved in performance through optimising relevant design parameters. In the current study, robust multi-objective optimisation techniques are implemented, covering a wide range of possible designs coupled with proven and well validated computational fluid dynamics (CFD) algorithms. It is shown that the final set of suggested design parameters could significantly improve haemodynamic performance and therefore could be used to enhance the design of spiral ridge bypass grafts.
Collapse
Affiliation(s)
- Antonios Xenakis
- School of Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Andres Ruiz-Soler
- School of Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Amir Keshmiri
- School of Engineering, The University of Manchester, Manchester M13 9PL, UK
- Department of Cardiothoracic Surgery, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| |
Collapse
|
24
|
Zhou M, Yu Y, Chen R, Liu X, Hu Y, Ma Z, Gao L, Jian W, Wang L. Wall shear stress and its role in atherosclerosis. Front Cardiovasc Med 2023; 10:1083547. [PMID: 37077735 PMCID: PMC10106633 DOI: 10.3389/fcvm.2023.1083547] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Atherosclerosis (AS) is the major form of cardiovascular disease and the leading cause of morbidity and mortality in countries around the world. Atherosclerosis combines the interactions of systemic risk factors, haemodynamic factors, and biological factors, in which biomechanical and biochemical cues strongly regulate the process of atherosclerosis. The development of atherosclerosis is directly related to hemodynamic disorders and is the most important parameter in the biomechanics of atherosclerosis. The complex blood flow in arteries forms rich WSS vectorial features, including the newly proposed WSS topological skeleton to identify and classify the WSS fixed points and manifolds in complex vascular geometries. The onset of plaque usually occurs in the low WSS area, and the plaque development alters the local WSS topography. low WSS promotes atherosclerosis, while high WSS prevents atherosclerosis. Upon further progression of plaques, high WSS is associated with the formation of vulnerable plaque phenotype. Different types of shear stress can lead to focal differences in plaque composition and to spatial variations in the susceptibility to plaque rupture, atherosclerosis progression and thrombus formation. WSS can potentially gain insight into the initial lesions of AS and the vulnerable phenotype that gradually develops over time. The characteristics of WSS are studied through computational fluid dynamics (CFD) modeling. With the continuous improvement of computer performance-cost ratio, WSS as one of the effective parameters for early diagnosis of atherosclerosis has become a reality and will be worth actively promoting in clinical practice. The research on the pathogenesis of atherosclerosis based on WSS is gradually an academic consensus. This article will comprehensively review the systemic risk factors, hemodynamics and biological factors involved in the formation of atherosclerosis, and combine the application of CFD in hemodynamics, focusing on the mechanism of WSS and the complex interactions between WSS and plaque biological factors. It is expected to lay a foundation for revealing the pathophysiological mechanisms related to abnormal WSS in the progression and transformation of human atherosclerotic plaques.
Collapse
Affiliation(s)
- Manli Zhou
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yunfeng Yu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ruiyi Chen
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xingci Liu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yilei Hu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhiyan Ma
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Lingwei Gao
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Weixiong Jian
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- National Key Discipline of Traditional Chinese Medicine Diagnostics, Hunan Provincial Key Laboratory, Hunan University of Chinese Medicine, Changsha, China
- Correspondence: Weixiong Jian Liping Wang
| | - Liping Wang
- College of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua, China
- Correspondence: Weixiong Jian Liping Wang
| |
Collapse
|
25
|
Liu M, Panagopoulos AN, Oguz UM, Samant S, Vasa CH, Agrawal DK, Chatzizisis YS. Role of triggering receptor expressed on myeloid cells-1 in the mechanotransduction signaling pathways that link low shear stress with inflammation. Sci Rep 2023; 13:4656. [PMID: 36944850 PMCID: PMC10030555 DOI: 10.1038/s41598-023-31763-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
This study sought to investigate the role of triggering receptor expressed on myeloid cells-1 (TREM-1) in the mechanotransduction signaling pathways that link low shear stress with inflammation. Human coronary artery endothelial cells, human coronary artery smooth muscle cells, and THP-1 monocytes were co-cultured and exposed to varying endothelial shear stress (ESS) conditions: low (5 ± 3 dynes/cm2), medium (10 ± 3 dynes/cm2), and high (15 ± 3 dynes/cm2). We showed that low ESS increased the expression of TREM-1 by the cultured cells leading to increased production of inflammatory mediators and matrix-degrading enzymes, whereas high ESS did not have a significant effect in the expression of TREM-1 and inflammatory mediators. Furthermore, TREM-1 transcriptional inhibition with siRNA in endothelial cells, smooth muscle cells, and monocytes exposed to low ESS, led to a significant reduction in the production of vascular inflammatory mediators and matrix-degrading enzymes. Additionally, we identified the transcription factors that appear to upregulate the TREM-1 gene expression in response to low ESS. To the best of our knowledge, this is the first study to investigate the pathophysiologic association and molecular pathways that link low ESS, TREM-1, and inflammation using a sophisticated in-vitro model of atherosclerosis. Future studies on animals and humans are warranted to investigate the potential of TREM-1 inhibitors as adjunctive anti-atherosclerotic therapies.
Collapse
Affiliation(s)
- Martin Liu
- Computational Cardiovascular Simulations Center, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th Street, Suite 1124, Miami, FL, 33136, USA
- Cardiovascular Biology and Biomechanics Laboratory, Cardiovascular Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anastasios Nikolaos Panagopoulos
- Cardiovascular Biology and Biomechanics Laboratory, Cardiovascular Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Usama M Oguz
- Computational Cardiovascular Simulations Center, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th Street, Suite 1124, Miami, FL, 33136, USA
- Cardiovascular Biology and Biomechanics Laboratory, Cardiovascular Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saurabhi Samant
- Cardiovascular Biology and Biomechanics Laboratory, Cardiovascular Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Charu Hasini Vasa
- Computational Cardiovascular Simulations Center, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th Street, Suite 1124, Miami, FL, 33136, USA
- Cardiovascular Biology and Biomechanics Laboratory, Cardiovascular Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Science, Pomona, CA, USA
| | - Yiannis S Chatzizisis
- Computational Cardiovascular Simulations Center, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th Street, Suite 1124, Miami, FL, 33136, USA.
- Cardiovascular Biology and Biomechanics Laboratory, Cardiovascular Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
26
|
Stone PH, Libby P, Boden WE. Fundamental Pathobiology of Coronary Atherosclerosis and Clinical Implications for Chronic Ischemic Heart Disease Management-The Plaque Hypothesis: A Narrative Review. JAMA Cardiol 2023; 8:192-201. [PMID: 36515941 PMCID: PMC11016334 DOI: 10.1001/jamacardio.2022.3926] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Recent clinical and imaging studies underscore that major adverse cardiac events (MACE) outcomes are associated not solely with severe coronary obstructions (ischemia hypothesis or stenosis hypothesis), but with the plaque burden along the entire coronary tree. New research clarifies the pathobiologic mechanisms responsible for plaque development/progression/destabilization leading to MACE (plaque hypothesis), but the translation of these insights to clinical management strategies has lagged. This narrative review elaborates the plaque hypothesis and explicates the current understanding of underlying pathobiologic mechanisms, the provocative destabilizing influences, the diagnostic and therapeutic implications, and their actionable clinical management approaches to optimize the management of patients with chronic coronary disease. Observations Clinical trials of management strategies for patients with chronic coronary artery disease demonstrate that while MACE rate increases progressively with the anatomic extent of coronary disease, revascularization of the ischemia-producing obstruction does not forestall MACE. Most severely obstructive coronary lesions often remain quiescent and seldom destabilize to cause a MACE. Coronary lesions that later provoke acute myocardial infarction often do not narrow the lumen critically. Invasive and noninvasive imaging can identify the plaque anatomic characteristics (plaque burden, plaque topography, lipid content) and local hemodynamic/biomechanical characteristics (endothelial shear stress, plaque structural stress, axial plaque stress) that can indicate the propensity of individual plaques to provoke a MACE. Conclusions and Relevance The pathobiologic construct concerning the culprit region of a plaque most likely to cause a MACE (plaque hypothesis), which incorporates multiple convergent plaque features, informs the evolution of a new management strategy capable of identifying the high-risk portion of plaque wherever it is located along the course of the coronary artery. Ongoing investigations of high-risk plaque features, coupled with technical advances to enable prognostic characterization in real time and at the point of care, will soon enable evaluation of the entire length of the atheromatous coronary artery and broaden the target(s) of our therapeutic intervention to include all regions of the plaque (both flow limiting and nonflow limiting).
Collapse
Affiliation(s)
- Peter H Stone
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Heart and Vascular Center, Harvard Medical School, Boston, Massachusetts
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Heart and Vascular Center, Harvard Medical School, Boston, Massachusetts
| | - William E Boden
- VA Boston Healthcare System, Massachusetts Veterans Epidemiology, Research, and Informatics Center, and Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
27
|
Karageorgos GM, Kemper P, Lee C, Weber R, Kwon N, Meshram N, Mobadersany N, Grondin J, Marshall RS, Miller EC, Konofagou EE. Adaptive Wall Shear Stress Imaging in Phantoms, Simulations and In Vivo. IEEE Trans Biomed Eng 2023; 70:154-165. [PMID: 35776824 PMCID: PMC10103592 DOI: 10.1109/tbme.2022.3186854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
WSS measurement is challenging since it requires sensitive flow measurements at a distance close to the wall. The aim of this study is to develop an ultrasound imaging technique which combines vector flow imaging with an unsupervised data clustering approach that automatically detects the region close to the wall with optimally linear flow profile, to provide direct and robust WSS estimation. The proposed technique was evaluated in phantoms, mimicking normal and atherosclerotic vessels, and spatially registered Fluid Structure Interaction (FSI) simulations. A relative error of 6.7% and 19.8% was obtained for peak systolic (WSSPS) and end diastolic (WSSED) WSS in the straight phantom, while in the stenotic phantom, a good similarity was found between measured and simulated WSS distribution, with a correlation coefficient, R, of 0.89 and 0.85 for WSSPS and WSSED, respectively. Moreover, the feasibility of the technique to detect pre-clinical atherosclerosis was tested in an atherosclerotic swine model. Six swines were fed atherogenic diet, while their left carotid artery was ligated in order to disturb flow patterns. Ligated arterial segments that were exposed to low WSSPS and WSS characterized by high frequency oscillations at baseline, developed either moderately or highly stenotic plaques (p < 0.05). Finally, feasibility of the technique was demonstrated in normal and atherosclerotic human subjects. Atherosclerotic carotid arteries with low stenosis had lower WSSPS as compared to control subjects (p < 0.01), while in one subject with high stenosis, elevated WSS was found on an arterial segment, which coincided with plaque rupture site, as determined through histological examination.
Collapse
|
28
|
Khan MO, Nishi T, Imura S, Seo J, Wang H, Honda Y, Nieman K, Rogers IS, Tremmel JA, Boyd J, Schnittger I, Marsden A. Colocalization of Coronary Plaque with Wall Shear Stress in Myocardial Bridge Patients. Cardiovasc Eng Technol 2022; 13:797-807. [PMID: 35296987 DOI: 10.1007/s13239-022-00616-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/25/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE Patients with myocardial bridges (MBs) have a higher prevalence of atherosclerosis. Wall shear stress (WSS) has previously been correlated with plaque in coronary artery disease patients, but such correlations have not been investigated in symptomatic MB patients. The aim of this paper was to use a multi-scale computational fluid dynamics (CFD) framework to simulate hemodynamics in MB patient, and investigate the co-localization of WSS and plaque. METHODS We identified N = 10 patients from a previously reported cohort of 50 symptomatic MB patients, all of whom had plaque in the proximal vessel. Dynamic 3D models were reconstructed from coronary computed tomography angiography (CCTA), intravascular ultrasound (IVUS) and catheter angiograms. CFD simulations were performed to compute WSS proximal to, within and distal to the MB. Plaque was quantified from IVUS images in 2 mm segments and registered to CFD model. Plaque area was compared to absolute and patient-normalized WSS. RESULTS WSS was lower in the proximal segment compared to the bridge segment (6.1 ± 2.9 vs. 16.0 ± 7.1 dynes/cm2, p value < 0.01). Plaque area and plaque burden measured from IVUS peaked at 1-3 cm proximal to the MB entrance, coinciding with the first diagonal branch. Normalized WSS showed a statistically significant moderate correlation with plaque area (r = 0.41, p < 0.01). CONCLUSION WSS may be obtained non-invasively in MB patients and provides a surrogate marker of plaque area. Using CFD, it may be possible to non-invasively assess the extent of plaque area, and identify patients who could benefit from frequent monitoring or medical management.
Collapse
Affiliation(s)
- Muhammad Owais Khan
- Department of Pediatrics, Stanford University School of Medicine, 318 Campus Drive, Clark Center E100b, Stanford, CA, 94305-5428, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Takeshi Nishi
- Division of Cardiovascular Medicine, Stanford University School of Medicine and Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Shinji Imura
- Division of Cardiovascular Medicine, Stanford University School of Medicine and Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Jongmin Seo
- Department of Pediatrics, Stanford University School of Medicine, 318 Campus Drive, Clark Center E100b, Stanford, CA, 94305-5428, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yasuhiro Honda
- Division of Cardiovascular Medicine, Stanford University School of Medicine and Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Koen Nieman
- Division of Cardiovascular Medicine, Stanford University School of Medicine and Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ian S Rogers
- Division of Cardiovascular Medicine, Stanford University School of Medicine and Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Jennifer A Tremmel
- Division of Cardiovascular Medicine, Stanford University School of Medicine and Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Jack Boyd
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ingela Schnittger
- Division of Cardiovascular Medicine, Stanford University School of Medicine and Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Alison Marsden
- Department of Pediatrics, Stanford University School of Medicine, 318 Campus Drive, Clark Center E100b, Stanford, CA, 94305-5428, USA. .,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA. .,Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
29
|
Rodríguez Falla DA, Rafael-Horna EA, Quiroz Burgos J, Lévano-Pachas G, Meneses G. [Clinical and angiographic characteristics of patients with coronary ectasia in a reference hospital]. ARCHIVOS PERUANOS DE CARDIOLOGIA Y CIRUGIA CARDIOVASCULAR 2022; 3:139-144. [PMID: 37284577 PMCID: PMC10241337 DOI: 10.47487/apcyccv.v3i2.229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/26/2022] [Indexed: 06/08/2023]
Abstract
Objective To analyze the clinical and angiographic characteristics of patients with coronary ectasia found on coronary angiography. Materials and methods : Descriptive study of patients admitted to the cardiac catheterization laboratory of the Hospital Guillermo Almenara with coronary ectasia, during the years 2012 to 2020. The frequency of coronary ectasia, clinical, angiographic and coronary flow characteristics were determined. Results 7504 catheterizations were reviewed, and 91 patients were found to have coronary ectasia (1.21%). Of these patients, 71 cases were male (78%), and the mean age was 67.74 ± 9.9 years. The 38.5% of cases were obese or overweight; 39.6% were hypertensive; 11% diabetic; 13.2% smoked; 3.3% had chronic kidney disease and 3.3% had polyglobulia. Sixty-one percent of cases had a diagnosis of acute coronary syndrome, and 24% of cases had high-risk stable angina. The artery most frequently involved by ectasia was the right coronary artery (70%). The average diameter of the ectatic artery was 5.7 mm. Occlusive thrombus was found in 19.8% of cases. There was a significant association between TIMI flow and diameter of the ectatic artery (p=0.000), and there was also an association between coronary ectasia and acute coronary syndrome among patients living at an altitude of more than 2500 m (p=0.000). Conclusions coronary ectasia was an infrequent entity among patients who underwent coronary angiography, was predominantly male, mainly involved the right coronary artery, was associated with lower TIMI flow, and acute coronary syndrome among residents above 2500 m of altitude.
Collapse
Affiliation(s)
- David Alejandro Rodríguez Falla
- Departamento de Cardiología, Hospital Nacional Guillermo Almenara. Lima, Perú. Departamento de Cardiología, Hospital Nacional Guillermo Almenara Lima Perú
| | - Eliana Alejandra Rafael-Horna
- Departamento de Cardiología, Hospital Nacional Guillermo Almenara. Lima, Perú. Departamento de Cardiología, Hospital Nacional Guillermo Almenara Lima Perú
| | - José Quiroz Burgos
- Departamento de Cardiología, Hospital Nacional Guillermo Almenara. Lima, Perú. Departamento de Cardiología, Hospital Nacional Guillermo Almenara Lima Perú
| | - Gerald Lévano-Pachas
- Departamento de Cardiología, Hospital Nacional Guillermo Almenara. Lima, Perú. Departamento de Cardiología, Hospital Nacional Guillermo Almenara Lima Perú
| | - Giovanni Meneses
- Departamento Académico de Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Lima, Perú. Universidad Nacional Mayor de San Marcos Departamento Académico de Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad Nacional Mayor de San Marcos Lima Peru
| |
Collapse
|
30
|
An automated software for real-time quantification of wall shear stress distribution in quantitative coronary angiography data. Int J Cardiol 2022; 357:14-19. [PMID: 35292271 DOI: 10.1016/j.ijcard.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Wall shear stress (WSS) estimated in 3D-quantitative coronary angiography (QCA) models appears to provide useful prognostic information and identifies high-risk patients and lesions. However, conventional computational fluid dynamics (CFD) analysis is cumbersome limiting its application in the clinical arena. This report introduces a user-friendly software that allows real-time WSS computation and examines its reproducibility and accuracy in assessing WSS distribution against conventional CFD analysis. METHODS From a registry of 414 patients with borderline negative fractional flow reserve (0.81-0.85), 100 lesions were randomly selected. 3D-QCA and CFD analysis were performed using the conventional approach and the novel CAAS Workstation WSS software, and QCA as well as WSS estimations of the two approaches were compared. The reproducibility of the two methodologies was evaluated in a subgroup of 50 lesions. RESULTS A good agreement was noted between the conventional approach and the novel software for 3D-QCA metrics (ICC range: 0.73-0-93) and maximum WSS at the lesion site (ICC: 0.88). Both methodologies had a high reproducibility in assessing lesion severity (ICC range: 0.83-0.97 for the conventional approach; 0.84-0.96 for the CAAS Workstation WSS software) and WSS distribution (ICC: 0.85-0.89 and 0.83-0.87, respectively). Simulation time was significantly shorter using the CAAS Workstation WSS software compared to the conventional approach (4.13 ± 0.59 min vs 23.14 ± 2.56 min, p < 0.001). CONCLUSION CAAS Workstation WSS software is fast, reproducible, and accurate in assessing WSS distribution. Therefore, this software is expected to enable the broad use of WSS metrics in the clinical arena to identify high-risk lesions and vulnerable patients.
Collapse
|
31
|
Kwiecinski J, Tzolos E, Fletcher AJ, Nash J, Meah MN, Cadet S, Adamson PD, Grodecki K, Joshi N, Williams MC, van Beek EJR, Lai C, Tavares AAS, MacAskill MG, Dey D, Baker AH, Leipsic J, Berman DS, Sellers SL, Newby DE, Dweck MR, Slomka PJ. Bypass Grafting and Native Coronary Artery Disease Activity. JACC Cardiovasc Imaging 2022; 15:875-887. [PMID: 35216930 PMCID: PMC9246289 DOI: 10.1016/j.jcmg.2021.11.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The aim of this study was to describe the potential of 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) to identify graft vasculopathy and to investigate the influence of coronary artery bypass graft (CABG) surgery on native coronary artery disease activity and progression. BACKGROUND As well as developing graft vasculopathy, CABGs have been proposed to accelerate native coronary atherosclerosis. METHODS Patients with established coronary artery disease underwent baseline 18F-NaF PET, coronary artery calcium scoring, coronary computed tomographic angiography, and 1-year repeat coronary artery calcium scoring. Whole-vessel coronary microcalcification activity (CMA) on 18F-NaF PET and change in calcium scores were quantified in patients with and without CABG surgery. RESULTS Among 293 participants (mean age 65 ± 9 years, 84% men), 48 (16%) underwent CABG surgery 2.7 years [IQR: 1.4-10.4 years] previously. Although all arterial and the majority (120 of 128 [94%]) of vein grafts showed no 18F-NaF uptake, 8 saphenous vein grafts in 7 subjects had detectable CMA. Bypassed native coronary arteries had 3 times higher CMA values (2.1 [IQR: 0.4-7.5] vs 0.6 [IQR: 0-2.7]; P < 0.001) and greater progression of 1-year calcium scores (118 Agatston unit [IQR: 48-194 Agatston unit] vs 69 [IQR: 21-142 Agatston unit]; P = 0.01) compared with patients who had not undergone CABG, an effect confined largely to native coronary plaques proximal to the graft anastomosis. In sensitivity analysis, bypassed native coronary arteries had higher CMA (2.0 [IQR: 0.4-7.5] vs 0.8 [IQR: 0.3-3.2]; P < 0.001) and faster disease progression (24% [IQR: 16%-43%] vs 8% [IQR: 0%-24%]; P = 0.002) than matched patients (n = 48) with comparable burdens of coronary artery disease and cardiovascular comorbidities in the absence of bypass grafting. CONCLUSIONS Native coronary arteries that have been bypassed demonstrate increased disease activity and more rapid disease progression than nonbypassed arteries, an observation that appears independent of baseline atherosclerotic plaque burden. Microcalcification activity is not a dominant feature of graft vasculopathy.
Collapse
Affiliation(s)
- Jacek Kwiecinski
- Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | - Evangelos Tzolos
- Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California, USA; BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexander J Fletcher
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Nash
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Mohammed N Meah
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Sebastien Cadet
- Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Philip D Adamson
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Kajetan Grodecki
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nikhil Joshi
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Michelle C Williams
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Edwin J R van Beek
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Chi Lai
- Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adriana A S Tavares
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark G MacAskill
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Damini Dey
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Jonathon Leipsic
- Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel S Berman
- Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephanie L Sellers
- Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - David E Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Piotr J Slomka
- Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
32
|
Hua Y, Zhang J, Liu Q, Su J, Zhao Y, Zheng G, Yang Z, Zhuo D, Ma C, Fan G. The Induction of Endothelial Autophagy and Its Role in the Development of Atherosclerosis. Front Cardiovasc Med 2022; 9:831847. [PMID: 35402552 PMCID: PMC8983858 DOI: 10.3389/fcvm.2022.831847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Increasing attention is now being paid to the important role played by autophagic flux in maintaining normal blood vessel walls. Endothelial cell dysfunction initiates the development of atherosclerosis. In the endothelium, a variety of critical triggers ranging from shear stress to circulating blood lipids promote autophagy. Furthermore, emerging evidence links autophagy to a range of important physiological functions such as redox homeostasis, lipid metabolism, and the secretion of vasomodulatory substances that determine the life and death of endothelial cells. Thus, the promotion of autophagy in endothelial cells may have the potential for treating atherosclerosis. This paper reviews the role of endothelial cells in the pathogenesis of atherosclerosis and explores the molecular mechanisms involved in atherosclerosis development.
Collapse
Affiliation(s)
- Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhang
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianqian Liu
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Su
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guobin Zheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhihui Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Danping Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
33
|
Peng C, Liu J, He W, Qin W, Yuan T, Kan Y, Wang K, Wang S, Shi Y. Numerical simulation in the abdominal aorta and the visceral arteries with or without stenosis based on 2D PCMRI. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3569. [PMID: 34967124 DOI: 10.1002/cnm.3569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
It is important to obtain accurate boundary conditions (BCs) in hemodynamic simulations. This article aimed to improve the accuracy of BCs in computational fluid dynamics (CFD) simulation and analyze the differences in hemodynamics between healthy volunteers and patients with visceral arterial stenosis (VAS). The geometric models of seven cases were reconstructed using the magnetic resonance angiogram (MRA) or computed tomography angiogram (CTA) imaging data. The physiological flow waveforms obtained from 2D Phase Contrast Magnetic Resonance Imaging (PCMRI) were imposed on the aortic inlet and the visceral arteries' outlets. The individualized RCR values of the three-element Windkessel model were imposed on the aortic outlet. CFD simulations were run in the open-source software: svSolver. Two specific time points were selected to compare the hemodynamics of healthy volunteers and patients with VAS. The results suggested that blood in the stenotic visceral arteries flowed at high speed throughout the cardiac cycle. The low pressure is distributed at stenotic lesions. The wall shear stress (WSS) reached 4 Pa near stenotic locations. The low time average wall shear stress (TAWSS), high oscillatory shear index (OSI), and high relative residence time (RRT) concentrated in the abdominal aorta. Besides, the ratios of the areas with low TAWSS, high OSI, and high RRT to the computational domain were higher in patients with VAS than which in the healthy volunteers. The individualized BCs were used for hemodynamic simulations and results suggest that patients with stenosis have a higher risk of blood retention and atherosclerosis formation in the abdominal aorta.
Collapse
Affiliation(s)
- Chen Peng
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Junzhen Liu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei He
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wang Qin
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Tong Yuan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanqing Kan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Keqiang Wang
- Institute of Panvascular Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengzhang Wang
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
- Institute of Biomedical Engineering Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yun Shi
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Itatani K, Sekine T, Yamagishi M, Maeda Y, Higashitani N, Miyazaki S, Matsuda J, Takehara Y. Hemodynamic Parameters for Cardiovascular System in 4D Flow MRI: Mathematical Definition and Clinical Applications. Magn Reson Med Sci 2022; 21:380-399. [PMID: 35173116 DOI: 10.2463/mrms.rev.2021-0097] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Blood flow imaging becomes an emerging trend in cardiology with the recent progress in computer technology. It not only visualizes colorful flow velocity streamlines but also quantifies the mechanical stress on cardiovascular structures; thus, it can provide the detailed inspections of the pathophysiology of diseases and predict the prognosis of cardiovascular functions. Clinical applications include the comprehensive assessment of hemodynamics and cardiac functions in echocardiography vector flow mapping (VFM), 4D flow MRI, and surgical planning as a simulation medicine in computational fluid dynamics (CFD).For evaluation of the hemodynamics, novel mathematically derived parameters obtained using measured velocity distributions are essential. Among them, the traditional and typical parameters are wall shear stress (WSS) and its related parameters. These parameters indicate the mechanical damages to endothelial cells, resulting in degenerative intimal change in vascular diseases. Apart from WSS, there are abundant parameters that describe the strength of the vortical and/or helical flow patterns. For instance, vorticity, enstrophy, and circulation indicate the rotating flow strength or power of 2D vortical flows. In addition, helicity, which is defined as the cross-linking number of the vortex filaments, indicates the 3D helical flow strength and adequately describes the turbulent flow in the aortic root in cases with complicated anatomies. For the description of turbulence caused by the diseased flow, there exist two types of parameters based on completely different concepts, namely: energy loss (EL) and turbulent kinetic energy (TKE). EL is the dissipated energy with blood viscosity and evaluates the cardiac workload related to the prognosis of heart failure. TKE describes the fluctuation in kinetic energy during turbulence, which describes the severity of the diseases that cause jet flow. These parameters are based on intuitive and clear physiological concepts, and are suitable for in vivo flow measurements using inner velocity profiles.
Collapse
Affiliation(s)
- Keiichi Itatani
- Department of Cardiovascular Surgery, Osaka City University.,Cardio Flow Design Inc
| | - Tetsuro Sekine
- Department of Radiology, Nippon Medical School Musashi Kosugi Hospital
| | - Masaaki Yamagishi
- Department of Pediatric Cardiovascular Surgery, Kyoto Prefectural University of Medicine
| | - Yoshinobu Maeda
- Department of Pediatric Cardiovascular Surgery, Kyoto Prefectural University of Medicine
| | - Norika Higashitani
- Cardio Flow Design Inc.,Department of Cardiovascular Surgery, Kyoto Prefectural University of Medicine
| | | | - Junya Matsuda
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Yasuo Takehara
- Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya university Graduate School of Medicine
| |
Collapse
|
35
|
Wentzel JJ, Papafaklis MI, Antoniadis AP, Takahashi S, Cefalo NV, Cormier M, Saito S, Coskun AU, Stone PH. Sex-related differences in plaque characteristics and endothelial shear stress related plaque-progression in human coronary arteries. Atherosclerosis 2022; 342:9-18. [PMID: 34999306 DOI: 10.1016/j.atherosclerosis.2021.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Clinical atherosclerosis manifestations are different in women compared to men. Since endothelial shear stress (ESS) is known to play a critical role in coronary atherosclerosis development, we investigated differences in anatomical characteristics and endothelial shear stress (ESS)-related plaque growth in human coronary arteries in men compared to women. METHODS 1183 coronary arteries (male/female: 944/239) from the PREDICTION study were studied for differences in artery/plaque and ESS characteristics, and ESS-related plaque progression (6-10 months follow-up) among men and women and after stratification for age. All characteristics were derived from IVUS-based vascular profiling and reported per 3 mm-segments (13,030 3-mm-segments (male/female: 10,465/2,565)). RESULTS Coronary arteries and plaques were significantly smaller in females compared to males; but no important differences were observed in plaque burden, ESS and rate of plaque progression. Change in plaque burden was inversely related to ESS (p<0.001) with no difference between women versus men (β: -0.62 ± 0.13 vs -0.68 ± 0.05, p=0.62). However, stratification for age demonstrated that ESS-related plaque growth was more marked in young women compared to men (<55 years, β: -2.02 ± 0.61 vs -0.33 ± 0.10, p=0.007), reducing in magnitude over the age-categories up till 75 years. CONCLUSIONS Coronary artery and plaque size are smaller in women compared to men, but ESS and ESS- related plaque progression were similar. Sex-related differences in ESS-related plaque growth were evident after stratification for age. These observations suggest that although the fundamental processes of atherosclerosis progression are similar in men versus women, plaque progression may be influenced by age within gender.
Collapse
Affiliation(s)
- Jolanda J Wentzel
- Biomedical Engineering, Department of Cardiology, ErasmusMC, University Medical Center Rotterdam, the Netherlands.
| | | | - Antonios P Antoniadis
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Saeko Takahashi
- Department of Cardiology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Nicholas V Cefalo
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michelle Cormier
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shigeru Saito
- Department of Cardiology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Ahmet U Coskun
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Peter H Stone
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Chan JM, Park SJ, Ng M, Chen WC, Garnell J, Bhakoo K. Predictive mouse model reflects distinct stages of human atheroma in a single carotid artery. Transl Res 2022; 240:33-49. [PMID: 34478893 DOI: 10.1016/j.trsl.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Identification of patients with high-risk asymptomatic atherosclerotic plaques remains an elusive but essential step in preventing stroke. However, there is a lack of animal model that provides a reproducible method to predict where, when and what types of plaque formation, which fulfils the American Heart Association (AHA) histological classification of human plaques. We have developed a predictive mouse model that reflects different stages of human plaques in a single carotid artery by means of shear-stress modifying cuff. Validated with over 30000 histological sections, the model generates a specific pattern of plaques with different risk levels along the same artery depending on their position relative to the cuff. The further upstream of the cuff-implanted artery, the lower the magnitude of shear stress, the more unstable the plaques of higher grade according to AHA classification; with characteristics including greater degree of vascular remodeling, plaque size, plaque vulnerability and inflammation, resulting in higher risk plaques. By weeks 20 and 30, this model achieved 80% and near 100% accuracy respectively, in predicting precisely where, when and what stages/AHA types of plaques develop along the same carotid artery. This model can generate clinically-relevant plaques with varying phenotypes fulfilling AHA classification and risk levels, in specific locations of the single artery with near 100% accuracy of prediction. The model offers a promising tool for development of diagnostic tools to target high-risk plaques, increasing accuracy in predicting which individual patients may require surgical intervention to prevent stroke, paving the way for personalized management of carotid atherosclerotic disease.
Collapse
Affiliation(s)
- Joyce Ms Chan
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Sung-Jin Park
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Michael Ng
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Joanne Garnell
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kishore Bhakoo
- Translational Imaging Laboratory, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
37
|
Chen S, Zhang H, Hou Q, Zhang Y, Qiao A. Multiscale Modeling of Vascular Remodeling Induced by Wall Shear Stress. Front Physiol 2022; 12:808999. [PMID: 35153816 PMCID: PMC8829510 DOI: 10.3389/fphys.2021.808999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/27/2021] [Indexed: 01/04/2023] Open
Abstract
Objective Hemodynamics-induced low wall shear stress (WSS) is one of the critical reasons leading to vascular remodeling. However, the coupling effects of WSS and cellular kinetics have not been clearly modeled. The aim of this study was to establish a multiscale modeling approach to reveal the vascular remodeling behavior under the interaction between the macroscale of WSS loading and the microscale of cell evolution. Methods Computational fluid dynamics (CFD) method and agent-based model (ABM), which have significantly different characteristics in temporal and spatial scales, were adopted to establish the multiscale model. The CFD method is for the second/organ scale, and the ABM is for the month/cell scale. The CFD method was used to simulate blood flow in a vessel and obtain the WSS in a vessel cross-section. The simulations of the smooth muscle cell (SMC) proliferation/apoptosis and extracellular matrix (ECM) generation/degradation in a vessel cross-section were performed by using ABM. During the simulation of the vascular remodeling procedure, the damage index of the SMC and ECM was defined as deviation from the obtained WSS. The damage index decreased gradually to mimic the recovery of WSS-induced vessel damage. Results (1) The significant wall thickening region was consistent with the low WSS region. (2) There was no evident change of wall thickness in the normal WSS region. (3) When the damage index approached to 0, the amount and distribution of SMCs and ECM achieved a stable state, and the vessel reached vascular homeostasis. Conclusion The established multiscale model can be used to simulate the vascular remodeling behavior over time under various WSS conditions.
Collapse
|
38
|
Zhou Z, Yeh CF, Mellas M, Oh MJ, Zhu J, Li J, Huang RT, Harrison DL, Shentu TP, Wu D, Lueckheide M, Carver L, Chung EJ, Leon L, Yang KC, Tirrell MV, Fang Y. Targeted polyelectrolyte complex micelles treat vascular complications in vivo. Proc Natl Acad Sci U S A 2021; 118:e2114842118. [PMID: 34880134 PMCID: PMC8685925 DOI: 10.1073/pnas.2114842118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 01/09/2023] Open
Abstract
Vascular disease is a leading cause of morbidity and mortality in the United States and globally. Pathological vascular remodeling, such as atherosclerosis and stenosis, largely develop at arterial sites of curvature, branching, and bifurcation, where disturbed blood flow activates vascular endothelium. Current pharmacological treatments of vascular complications principally target systemic risk factors. Improvements are needed. We previously devised a targeted polyelectrolyte complex micelle to deliver therapeutic nucleotides to inflamed endothelium in vitro by displaying the peptide VHPKQHR targeting vascular cell adhesion molecule 1 (VCAM-1) on the periphery of the micelle. This paper explores whether this targeted nanomedicine strategy effectively treats vascular complications in vivo. Disturbed flow-induced microRNA-92a (miR-92a) has been linked to endothelial dysfunction. We have engineered a transgenic line (miR-92aEC-TG /Apoe-/- ) establishing that selective miR-92a overexpression in adult vascular endothelium causally promotes atherosclerosis in Apoe-/- mice. We tested the therapeutic effectiveness of the VCAM-1-targeting polyelectrolyte complex micelles to deliver miR-92a inhibitors and treat pathological vascular remodeling in vivo. VCAM-1-targeting micelles preferentially delivered miRNA inhibitors to inflamed endothelial cells in vitro and in vivo. The therapeutic effectiveness of anti-miR-92a therapy in treating atherosclerosis and stenosis in Apoe-/- mice is markedly enhanced by the VCAM-1-targeting polyelectrolyte complex micelles. These results demonstrate a proof of concept to devise polyelectrolyte complex micelle-based targeted nanomedicine approaches treating vascular complications in vivo.
Collapse
Affiliation(s)
- Zhengjie Zhou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Chih-Fan Yeh
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL 60637
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Michael Mellas
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| | - Myung-Jin Oh
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Jiayu Zhu
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Jin Li
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Ru-Ting Huang
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Devin L Harrison
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL 60637
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637
| | - Tzu-Pin Shentu
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - David Wu
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Michael Lueckheide
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| | - Lauryn Carver
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Eun Ji Chung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| | - Lorraine Leon
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| | - Kai-Chien Yang
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Matthew V Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637;
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Yun Fang
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL 60637;
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637
| |
Collapse
|
39
|
Miller HA, Schake MA, Bony BA, Curtis ET, Gee CC, McCue IS, Ripperda TJ, Chatzizisis YS, Kievit FM, Pedrigi RM. Smooth muscle cells affect differential nanoparticle accumulation in disturbed blood flow-induced murine atherosclerosis. PLoS One 2021; 16:e0260606. [PMID: 34882722 PMCID: PMC8659666 DOI: 10.1371/journal.pone.0260606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that leads to the formation of plaques in the inner lining of arteries. Plaques form over a range of phenotypes, the most severe of which is vulnerable to rupture and causes most of the clinically significant events. In this study, we evaluated the efficacy of nanoparticles (NPs) to differentiate between two plaque phenotypes based on accumulation kinetics in a mouse model of atherosclerosis. This model uses a perivascular cuff to induce two regions of disturbed wall shear stress (WSS) on the inner lining of the instrumented artery, low (upstream) and multidirectional (downstream), which, in turn, cause the development of an unstable and stable plaque phenotype, respectively. To evaluate the influence of each WSS condition, in addition to the final plaque phenotype, in determining NP uptake, mice were injected with NPs at intermediate and fully developed stages of plaque growth. The kinetics of artery wall uptake were assessed in vivo using dynamic contrast-enhanced magnetic resonance imaging. At the intermediate stage, there was no difference in NP uptake between the two WSS conditions, although both were different from the control arteries. At the fully-developed stage, however, NP uptake was reduced in plaques induced by low WSS, but not multidirectional WSS. Histological evaluation of plaques induced by low WSS revealed a significant inverse correlation between the presence of smooth muscle cells and NP accumulation, particularly at the plaque-lumen interface, which did not exist with other constituents (lipid and collagen) and was not present in plaques induced by multidirectional WSS. These findings demonstrate that NP accumulation can be used to differentiate between unstable and stable murine atherosclerosis, but accumulation kinetics are not directly influenced by the WSS condition. This tool could be used as a diagnostic to evaluate the efficacy of experimental therapeutics for atherosclerosis.
Collapse
Affiliation(s)
- Hunter A. Miller
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Morgan A. Schake
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Badrul Alam Bony
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Evan T. Curtis
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Connor C. Gee
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Ian S. McCue
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Thomas J. Ripperda
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Yiannis S. Chatzizisis
- Cardiovascular Division, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Forrest M. Kievit
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
- * E-mail: (RMP); (FMK)
| | - Ryan M. Pedrigi
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
- * E-mail: (RMP); (FMK)
| |
Collapse
|
40
|
Ye D, Huang J, Wang S, Sheng S, Liu M. Cerebral arterial fenestration associated with stroke and other cerebrovascular diseases. Neuroreport 2021; 32:1279-1286. [PMID: 34554937 DOI: 10.1097/wnr.0000000000001720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cerebral arterial fenestration is a rare vascular malformation that has not been fully understood. Whether it is related to cerebrovascular diseases remains to be determined. In this study, we aimed to investigate the imaging characteristics of cerebral fenestrations, the clinical characteristics of fenestrations complicated with cerebrovascular diseases, and the correlation between fenestrations and cerebrovascular diseases. METHODS We reviewed the magnetic resonance imaging and computed tomography (CT) imaging findings of patients with cerebrovascular fenestrations in the Third Affiliated Hospital of Soochow University from January 2016 to December 2020, mainly focused on the shape and location of fenestrations. According to the location of fenestrated arteries, patients were divided into the internal carotid arterial system (ICAS) group and the vertebrobasilar arterial system (VAS) group. For patients complicated with cerebrovascular diseases, detailed data about the demographics and clinical characteristics were recorded. Stroke patients with injured lesions located in the territories of fenestrated arteries were further screened out and analyzed. Moreover, the proportions of cerebrovascular diseases including stroke between the ICAS group and the VAS group were compared. RESULTS A total of 280 cerebrovascular fenestrations were found in 274 patients (six patients had two fenestrations). The most frequently involved vessels were the anterior cerebral artery (123/280), the basilar artery (76/280) and the vertebral artery (35/280). As to the shape of fenestrations, slit-like fenestrations accounted for 63.2% (177/280), followed by convex-lens-like type 26.1% (73/280) and duplicated type 10.7% (30/280). A total of 70 patients were complicated with cerebrovascular diseases, including ischemic stroke 64.3% (45/70), hemorrhagic stroke 22.9% (16/70), aneurysm 10% (7/70), arteriovenous malformation 1.4% (1/70) and cavernous hemangioma 1.4% (1/70). There were no significant differences between the ICAS group and the VAS group in terms of the demographics and clinical characteristics. Furthermore, among the 61 patients complicated with stroke, 16 patients' stroke lesions were located in the territories of fenestrated arteries, including 12.5% (2/16) in the ICAS and 87.5% (14/16) in the VAS. In addition, compared with the ICAS group, the proportions of cerebrovascular diseases including stroke in patients with fenestrations were higher in the VAS group (P < 0.05). CONCLUSIONS Cerebral arterial fenestrations are most commonly found in the anterior cerebral artery, the basilar artery and the vertebral artery. Vertebrobasilar fenestrations are more related to cerebrovascular diseases, especially stroke.
Collapse
Affiliation(s)
- Dan Ye
- Department of Neurology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou
| | - Jinzhong Huang
- Department of Neurology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou
| | - Sulei Wang
- Department of Neurology, Nanjing Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, PR China
| | - Shiying Sheng
- Department of Neurology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou
| | - Meng Liu
- Department of Neurology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou
| |
Collapse
|
41
|
Hohri Y, Numata S, Itatani K, Kanda K, Yamazaki S, Inoue T, Yaku H. Prediction for future occurrence of type A aortic dissection using computational fluid dynamics. Eur J Cardiothorac Surg 2021; 60:384-391. [PMID: 33619516 DOI: 10.1093/ejcts/ezab094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/26/2020] [Accepted: 01/22/2021] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES The actual underlying mechanisms of acute type A aortic dissection (AAAD) are not well understood. The present study aimed to elucidate the mechanism of AAAD using computational fluid dynamics (CFD) analysis. METHODS We performed CFD analysis using patient-specific computed tomography imaging in 3 healthy control cases and 3 patients with AAAD. From computed tomography images, we made a healthy control model or pre-dissection model for CFD analysis. Pulsatile cardiac flow during one cardiac cycle was simulated, and a three-dimensional flow streamline was visualized to evaluate flow velocity, wall shear stress and oscillatory shear index (OSI). RESULTS In healthy controls, the transvalvular aortic flow was parallel to the ascending aorta. There was no spotty high OSI area at the ascending aorta. In pre-dissection patients, accelerated transvalvular aortic flow was towards the posterolateral ascending aorta. The vortex flow was observed on the side of the lesser curvature in mid-systole and expanded throughout the entire ascending aorta during diastole. Systolic wall shear stress was high due to the accelerated aortic blood flow on the side of the greater curvature of the ascending aorta. On the side of the lesser curvature, high OSI areas were observed around the vortex flow. In all pre-dissection cases, a spotty high OSI area was in close proximity to the actual primary entry site of the future AAAD. CONCLUSIONS The pre-onset high OSI area with vortex flow is closely associated with the future primary entry site. Therefore, we can elucidate the mechanism of AAAD with CFD analysis.
Collapse
Affiliation(s)
- Yu Hohri
- Department of Cardiovascular Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Numata
- Department of Cardiovascular Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiichi Itatani
- Department of Cardiovascular Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiichi Kanda
- Department of Cardiovascular Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Sachiko Yamazaki
- Department of Cardiovascular Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoya Inoue
- Department of Cardiovascular Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Yaku
- Department of Cardiovascular Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
42
|
Freidoonimehr N, Chin R, Zander A, Arjomandi M. A Review on the Effect of Temporal Geometric Variations of the Coronary Arteries on the Wall Shear Stress and Pressure Drop. J Biomech Eng 2021; 144:1115053. [PMID: 34318321 DOI: 10.1115/1.4051923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 11/08/2022]
Abstract
Temporal variations of the coronary arteries during a cardiac cycle are defined as the superposition of the changes in the position, curvature, and torsion of the coronary artery axis markers and the variations in the lumen cross-sectional shape due to the distensible wall motion induced by the pulse pressure and contraction of the myocardium in a cardiac cycle. This review discusses whether modeling of the temporal variations of the coronary arteries is needed for the investigation of hemodynamics specifically in time-critical applications such as a clinical environment. The numerical modelings in the literature that model or disregard the temporal variations of the coronary arteries on the hemodynamic parameters are discussed. The results in the literature show that neglecting the effects of temporal geometric variations is expected to result in about 5% deviation of the time-averaged pressure drop and wall shear stress values and also about 20% deviation of the temporal variations of hemodynamic parameters, such as time-dependent wall shear stress and oscillatory shear index. This review study can be considered as a guide for future studies to outline the conditions in which temporal variations of the coronary arteries can be neglected while providing a reliable estimation of hemodynamic parameters.
Collapse
Affiliation(s)
- Navid Freidoonimehr
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Rey Chin
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Anthony Zander
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Maziar Arjomandi
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
43
|
De Nisco G, Chiastra C, Hartman EMJ, Hoogendoorn A, Daemen J, Calò K, Gallo D, Morbiducci U, Wentzel JJ. Comparison of Swine and Human Computational Hemodynamics Models for the Study of Coronary Atherosclerosis. Front Bioeng Biotechnol 2021; 9:731924. [PMID: 34409022 PMCID: PMC8365882 DOI: 10.3389/fbioe.2021.731924] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Coronary atherosclerosis is a leading cause of illness and death in Western World and its mechanisms are still non completely understood. Several animal models have been used to 1) study coronary atherosclerosis natural history and 2) propose predictive tools for this disease, that is asymptomatic for a long time, aiming for a direct translation of their findings to human coronary arteries. Among them, swine models are largely used due to the observed anatomical and pathophysiological similarities to humans. However, a direct comparison between swine and human models in terms of coronary hemodynamics, known to influence atherosclerotic onset/development, is still lacking. In this context, we performed a detailed comparative analysis between swine- and human-specific computational hemodynamic models of coronary arteries. The analysis involved several near-wall and intravascular flow descriptors, previously emerged as markers of coronary atherosclerosis initiation/progression, as well as anatomical features. To do that, non-culprit coronary arteries (18 right–RCA, 18 left anterior descending–LAD, 13 left circumflex–LCX coronary artery) from patients presenting with acute coronary syndrome were imaged by intravascular ultrasound and coronary computed tomography angiography. Similarly, the three main coronary arteries of ten adult mini-pigs were also imaged (10 RCA, 10 LAD, 10 LCX). The geometries of the imaged coronary arteries were reconstructed (49 human, 30 swine), and computational fluid dynamic simulations were performed by imposing individualized boundary conditions. Overall, no relevant differences in 1) wall shear stress-based quantities, 2) intravascular hemodynamics (in terms of helical flow features), and 3) anatomical features emerged between human- and swine-specific models. The findings of this study strongly support the use of swine-specific computational models to study and characterize the hemodynamic features linked to coronary atherosclerosis, sustaining the reliability of their translation to human vascular disease.
Collapse
Affiliation(s)
- Giuseppe De Nisco
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Claudio Chiastra
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Eline M J Hartman
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Ayla Hoogendoorn
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Joost Daemen
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Karol Calò
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Diego Gallo
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Jolanda J Wentzel
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
44
|
Khan MO, Tran JS, Zhu H, Boyd J, Packard RRS, Karlsberg RP, Kahn AM, Marsden AL. Low Wall Shear Stress Is Associated with Saphenous Vein Graft Stenosis in Patients with Coronary Artery Bypass Grafting. J Cardiovasc Transl Res 2021; 14:770-781. [PMID: 32240496 PMCID: PMC7529767 DOI: 10.1007/s12265-020-09982-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022]
Abstract
Biomechanical forces may play a key role in saphenous vein graft (SVG) disease after coronary artery bypass graft (CABG) surgery. Computed tomography angiography (CTA) of 430 post-CABG patients were evaluated and 15 patients were identified with both stenosed and healthy SVGs for paired analysis. The stenosis was virtually removed, and detailed 3D models were reconstructed to perform patient-specific computational fluid dynamic (CFD) simulations. Models were processed to compute anatomic parameters, and hemodynamic parameters such as local and vessel-averaged wall shear stress (WSS), normalized WSS (WSS*), low shear area (LSA), oscillatory shear index (OSI), and flow rate. WSS* was significantly lower in pre-diseased SVG segments compared to corresponding control segments without disease (1.22 vs. 1.73, p = 0.012) and the area under the ROC curve was 0.71. No differences were observed in vessel-averaged anatomic or hemodynamic parameters between pre-stenosed and control whole SVGs. There are currently no clinically available tools to predict SVG failure post-CABG. CFD modeling has the potential to identify high-risk CABG patients who may benefit from more aggressive medical therapy and closer surveillance. Graphical Abstract.
Collapse
Affiliation(s)
- Muhammad Owais Khan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Justin S Tran
- Department of Mechanical Engineering, California State University Fullerton, Fullerton, CA, USA
| | - Han Zhu
- Department of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jack Boyd
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - René R Sevag Packard
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ronald P Karlsberg
- Cardiovascular Medical Group of Southern California, Beverly Hills, CA, USA
| | - Andrew M Kahn
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Alison L Marsden
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
45
|
Mazzi V, De Nisco G, Hoogendoorn A, Calò K, Chiastra C, Gallo D, Steinman DA, Wentzel JJ, Morbiducci U. Early Atherosclerotic Changes in Coronary Arteries are Associated with Endothelium Shear Stress Contraction/Expansion Variability. Ann Biomed Eng 2021; 49:2606-2621. [PMID: 34324092 PMCID: PMC8455396 DOI: 10.1007/s10439-021-02829-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although unphysiological wall shear stress (WSS) has become the consensus hemodynamic mechanism for coronary atherosclerosis, the complex biomechanical stimulus affecting atherosclerosis evolution is still undetermined. This has motivated the interest on the contraction/expansion action exerted by WSS on the endothelium, obtained through the WSS topological skeleton analysis. This study tests the ability of this WSS feature, alone or combined with WSS magnitude, to predict coronary wall thickness (WT) longitudinal changes. Nine coronary arteries of hypercholesterolemic minipigs underwent imaging with local WT measurement at three time points: baseline (T1), after 5.6 ± 0.9 (T2), and 7.6 ± 2.5 (T3) months. Individualized computational hemodynamic simulations were performed at T1 and T2. The variability of the WSS contraction/expansion action along the cardiac cycle was quantified using the WSS topological shear variation index (TSVI). Alone or combined, high TSVI and low WSS significantly co-localized with high WT at the same time points and were significant predictors of thickening at later time points. TSVI and WSS magnitude values in a physiological range appeared to play an atheroprotective role. Both the variability of the WSS contraction/expansion action and WSS magnitude, accounting for different hemodynamic effects on the endothelium, (1) are linked to WT changes and (2) concur to identify WSS features leading to coronary atherosclerosis.
Collapse
Affiliation(s)
- Valentina Mazzi
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - Giuseppe De Nisco
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - Ayla Hoogendoorn
- Department of Cardiology, Biomedical Engineering, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Karol Calò
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - Claudio Chiastra
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - Diego Gallo
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - David A Steinman
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada
| | - Jolanda J Wentzel
- Department of Cardiology, Biomedical Engineering, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Umberto Morbiducci
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy.
| |
Collapse
|
46
|
Kalykakis GE, Antonopoulos AS, Pitsargiotis T, Siogkas P, Exarchos T, Kafouris P, Sakelarios A, Liga R, Tzifa A, Giannopoulos A, Scholte AJHA, Kaufmann PA, Parodi O, Knuuti J, Fotiadis DI, Neglia D, Anagnostopoulos CD. Relationship of Endothelial Shear Stress with Plaque Features with Coronary CT Angiography and Vasodilating Capability with PET. Radiology 2021; 300:549-556. [PMID: 34184936 DOI: 10.1148/radiol.2021204381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Advances in three-dimensional reconstruction techniques and computational fluid dynamics of coronary CT angiography (CCTA) data sets make feasible evaluation of endothelial shear stress (ESS) in the vessel wall. Purpose To investigate the relationship between CCTA-derived computational fluid dynamics metrics, anatomic and morphologic characteristics of coronary lesions, and their comparative performance in predicting impaired coronary vasodilating capability assessed by using PET myocardial perfusion imaging (MPI). Materials and Methods In this retrospective study, conducted between October 2019 and September 2020, coronary vessels in patients with stable chest pain and with intermediate probability of coronary artery disease who underwent both CCTA and PET MPI with oxygen 15-labeled water or nitrogen 13 ammonia and quantification of myocardial blood flow were analyzed. CCTA images were used in assessing stenosis severity, lesion-specific total plaque volume (PV), noncalcified PV, calcified PV, and plaque phenotype. PET MPI was used in assessing significant coronary stenosis. The predictive performance of the CCTA-derived parameters was evaluated by using area under the receiver operating characteristic curve (AUC) analysis. Results There were 92 coronary vessels evaluated in 53 patients (mean age, 65 years ± 7; 31 men). ESS was higher in lesions with greater than 50% stenosis versus those without significant stenosis (mean, 15.1 Pa ± 30 vs 4.6 Pa ± 4 vs 3.3 Pa ± 3; P = .004). ESS was higher in functionally significant versus nonsignificant lesions (median, 7 Pa [interquartile range, 5-23 Pa] vs 2.6 Pa [interquartile range, 1.8-5 Pa], respectively; P ≤ .001). Adding ESS to stenosis severity improved prediction (change in AUC, 0.10; 95% CI: 0.04, 0.17; P = .002) for functionally significant lesions. Conclusion The combination of endothelial shear stress with coronary CT angiography (CCTA) stenosis severity improved prediction of an abnormal PET myocardial perfusion imaging result versus CCTA stenosis severity alone. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Kusmirek and Wieben in this issue.
Collapse
Affiliation(s)
- Georgios-Eleftherios Kalykakis
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Alexios S Antonopoulos
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Thomas Pitsargiotis
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Panagiotis Siogkas
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Themistoklis Exarchos
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Pavlos Kafouris
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Antonis Sakelarios
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Riccardo Liga
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Aphrodite Tzifa
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Andreas Giannopoulos
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Arthur J H A Scholte
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Philipp A Kaufmann
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Oberdan Parodi
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Juhani Knuuti
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Dimitrios I Fotiadis
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Danilo Neglia
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Constantinos D Anagnostopoulos
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| |
Collapse
|
47
|
Sung JH, Chang JH. Mechanically Rotating Intravascular Ultrasound (IVUS) Transducer: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:3907. [PMID: 34198822 PMCID: PMC8201242 DOI: 10.3390/s21113907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022]
Abstract
Intravascular ultrasound (IVUS) is a valuable imaging modality for the diagnosis of atherosclerosis. It provides useful clinical information, such as lumen size, vessel wall thickness, and plaque composition, by providing a cross-sectional vascular image. For several decades, IVUS has made remarkable progress in improving the accuracy of diagnosing cardiovascular disease that remains the leading cause of death globally. As the quality of IVUS images mainly depends on the performance of the IVUS transducer, various IVUS transducers have been developed. Therefore, in this review, recently developed mechanically rotating IVUS transducers, especially ones exploiting piezoelectric ceramics or single crystals, are discussed. In addition, this review addresses the history and technical challenges in the development of IVUS transducers and the prospects of next-generation IVUS transducers.
Collapse
Affiliation(s)
| | - Jin-Ho Chang
- Department of Information and Communication Engineering, Deagu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
| |
Collapse
|
48
|
Blanco PJ, Bulant CA, Bezerra CG, Maso Talou GD, Pinton FA, Ziemer PGP, Feijóo RA, García-García HM, Lemos PA. Coronary arterial geometry: A comprehensive comparison of two imaging modalities. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3442. [PMID: 33522112 DOI: 10.1002/cnm.3442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/14/2020] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
The characterization of vascular geometry is a fundamental step towards the correct interpretation of coronary artery disease. In this work, we report a comprehensive comparison of the geometry featured by coronary vessels as obtained from coronary computed tomography angiography (CCTA) and the combination of intravascular ultrasound (IVUS) with bi-plane angiography (AX) modalities. We analyzed 34 vessels from 28 patients with coronary disease, which were deferred to CCTA and IVUS procedures. We discuss agreement and discrepancies between several geometric indexes extracted from vascular geometries. Such an analysis allows us to understand to which extent the coronary vascular geometry can be reliable in the interpretation of geometric risk factors, and as a surrogate to characterize coronary artery disease.
Collapse
Affiliation(s)
- Pablo J Blanco
- National Laboratory for Scientific Computing, Petrópolis, Brazil
- National Institute of Science and Technology in Medicine Assisted by Scientific Computing, Petrópolis, Brazil
| | - Carlos A Bulant
- National Institute of Science and Technology in Medicine Assisted by Scientific Computing, Petrópolis, Brazil
- National Scientific and Technical Research Council, CONICET and National University of the Center, Tandil, Argentina
| | - Cristiano G Bezerra
- Department of Interventional Cardiology, Heart Institute (InCor) and the University of São Paulo Medical School, São Paulo, Brazil
| | - Gonzalo D Maso Talou
- National Institute of Science and Technology in Medicine Assisted by Scientific Computing, Petrópolis, Brazil
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Fabio A Pinton
- Department of Interventional Cardiology, Heart Institute (InCor) and the University of São Paulo Medical School, São Paulo, Brazil
| | - Paulo G P Ziemer
- National Laboratory for Scientific Computing, Petrópolis, Brazil
- National Institute of Science and Technology in Medicine Assisted by Scientific Computing, Petrópolis, Brazil
| | - Raúl A Feijóo
- National Laboratory for Scientific Computing, Petrópolis, Brazil
- National Institute of Science and Technology in Medicine Assisted by Scientific Computing, Petrópolis, Brazil
| | - Héctor M García-García
- MedStar Washington Hospital Center - Interventional Cardiology department, Washington, DC, USA
- Georgetown University School of Medicine, Washington, DC, USA
| | - Pedro A Lemos
- National Institute of Science and Technology in Medicine Assisted by Scientific Computing, Petrópolis, Brazil
- Department of Interventional Cardiology, Heart Institute (InCor) and the University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
49
|
Suleiman S, Coughlan JJ, Touma G, Szirt R. Contemporary Management of Isolated Ostial Side Branch Disease: An Evidence-based Approach to Medina 001 Bifurcations. Interv Cardiol 2021; 16:e06. [PMID: 33897832 PMCID: PMC8054348 DOI: 10.15420/icr.2020.30] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
The optimal management of bifurcation lesions has received significant interest in recent years and remains a matter of debate among the interventional cardiology community. Bifurcation lesions are encountered in approximately 21% of percutaneous coronary intervention procedures and are associated with an increased risk of major adverse cardiac events. The Medina classification has been developed in an attempt to standardise the terminology when describing bifurcation lesions. The focus of this article is on the management of the Medina 0,0,1 lesion (‘Medina 001’), an uncommon lesion encountered in <5% of all bifurcations. Technical considerations, management options and interventional techniques relating to the Medina 001 lesion are discussed. In addition, current published data supporting the various proposed interventional treatment strategies are examined in an attempt to delineate an evidence-based approach to this uncommon lesion.
Collapse
Affiliation(s)
- Suleiman Suleiman
- Department of Cardiology, Tallaght University Hospital Dublin, Ireland
| | | | | | | |
Collapse
|
50
|
Mo FE. Shear-Regulated Extracellular Microenvironments and Endothelial Cell Surface Integrin Receptors Intertwine in Atherosclerosis. Front Cell Dev Biol 2021; 9:640781. [PMID: 33889574 PMCID: PMC8056009 DOI: 10.3389/fcell.2021.640781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/18/2021] [Indexed: 01/22/2023] Open
Abstract
Mechanical forces imposed by blood flow shear stress directly modulate endothelial gene expression and functional phenotype. The production of extracellular matrix proteins and corresponding cell-surface integrin receptors in arterial endothelial cells is intricately regulated by blood flow patterns. Laminar blood flow promotes mature and atheroresistant endothelial phenotype, while disturbed flow induces dysfunctional and atheroprone endothelial responses. Here, we discuss how hemodynamic changes orchestrate the remodeling of extracellular microenvironments and the expression profile of the integrin receptors in endothelial cells leading to oxidative stress and inflammation. Targeting the interaction between matrix proteins and their corresponding integrins is a potential therapeutic approach for atherosclerosis.
Collapse
Affiliation(s)
- Fan-E Mo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|