1
|
McKeague S, Tam C. Prognostic factors in chronic lymphocytic leukaemia - the old, the new and the future. Leuk Lymphoma 2025; 66:847-857. [PMID: 39773307 DOI: 10.1080/10428194.2024.2449214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/19/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
Prognostic assessment in chronic lymphocytic leukemia (CLL) is essential for delivery of timely, personalized therapy. TP53 status, karyotype, IGHV mutational status, minimal residual disease (MRD), gene mutations and markers of cell proliferation were important prognostic tools in the era of chemo-immunotherapy (CIT). With BCL2 inhibitors (BCL2i), outcome is still impacted by IGHV status, TP53 status, complex karyotype, and achievement of undetectable MRD. On the other hand, BTK inhibitors (BTKi) are agnostic to IGHV status, rarely cause MRD negative remissions and are less clearly impacted by TP53 status. Although based on less mature data, outcomes with BCL2i/BTKi combinations are likely influenced by TP53 and IGHV status. Responses to non-covalent BTKI (ncBTKI) are impacted by the mechanism of resistance to previous covalent BTKi. Finally, responses to chimeric antigen receptor T cell therapy (CAR-T) appear independent of TP53 status, but dependent on overall T- cell fitness.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Prognosis
- Biomarkers, Tumor/genetics
- Mutation
- Protein Kinase Inhibitors/therapeutic use
- Tumor Suppressor Protein p53/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Immunotherapy, Adoptive
- Neoplasm, Residual
Collapse
Affiliation(s)
- Sean McKeague
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Constantine Tam
- Lymphoma Service - The Alfred Hospital, Melbourne, Victoria, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Kanagal-Shamanna R, Puiggros A, Granada I, Raca G, Rack K, Mallo M, Dewaele B, Smith AC, Akkari Y, Levy B, Hasserjian RP, Cisneros A, Salido M, Garcia-Manero G, Yang H, Iqbal MA, Kolhe R, Solé F, Espinet B. Integration of Optical Genome Mapping in the Cytogenomic and Molecular Work-Up of Hematological Malignancies: Expert Recommendations From the International Consortium for Optical Genome Mapping. Am J Hematol 2025. [PMID: 40304265 DOI: 10.1002/ajh.27688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 05/02/2025]
Abstract
The latest updates to the classification of hematolymphoid malignancies using the World Health Organization (WHO, 5th ed.) and ICC (International Consensus Classification) criteria highlight the critical need for comprehensive and precise cytogenomic data for diagnosis, prognostication, and treatment. This presents significant challenges for clinical laboratories, requiring a complex workflow using multiple assays to detect different types of structural chromosomal variants (copy number changes, fusions, inversions) across the entire genome. Optical genome mapping (OGM) is an advanced cytogenomic tool for genome-wide detection of structural chromosomal alterations at the gene/exon level. Studies demonstrate that OGM facilitates the identification of novel cytogenomic biomarkers, improves risk stratification, and expands therapeutic targets and personalized treatment strategies. OGM is easy to implement and highly accurate in detecting structural variants (SVs) across various diagnostic entities. Consequently, many centers are integrating OGM into the clinical cytogenetic workflow for hematological malignancies. However, systemic clinical adoption has remained limited due to the lack of expert recommendations on clinical indications, testing algorithms, and result interpretation. To address this, experts from the International Consortium for OGM and relevant multidisciplinary fields developed recommendations for the integration of OGM as a standard-of-care cytogenetic assay for the diagnostic workflow in various clinical settings. These recommendations standardize the use of OGM across laboratories, ensure high-quality cytogenetic data, guide clinical trial design and development, and provide a basis for updates to diagnostic and classification models.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anna Puiggros
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Isabel Granada
- Hematology Department, Hospital Germans Trias i Pujol, Institut Català D'oncologia, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Katrina Rack
- Laboratory for the Cytogenetic and Molecular Diagnosis of Haematological Malignancies, Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Mar Mallo
- MDS Research Group, Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Barbara Dewaele
- Laboratory for the Cytogenetic and Molecular Diagnosis of Haematological Malignancies, Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Adam C Smith
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Advanced Diagnostics Platform, Department of Laboratory Medicine and Molecular Diagnostics, Precision Diagnostics and Therapeutics Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Yassmine Akkari
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Adela Cisneros
- Hematology Department, Hospital Germans Trias i Pujol, Institut Català D'oncologia, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Marta Salido
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Guillermo Garcia-Manero
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hui Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - M Anwar Iqbal
- DNA Microarray CGH Laboratory, URMC Central Laboratory, University of Rochester Medical Center, West Henrietta, New York, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Francesc Solé
- MDS Research Group, Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
3
|
Kamaso J, García-Serra R, Munné M, Rodríguez-Rivera M, Melero C, Ramos-Campoy S, Salido M, Lorenzo M, Gimeno E, Gibert J, Vandenberghe P, Rack K, Puiggros A, Dewaele B, Espinet B. Integrating Optical Genome Mapping With TP53 FISH: A Synergistic Approach for Cytogenomic Analysis in Chronic Lymphocytic Leukemia. Am J Hematol 2025. [PMID: 40277095 DOI: 10.1002/ajh.27690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Affiliation(s)
- Joanna Kamaso
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Genetics, Microbiology and Statistics Department, University of Barcelona, Barcelona, Spain
| | - Rocío García-Serra
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
- Department of Hematology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
- Research Foundation From Hospital General Universitario de Valencia, Valencia, Spain
| | - Marina Munné
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - María Rodríguez-Rivera
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Carme Melero
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Sílvia Ramos-Campoy
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Marta Salido
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Marta Lorenzo
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Eva Gimeno
- Department of Hematology, Hospital del Mar, Barcelona, Spain
| | - Joan Gibert
- Laboratory of Molecular Diagnostics, Pathology Department and Group of Applied Clinical Research in Hematology, Hospital del Mar Research Institute, Barcelona, Spain
| | | | - Katrina Rack
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Anna Puiggros
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Barbara Dewaele
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
4
|
Yang S, Li H, Yao J, Liu E, Tian X, Hou X, Chen L, Lin Y. The t(18;22)/IGL::BCL2 translocation defines a unique CLL subtype: association with early treatment initiation. J Hematop 2025; 18:20. [PMID: 40240735 DOI: 10.1007/s12308-025-00634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
The most prevalent BCL2 fusion in B-cell lymphoma involves the IGH gene, attributable to the t(14;18)(q32;q21) translocation; this chromosomal abnormality is predominantly observed in follicular lymphoma (FL) and serves as one of its diagnostic hallmarks. In contrast, the fusion of BCL2 with IGL via the t(18;22)(q21;q11) translocation occurs less frequently. To investigate the clinicopathological characteristics associated with t(18;22)/IGL::BCL2, we conducted an analysis of five cases of B-cell lymphoma exhibiting the t(18;22) translocation. These patients underwent comprehensive diagnostic assessments, including pathological examination, flow cytometry, karyotyping, fluorescence in situ hybridization (FISH) testing, and genome-wide mutation analysis. Simultaneously, we conducted a literature review. All five patients in the study were male and diagnosed with chronic lymphocytic leukemia (CLL). Two patients exhibited an isolated t(18;22) chromosomal abnormality, while the remaining three presented with an additional +12 abnormality. Genetic rearrangements involving BCL2 and IGL were observed in all patients. Immunophenotypic analysis revealed no significant differences between classical CLL and cases with the t(18;22)/IGL::BCL2 translocation. Genetic testing conducted on three patients confirmed the presence of IGHV mutations. Of the three patients for whom treatment information was available, one demonstrated treatment indications at the initial diagnosis, one demonstrated treatment indications 14 months later, both of them did not respond to the Bruton's tyrosine kinase (BTK) inhibitor, and another one did not meet criteria for treatment. A comprehensive literature review identified 51 cases of the t(18;22)(q21;q11) translocation, primarily associated with CLL diagnoses. Detailed clinical trajectories were available for seven patients, among whom four required treatments at initial diagnosis, and two exhibited resistance to BTK inhibitors. Based on our case series and literature review, these cases appeared to have shorter time to first treatment (TTFT); however, more studies are needed. The t(18;22) chromosomal translocation, resulting in IGL::BCL2 fusion, is an infrequent occurrence predominantly observed in cases of CLL. This genetic anomaly frequently coexists with trisomy 12. Preliminary data suggest that these cases may have a shorter TTFT, though larger cohorts are needed for validation.
Collapse
MESH Headings
- Humans
- Translocation, Genetic
- Male
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Proto-Oncogene Proteins c-bcl-2/genetics
- Middle Aged
- Aged
- Chromosomes, Human, Pair 22/genetics
Collapse
Affiliation(s)
- Shaobin Yang
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-Aided Hematopathology Diagnosis, Tianjin, China.
| | - Huilan Li
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-Aided Hematopathology Diagnosis, Tianjin, China
| | - Jingya Yao
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-Aided Hematopathology Diagnosis, Tianjin, China
| | - Enbin Liu
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-Aided Hematopathology Diagnosis, Tianjin, China
| | - Xin Tian
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-Aided Hematopathology Diagnosis, Tianjin, China
| | - Xiaoju Hou
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-Aided Hematopathology Diagnosis, Tianjin, China
| | - Long Chen
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-Aided Hematopathology Diagnosis, Tianjin, China
| | - Yani Lin
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-Aided Hematopathology Diagnosis, Tianjin, China.
| |
Collapse
|
5
|
Barton N, Joy C, Cheah AL, Bonar F, Maclean F, Harraway J, Vargas AC. Single-nucleotide polymorphism (SNP) microarray as an ancillary tool in the classification of bone tumours. Pathology 2025:S0031-3025(25)00128-X. [PMID: 40318962 DOI: 10.1016/j.pathol.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 05/07/2025]
Affiliation(s)
- Narelle Barton
- Department of Cytogenetics, Sullivan Nicolaides Pathology, Brisbane, Qld, Australia
| | - Christopher Joy
- Department of Cytogenetics, Sullivan Nicolaides Pathology, Brisbane, Qld, Australia
| | - Alison L Cheah
- Department of Anatomical Pathology, Sonic Healthcare - Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia
| | - Fiona Bonar
- Department of Anatomical Pathology, Sonic Healthcare - Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia
| | - Fiona Maclean
- Department of Anatomical Pathology, Sonic Healthcare - Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia; Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - James Harraway
- Department of Cytogenetics, Sullivan Nicolaides Pathology, Brisbane, Qld, Australia
| | - A Cristina Vargas
- Department of Anatomical Pathology, Sonic Healthcare - Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Medina Á, Muntañola A, Crespo M, Ramírez Á, Hernández-Rivas JÁ, Abrisqueta P, Alcoceba M, Delgado J, de la Serna J, Espinet B, González M, Loscertales J, Serrano A, Terol MJ, Yáñez L, Bosch F. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia and small lymphocytic lymphoma from Chronic Lymphocytic Leukemia Spanish Group (GELLC). Med Clin (Barc) 2025; 164:305-305.e17. [PMID: 39799061 DOI: 10.1016/j.medcli.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 01/15/2025]
Abstract
INTRODUCTION Chronic lymphocytic leukemia (CLL) is the most common form of leukemia in adults in Western countries, with a median age at diagnosis of 72 years. This guide, developed by the Spanish Group for Chronic Lymphocytic Leukemia (GELLC), addresses the most relevant aspects of CLL, with the objectives of facilitating and aiding the diagnostic process, establishing therapeutic recommendations for choosing the best treatment for each type of patient, as well as standardizing the management of CLL and ensuring equity across different hospitals in terms of the use of the various available treatment regimens. METHODOLOGY The references obtained were classified according to the level of evidence and following the criteria established by the Agency for Health Research and Quality, and the recommendations were classified according to the criteria of the National Comprehensive Cancer Network (NCCN). DIAGNOSIS The diagnosis of CLL requires the presence of 5 × 109/l clonal B lymphocytes with the characteristic phenotype (CD19, CD5, CD20, CD23, and kappa or lambda chain restriction) demonstrated by flow cytometry in peripheral blood and maintained for at least 3 months. The presence of cytopenia caused by a typical bone marrow infiltrate establishes the diagnosis of CLL, regardless of the number of circulating lymphocytes or existing lymph node involvement. CLL and small lymphocytic lymphoma (SLL) are the same disease with different presentations, so they should be treated the same way. Current international guidelines recommend FISH with the 4 probes as a mandatory test in clinical practice to guide the prognosis of patients. They also recommend determining the mutational status of the immunoglobulin heavy chain variable region (IGHV) before the first treatment and detecting TP53 mutations before the first and subsequent relapses. TREATMENT Treatment should be initiated in symptomatic patients with criteria for active disease according to iwCLL. The first aspect to highlight is the prioritization of targeted therapies over immunochemotherapy. In first-line treatment, for patients with del(17p) and/or TP53 mutation, the best therapeutic option is a second-generation covalent Bruton's tyrosine kinase inhibitor (BTKi) administered indefinitely, while in cases without del(17p) or TP53 mutation with mutated IGHV, time-limited therapy with a combination including a BCL2 inhibitor (BCL2i) should be considered as the first therapeutic option. For patients with unmutated IGHV, both continuous BTKi and finite therapy with BCL2i are valid options that should be individually evaluated considering potential toxicities, drug interactions, patient preference, and logistical aspects. In very frail patients, supportive treatment should be considered. In relapse/refractory patients, prior treatment, the biological risk of CLL, the duration of response (if prior finite treatment), or the reason for stopping BTKi (if prior continuous treatment) should be considered.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Spain
- Aged
Collapse
Affiliation(s)
- Ángeles Medina
- Servicio de Hematología, Hospital Costa del Sol, Marbella, Málaga, España
| | - Ana Muntañola
- Servicio de Hematología, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - Marta Crespo
- Servicio de Hematología, Hospital Universitario Vall d'Hebron, Barcelona, España
| | - Ángel Ramírez
- Servicio de Hematología, Hospital Universitario Central de Asturias, Oviedo, Asturias, España.
| | | | - Pau Abrisqueta
- Servicio de Hematología, Hospital Universitario Vall d'Hebron, Barcelona, España
| | - Miguel Alcoceba
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, España
| | - Julio Delgado
- Servicio de Hematología, Hospital Clínic, Barcelona, España
| | - Javier de la Serna
- Servicio de Hematología, Hospital Universitario 12 de Octubre, Madrid, España
| | - Blanca Espinet
- Servicio de Anatomía Patológica, Hospital del Mar, Barcelona, España
| | - Marcos González
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, España
| | - Javier Loscertales
- Servicio de Hematología, Hospital Universitario La Princesa, Madrid, España
| | - Alicia Serrano
- Servicio de Hematología, Hospital Clínico Universitario de Valencia, Valencia, España
| | - María José Terol
- Servicio de Hematología, Hospital Clínico Universitario de Valencia, Valencia, España
| | - Lucrecia Yáñez
- Servicio de Hematología, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, España
| | - Francesc Bosch
- Servicio de Hematología, Hospital Universitario Vall d'Hebron, Barcelona, España
| |
Collapse
|
7
|
Sachanas S, Vassilakopoulos T, Angelopoulou M, Papageorgiou S, Spanoudakis E, Bouzani M, Dimou M, Panagiotidis P. Greek Consensus on Chronic Lymphocytic Leukemia (CLL) Treatment. Mediterr J Hematol Infect Dis 2025; 17:e2025014. [PMID: 40084092 PMCID: PMC11906138 DOI: 10.4084/mjhid.2025.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
Background: New targeted therapies have revolutionized the treatment landscape in CLL. Biological features, patient characteristics and preferences and the safety profile of each treatment option should be taken into consideration for making the optimal treatment choice. This consensus practice statement on CLL treatment was developed by a group of Greek experts in CLL based on the available evidence for both first-line treatment and the relapsed/refractory setting.
Collapse
Affiliation(s)
- Sotirios Sachanas
- Department of Hematology, Athens Medical Center, Psychikon Branch, Athens, Greece
| | - Theodoros Vassilakopoulos
- Department of Haematology and Bone Marrow Transplantation, Laikon General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Maria Angelopoulou
- Department of Haematology and Bone Marrow Transplantation, Laikon General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Sotirios Papageorgiou
- Second Department of Internal Medicine, Propaedeutic, Hematology Unit, University General Hospital «Attikon», National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria Bouzani
- Department of Hematology and Lymphoma, Evangelismos General Hospital, Athens, Greece
| | - Maria Dimou
- Department of Haematology and Bone Marrow Transplantation, Laikon General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Panagiotis Panagiotidis
- Department of Haematology and Bone Marrow Transplantation, Laikon General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
8
|
Xia C, Liu G, Liu J, Ronaghy A, Tadros S, Wang W, Fang H, Zhang S, Khoury JD, Tang Z. The Heterogeneity of 13q Deletions in Chronic Lymphocytic Leukemia: Diagnostic Challenges and Clinical Implications. Genes (Basel) 2025; 16:252. [PMID: 40149404 PMCID: PMC11941828 DOI: 10.3390/genes16030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common type of adult leukemia, particularly in Western countries. CLL can present indolently or aggressively, influenced by various factors, including chromosomal alterations. Fluorescent in situ hybridization (FISH), targeting specific genes/loci frequently affected in CLL patients, has established a standard for stratifying five CLL prognostic groups: del(11q)/ATM, trisomy 12, del(13q) as a sole aberration, del(17p)/TP53, and normal CLL FISH panel results. Among these, del(13q) as a sole aberration is associated with a favorable prognosis, while the others are considered intermediate (normal CLL FISH panel result and trisomy 12) or unfavorable (del(11q)/ATM and del(17p)/TP53) prognostic markers. However, significant heterogeneity in del(13q) aberrations has been observed among CLL patients with isolated del(13q), which should be considered when predicting prognosis and planning clinical management for individual CLL patients with this aberration. This review discusses the variations in del(13q) aberrations in CLL, including a minimally deleted region (MDR), the anatomic sizes of deleted 13q regions, affected alleles, the clone sizes of del(13q), and their dynamic changes during disease progression. The impact of del(13q) heterogeneity on various diagnostic tests such as karyotyping, the FISH panel, chromosomal microarray (CMA), and optical genome mapping (OGM), prognostic prediction, and clinical management is illustrated through authentic clinical scenarios.
Collapse
Affiliation(s)
- Changqing Xia
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Guang Liu
- Sonora Quest Laboratories, Department of Pathology, University of Arizona College of Medicine, Phoenix, AZ 85034, USA
| | - Jinglan Liu
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Arash Ronaghy
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Saber Tadros
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77015, USA
| | - Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77015, USA
| | - Shanxiang Zhang
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joseph D. Khoury
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhenya Tang
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Selçuk NA, Beydağı G, Akçay K, Demirci E, Görmez A, Öven BB, Çelik S, Şen F, Kapar Ö, Kabasakal L. Impact of 68Ga-FAPi PET/CT on Staging or Restaging Digestive System Tumors in Patients with Negative or Equivocal 18F-FDG PET/CT Findings. Mol Imaging Radionucl Ther 2025; 34:31-37. [PMID: 39918005 PMCID: PMC11827526 DOI: 10.4274/mirt.galenos.2024.50470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/23/2024] [Indexed: 02/16/2025] Open
Abstract
Objectives This study aimed to evaluate the potential efficacy of 68Ga-fibroblast activation protein inhibitor (FAPi) positron emission tomography/computed tomography (PET/CT) for detecting, staging, and restaging digestive system malignancies that are 18F-fluorodeoxyglucose (18F-FDG) negative or show equivocal 18F-FDG uptake. Methods We conducted a prospective analysis of 30 patients with pathologically confirmed primary tumors or metastases of the digestive system. Participants underwent 68Ga-FAPi PET/CT and 18F-FDG PET/CT imaging for staging or restaging purposes within the same week. The efficacy of 68Ga-FAPi PET/CT was assessed by comparing its ability to detect lesions and influence disease staging with that of 18F-FDG PET/CT. Results 68Ga-FAPi PET/CT imaging was performed in 30 patients with 18F-FDG-negative or indeterminate lesions. Of the 30 patients, 23 had gastric cancer and 7 had colorectal cancer. Among all patients, histopathological diagnosis of signet ring cell carcinoma was present in 15 (50%) patients. Primary tumor or local recurrence was detected in 19 (63%) patients, lymph node metastasis in 8 (27%) patients, visceral metastasis in 4 (13%) patients, peritoneal metastasis in 14 (47%) patients, and bone metastasis in 3 (10%) patients on 68Ga-FAPi PET/CT images. All patients underwent histopathological confirmation on 68Ga-FAPi PET/CT images. The disease stage was upgraded in 20 patients (67%) after 68Ga-FAPi PET/CT imaging. Of the 20 patients, 12 had no evidence of recurrence or metastasis on 18F-FDG PET/CT. Conclusion Based on our study, 68Ga-FAPi PET/CT alters the disease stage in the majority of gastrointestinal malignancies with negative or equivocal 18F-FDG PET/CT findings. 68Ga-FAPi PET/CT appears to be effective in both staging and restaging of gastrointestinal malignancies, such as signet-ring cell carcinomas of the stomach that frequently show low 18F-FDG -avidity.
Collapse
Affiliation(s)
- Nalan Alan Selçuk
- Yeditepe University Faculty of Medicine, Department of Nuclear Medicine, İstanbul, Türkiye
| | - Gamze Beydağı
- Yeditepe University Faculty of Medicine, Department of Nuclear Medicine, İstanbul, Türkiye
| | - Kaan Akçay
- Yeditepe University Faculty of Medicine, Department of Nuclear Medicine, İstanbul, Türkiye
| | - Emre Demirci
- University of Missouri Faculty of Medicine, Department of Radiology, Missouri, USA
| | - Ayşegül Görmez
- Yeditepe University Faculty of Medicine, Department of Radiology İstanbul, Türkiye
| | - Bala Başak Öven
- Yeditepe University Faculty of Medicine, Department of Medical Oncology, İstanbul, Türkiye
| | - Serkan Çelik
- Yeditepe University Faculty of Medicine, Department of Medical Oncology, İstanbul, Türkiye
| | - Fatma Şen
- Avrasya Hospital, Clinic of Medical Oncology, İstanbul, Türkiye
| | - Özge Kapar
- Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Clinic of Pathology, İstanbul, Türkiye
| | - Levent Kabasakal
- İstanbul University-Cerrahpasa, Department of Nuclear Medicine, İstanbul, Türkiye
| |
Collapse
|
10
|
Assmann JLJC, Van Opstal D, Diderich KEM, Larmonie N, Sandberg Y. Noninvasive prenatal testing in CLL during pregnancy: A cautionary tale. EJHAEM 2025; 6:e1067. [PMID: 39866925 PMCID: PMC11756964 DOI: 10.1002/jha2.1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/18/2024] [Indexed: 01/28/2025]
Affiliation(s)
| | - Diane Van Opstal
- Department of Clinical GeneticsErasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | - Karin E. M. Diderich
- Department of Clinical GeneticsErasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | - Nicole Larmonie
- Department of HematologyErasmus MC Cancer InstituteUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Yorick Sandberg
- Department of Internal MedicineMaasstad HospitalRotterdamThe Netherlands
| |
Collapse
|
11
|
Molica S. Integrating pre- and post-treatment biomarkers into prognostic models for chronic lymphocytic leukemia to enhance predictive performance. Expert Rev Mol Diagn 2024:1-4. [PMID: 39641767 DOI: 10.1080/14737159.2024.2438991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Stefano Molica
- Department of Hematology, Hull University Teaching Hospitals NHS Trust, Hull, UK
| |
Collapse
|
12
|
Hunter S, Ryland G, Pang JM, Ninkovic S, Dun K, Seymour JF, Blombery P. Chronic lymphocytic leukemia with MDM2 amplification as an alternative pathway to TP53 dysfunction. Leuk Lymphoma 2024; 65:2215-2218. [PMID: 39230950 DOI: 10.1080/10428194.2024.2398659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Affiliation(s)
- Sally Hunter
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Georgina Ryland
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Jia-Min Pang
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Slavisa Ninkovic
- Victorian Cancer Cytogenetics Service, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Karen Dun
- Victorian Cancer Cytogenetics Service, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- Department of Haematology, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - John F Seymour
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Naresh KN. Understanding splenic B-cell lymphoma/leukaemia with prominent nucleoli: Diagnosis, underpinnings for disease classification and future directions. Br J Haematol 2024; 205:2142-2152. [PMID: 39253895 DOI: 10.1111/bjh.19754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024]
Abstract
The 5th edition of the WHO classification of haematolymphoid tumours (WHO-HAEM5) introduced a new category, splenic B-cell lymphoma/leukaemia with prominent nucleoli (SBLPN). The diagnostic entity B-cell prolymphocytic leukaemia (B-PLL) has been discontinued and the category of hairy cell leukaemia variant (HCLv) has been conceptually reframed. B-PLL and HCLv diagnoses were uncommon. Overlap existed between B-PLL and other indolent lymphomas like chronic lymphocytic leukaemia/small lymphocytic lymphoma (CLL/SLL). HCLv lacked consistent cytomorphological, immunophenotypic and genetic features. To address these issues, the WHO-HAEM5 classification has introduced SBLPN to serve as a temporary holding ground for entities that do not neatly fit into the existing classification. Cases previously classified as CD5-negative B-PLL and HCLv fall under the SBLPN category. Some splenic marginal zone lymphoma and splenic diffuse red pulp small B-cell lymphoma cases with higher number of medium or large nucleolated B cells would also be classified as SBLPN under the WHO-HAEM5. This review explores the rationale for discontinuing B-PLL and HCLv diagnoses. It then examines the concept of SBLPN, offers practical guidance for diagnosis and discusses future directions in classifying splenic B-cell lymphomas.
Collapse
MESH Headings
- Humans
- Leukemia, Hairy Cell/diagnosis
- Leukemia, Hairy Cell/pathology
- Leukemia, Hairy Cell/classification
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/classification
- Leukemia, Prolymphocytic, B-Cell/diagnosis
- Leukemia, Prolymphocytic, B-Cell/pathology
- Lymphoma, B-Cell/diagnosis
- Lymphoma, B-Cell/classification
- Lymphoma, B-Cell/pathology
- Splenic Neoplasms/diagnosis
- Splenic Neoplasms/pathology
- Splenic Neoplasms/classification
Collapse
Affiliation(s)
- Kikkeri N Naresh
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
Pula AE, Robak T. The discovery of the RCC1::IRF4 Fusion in CLL patients with t(1;6)(p35.3;p25.2) chromosomal translocation. Br J Haematol 2024; 205:2125-2127. [PMID: 39410709 DOI: 10.1111/bjh.19821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 12/14/2024]
Abstract
Jayne et al. provide a molecular characterization of the t(1;6)(p35.3;p25.2) chromosomal translocation in patients with chronic lymphocytic leukaemia. They indicate that this translocation involves the gene encoding interferon regulatory factor 4 (IRF4) on chromosome 6p25.2 with the regulator of chromosome condensation 1 (RCC1) gene on chromosome 1p35.3. This translocations may have important prognostic value. Commentary on: Jayne et al. The chromosomal translocation t(1;6)(p35.3;p25.2), recurrent in chronic lymphocytic leukaemia leads to RCC1::IRF4 fusion. Br J Haematol 2024; 205:2321-2326.
Collapse
Affiliation(s)
- Anna E Pula
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, USA
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
15
|
Varghese AM, Munir T. SOHO State of the Art Updates and Next Questions | Impact of Biologic Markers on Outcomes With Novel Therapy in Chronic Lymphocytic Leukaemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024:S2152-2650(24)02400-5. [PMID: 39674706 DOI: 10.1016/j.clml.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 12/16/2024]
Abstract
Treatment of CLL has changed remarkably in the last decade and novel agents are the standard therapy in various jurisdictions. However, the biology of CLL still plays an important part in the treatment choice and disease outcomes. In this post chemo-immunotherapy era for CLL, number of biological factors have lost their clinical significance and most patients will benefit from continuous or time-limited therapy. However, TP53 and IGHV mutation status still retains clinical significance in determining outcomes with various therapeutic approaches. New emerging biological markers including drug-specific mutations are adding to the complexity of decision making in relapsed CLL. End of treatment minimal residual disease analysis (MRD) adds prognostic information to the outcomes with time-limited therapy. MRD-guided duration of treatment may improve further outcomes, but longer clinical follow-up is needed before this approach is incorporated in clinical guidelines. The review gives an update on the impact of biological markers on outcomes with novel agents.
Collapse
|
16
|
Miyamoto K, Ohmoto A, Yoneoka D, Rahman MO, Ota E. First-line therapy for high-risk people with chronic lymphocytic leukemia: a network meta-analysis. Cochrane Database Syst Rev 2024; 10:CD015169. [PMID: 39474946 PMCID: PMC11523224 DOI: 10.1002/14651858.cd015169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
OBJECTIVES This is a protocol for a Cochrane Review (intervention). The objectives are as follows: Primary objective: to assess the benefits and harms of currently recommended regimens as the first-line therapy in high-risk people with chronic lymphocytic leukemia, using network meta-analysis Secondary objectives: to assess whether the benefits and harms of the recommended regimens differ according to sex, Rai stage, or genetic mutation status to estimate the ranking of treatments for overall survival, progression-free survival, objective response rate, complete response rate, minimal residual disease, and serious adverse events to estimate the overall rate of adverse events and serious adverse events.
Collapse
MESH Headings
- Female
- Humans
- Male
- Adenine/analogs & derivatives
- Adenine/therapeutic use
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Neoplasm, Residual
- Randomized Controlled Trials as Topic
Collapse
Affiliation(s)
- Kenichi Miyamoto
- Department of Health Policy and Informatics, Graduate School of Medicine, Institute of Science Tokyo, Tokyo, Japan
| | - Akihiro Ohmoto
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Daisuke Yoneoka
- Division of Biostatistics and Bioinformatics, Graduate School of Public Health, St. Luke's International University, Tokyo, Japan
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Md Obaidur Rahman
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Global Health Nursing, Graduate School of Nursing Science, St. Luke's International University, Tokyo, Japan
- Center for Evidence-Based Medicine and Clinical Research, Dhaka, Bangladesh
| | - Erika Ota
- Department of Global Health Nursing, Graduate School of Nursing Science, St. Luke's International University, Tokyo, Japan
| |
Collapse
|
17
|
Huang YJ, Lim JQ, Hsu JS, Kuo MC, Wang PN, Kao HW, Wu JH, Chen CC, Tsai SF, Ong CK, Shih LY. Next-Generation Integrated Sequencing Identifies Poor Prognostic Factors in Patients with MYD88-Mutated Chronic Lymphocytic Leukemia in Taiwan. Pathobiology 2024; 92:77-89. [PMID: 39357512 PMCID: PMC11965870 DOI: 10.1159/000541709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in the Western countries and is very rare in Asia. METHODS Peripheral blood or bone marrow mononuclear cells obtained at initial diagnosis from 215 patients with CLL were analyzed by using next-generation sequencing to investigate the ethnic differences in genetic abnormalities. RESULTS Whole-genome sequencing and whole-exome sequencing analyses on 30 cases showed that 9 genes, including IGLL5, MYD88, TCHH, DSCAM, AXDND1, BICRA, KMT2D, MYT1L, and RBM43, were more frequently mutated in our Taiwanese cohort compared with those of the Western cohorts. IGLL5, MYD88, and KMT2D genes were further analyzed by targeted sequencing in another 185 CLL patients, unraveling frequencies of 29.3%, 20.9%, and 15.0%, respectively. The most frequent positional mutation of MYD88 was V217F (26/45, 57.8%), followed by L265P (9/45, 20.0%). MYD88 mutations were significantly associated with IGLL5 mutations (p = 0.0004), mutated IGHV (p < 0.0001) and 13q deletion (p = 0.0164). CLL patients with co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations were associated with a significantly inferior survival compared to those with MYD88 mutation alone (not reached vs. 131.8 months, p = 0.007). In multivariate analysis, MYD88 mutation without KMT2D or IGLL5 mutations was an independently favorable predictor. CONCLUSIONS IGLL5, MYD88, and KMT2D mutations were enriched in Taiwanese CLL, and co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations was associated with a poorer prognosis. INTRODUCTION Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in the Western countries and is very rare in Asia. METHODS Peripheral blood or bone marrow mononuclear cells obtained at initial diagnosis from 215 patients with CLL were analyzed by using next-generation sequencing to investigate the ethnic differences in genetic abnormalities. RESULTS Whole-genome sequencing and whole-exome sequencing analyses on 30 cases showed that 9 genes, including IGLL5, MYD88, TCHH, DSCAM, AXDND1, BICRA, KMT2D, MYT1L, and RBM43, were more frequently mutated in our Taiwanese cohort compared with those of the Western cohorts. IGLL5, MYD88, and KMT2D genes were further analyzed by targeted sequencing in another 185 CLL patients, unraveling frequencies of 29.3%, 20.9%, and 15.0%, respectively. The most frequent positional mutation of MYD88 was V217F (26/45, 57.8%), followed by L265P (9/45, 20.0%). MYD88 mutations were significantly associated with IGLL5 mutations (p = 0.0004), mutated IGHV (p < 0.0001) and 13q deletion (p = 0.0164). CLL patients with co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations were associated with a significantly inferior survival compared to those with MYD88 mutation alone (not reached vs. 131.8 months, p = 0.007). In multivariate analysis, MYD88 mutation without KMT2D or IGLL5 mutations was an independently favorable predictor. CONCLUSIONS IGLL5, MYD88, and KMT2D mutations were enriched in Taiwanese CLL, and co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations was associated with a poorer prognosis.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Myeloid Differentiation Factor 88/genetics
- Taiwan
- Female
- Male
- Prognosis
- Mutation
- Middle Aged
- Aged
- High-Throughput Nucleotide Sequencing
- Adult
- Aged, 80 and over
Collapse
Affiliation(s)
- Ying-Jung Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- ONCO-ACP, Duke-NUS Medical School, Singapore, Singapore
| | - Jacob Shujui Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Nan Wang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsiao-Wen Kao
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jin-Hou Wu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chiu-Chen Chen
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Feng Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
18
|
Woyach JA, Jones D, Jurczak W, Robak T, Illés Á, Kater AP, Ghia P, Byrd JC, Seymour JF, Long S, Mohamed N, Benrashid S, Lai TH, De Jesus G, Lai R, de Bruin G, Rule S, Munugalavadla V. Mutational profile in previously treated patients with chronic lymphocytic leukemia progression on acalabrutinib or ibrutinib. Blood 2024; 144:1061-1068. [PMID: 38754046 PMCID: PMC11406168 DOI: 10.1182/blood.2023023659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
ABSTRACT Chronic lymphocytic leukemia (CLL) progression during Bruton tyrosine kinase (BTK) inhibitor treatment is typically characterized by emergent B-cell receptor pathway mutations. Using peripheral blood samples from patients with relapsed/refractory CLL in ELEVATE-RR (NCT02477696; median 2 prior therapies), we report clonal evolution data for patients progressing on acalabrutinib or ibrutinib (median follow-up, 41 months). Paired (baseline and progression) samples were available for 47 (excluding 1 Richter) acalabrutinib-treated and 30 (excluding 6 Richter) ibrutinib-treated patients. At progression, emergent BTK mutations were observed in 31 acalabrutinib-treated (66%) and 11 ibrutinib-treated patients (37%; median variant allele fraction [VAF], 16.1% vs 15.6%, respectively). BTK C481S mutations were most common in both groups; T474I (n = 9; 8 co-occurring with C481) and the novel E41V mutation within the pleckstrin homology domain of BTK (n = 1) occurred with acalabrutinib, whereas neither mutation occurred with ibrutinib. L528W and A428D comutations presented in 1 ibrutinib-treated patient. Preexisting TP53 mutations were present in 25 acalabrutinib-treated (53.2%) and 16 ibrutinib-treated patients (53.3%) at screening. Emergent TP53 mutations occurred with acalabrutinib and ibrutinib (13% vs 7%; median VAF, 6.0% vs 37.3%, respectively). Six acalabrutinib-treated patients and 1 ibrutinib-treated patient had emergent TP53/BTK comutations. Emergent PLCG2 mutations occurred in 3 acalabrutinib-treated (6%) and 6 ibrutinib-treated patients (20%). One acalabrutinib-treated patient and 4 ibrutinib-treated patients had emergent BTK/PLCG2 comutations. Although common BTK C481 mutations were observed with both treatments, patterns of mutation and comutation frequency, mutation VAF, and uncommon BTK variants varied with acalabrutinib (T474I and E41V) and ibrutinib (L528W and A428D) in this patient population. The trial was registered at www.clinicaltrials.gov as #NCT02477696.
Collapse
Affiliation(s)
| | - Daniel Jones
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Wojciech Jurczak
- Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland
| | - Tadeusz Robak
- Medical University of Lodz, and Copernicus Memorial Hospital, Lodz, Poland
| | - Árpád Illés
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Arnon P. Kater
- Amsterdam University Medical Centers, Cancer Center Amsterdam, University of Amsterdam, on behalf of HOVON, Amsterdam, The Netherlands
| | - Paolo Ghia
- Università Vita-Salute San Raffaele, Milan, Italy
- Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - John F. Seymour
- Peter MacCallum Cancer Centre, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Susan Long
- The Ohio State University Wexner Medical Center James Molecular Laboratory, Columbus, OH
| | - Nehad Mohamed
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Samon Benrashid
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Tzung-Huei Lai
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | | | - Gerjan de Bruin
- Acerta Pharma BV, a member of the AstraZeneca group, Oss, The Netherlands
| | | | | |
Collapse
|
19
|
Guièze R, Ysebaert L, Roos-Weil D, Fornecker LM, Ferrant E, Molina L, Aurran T, Clavert A, de Guibert S, Michallet AS, Saad A, Drénou B, Quittet P, Hivert B, Laribi K, Gay J, Quinquenel A, Broseus J, Rouille V, Schwartz D, Magnin B, Lazarian G, Véronèse L, de Antonio M, Laurent C, Tournilhac O, Pereira B, Feugier P. Blinatumomab after R-CHOP bridging therapy for patients with Richter transformation: a phase 2 multicentre trial. Nat Commun 2024; 15:6822. [PMID: 39122717 PMCID: PMC11316063 DOI: 10.1038/s41467-024-51264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Richter transformation (RT) is an aggressive lymphoma occurring in patients with chronic lymphocytic leukaemia. Here we investigated the anti-CD3/anti-CD19 T-cell-engager blinatumomab after R-CHOP (i.e. rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) in patients with untreated RT of diffuse large B-cell lymphoma histology (NCT03931642). In this multicentre phase 2 study, patients without complete response (CR) after two cycles of R-CHOP were eligible to receive an 8-week blinatumomab induction via continuous vein infusion with stepwise dosing until 112 μg/day. The primary endpoint was the CR rate after blinatumomab induction and secondary endpoint included safety, response duration, progression-free and overall survival. Thirty-nine patients started the first cycle of R-CHOP, 25 of whom received blinatumomab. After blinatumomab induction, five (20%) patients achieved CR, four (16%) achieved partial response, and six (24%) were stable. Considering the entire strategy, the overall response rate in the full-analysis-set was 46% (n = 18), with CR in 14 (36%) patients. The most common treatment-emergent adverse events of all grades in the blinatumomab-safety-set included fever (36%), anaemia (24%), and lymphopaenia (24%). Cytokine release syndrome (grade 1/2) was observed in 16% and neurotoxicity in 20% of patients. Blinatumomab demonstrated encouraging anti-tumour activity (the trial met its primary endpoint) and acceptable toxicity in patients with RT.
Collapse
Affiliation(s)
- Romain Guièze
- CHU Clermont-Ferrand, Service de Thérapie Cellulaire et d'Hématologie Clinique, Clermont-Ferrand, France.
- Université Clermont Auvergne, Unité de Recherche 7453 (CHELTER), Clermont-Ferrand, France.
| | - Loïc Ysebaert
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse, 1 Avenue Irene Joliot-Curie, 31059, Toulouse, France
| | - Damien Roos-Weil
- Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Luc-Mathieu Fornecker
- Institut de Cancérologie Strasbourg Europe (ICANS) and University of Strasbourg, Strasbourg, France
| | - Emmanuelle Ferrant
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d'Hématologie Clinique, Pierre-Bénite, France
| | | | - Thérèse Aurran
- Institut Paoli-Calmettes, Hématologie, Marseille, France
| | - Aline Clavert
- Service des Maladies du Sang, CHU Angers, Angers, France
| | | | | | - Alain Saad
- Haematology Department, Hospital Center of Beziers, Beziers, France
| | | | | | - Bénédicte Hivert
- Hématologie Clinique, Groupement des Hôpitaux de l'Institut Catholique de Lille Hôpital St Vincent de Paul, Lille, France
| | - Kamel Laribi
- Department of Hematology, Centre Hospitalier Le Mans, Le Mans, France
| | - Julie Gay
- Service d'Hématologie, Centre Hospitalier de la Côte Basque, Bayonne, France
| | - Anne Quinquenel
- Department of Hematology, University Hospital of Reims, UFR Médecine, Reims, France
| | - Julien Broseus
- CHRU-Nancy, Service d'Hématologie Biologique, Pôle Laboratoires, F54000, Nancy, France
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risques Environnementaux (N-GERE), Université de Lorraine, Nancy, France
| | | | | | - Benoit Magnin
- Department of Radiology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Grégory Lazarian
- Laboratoire d'hématologie, HUPSSD, Hôpital Avicenne, Bobigny, France
| | - Lauren Véronèse
- Université Clermont Auvergne, Unité de Recherche 7453 (CHELTER), Clermont-Ferrand, France
- Service de Cytogénétique, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Marie de Antonio
- Department of Statistics, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Camille Laurent
- Département de Pathologie, Institut Universitaire du Cancer, Centre Hospitalo-Universitaire (CHU) de Toulouse, Toulouse, France
| | - Olivier Tournilhac
- CHU Clermont-Ferrand, Service de Thérapie Cellulaire et d'Hématologie Clinique, Clermont-Ferrand, France
- Université Clermont Auvergne, Unité de Recherche 7453 (CHELTER), Clermont-Ferrand, France
| | - Bruno Pereira
- Department of Statistics, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Pierre Feugier
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risques Environnementaux (N-GERE), Université de Lorraine, Nancy, France
- CHRU Nancy, Service d'hématologie clinique adulte, Nancy, France
| |
Collapse
|
20
|
Urso A, Martino EA, Cuneo A, Gentile M, Rigolin GM. Chronic Lymphocytic Leukemia: Prognostic Factors in the Era of Novel Drugs. Cancers (Basel) 2024; 16:2732. [PMID: 39123460 PMCID: PMC11311700 DOI: 10.3390/cancers16152732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Novel drugs have profoundly changed the outcomes in chronic lymphocytic leukemia (CLL) patients, and the traditional prognostic factors that were identified in the era of chemoimmunotherapy need to be validated in the context of these new targeted therapies. Currently, the most important prognostic genetic biomarkers are the immunoglobulin heavy chain variable (IGHV) mutational status, genetic aberrations including del(17p)/TP53 abnormalities, and the complex karyotype. In this review, we discuss the prognostic role of these genomic markers in relation to novel treatments. Moreover, we present and discuss new scoring systems that were elaborated and validated in the era of new drugs. In routine clinical practice, the application of an extensive genomic work-up with validated prognostic markers could improve the identification of "very high-risk" CLL patients who could benefit from novel, more effective targeted treatments.
Collapse
Affiliation(s)
- Antonio Urso
- Hematology Unit, St Anna University Hospital, 44124 Ferrara, Italy; (A.U.); (A.C.)
| | | | - Antonio Cuneo
- Hematology Unit, St Anna University Hospital, 44124 Ferrara, Italy; (A.U.); (A.C.)
| | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, 87100 Cosenza, Italy; (E.A.M.); (M.G.)
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Gian Matteo Rigolin
- Hematology Unit, St Anna University Hospital, 44124 Ferrara, Italy; (A.U.); (A.C.)
| |
Collapse
|
21
|
Wiedmeier-Nutor JE, McCabe CE, O’Brien DR, Jessen E, Bonolo de Campos C, Boddicker NJ, Griffin R, Allmer C, Rabe KG, Cerhan JR, Parikh SA, Kay NE, Yan H, Van Dyke DL, Slager SL, Braggio E. Utility of Targeted Sequencing Compared to FISH for Detection of Chronic Lymphocytic Leukemia Copy Number Alterations. Cancers (Basel) 2024; 16:2450. [PMID: 39001512 PMCID: PMC11240685 DOI: 10.3390/cancers16132450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by multiple copy number alterations (CNAs) and somatic mutations that are central to disease prognosis, risk stratification, and mechanisms of therapy resistance. Fluorescence in situ hybridization (FISH) panels are widely used in clinical applications as the gold standard for screening prognostic chromosomal abnormalities in CLL. DNA sequencing is an alternative approach to identifying CNAs but is not an established method for clinical CNA screening. We sequenced DNA from 509 individuals with CLL or monoclonal B-cell lymphocytosis (MBL), the precursor to CLL, using a targeted sequencing panel of 59 recurrently mutated genes in CLL and additional amplicons across regions affected by clinically relevant CNAs [i.e., del(17p), del(11q), del(13q), and trisomy 12]. We used the PatternCNV algorithm to call CNA and compared the concordance of calling clinically relevant CNAs by targeted sequencing to that of FISH. We found a high accuracy of calling CNAs via sequencing compared to FISH. With FISH as the gold standard, the specificity of targeted sequencing was >95%, sensitivity was >86%, positive predictive value was >90%, and negative predictive value was >84% across the clinically relevant CNAs. Using targeted sequencing, we were also able to identify other common CLL-associated CNAs, including del(6q), del(14q), and gain 8q, as well as complex karyotype, defined as the presence of 3 or more chromosomal abnormalities, in 26 patients. In a single and cost-effective assay that can be performed on stored DNA samples, targeted sequencing can simultaneously detect CNAs, somatic mutations, and complex karyotypes, which are all important prognostic features in CLL.
Collapse
Affiliation(s)
- J. Erin Wiedmeier-Nutor
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Chantal E. McCabe
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel R. O’Brien
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Erik Jessen
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Cecilia Bonolo de Campos
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Nicholas J. Boddicker
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Rosalie Griffin
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Cristine Allmer
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Kari G. Rabe
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - James R. Cerhan
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Sameer A. Parikh
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Neil E. Kay
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Huihuang Yan
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel L. Van Dyke
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Susan L. Slager
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Esteban Braggio
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
22
|
Stamatopoulos K, Pavlova S, Al‐Sawaf O, Chatzikonstantinou T, Karamanidou C, Gaidano G, Cymbalista F, Kater AP, Rawstron A, Scarfò L, Ghia P, Rosenquist R. Realizing precision medicine in chronic lymphocytic leukemia: Remaining challenges and potential opportunities. Hemasphere 2024; 8:e113. [PMID: 39035106 PMCID: PMC11260284 DOI: 10.1002/hem3.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024] Open
Abstract
Patients with chronic lymphocytic leukemia (CLL) exhibit diverse clinical outcomes. An expanding array of genetic tests is now employed to facilitate the identification of patients with high-risk disease and inform treatment decisions. These tests encompass molecular cytogenetic analysis, focusing on recurrent chromosomal alterations, particularly del(17p). Additionally, sequencing is utilized to identify TP53 mutations and to determine the somatic hypermutation status of the immunoglobulin heavy variable gene. Concurrently, a swift advancement of targeted treatment has led to the implementation of novel strategies for patients with CLL, including kinase and BCL2 inhibitors. This review explores both current and emerging diagnostic tests aimed at identifying high-risk patients who should benefit from targeted therapies. We outline existing treatment paradigms, emphasizing the importance of matching the right treatment to the right patient beyond genetic stratification, considering the crucial balance between safety and efficacy. We also take into consideration the practical and logistical issues when choosing a management strategy for each individual patient. Furthermore, we delve into the mechanisms underlying therapy resistance and stress the relevance of monitoring measurable residual disease to guide treatment decisions. Finally, we underscore the necessity of aggregating real-world data, adopting a global perspective, and ensuring patient engagement. Taken together, we argue that precision medicine is not the mere application of precision diagnostics and accessibility of precision therapies in CLL but encompasses various aspects of the patient journey (e.g., lifestyle exposures and comorbidities) and their preferences toward achieving true personalized medicine for patients with CLL.
Collapse
Affiliation(s)
- Kostas Stamatopoulos
- Centre for Research and Technology HellasInstitute of Applied BiosciencesThessalonikiGreece
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Sarka Pavlova
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and GenomicsUniversity Hospital Brno and Medical Faculty, Masaryk UniversityBrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Othman Al‐Sawaf
- Department I of Internal Medicine and German CLL Study Group, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)University of Cologne, Faculty of Medicine and University Hospital of CologneCologneGermany
- Francis Crick Institute LondonLondonUK
- Cancer Institute, University College LondonLondonUK
| | | | - Christina Karamanidou
- Centre for Research and Technology HellasInstitute of Applied BiosciencesThessalonikiGreece
| | - Gianluca Gaidano
- Division of Haematology, Department of Translational MedicineUniversity of Eastern PiedmontNovaraItaly
| | | | - Arnon P. Kater
- Department of Hematology, Cancer Center AmsterdamAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Andy Rawstron
- Haematological Malignancy Diagnostic ServiceLeeds Teaching Hospitals TrustLeedsUK
| | - Lydia Scarfò
- Medical SchoolUniversità Vita Salute San RaffaeleMilanoItaly
- Strategic Research Program on CLLIRCCS Ospedale San RaffaeleMilanoItaly
| | - Paolo Ghia
- Medical SchoolUniversità Vita Salute San RaffaeleMilanoItaly
- Strategic Research Program on CLLIRCCS Ospedale San RaffaeleMilanoItaly
| | - Richard Rosenquist
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Clinical GeneticsKarolinska University HospitalStockholmSweden
| |
Collapse
|
23
|
Balciuniene J, Ning Y, Lazarus HM, Aikawa V, Sherpa S, Zhang Y, Morrissette JJD. Cancer cytogenetics in a genomics world: Wedding the old with the new. Blood Rev 2024; 66:101209. [PMID: 38852016 DOI: 10.1016/j.blre.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/10/2024]
Abstract
Since the discovery of the Philadelphia chromosome in 1960, cytogenetic studies have been instrumental in detecting chromosomal abnormalities that can inform cancer diagnosis, treatment, and risk assessment efforts. The initial expansion of cancer cytogenetics was with fluorescence in situ hybridization (FISH) to assess submicroscopic alterations in dividing or non-dividing cells and has grown into the incorporation of chromosomal microarrays (CMA), and next generation sequencing (NGS). These molecular technologies add additional dimensions to the genomic assessment of cancers by uncovering cytogenetically invisible molecular markers. Rapid technological and bioinformatic advances in NGS are so promising that the idea of performing whole genome sequencing as part of routine patient care may soon become economically and logistically feasible. However, for now cytogenetic studies continue to play a major role in the diagnostic testing and subsequent assessments in leukemia with other genomic studies serving as complementary testing options for detection of actionable genomic abnormalities. In this review, we discuss the role of conventional cytogenetics (karyotyping, chromosome analysis) and FISH studies in hematological malignancies, highlighting the continued clinical utility of these techniques, the subtleties and complexities that are relevant to treating physicians and the unique strengths of cytogenetics that cannot yet be paralleled by the current high-throughput molecular technologies. Additionally, we describe how CMA, optical genome mapping (OGM), and NGS detect abnormalities that were beyond the capacity of cytogenetic studies and how an integrated approach (broad molecular testing) can contribute to the detection of actionable targets and variants in malignancies. Finally, we discuss advances in the field of genomic testing that are bridging the advantages of individual (single) cell based cytogenetic testing and broad genomic testing.
Collapse
Affiliation(s)
- Jorune Balciuniene
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yi Ning
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Vania Aikawa
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarina Sherpa
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanming Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jennifer J D Morrissette
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Goergen E, Al-Sawaf O. The prognostic significance of genomic complexity in patients with CLL. Leuk Lymphoma 2024; 65:873-881. [PMID: 38593054 DOI: 10.1080/10428194.2024.2333448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/17/2024] [Indexed: 04/11/2024]
Abstract
Chromosomal aberrations are a common feature of cancer and can fuel cancer progression and treatment resistance. In chronic lymphocytic leukemia (CLL), the presence of multiple chromosomal aberrations is commonly referred to as "genomic complexity" or "complex karyotype"- (CKT). In the context of chemo- and chemoimmunotherapy, genomic complexity is associated with poor response to treatment and short survival, while some targeted therapies are able to mitigate its adverse prognostic impact. This article reviews currently available data and literature on the role of genomic complexity in CLL. The currently established tools to measure genomic complexity in patients with CLL are summarized and their strengths and weaknesses for routine diagnostics are evaluated. Moreover, possible definitions of CKT as an indicator for genomic complexity are discussed. Finally, data on the impact of CKT on clinical outcomes of patients with CLL are reviewed and the implications for patient stratification are presented.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Prognosis
- Chromosome Aberrations
- Genomics/methods
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
- Ellinor Goergen
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Othman Al-Sawaf
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| |
Collapse
|
25
|
Kamaso J, Puiggros A, Salido M, Melero C, Rodríguez-Rivera M, Gimeno E, Martínez L, Arenillas L, Calvo X, Román D, Abella E, Ramos-Campoy S, Lorenzo M, Ferrer A, Collado R, Moro-García MA, Espinet B. Complex Karyotype Detection in Chronic Lymphocytic Leukemia: A Comparison of Parallel Cytogenetic Cultures Using TPA and IL2+DSP30 from a Single Center. Cancers (Basel) 2024; 16:2258. [PMID: 38927962 PMCID: PMC11202013 DOI: 10.3390/cancers16122258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Current CLL guidelines recommend a two parallel cultures assessment using TPA and IL2+DSP30 mitogens for complex karyotype (CK) detection. Studies comparing both mitogens for CK identification in the same cohort are lacking. We analyzed the global performance, CK detection, and concordance in the complexity assessment of two cytogenetic cultures from 255 CLL patients. IL2+DSP30 identified more altered karyotypes than TPA (50 vs. 39%, p = 0.031). Moreover, in 71% of those abnormal by both, IL2+DSP30 identified more abnormalities and/or abnormal metaphases. CK detection was similar for TPA and IL2+DSP30 (10% vs. 11%). However, 11/33 CKs (33%) were discordant, mainly due to the detection of a normal karyotype or no metaphases in the other culture. Patients requiring treatment within 12 months after sampling (active CLL) displayed significantly more CKs than those showing a stable disease (55% vs. 12%, p < 0.001). Disease status did not impact cultures' concordance (κ index: 0.735 and 0.754 for stable and active). Although CK was associated with shorter time to first treatment (TTFT) using both methods, IL2+DSP30 displayed better accuracy than TPA for predicting TTFT (C-index: 0.605 vs. 0.580, respectively). In summary, the analysis of two parallel cultures is the best option to detect CKs in CLL. Nonetheless, IL2+DSP30 could be prioritized above TPA to optimize cytogenetic assessment in clinical practice.
Collapse
Affiliation(s)
- Joanna Kamaso
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Anna Puiggros
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Marta Salido
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Carme Melero
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - María Rodríguez-Rivera
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Eva Gimeno
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (E.G.); (E.A.)
- Applied Clinical Research in Hematological Malignances Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Laia Martínez
- Hematology Service, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain;
| | - Leonor Arenillas
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Xavier Calvo
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - David Román
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Eugènia Abella
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (E.G.); (E.A.)
| | - Silvia Ramos-Campoy
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Marta Lorenzo
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Ana Ferrer
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Rosa Collado
- Department of Hematology, Consorcio Hospital General Universitario Valencia, 46014 Valencia, Spain;
| | | | - Blanca Espinet
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| |
Collapse
|
26
|
Montironi C, Chen Z, Derks IA, Cretenet G, Krap EA, Eldering E, Simon-Molas H. Metabolic signature and response to glutamine deprivation are independent of p53 status in B cell malignancies. iScience 2024; 27:109640. [PMID: 38680661 PMCID: PMC11053310 DOI: 10.1016/j.isci.2024.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/03/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
The tumor suppressor p53 has been described to control various aspects of metabolic reprogramming in solid tumors, but in B cell malignancies that role is as yet unknown. We generated pairs of p53 functional and knockout (KO) clones from distinct B cell malignancies (acute lymphoblastic leukemia, chronic lymphocytic leukemia, diffuse large B cell lymphoma, and multiple myeloma). Metabolomics and isotope tracing showed that p53 loss did not drive a common metabolic signature. Instead, cell lines segregated according to cell of origin. Next, we focused on glutamine as a crucial energy source in the B cell tumor microenvironment. In both TP53 wild-type and KO cells, glutamine deprivation induced cell death through the integrated stress response, via CHOP/ATF4. Lastly, combining BH3 mimetic drugs with glutamine starvation emerged as a possibility to target resistant clones. In conclusion, our analyses do not support a common metabolic signature of p53 deficiency in B cell malignancies and suggest therapeutic options for exploration based on glutamine dependency.
Collapse
Affiliation(s)
- Chiara Montironi
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Zhenghao Chen
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Ingrid A.M. Derks
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Gaspard Cretenet
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Esmée A. Krap
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
| | - Eric Eldering
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Helga Simon-Molas
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of Hematology, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Qin S, Jiang R, Dai L, Miao Y, Sha Y, Qiu T, Ding C, Wang Z, Shi C, Xia Y, Fan L, Xu W, Li J, Zhu H. Venetoclax plus dose-adjusted R-EPOCH (VR-DA-EPOCH) or G-EPOCH bridging to subsequent cellular therapy for the patients with transformed lymphoma a single center clinical experience. Ann Hematol 2024; 103:1635-1642. [PMID: 38246951 PMCID: PMC11009738 DOI: 10.1007/s00277-024-05618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Indolent lymphoma, including chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and follicular lymphoma (FL), can undergo histological transformation into an aggressive subtype, typically diffuse large B-cell lymphoma (DLBCL). The prognosis of transformed lymphoma is poor. In this study, we reported the efficacy and toxicity of a combination of venetoclax, dose-adjusted rituximab or obinutuzumab, etoposide, prednisone, vincristine, doxorubicin, and cyclophosphamide (VR-DA-EPOCH or VG-DA-EPOCH) in 11 patients with biopsy-proven histology transformation into DLBCL, including 8 patients with RT and 3 with transformed FL (tFL). The study was conducted between October 2019 and March 2023 at our single center. The median age of participants at enrolment was 53 years. Six patients (85.7%, 6/7) achieved complete remission (CR) at the end of treatment. The best overall response rate (ORR) and CR rate were both 72.7%, respectively. Two patients received autologous hemopoietic stem cell transplant (ASCT) while two patients received ASCT concurrently with CAR-T therapy for consolidation. With a median follow-up of 13.5 (range, 2.4-29.8) months after enrollment, the median event-free survival, progression-free survival, and overall survival were 9.4, 11.5, and 17.5 months, respectively. Hematologic toxicities of grade ≥3 consisted of neutropenia (90.9%, 10/11), thrombocytopenia (63.6%, 7/11), and febrile neutropenia (54.5%, 6/11). In conclusion, VR-DA-EPOCH or VG-DA-EPOCH was a promising strategy to achieve an early remission, bridging to cellular therapy within this population.
Collapse
Affiliation(s)
- Shuchao Qin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Rui Jiang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Luomengjia Dai
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Yi Miao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Yeqin Sha
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Tonglu Qiu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Chongyang Ding
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Zhen Wang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Chuanbing Shi
- Department of Pathology, Pukou People's Hospital, Nanjing, 211800, Jiangsu, China
| | - Yi Xia
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Lei Fan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Huayuan Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
28
|
Levy B, Kanagal-Shamanna R, Sahajpal NS, Neveling K, Rack K, Dewaele B, Olde Weghuis D, Stevens-Kroef M, Puiggros A, Mallo M, Clifford B, Mantere T, Hoischen A, Espinet B, Kolhe R, Solé F, Raca G, Smith AC. A framework for the clinical implementation of optical genome mapping in hematologic malignancies. Am J Hematol 2024; 99:642-661. [PMID: 38164980 DOI: 10.1002/ajh.27175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Optical Genome Mapping (OGM) is rapidly emerging as an exciting cytogenomic technology both for research and clinical purposes. In the last 2 years alone, multiple studies have demonstrated that OGM not only matches the diagnostic scope of conventional standard of care cytogenomic clinical testing but it also adds significant new information in certain cases. Since OGM consolidates the diagnostic benefits of multiple costly and laborious tests (e.g., karyotyping, fluorescence in situ hybridization, and chromosomal microarrays) in a single cost-effective assay, many clinical laboratories have started to consider utilizing OGM. In 2021, an international working group of early adopters of OGM who are experienced with routine clinical cytogenomic testing in patients with hematological neoplasms formed a consortium (International Consortium for OGM in Hematologic Malignancies, henceforth "the Consortium") to create a consensus framework for implementation of OGM in a clinical setting. The focus of the Consortium is to provide guidance for laboratories implementing OGM in three specific areas: validation, quality control and analysis and interpretation of variants. Since OGM is a complex technology with many variables, we felt that by consolidating our collective experience, we could provide a practical and useful tool for uniform implementation of OGM in hematologic malignancies with the ultimate goal of achieving globally accepted standards.
Collapse
Affiliation(s)
- Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katrina Rack
- Laboratory for the Cytogenetic and Molecular Diagnosis of Haematological Malignancies, Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Barbara Dewaele
- Laboratory for the Cytogenetic and Molecular Diagnosis of Haematological Malignancies, Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Daniel Olde Weghuis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marian Stevens-Kroef
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna Puiggros
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Mar Mallo
- MDS Research Group, Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Francesc Solé
- MDS Research Group, Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Adam C Smith
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Tausch E, López C, Stilgenbauer S, Siebert R. Genetic alterations in chronic lymphocytic leukemia and plasma cell neoplasms - a practical guide to WHO HAEM5. MED GENET-BERLIN 2024; 36:47-57. [PMID: 38835970 PMCID: PMC11006374 DOI: 10.1515/medgen-2024-2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours (WHO-HAEM5) provides a revised classification of lymphoid malignancies including chronic lymphocytic leukemia (CLL) and plasma cell myeloma/multiple myeloma (PCM/MM). For both diseases the descriptions of precursor states such as monoclonal B-cell lymphocytosis and monoclonal gammopathy of uncertain significance (MGUS) have been updated including a better risk stratification model. New insights on mutational landscapes and branching evolutionary pattern were embedded as diagnostic and prognostic factors, accompanied by a revised structure for the chapter of plasma cell neoplasms. Thus, the WHO-HAEM5 leads to practical improvements of biological and clinical relevance for pathologists, clinicians, geneticists and scientists in the field of lymphoid malignancies. The present review gives an overview on the landscape of genetic alterations in CLL and plasma cell neoplasms with a focus on their impact on classification and treatment.
Collapse
Affiliation(s)
- Eugen Tausch
- Ulm University Division of CLL, Department of Internal Medicine 3 Ulm Germany
| | - Cristina López
- Institut d'Investigacions Biomèdiques August Phi i Sunyer (IDIBAPS) Barcelona Spain
| | | | - Reiner Siebert
- Ulm University and Ulm University Medical Center Institute of Human Genetics Ulm Germany
| |
Collapse
|
30
|
Medeiros LJ, Chadburn A, Natkunam Y, Naresh KN. Fifth Edition of the World Health Classification of Tumors of the Hematopoietic and Lymphoid Tissues: B-cell Neoplasms. Mod Pathol 2024; 37:100441. [PMID: 38309432 DOI: 10.1016/j.modpat.2024.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
We review B-cell neoplasms in the 5th edition of the World Health Organization classification of hematolymphoid tumors (WHO-HEM5). The revised classification is based on a multidisciplinary approach including input from pathologists, clinicians, and other experts. The WHO-HEM5 follows a hierarchical structure allowing the use of family (class)-level definitions when defining diagnostic criteria are partially met or a complete investigational workup is not possible. Disease types and subtypes have expanded compared with the WHO revised 4th edition (WHO-HEM4R), mainly because of the expansion in genomic knowledge of these diseases. In this review, we focus on highlighting changes and updates in the classification of B-cell lymphomas, providing a comparison with WHO-HEM4R, and offering guidance on how the new classification can be applied to the diagnosis of B-cell lymphomas in routine practice.
Collapse
Affiliation(s)
- L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle; Section of Pathology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle
| |
Collapse
|
31
|
Moia R, Gaidano G. Prognostication in chronic lymphocytic leukemia. Semin Hematol 2024; 61:83-90. [PMID: 38523019 DOI: 10.1053/j.seminhematol.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in Western countries. CLL is a highly heterogeneous disease: some patients may never require therapy and others relapse several times after different therapeutic strategies. Therefore, in CLL, prognostic markers are essential to capture high-risk patients for different clinical endpoints including early treatment requirement, early progression after BTK or BCL2 inhibitors and Richter transformation. In early stage CLL, different biological and clinical biomarkers have been identified to predict time to treatment requirement that could be used to identify the most appropriate population for early intervention clinical trial. However, at the moment, the standard of care for early stage CLL remains watch & wait since no survival benefit has been identified in clinical trials with chemoimmunotherapy and with BTK inhibitors. In patients requiring treatment TP53 disruptions identify high-risk patients who benefit the most from long-term continuous therapy with BTKi. On the opposite side of the spectrum, IGHV mutated patients devoid of TP53 disruption benefit the most from fixed-duration therapy with venetoclax-obinutuzumab. In between, the highly heterogenous subgroup of patients with IGHV unmutated genes represents the group in which further efforts are needed to identify additional prognostic biomarkers aimed at selecting patients who can benefit from fixed-duration and patients who can benefit from long term BTKi therapy. In the context of the aggressive transformation of CLL, namely Richter syndrome, the clonal relationship to the CLL counterpart represents the strongest prognostic biomarker. Clonally related Richter syndrome still represents an unmet clinical need which requires further efforts to identify new therapeutic strategies.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Humans
- Prognosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Mutation
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
32
|
Alsayari MA, Gmati GEM, Omair A, Alhobabi A, Alanazi FT, Almutairi MA, Al Faifi AWK. Gene Mutations Associated With Chronic Lymphocytic Leukemia (CLL) Among Saudi CLL Patients and Treatment Outcomes: A Single-Center Experience. Cureus 2024; 16:e59044. [PMID: 38800140 PMCID: PMC11128063 DOI: 10.7759/cureus.59044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Background Chronic lymphocytic leukemia (CLL) starts in white blood cells in the peripheral blood (stages 0 and 1). In CLL, leukemia cells often build up slowly. Many gene mutations are associated with CLL, such as trisomy 12, 13q14 deletion, and 17q deletion. Due to the lack of patients' disease characteristics, gene mutations, and treatment outcomes data among Saudi patients, this study aimed to identify the relation between the gene mutations of CLL and the treatment in King Abdulaziz Medical City (KAMC), Riyadh. Methods This cross-sectional study used data from the BESTCare hospital information system. The study included all patients diagnosed with CLL and confirmed by flow cytometry in KAMC, Riyadh, between January 2010 and October 2020. The data included demographic information, mutation type or chromosome, present comorbidity, and type of treatment. Results The study included 100 CLL patients. According to different types of clusters of differentiation (CD), CD5 was positive in 84 (84%) patients, and 88 (88%) patients were positive for CD19. Cytogenetic remarkers were tested, revealing that 21 (21%) patients with trisomy 12 and 20 (20%) were positive for 13q14 deletion. Observation of patients' disease status based on the cytogenetic remarkers showed that out of 15 patients with trisomy, 12 (80%) had not progressed and were stable and alive. Out of 20 patients with 13q14 deletion, 16 (80%) were alive and 13 (65%) patients were stable. Conclusion CLL patients in KAMC, Riyadh, displayed trisomy 12, which is characterized by the worst prognosis of disease status, as the most frequently detected cytogenetic aberration followed by 13q deletion. However, most patients were stable and alive.
Collapse
Affiliation(s)
- Mohammed A Alsayari
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Riyadh, SAU
| | | | - Aamir Omair
- Research, King Abdulaziz Medical City Riyadh, Riyadh, SAU
- Medical Education/Research, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, SAU
| | - Abdullah Alhobabi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Riyadh, SAU
| | - Faisal T Alanazi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Riyadh, SAU
| | - Mohammed A Almutairi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Riyadh, SAU
| | - Al Waleed K Al Faifi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Riyadh, SAU
| |
Collapse
|
33
|
Lew TE, Bennett R, Lin VS, Whitechurch A, Handunnetti SM, Marlton P, Shen Y, Mulligan SP, Casan J, Blombery P, Tam CS, Roberts AW, Seymour JF, Thompson PA, Anderson MA. Venetoclax-rituximab is active in patients with BTKi-exposed CLL, but durable treatment-free remissions are uncommon. Blood Adv 2024; 8:1439-1443. [PMID: 38231032 PMCID: PMC10955641 DOI: 10.1182/bloodadvances.2023011327] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Affiliation(s)
- Thomas E. Lew
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Rory Bennett
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Victor S. Lin
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Ashley Whitechurch
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | | | - Paula Marlton
- Department of Hematology, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Yandong Shen
- Department of Haematology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Kolling Institute, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Stephen P. Mulligan
- Department of Haematology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Kolling Institute, Royal North Shore Hospital, Sydney, NSW, Australia
- Department of Haematology and Flow Cytometry, Laverty Pathology, Sydney, NSW, Australia
| | - Joshua Casan
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Piers Blombery
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | - Andrew W. Roberts
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - John F. Seymour
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Philip A. Thompson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Mary A. Anderson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Ikhlef L, Yassine M, Chandouri B, Rivière L, Naves T, Dmytruk N, Gachard N, Jauberteau MO, Gallet PF. Targeting the NTSR2/TrkB oncogenic pathway in chronic lymphocytic leukemia. Sci Rep 2024; 14:6084. [PMID: 38480783 PMCID: PMC10937676 DOI: 10.1038/s41598-024-56663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Current therapies that target the B-cell receptor pathway or the inhibition of anti-apoptotic proteins do not prevent the progressive forms of chronic lymphocytic leukemia (CLL), have low long-term efficacy and are subject to therapeutic resistance. Deciphering the mechanisms of leukemic cell survival and searching for new specific targets therefore remain major challenges to improve the management of this disease. It was evidenced that NTSR2 (neurotensin receptor 2), through the recruitment of TRKB (tropomyosin related kinase B), induces survival pathways in leukemic B cells. We have investigated the therapeutic potential of this protein complex as a new target. The binding domain of NTSR2 and TRKB was identified and a peptide targeting the latter was designed. The peptide binds TRKB and efficiently decreases the interaction of the two proteins. It is also effectively internalized by CLL-B cells in which it notably affects Src family kinase signaling and anti-apoptotic proteins levels. It demonstrated a cytotoxic effect both in vitro on the MEC-1 cell line and ex vivo on a cohort of 30 CLL patients. Altogether, these results underline the therapeutic potential of the NTSR2/TRKB protein complex as a target in CLL and open new perspectives for the development of targeted therapies.
Collapse
Affiliation(s)
- Léa Ikhlef
- UMR INSERM 1308, CAPTuR, University of Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - May Yassine
- UMR INSERM 1308, CAPTuR, University of Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - Boutaîna Chandouri
- UMR INSERM 1308, CAPTuR, University of Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - Léa Rivière
- UMR INSERM 1308, CAPTuR, University of Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - Thomas Naves
- UMR INSERM 1308, CAPTuR, University of Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - Natalya Dmytruk
- Department of Clinical Hematology, University Hospital of Limoges, Limoges, France
| | - Nathalie Gachard
- Hematology Laboratory, UMR CNRS7276/INSERM 1262, University Hospital of Limoges, Limoges, France
| | - Marie-Odile Jauberteau
- UMR INSERM 1308, CAPTuR, University of Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France
- Immunology Laboratory, University Hospital of Limoges, Limoges, France
| | - Paul-François Gallet
- UMR INSERM 1308, CAPTuR, University of Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France.
| |
Collapse
|
35
|
Avenarius MR, Huang Y, Kittai AS, Bhat SA, Rogers KA, Grever MR, Woyach JA, Miller CR. Comparison of karyotype scoring guidelines for evaluating karyotype complexity in chronic lymphocytic leukemia. Leukemia 2024; 38:676-678. [PMID: 38374409 DOI: 10.1038/s41375-024-02177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Affiliation(s)
| | - Ying Huang
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Adam S Kittai
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Seema A Bhat
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Kerry A Rogers
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Michael R Grever
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Jennifer A Woyach
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Cecelia R Miller
- Department of Pathology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
36
|
Behrens YL, Pietzsch S, Antić Ž, Zhang Y, Bergmann AK. The landscape of cytogenetic and molecular genetic methods in diagnostics for hematologic neoplasia. Best Pract Res Clin Haematol 2024; 37:101539. [PMID: 38490767 DOI: 10.1016/j.beha.2024.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/28/2024] [Indexed: 03/17/2024]
Abstract
Improvements made during the last decades in the management of patients with hematologic neoplasia have resulted in increase of overall survival. These advancements have become possible through progress in our understanding of genetic basis of different hematologic malignancies and their role in the current risk-adapted treatment protocols. In this review, we provide an overview of current cytogenetic and molecular genetic methods, commonly used in the genetic characterization of hematologic malignancies, describe the current developments in the cytogenetic and molecular diagnostics, and give an outlook into their future development. Furthermore, we give a brief overview of the most important public databases and guidelines for sequence variant interpretation.
Collapse
Affiliation(s)
- Yvonne Lisa Behrens
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Stefan Pietzsch
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Željko Antić
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Yanming Zhang
- Cytogenetics Laboratory, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anke K Bergmann
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
37
|
Anderson MA, Walewska R, Hackett F, Kater AP, Montegaard J, O'Brien S, Seymour JF, Smith M, Stilgenbauer S, Whitechurch A, Brown JR. Venetoclax Initiation in Chronic Lymphocytic Leukemia: International Insights and Innovative Approaches for Optimal Patient Care. Cancers (Basel) 2024; 16:980. [PMID: 38473342 DOI: 10.3390/cancers16050980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 03/14/2024] Open
Abstract
Venetoclax, a highly selective, oral B-cell lymphoma 2 inhibitor, provides a robust targeted-therapy option for the treatment of chronic lymphocytic leukemia (CLL), including patients with high-risk del(17p)/mutated-TP53 and immunoglobulin heavy variable region unmutated CLL and those refractory to chemoimmunotherapy across all age groups. Due to the potent pro-apoptotic effect of venetoclax, treatment initiation carries a risk of tumor lysis syndrome (TLS). Prompt and appropriate management is needed to limit clinical TLS, which may entail serious adverse events and death. Venetoclax ramp-up involves gradual, stepwise increases in daily venetoclax dosing from 20 mg to 400 mg (target dose) over 5 weeks; adherence to on-label scheduling provides a tumor debulking phase, reducing the risk of TLS. The key components of safe venetoclax therapy involve assessment (radiographic evaluation and baseline blood chemistry), preparation (adequate hydration), and initiation (blood chemistry monitoring). In addition to summarizing the evidence for venetoclax's efficacy and safety, this review uses hypothetical patient scenarios based on risk level for TLS (high, medium, low) to share the authors' clinical experience with venetoclax initiation and present global approaches utilized in various treatment settings. These hypothetical scenarios highlight the importance of a multidisciplinary approach and shared decision-making, outlining best practices for venetoclax initiation and overall optimal treatment strategies in patients with CLL.
Collapse
Affiliation(s)
- Mary Ann Anderson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
- Division of Blood Cells and Blood Cancers, The Walter and Eliza Hall Institute, Melbourne, VIC 3000, Australia
- Peter MacCallum Cancer Centre, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Renata Walewska
- University Hospitals Dorset, NHS Foundation Trust, Bournemouth BH7 7DW, UK
| | - Fidelma Hackett
- Cancer Services Directorate, University Hospital Limerick UL Hospitals Group, St. Nessan's Road, V94 F858 Limerick, Ireland
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Josie Montegaard
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Susan O'Brien
- Chao Family Comprehensive Cancer Center, University of California Irvine, Orange, CA 92868, USA
| | - John F Seymour
- Peter MacCallum Cancer Centre, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Matthew Smith
- Department of Haematology, Chesterfield Royal Hospital NHS Foundation Trust, Chesterfield S44 5BL, UK
| | - Stephan Stilgenbauer
- Division of CLL, Department of Internal Medicine III, Ulm University, 89081 Ulm, Germany
| | - Ashley Whitechurch
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
38
|
Al Jamal I, Parquet M, Guiyedi K, Aoufouchi S, Le Guillou M, Rizzo D, Pollet J, Dupont M, Boulin M, Faumont N, Boutouil H, Jardin F, Ruminy P, El Hamel C, Lerat J, Al Hamaoui S, Makdissy N, Feuillard J, Gachard N, Peron S. IGH 3'RR recombination uncovers a non-germinal center imprint and c-MYC-dependent IGH rearrangement in unmutated chronic lymphocytic leukemia. Haematologica 2024; 109:466-478. [PMID: 37496419 PMCID: PMC10828775 DOI: 10.3324/haematol.2023.282897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable indolent non-Hodgkin lymphoma characterized by tumor B cells that weakly express a B-cell receptor. The mutational status of the variable region (IGHV) within the immunoglobulin heavy chain (IGH) locus is an important prognosis indicator and raises the question of the CLL cell of origin. Mutated IGHV gene CLL are genetically imprinted by activation-induced cytidine deaminase (AID). AID is also required for IGH rearrangements: class switch recombination and recombination between switch Mu (Sμ) and the 3' regulatory region (3'RR) (Sμ-3'RRrec). The great majority of CLL B cells being unswitched led us to examine IGH rearrangement blockade in CLL. Our results separated CLL into two groups on the basis of Sμ-3'RRrec counts per sample: Sμ-3'RRrecHigh cases (mostly unmutated CLL) and Sμ-3'RRrecLow cases (mostly mutated CLL), but not based on the class switch recombination junction counts. Sμ-3'RRrec appeared to be ongoing in Sμ-3'RRrecHigh CLL cells and comparison of Sμ-3'RRrec junction structural features pointed to different B-cell origins for both groups. In accordance with IGHV mutational status and PIM1 mutation rate, Sμ-3'RRrecHigh CLL harbor a non-germinal center experienced B-cell imprint while Sμ-3'RRrecLow CLL are from AID-experienced B cells from a secondary lymphoid organ. In addition to the proposals already made concerning the CLL cell of origin, our study highlights that analysis of IGH recombinatory activity can identify CLL cases from different origins. Finally, on-going Sμ-3'RRrec in Sμ-3'RRrecHigh cells appeared to presumably be the consequence of high c-MYC expression, as c-MYC overexpression potentiated IGH rearrangements and Sμ-3'RRrec, even in the absence of AID for the latter.
Collapse
Affiliation(s)
- Israa Al Jamal
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges, France; Faculty of Sciences, GSBT Genomic Surveillance and Biotherapy Team, Mont Michel Campus, Lebanese University, Tripoli
| | - Milene Parquet
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges
| | - Kenza Guiyedi
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges
| | - Said Aoufouchi
- CNRS UMR9019, Gustave Roussy, B-cell and Genome Plasticity Team, Villejuif, France and Universite Paris-Saclay, Orsay
| | - Morwenna Le Guillou
- CNRS UMR9019, Gustave Roussy, B-cell and Genome Plasticity Team, Villejuif, France and Universite Paris-Saclay, Orsay
| | - David Rizzo
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges, France; Laboratoire d'Hematologie Biologique, Centre Hospitalier Universitaire de Limoges, Limoges
| | - Justine Pollet
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges
| | - Marine Dupont
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges, France; Laboratoire d'Hematologie Biologique, Centre Hospitalier Universitaire de Limoges, Limoges
| | - Melanie Boulin
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges, France; Laboratoire d'Hematologie Biologique, Centre Hospitalier Universitaire de Limoges, Limoges
| | - Nathalie Faumont
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges
| | - Hend Boutouil
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges
| | - Fabrice Jardin
- Inserm U1245 and Department of Henri-Becquerel Hematology Center and Normandie Univ UNIROUEN, Rouen
| | - Philippe Ruminy
- Inserm U1245 and Department of Henri-Becquerel Hematology Center and Normandie Univ UNIROUEN, Rouen
| | - Chahrazed El Hamel
- Collection Biologique Hopital de la Mere et de l'Enfant (CB-HME), Department of Pediatrics, Limoges University Hospital, Limoges
| | - Justine Lerat
- Department of Otorinolaryngology, Limoges University Hospital, Limoges
| | - Samar Al Hamaoui
- Faculty of Sciences, GSBT Genomic Surveillance and Biotherapy Team, Mont Michel Campus, Lebanese University, Tripoli
| | - Nehman Makdissy
- Faculty of Sciences, GSBT Genomic Surveillance and Biotherapy Team, Mont Michel Campus, Lebanese University, Tripoli
| | - Jean Feuillard
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges, France; Laboratoire d'Hematologie Biologique, Centre Hospitalier Universitaire de Limoges, Limoges
| | - Nathalie Gachard
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges, France; Laboratoire d'Hematologie Biologique, Centre Hospitalier Universitaire de Limoges, Limoges
| | - Sophie Peron
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges.
| |
Collapse
|
39
|
Jain N, Croner LJ, Allan JN, Siddiqi T, Tedeschi A, Badoux XC, Eckert K, Cheung LW, Mukherjee A, Dean JP, Szafer-Glusman E, Seymour JF. Absence of BTK, BCL2, and PLCG2 Mutations in Chronic Lymphocytic Leukemia Relapsing after First-Line Treatment with Fixed-Duration Ibrutinib plus Venetoclax. Clin Cancer Res 2024; 30:498-505. [PMID: 37955424 PMCID: PMC10831330 DOI: 10.1158/1078-0432.ccr-22-3934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/27/2023] [Accepted: 08/14/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Mutations in BTK, PLCG2, and BCL2 have been reported in patients with progressive disease (PD) on continuous single-agent BTK or BCL2 inhibitor treatment. We tested for these mutations in samples from patients with PD after completion of first-line treatment with fixed-duration ibrutinib plus venetoclax for chronic lymphocytic leukemia (CLL) in the phase II CAPTIVATE study. PATIENTS AND METHODS A total of 191 patients completed fixed-duration ibrutinib plus venetoclax (three cycles of ibrutinib then 12-13 cycles of ibrutinib plus venetoclax). Genomic risk features [del(11q), del(13q), del(17p), trisomy 12, complex karyotype, unmutated IGHV, TP53 mutated] and mutations in genes recurrently mutated in CLL (ATM, BIRC3, BRAF, CHD2, EZH2, FBXW7, MYD88, NOTCH1, POT1, RPS15, SF3B1, XPO1) were assessed at baseline in patients with and without PD at data cutoff; gene variants and resistance-associated mutations in BTK, PLCG2, or BCL2 were evaluated at PD. RESULTS Of 191 patients completing fixed-duration ibrutinib plus venetoclax, with median follow-up of 38.9 months, 29 (15%) developed PD. No baseline risk feature or gene mutation was significantly associated with development of PD. No previously reported resistance-associated mutations in BTK, PLCG2, or BCL2 were detected at PD in 25 patients with available samples. Of the 29 patients with PD, 19 have required retreatment (single-agent ibrutinib, n = 16, or ibrutinib plus venetoclax, n = 3); 17 achieved partial response or better, 1 achieved stable disease, and 1 is pending response assessment. CONCLUSIONS First-line fixed-duration combination treatment with ibrutinib plus venetoclax may mitigate development of resistance mechanisms associated with continuous single-agent targeted therapies, allowing for effective retreatment. See related commentary by Al-Sawaf and Davids, p. 471.
Collapse
Affiliation(s)
- Nitin Jain
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lisa J. Croner
- AbbVie, North Chicago, Illinois
- Pharmacyclics LLC, an AbbVie Company, South San Francisco, California
| | | | - Tanya Siddiqi
- City of Hope National Medical Center, Duarte, California
| | | | | | - Karl Eckert
- Pharmacyclics LLC, an AbbVie Company, South San Francisco, California
| | - Leo W.K. Cheung
- AbbVie, North Chicago, Illinois
- Pharmacyclics LLC, an AbbVie Company, South San Francisco, California
| | - Anwesha Mukherjee
- Pharmacyclics LLC, an AbbVie Company, South San Francisco, California
| | - James P. Dean
- Pharmacyclics LLC, an AbbVie Company, South San Francisco, California
| | - Edith Szafer-Glusman
- AbbVie, North Chicago, Illinois
- Pharmacyclics LLC, an AbbVie Company, South San Francisco, California
| | - John F. Seymour
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, and University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Briani C, Visentin A. Hematologic malignancies and hematopoietic stem cell transplantation. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:419-429. [PMID: 38494294 DOI: 10.1016/b978-0-12-823912-4.00016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Paraneoplastic neurologic syndromes are rarely associated with hematologic malignancies. In their rarity, lymphomas are the diseases with more frequent paraneoplastic neurologic syndrome. High-risk antibodies are absent in most lymphoma-associated paraneoplastic neurologic syndromes, with the exception of antibodies to Tr/DNER in paraneoplastic cerebellar degeneration, mGluR5 in limbic encephalitis, and mGluR1 in some cerebellar ataxias. Peripheral nervous system paraneoplastic neurologic syndromes are rare and heterogeneous, with a prevalence of demyelinating polyradiculoneuropathy in non-Hodgkin lymphoma. Polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, skin changes (POEMS) is a rare, paraneoplastic syndrome due to an underlying plasma cell disorder. The diagnosis is based on defined criteria, and vascular endothelial growth factor (VEGF), not an antibody, is considered a reliable diagnostic marker that also mirrors therapy response. As with the paraneoplastic neurologic syndromes in solid tumors, therapies rely on cancer treatment associated with immunomodulatory treatment with better response in PNS with antibodies to surface antigens. The best outcome is generally present in Ophelia syndrome/limbic encephalitis with anti-mGluR5 antibodies, with frequent complete recovery. Besides patients with isolated osteosclerotic lesions (where radiotherapy is indicated), hematopoietic stem-cell transplantation is the therapy of choice in patients with POEMS syndrome. In the paraneoplastic neurologic syndromes secondary to immune checkpoint inhibitors, discontinuation of the drug together with immunomodulatory treatment is recommended.
Collapse
Affiliation(s)
- Chiara Briani
- Department of Neurosciences, Neurology Unit, University of Padova, Padova, Italy.
| | - Andrea Visentin
- Department of Medicine, Hematology Unit, University of Padova, Padova, Italy
| |
Collapse
|
41
|
Navrkalova V, Plevova K, Radova L, Porc J, Pal K, Malcikova J, Pavlova S, Doubek M, Panovska A, Kotaskova J, Pospisilova S. Integrative NGS testing reveals clonal dynamics of adverse genomic defects contributing to a natural progression in treatment-naïve CLL patients. Br J Haematol 2024; 204:240-249. [PMID: 38062779 DOI: 10.1111/bjh.19191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 01/11/2024]
Abstract
Large-scale next-generation sequencing (NGS) studies revealed extensive genetic heterogeneity, driving a highly variable clinical course of chronic lymphocytic leukaemia (CLL). The evolution of subclonal populations contributes to diverse therapy responses and disease refractoriness. Besides, the dynamics and impact of subpopulations before therapy initiation are not well understood. We examined changes in genomic defects in serial samples of 100 untreated CLL patients, spanning from indolent to aggressive disease. A comprehensive NGS panel LYNX, which provides targeted mutational analysis and genome-wide chromosomal defect assessment, was employed. We observed dynamic changes in the composition and/or proportion of genomic aberrations in most patients (62%). Clonal evolution of gene variants prevailed over the chromosomal alterations. Unsupervised clustering based on aberration dynamics revealed four groups of patients with different clinical behaviour. An adverse cluster was associated with fast progression and early therapy need, characterized by the expansion of TP53 defects, ATM mutations, and 18p- alongside dynamic SF3B1 mutations. Our results show that clonal evolution is active even without therapy pressure and that repeated genetic testing can be clinically relevant during long-term patient monitoring. Moreover, integrative NGS testing contributes to the consolidated evaluation of results and accurate assessment of individual patient prognosis.
Collapse
Affiliation(s)
- Veronika Navrkalova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Karla Plevova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Lenka Radova
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jakub Porc
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Karol Pal
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jitka Malcikova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sarka Pavlova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Anna Panovska
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Kotaskova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Sarka Pospisilova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
42
|
Muñoz-Novas C, González-Gascón-y-Marín I, Figueroa I, Sánchez-Paz L, Pérez-Carretero C, Quijada-Álamo M, Rodríguez-Vicente AE, Infante MS, Foncillas MÁ, Landete E, Churruca J, Marín K, Ramos V, Sánchez Salto A, Hernández-Rivas JÁ. Association of Cytogenetics Aberrations and IGHV Mutations with Outcome in Chronic Lymphocytic Leukemia Patients in a Real-World Clinical Setting. Glob Med Genet 2024; 11:59-68. [PMID: 38348157 PMCID: PMC10861322 DOI: 10.1055/s-0044-1779668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Immunoglobulin heavy chain variable ( IGHV ) region mutations, TP53 mutation, fluorescence in situ hybridization (FISH), and cytogenetic analysis are the most important prognostic biomarkers used in chronic lymphocytic leukemia (CLL) patients in our daily practice. In real-life environment, there are scarce studies that analyze the correlation of these factors with outcome, mainly referred to time to first treatment (TTFT) and overall survival (OS). This study aimed to typify IGHV mutation status, family usage, FISH aberrations, and complex karyotype (CK) and to analyze the prognostic impact in TTFT and OS in retrospective study of 375 CLL patients from a Spanish cohort. We found unmutated CLL (U-CLL) was associated with more aggressive disease, shorter TTFT (48 vs. 133 months, p < 0.0001), and shorter OS (112 vs. 246 months, p < 0.0001) than the mutated CLL. IGHV3 was the most frequently used IGHV family (46%), followed by IGHV1 (30%) and IGHV4 (16%). IGHV5-51 and IGHV1-69 subfamilies were associated with poor prognosis, while IGHV4 and IGHV2 showed the best outcomes. The prevalence of CK was 15% and was significantly associated with U-CLL. In the multivariable analysis, IGHV2 gene usage and del13q were associated with longer TTFT, while VH1-02, +12, del11q, del17p, and U-CLL with shorter TTFT. Moreover, VH1-69 usage, del11q, del17p, and U-CLL were significantly associated with shorter OS. A comprehensive analysis of genetic prognostic factors provides a more precise information on the outcome of CLL patients. In addition to FISH cytogenetic aberrations, IGHV and TP53 mutations, IGHV gene families, and CK information could help clinicians in the decision-making process.
Collapse
Affiliation(s)
| | | | - Iñigo Figueroa
- Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Laura Sánchez-Paz
- Servicio de Hematología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Claudia Pérez-Carretero
- IBSAL, IBMCC, Centro de Investigación del Cáncer, Servicio de Hematología, Hospital Universitario de Salamanca, Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Miguel Quijada-Álamo
- IBSAL, IBMCC, Centro de Investigación del Cáncer, Servicio de Hematología, Hospital Universitario de Salamanca, Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Ana-Eugenia Rodríguez-Vicente
- IBSAL, IBMCC, Centro de Investigación del Cáncer, Servicio de Hematología, Hospital Universitario de Salamanca, Universidad de Salamanca-CSIC, Salamanca, Spain
| | | | | | - Elena Landete
- Servicio de Hematología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Juan Churruca
- Servicio de Hematología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Karen Marín
- Servicio de Hematología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Victoria Ramos
- Servicio de Hematología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | | | - José-Ángel Hernández-Rivas
- Servicio de Hematología, Hospital Universitario Infanta Leonor, Madrid, Spain
- Departamento de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
43
|
Coccaro N, Zagaria A, Anelli L, Tarantini F, Tota G, Conserva MR, Cumbo C, Parciante E, Redavid I, Ingravallo G, Minervini CF, Minervini A, Specchia G, Musto P, Albano F. Optical Genome Mapping as a Tool to Unveil New Molecular Findings in Hematological Patients with Complex Chromosomal Rearrangements. Genes (Basel) 2023; 14:2180. [PMID: 38137002 PMCID: PMC10742895 DOI: 10.3390/genes14122180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Standard cytogenetic techniques (chromosomal banding analysis-CBA, and fluorescence in situ hybridization-FISH) show limits in characterizing complex chromosomal rearrangements and structural variants arising from two or more chromosomal breaks. In this study, we applied optical genome mapping (OGM) to fully characterize two cases of complex chromosomal rearrangements at high resolution. In case 1, an acute myeloid leukemia (AML) patient showing chromothripsis, OGM analysis was fully concordant with classic cytogenetic techniques and helped to better refine chromosomal breakpoints. The OGM results of case 2, a patient with non-Hodgkin lymphoma, were only partially in agreement with previous cytogenetic analyses and helped to better define clonal heterogeneity, overcoming the bias related to clonal selection due to cell culture of cytogenetic techniques. In both cases, OGM analysis led to the identification of molecular markers, helping to define the pathogenesis, classification, and prognosis of the analyzed patients. Despite extensive efforts to study hematologic diseases, standard cytogenetic methods display unsurmountable limits, while OGM is a tool that has the power to overcome these limitations and provide a cytogenetic analysis at higher resolution. As OGM also shows limits in defining regions of a repetitive nature, combining OGM with CBA to obtain a complete cytogenetic characterization would be desirable.
Collapse
Affiliation(s)
- Nicoletta Coccaro
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Antonella Zagaria
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Luisa Anelli
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Francesco Tarantini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Giuseppina Tota
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Maria Rosa Conserva
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Cosimo Cumbo
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Elisa Parciante
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Immacolata Redavid
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Crescenzio Francesco Minervini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Angela Minervini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Giorgina Specchia
- School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Pellegrino Musto
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Francesco Albano
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| |
Collapse
|
44
|
Visentin A, Chatzikonstantinou T, Scarfò L, Kapetanakis A, Demosthenous C, Karakatsoulis G, Minga E, Chamou D, Allsup D, Cabrero AA, Andres M, Antic D, Baile M, Baliakas P, Besikli-Dimou S, Bron D, Chatzileontiadou S, Cordoba R, Correa JG, Cuéllar-García C, De Paoli L, De Paolis MR, Delgado J, Dimou M, Donaldson D, Catherwood M, Doubek M, Efstathopoulou M, Eichhorst B, Elashwah S, Enrico A, Espinet B, Farina L, Ferrari A, Foglietta M, Frederiksen H, Fürstenau M, García-Marco JA, García-Serra R, Collado R, Gentile M, Gimeno E, Glenthøj A, da Silva MG, Hakobyan YK, Herishanu Y, Hernández-Rivas JÁ, Herold T, Innocenti I, Itchaki G, Jaksic O, Janssens A, Kalashnikova ОB, Kalicińska E, Kater AP, Kersting S, Labrador J, Lad D, Laurenti L, Levin MD, Lista E, Lopez-Garcia A, Malerba L, Marasca R, Marchetti M, Marquet J, Mattsson M, Mauro FR, Morawska M, Motta M, Munir T, Murru R, Niemann CU, Rodrigues RN, Olivieri J, Orsucci L, Papaioannou M, Pavlovsky MA, Piskunova I, Popov VM, Quaglia FM, Quaresmini G, Qvist K, Rigolin GM, Ruchlemer R, Šimkovič M, Špaček M, Sportoletti P, Stanca O, Tadmor T, Capasso A, Del Poeta G, Gutwein O, Karlsson LK, Milosevic I, Mirás F, Reda G, Saghumyan G, Shrestha A, Te Raa D, et alVisentin A, Chatzikonstantinou T, Scarfò L, Kapetanakis A, Demosthenous C, Karakatsoulis G, Minga E, Chamou D, Allsup D, Cabrero AA, Andres M, Antic D, Baile M, Baliakas P, Besikli-Dimou S, Bron D, Chatzileontiadou S, Cordoba R, Correa JG, Cuéllar-García C, De Paoli L, De Paolis MR, Delgado J, Dimou M, Donaldson D, Catherwood M, Doubek M, Efstathopoulou M, Eichhorst B, Elashwah S, Enrico A, Espinet B, Farina L, Ferrari A, Foglietta M, Frederiksen H, Fürstenau M, García-Marco JA, García-Serra R, Collado R, Gentile M, Gimeno E, Glenthøj A, da Silva MG, Hakobyan YK, Herishanu Y, Hernández-Rivas JÁ, Herold T, Innocenti I, Itchaki G, Jaksic O, Janssens A, Kalashnikova ОB, Kalicińska E, Kater AP, Kersting S, Labrador J, Lad D, Laurenti L, Levin MD, Lista E, Lopez-Garcia A, Malerba L, Marasca R, Marchetti M, Marquet J, Mattsson M, Mauro FR, Morawska M, Motta M, Munir T, Murru R, Niemann CU, Rodrigues RN, Olivieri J, Orsucci L, Papaioannou M, Pavlovsky MA, Piskunova I, Popov VM, Quaglia FM, Quaresmini G, Qvist K, Rigolin GM, Ruchlemer R, Šimkovič M, Špaček M, Sportoletti P, Stanca O, Tadmor T, Capasso A, Del Poeta G, Gutwein O, Karlsson LK, Milosevic I, Mirás F, Reda G, Saghumyan G, Shrestha A, Te Raa D, Tonino SH, Van Der Spek E, van Gelder M, van Kampen R, Wasik-Szczepanek E, Wróbel T, Segundo LYS, Yassin M, Pocali B, Vandenberghe E, Iyengar S, Varettoni M, Vitale C, Coscia M, Rambaldi A, Montserrat E, Cuneo A, Stavroyianni N, Trentin L, Stamatopoulos K, Ghia P. The evolving landscape of COVID-19 and post-COVID condition in patients with chronic lymphocytic leukemia: A study by ERIC, the European research initiative on CLL. Am J Hematol 2023; 98:1856-1868. [PMID: 37772428 DOI: 10.1002/ajh.27093] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
In this retrospective international multicenter study, we describe the clinical characteristics and outcomes of patients with chronic lymphocytic leukemia (CLL) and related disorders (small lymphocytic lymphoma and high-count monoclonal B lymphocytosis) infected by SARS-CoV-2, including the development of post-COVID condition. Data from 1540 patients with CLL infected by SARS-CoV-2 from January 2020 to May 2022 were included in the analysis and assigned to four phases based on cases disposition and SARS-CoV-2 variants emergence. Post-COVID condition was defined according to the WHO criteria. Patients infected during the most recent phases of the pandemic, though carrying a higher comorbidity burden, were less often hospitalized, rarely needed intensive care unit admission, or died compared to patients infected during the initial phases. The 4-month overall survival (OS) improved through the phases, from 68% to 83%, p = .0015. Age, comorbidity, CLL-directed treatment, but not vaccination status, emerged as risk factors for mortality. Among survivors, 6.65% patients had a reinfection, usually milder than the initial one, and 16.5% developed post-COVID condition. The latter was characterized by fatigue, dyspnea, lasting cough, and impaired concentration. Infection severity was the only risk factor for developing post-COVID. The median time to resolution of the post-COVID condition was 4.7 months. OS in patients with CLL improved during the different phases of the pandemic, likely due to the improvement of prophylactic and therapeutic measures against SARS-CoV-2 as well as the emergence of milder variants. However, mortality remained relevant and a significant number of patients developed post-COVID conditions, warranting further investigations.
Collapse
Affiliation(s)
- Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padova, Italy
| | | | - Lydia Scarfò
- Università Vita-Salute San Raffaele and IRCC Ospedale San Raffaele, Milan, Italy
| | - Anargyros Kapetanakis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | | | - Georgios Karakatsoulis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- Department of Mathematics, University of Ioannina, Ioannina, Greece
| | - Eva Minga
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Dimitra Chamou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - David Allsup
- Centre for Biomedicine, Hull York Medical School, Hull, UK
| | - Alejandro Alonso Cabrero
- Spanish Society of Hematology and Hemotherapy (SEHH: Sociedad Española de Hematología y hemoterapia), Madrid, Spain
- Hematology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Martin Andres
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Darko Antic
- University Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mónica Baile
- Hospital Clinico Universitario de Salamanca (CAUSA/IBSAL), Salamanca, Spain
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | | | | | - Sofia Chatzileontiadou
- Hematology Unit, 1st Dept of Internal Medicine, AUTH, AHEPA Hospital, Thessaloniki, Greece
| | - Raul Cordoba
- Department of Hematology, Health Research Institute IIS-FJD, Fundacion Jimenez Diaz University Hospital, Madrid, Spain
| | | | | | - Lorenzo De Paoli
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale Amedeo Avogadro, Azienda Ospedaliero-Universitaria Maggiore della Carità Novara, Novara, Italy
| | | | | | - Maria Dimou
- 1st Internal Medicine Department, Propaedeutic, Hematology Clinical Trial Unit, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Michael Doubek
- Department of Internal Medicine-Hematology and Oncology, University Hospital, Brno, Czech Republic
- Faculty of Medicine, Department of Medical Genetics and Genomics, Masaryk University, Brno, Czech Republic
| | - Maria Efstathopoulou
- Department of Haematology, Athens Medical Center-Psychikon Branch, Athens, Greece
| | - Barbara Eichhorst
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Salma Elashwah
- Medical Oncology Unit, Faculty of Medicine, Oncology Center Mansoura University (OCMU), Mansoura, Egypt
| | | | | | - Lucia Farina
- Hematology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Angela Ferrari
- Hematology Unit, Azienda Unità Sanitaria Locale-IRCCS, Reggio Emilia, Italy
| | | | | | - Moritz Fürstenau
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University Hospital Cologne, University of Cologne, Cologne, Germany
| | - José A García-Marco
- Hematology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Rocío García-Serra
- Department of Hematology, Hospital General Universitario, Valencia, Spain
- Fundaci_on de Investigaci_on del Hospital General Universitario, Valencia, Spain
| | - Rosa Collado
- Department of Hematology, Hospital General Universitario, Valencia, Spain
| | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| | - Eva Gimeno
- Department of Hematology, Hospital del Mar, Barcelona, Spain
| | - Andreas Glenthøj
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | - Yair Herishanu
- Department of Hematology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Tobias Herold
- Department of Medicine III, Laboratory for Leukemia Diagnostics, University Hospital, Munich, Germany
| | - Idanna Innocenti
- Hematology Unit, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gilad Itchaki
- Meir Medical Center, Kfar-Saba, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ozren Jaksic
- Department of Hematology, University Hospital Dubrava, Zagreb, Croatia
| | - Ann Janssens
- Department of Hematology, Universitaire Ziekenhuizen Leuven, Leuven, Belgium
| | - Оlga B Kalashnikova
- Federal State Budgetary Educational Institution of Higher Education Academician I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Elżbieta Kalicińska
- Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation Wroclaw Medical University, Wroclaw, Poland
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Sabina Kersting
- Department of Hematology, Haga Teaching Hospital, The Hague, The Netherlands
| | - Jorge Labrador
- Hematology Department, Unit Research, Complejo Asistencial Universitario de Burgos, Burgos, Spain
| | - Deepesh Lad
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Luca Laurenti
- Hematology Unit, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | - Enrico Lista
- Department of Hematology, Santa Chiara Hospital, Trento, Italy
| | - Alberto Lopez-Garcia
- Department of Hematology, Health Research Institute IIS-FJD, Fundacion Jimenez Diaz University Hospital, Madrid, Spain
| | - Lara Malerba
- Hematology and Stem Cell Transplant Center, Marche Nord Hospital, Pesaro, Italy
| | - Roberto Marasca
- Department of Medical Sciences, Section of Hematology, University of Modena and Reggio E., Modena, Italy
| | - Monia Marchetti
- Hematology Unit and BM Transplant Center, AO SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Juan Marquet
- Hematology Department, Ram_on y Cajal University Hospital, Madrid, Spain
| | - Mattias Mattsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Hematology, Uppsala University Hospital, Uppsala, Sweden
| | - Francesca R Mauro
- Hematology Unit, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Marta Morawska
- Experimental Hematooncology Department, Medical University of Lublin, Lublin, Poland
- Hematology Department, St. John's Cancer Center, Lublin, Poland
| | - Marina Motta
- S.C. Ematologia, ASST Spedali Civili Brescia, Brescia, Italy
| | - Talha Munir
- Consultant Haematologist, St James's Hospital, Leeds, UK
| | - Roberta Murru
- Hematology and Stem Cell Transplantation Unit, Ospedale Oncologico A. Businco, ARNAS "G. Brotzu", Cagliari, Italy
| | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Jacopo Olivieri
- Hematology Clinic, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Lorella Orsucci
- S.C. Ematologia, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Maria Papaioannou
- Hematology Unit, 1st Dept of Internal Medicine, AUTH, AHEPA Hospital, Thessaloniki, Greece
| | | | - Inga Piskunova
- Consultative Hematology Department with a Day Hospital for Intensive High-Dose Chemotherapy, National Research Center for Hematology, Moscow, Russia
| | - Viola Maria Popov
- HematologyDepartment, Colentina Clinical Hospital, Bucharest, Romania
| | | | - Giulia Quaresmini
- Department of Oncology and Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII Bergamo, Bergamo, Italy
| | - Kristian Qvist
- Hematologic Section, Department of Internal Medicine, Hospital Union West, Herning, Denmark
| | | | - Rosa Ruchlemer
- Department of Hematology, Shaare-Zedek Medical Center, Affiliated with the Hebrew University Medical School, Jerusalem, Israel
| | - Martin Šimkovič
- Faculty of Medicine in Hradec Králové, 4th Department of Internal Medicine-Haematology, University Hospital and Charles University in Prague, Hradec Kralove, Czech Republic
| | - Martin Špaček
- First Faculty of Medicine, 1st Department of Medicine-Hematology, Charles University and General Hospital in Prague, Prague, Czech Republic
| | - Paolo Sportoletti
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncological Research, University of Perugia, Perugia, Italy
| | - Oana Stanca
- Hematology Department, Coltea Clinical Hospital, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Tamar Tadmor
- Division of Hematology, Bnai-Zion Medical Center, Haifa, Israel
| | | | - Giovanni Del Poeta
- Department of Biomedicine and Prevention Hematology, University Tor Vergata, Rome, Italy
| | - Odit Gutwein
- Department of Hematology, Shamir Medical Center, Zerifin, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Ivana Milosevic
- Faculty of Medicine, Clinical Centre of Vojvodina, University of Novi Sad, Novi Sad, Serbia
| | - Fatima Mirás
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Gianluigi Reda
- Hematology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico of Milan, Milan, Italy
| | | | - Amit Shrestha
- Hematology Unit, Nepal Cancer Hospital & Research Centre, Lalitpur, Nepal
| | - Doreen Te Raa
- Department of Hematology, Gelderse Vallei Ede, Ede, the Netherlands
| | - Sanne H Tonino
- Department of Hematology, Lymmcare, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Ellen Van Der Spek
- Department of Internal Medicine, Rijnstate Hospital, Arnhem, the Netherlands
| | - Michel van Gelder
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Ewa Wasik-Szczepanek
- Department of Hematooncology and Bone Marrow Transplantation, Medical University in Lublin, Lublin, Poland
| | - Tomasz Wróbel
- Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation Wroclaw Medical University, Wroclaw, Poland
| | - Lucrecia Yáñez San Segundo
- Hematology Department, University Hospital and Research Institute of Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Mohamed Yassin
- Hematology Section, Department of Medical Oncology, National Center for Cancer Care and Research, Doha, Qatar
| | | | | | - Sunil Iyengar
- Haemato-oncology Unit, The Royal Marsden Hospital, UK
| | - Marzia Varettoni
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Candida Vitale
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Marta Coscia
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Alessandro Rambaldi
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncological Research, University of Perugia, Perugia, Italy
| | | | | | - Niki Stavroyianni
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Paolo Ghia
- Università Vita-Salute San Raffaele and IRCC Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
45
|
Grau M, López C, Martín-Subero JI, Beà S. Cytogenomics of B-cell non-Hodgkin lymphomas: The "old" meets the "new". Best Pract Res Clin Haematol 2023; 36:101513. [PMID: 38092483 DOI: 10.1016/j.beha.2023.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 12/18/2023]
Abstract
For the routine diagnosis of haematological neoplasms an integrative approach is used considering the morphology, and the immunophenotypic, and molecular features of the tumor sample, along with clinical information. The identification and characterization of recurrent chromosomal aberrations mainly detected by conventional and molecular cytogenetics in the tumor cells has a major impact on the classification of lymphoid neoplasms. Some of the B-cell non-Hodgkin lymphomas are characterized by particular chromosomal aberrations, highlighting the relevance of conventional and molecular cytogenetic studies in their diagnosis and prognosis. In the current genomics era, next generation sequencing provides relevant information as the mutational profiles of haematological malignancies, improving their classification and also the clinical management of the patients. In addition, other new technologies have emerged recently, such as the optical genome mapping, which can overcome some of the limitations of conventional and molecular cytogenetics and may become more widely used in the cytogenetic laboratories in the upcoming years. Moreover, epigenetic alterations may complement genetic changes for a deeper understanding of the pathogenesis underlying B-cell neoplasms and a more precise risk-based patient stratification. Overall, here we describe the current state of the genomic data integrating chromosomal rearrangements, copy number alterations, and somatic variants, as well as a succinct overview of epigenomic changes, which altogether constitute a comprehensive diagnostic approach in B-cell non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Marta Grau
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina López
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain
| | - José Ignacio Martín-Subero
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Sílvia Beà
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain; Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain.
| |
Collapse
|
46
|
Jondreville L, Dehgane L, Doualle C, Smagghe L, Grange B, Davi F, Lerner LK, Garnier D, Bravetti C, Tournilhac O, Roos-Weil D, Boubaya M, Chapiro E, Susin SA, Nguyen-Khac F. del(8p) and TNFRSF10B loss are associated with a poor prognosis and resistance to fludarabine in chronic lymphocytic leukemia. Leukemia 2023; 37:2221-2230. [PMID: 37752286 DOI: 10.1038/s41375-023-02035-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous disease, the prognosis of which varies according to the cytogenetic group. We characterized a rare chromosomal abnormality (del(8p), deletion of the short arm of chromosome 8) in the context of CLL. By comparing the largest cohort of del(8p) CLL to date (n = 57) with a non-del(8p) cohort (n = 155), del(8p) was significantly associated with a poor prognosis, a shorter time to first treatment, worse overall survival (OS), and a higher risk of Richter transformation. For patients treated with fludarabine-based regimens, the next-treatment-free survival and the OS were shorter in del(8p) cases (including those with mutated IGHV). One copy of the TNFRSF10B gene (coding a pro-apoptotic receptor activated by TRAIL) was lost in 91% of del(8p) CLL. TNFRSF10B was haploinsufficient in del(8p) CLL, and was involved in the modulation of fludarabine-induced cell death - as confirmed by our experiments in primary cells and in CRISPR-edited TNFRSF10B knock-out CLL cell lines. Lastly, del(8p) abrogated the synergy between fludarabine and TRAIL-induced apoptosis. Our results highlight del(8p)'s value as a prognostic marker and suggest that fit CLL patients (i.e. with mutated IGHV and no TP53 disruption) should be screened for del(8p) before the initiation of fludarabine-based treatment.
Collapse
Affiliation(s)
- Ludovic Jondreville
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Lea Dehgane
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Cecile Doualle
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Luce Smagghe
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Beatrice Grange
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Frederic Davi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Leticia K Lerner
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Clotilde Bravetti
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Olivier Tournilhac
- Service d'Hématologie Clinique, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63003, Clermont-Ferrand, France
| | - Damien Roos-Weil
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
- Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marouane Boubaya
- Unité de Recherche Clinique, Hôpitaux Universitaires Paris Seine-Saint-Denis, AP-HP, Bobigny, France
| | - Elise Chapiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Sorbonne Université, AP-HP, Paris, France.
| | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Sorbonne Université, AP-HP, Paris, France.
| |
Collapse
|
47
|
Nguyen-Khac F, Balogh Z, Chauzeix J, Veronese L, Chapiro E. Cytogenetics in the management of chronic lymphocytic leukemia: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103410. [PMID: 38039634 DOI: 10.1016/j.retram.2023.103410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/14/2023] [Indexed: 12/03/2023]
Abstract
Chromosomal abnormalities are frequent in chronic lymphocytic leukemia (CLL), and most have prognostic value. In addition to the four well-known abnormalities (13q, 11q and 17p deletions, and trisomy 12), other recurrent aberrations have been linked to the disease outcome and/or drug resistance. Moreover, the complex karyotype has recently emerged as a prognostic marker for patients undergoing immunochemotherapy or targeted therapies. Here, we describe the main chromosomal abnormalities identified in CLL and related disorders (small lymphocytic lymphoma and monoclonal B-cell lymphocytosis) by reviewing the most recent literature and discussing their detection and clinical impact. Lastly, we provide technical guidelines and a strategy for the cytogenetic assessment of CLL.
Collapse
Affiliation(s)
- Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Paris, France; Service d'Hématologie Biologique, Bâtiment Pharmacie, 3e étage, Pitié-Salpêtrière/Charles Foix University Hospital, AP-HP, 83 Bd de l'Hôpital, Paris F-75013, France.
| | - Zsofia Balogh
- Département d'Innovation Thérapeutique et des Essais Précoces, Gustave Roussy, Villejuif, France
| | - Jasmine Chauzeix
- Service d'Hématologie biologique, CHU de Limoges - CRIBL, UMR CNRS 7276/INSERM 1262, Limoges, France
| | - Lauren Veronese
- Service de Cytogénétique Médicale, CHU Estaing, 1 place Lucie et Raymond Aubrac, Clermont-Ferrand 63003, France
| | - Elise Chapiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Paris, France; Service d'Hématologie Biologique, Bâtiment Pharmacie, 3e étage, Pitié-Salpêtrière/Charles Foix University Hospital, AP-HP, 83 Bd de l'Hôpital, Paris F-75013, France
| |
Collapse
|
48
|
Rosenquist R, Bernard E, Erkers T, Scott DW, Itzykson R, Rousselot P, Soulier J, Hutchings M, Östling P, Cavelier L, Fioretos T, Smedby KE. Novel precision medicine approaches and treatment strategies in hematological malignancies. J Intern Med 2023; 294:413-436. [PMID: 37424223 DOI: 10.1111/joim.13697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Genetic testing has been applied for decades in clinical routine diagnostics of hematological malignancies to improve disease (sub)classification, prognostication, patient management, and survival. In recent classifications of hematological malignancies, disease subtypes are defined by key recurrent genetic alterations detected by conventional methods (i.e., cytogenetics, fluorescence in situ hybridization, and targeted sequencing). Hematological malignancies were also one of the first disease areas in which targeted therapies were introduced, the prime example being BCR::ABL1 inhibitors, followed by an increasing number of targeted inhibitors hitting the Achilles' heel of each disease, resulting in a clear patient benefit. Owing to the technical advances in high-throughput sequencing, we can now apply broad genomic tests, including comprehensive gene panels or whole-genome and whole-transcriptome sequencing, to identify clinically important diagnostic, prognostic, and predictive markers. In this review, we give examples of how precision diagnostics has been implemented to guide treatment selection and improve survival in myeloid (myelodysplastic syndromes and acute myeloid leukemia) and lymphoid malignancies (acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and chronic lymphocytic leukemia). We discuss the relevance and potential of monitoring measurable residual disease using ultra-sensitive techniques to assess therapy response and detect early relapses. Finally, we bring up the promising avenue of functional precision medicine, combining ex vivo drug screening with various omics technologies, to provide novel treatment options for patients with advanced disease. Although we are only in the beginning of the field of precision hematology, we foresee rapid development with new types of diagnostics and treatment strategies becoming available to the benefit of our patients.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
- PRISM Center for Personalized Medicine, Gustave Roussy, Villejuif, France
| | - Tom Erkers
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - David W Scott
- BC Cancer's Centre for Lymphoid Cancer, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Rousselot
- Department of Hematology, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Jean Soulier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Hématologie Biologique, APHP, Hôpital Saint-Louis, Paris, France
| | - Martin Hutchings
- Department of Haematology and Phase 1 Unit, Rigshospitalet, Copenhagen, Denmark
| | - Päivi Östling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Karin E Smedby
- Department of Hematology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
49
|
Tse E, Kwong YL, Goh YT, Bee PC, Ng SC, Tan D, Caguioa P, Nghia H, Dumagay T, Norasetthada L, Chuncharunee S, Radhakrishnan V, Bagal B, Atmakusuma TD, Mulansari NA. Expert consensus on the management of chronic lymphocytic leukaemia in Asia. Clin Exp Med 2023; 23:2895-2907. [PMID: 36795237 PMCID: PMC10543526 DOI: 10.1007/s10238-023-01007-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023]
Abstract
In recent years, considerable progress has been made in the standard treatment for chronic lymphocytic leukaemia (CLL) due to the availability of new potent drugs. However, the majority of data on CLL were derived from Western populations, with limited studies and guidelines on the management of CLL from an Asian population perspective. This consensus guideline aims to understand treatment challenges and suggest appropriate management approaches for CLL in the Asian population and other countries with a similar socio-economic profile. The following recommendations are based on a consensus by experts and an extensive literature review and contribute towards uniform patient care in Asia.
Collapse
Affiliation(s)
- Eric Tse
- Division of Haematology, Medical Oncology and Haematopoietic Stem Cell Transplant, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| | - Yok Lam Kwong
- 2.Division of Haematology, Medical Oncology and Haematopoietic Stem Cell Transplant, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yeow Tee Goh
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Ping Chong Bee
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soo Chin Ng
- Subang Jaya Medical Centre (SJMC), Selangor, Malaysia
| | - Daryl Tan
- Mount Elizabeth Novena Hospital, Singapore, Singapore
| | - Priscilla Caguioa
- Section of Haematology, St Luke's Medical Center, University of Santo Tomas Hospital, Manila, Philippines
| | - Huynh Nghia
- Blood Transfusion and Haematology Hospital (BTH), Ho Chi Minh, Vietnam
| | - Teresita Dumagay
- Division of Haematology, Department of Medicine, Philippine General Hospital, Manila, Philippines
| | - Lalita Norasetthada
- Division of Haematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Suporn Chuncharunee
- Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Bhausaheb Bagal
- Department of Medical Oncology, Tata Memorial Centre, Parel, India
| | - Tubagus Djumhana Atmakusuma
- Haematology-Medical Oncology Division, Dr. Cipto Mangunkusumo National General Hospital/ Universitas Indonesia, Jakarta, Indonesia
| | - Nadia Ayu Mulansari
- Haematology-Medical Oncology Division, Dr. Cipto Mangunkusumo National General Hospital/ Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
50
|
Shourabizadeh H, Aleman DM, Rousseau LM, Law AD, Viswabandya A, Michelis FV. Machine Learning for the Prediction of Survival Post-Allogeneic Hematopoietic Cell Transplantation: A Single-Center Experience. Acta Haematol 2023; 147:280-291. [PMID: 37769635 DOI: 10.1159/000533665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023]
Abstract
INTRODUCTION Prediction of outcomes following allogeneic hematopoietic cell transplantation (HCT) remains a major challenge. Machine learning (ML) is a computational procedure that may facilitate the generation of HCT prediction models. We sought to investigate the prognostic potential of multiple ML algorithms when applied to a large single-center allogeneic HCT database. METHODS Our registry included 2,697 patients that underwent allogeneic HCT from January 1976 to December 2017. 45 pretransplant baseline variables were included in the predictive assessment of each ML algorithm on overall survival (OS) as determined by area under the curve (AUC). Pretransplant variables used in the EBMT ML study (Shouval et al., 2015) were used as a benchmark for comparison. RESULTS On the entire dataset, the random forest (RF) algorithm performed best (AUC 0.71 ± 0.04) compared to the second-best model, logistic regression (LR) (AUC = 0.69 ± 0.04) (p < 0.001). Both algorithms demonstrated improved AUC scores using all 45 variables compared to the limited variables examined by the EBMT study. Survival at 100 days post-HCT using RF on the full dataset discriminated patients into different prognostic groups with different 2-year OS (p < 0.0001). We then examined the ML methods that allow for significant individual variable identification, including LR and RF, and identified matched related donors (HR = 0.49, p < 0.0001), increasing TBI dose (HR = 1.60, p = 0.006), increasing recipient age (HR = 1.92, p < 0.0001), higher baseline Hb (HR = 0.59, p = 0.0002), and increased baseline FEV1 (HR = 0.73, p = 0.02), among others. CONCLUSION The application of multiple ML techniques on single-center allogeneic HCT databases warrants further investigation and may provide a useful tool to identify variables with prognostic potential.
Collapse
Affiliation(s)
- Hamed Shourabizadeh
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dionne M Aleman
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Louis-Martin Rousseau
- Department of Mathematical and Industrial Engineering, Polytechnique Montreal, Montreal, Québec, Canada
| | - Arjun D Law
- Hans Messner Allogeneic Transplant Program, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Auro Viswabandya
- Hans Messner Allogeneic Transplant Program, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Fotios V Michelis
- Hans Messner Allogeneic Transplant Program, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|