1
|
Palmer M, Zou Y, Hesseling AC, van der Laan L, Courtney I, Kinikar AA, Sonkawade N, Paradkar M, Kulkarni V, Casalme DJO, Frias MVG, Draper H, Wiesner L, Karlsson MO, Denti P, Svensson EM, Garcia-Prats AJ. Population pharmacokinetics and dosing of dispersible moxifloxacin formulation in children with rifampicin-resistant tuberculosis. Br J Clin Pharmacol 2025. [PMID: 39957395 DOI: 10.1002/bcp.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025] Open
Abstract
AIMS Moxifloxacin is a priority drug for treating rifampicin-resistant tuberculosis (RR-TB). We assessed the pharmacokinetics of a child-friendly, dispersible 100 mg tablet moxifloxacin formulation (dispersed in water) compared to the standard 400 mg non-dispersible formulation (crushed and suspended in water) in children and evaluated current dosing recommendations. METHODS The CATALYST trial investigated the pharmacokinetics of moxifloxacin in children with RR-TB. Children were enrolled in South Africa, India and the Philippines. Intensive pharmacokinetic sampling was undertaken while children were taking the standard non-dispersible 400 mg moxifloxacin tablet formulation and repeated after switching to the novel dispersible formulation. Pharmacokinetic data were analysed using population pharmacokinetic modelling. Simulations were performed to evaluate moxifloxacin exposures in children compared to consensus adult reference exposures using current World Health Organization (WHO)-recommended doses and more recent model-based doses. RESULTS Thirty-six children were enrolled [median age 4.8 (range 0.4-15) years and weight 15.6 (range 6.9-42.1) kg]. A two-compartment disposition model with first-order elimination and delayed absorption was developed. The bioavailability of dispersible versus standard formulations fulfilled standard bioequivalence criterion (ratio 1.05 with 90% confidence interval 0.95-1.15). Simulations showed WHO-recommended doses achieved exposures similar to those in adults in children >10 kg, while children <10 kg may require 33%-56% higher doses to reach adult reference exposures. CONCLUSIONS Dosing recommendations for children can be the same for the dispersible paediatric and standard non-dispersible adult moxifloxacin formulation. The current WHO dosing recommendation risks underdosing moxifloxacin in children <10 kg. We propose optimized moxifloxacin doses for both formulations.
Collapse
Affiliation(s)
- Megan Palmer
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Yuanxi Zou
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Louvina van der Laan
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Ingrid Courtney
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | | | | | - Mandar Paradkar
- BJ Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
- Center for Infectious Diseases in India, Johns Hopkins India, Pune, India
| | - Vandana Kulkarni
- BJ Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
- Center for Infectious Diseases in India, Johns Hopkins India, Pune, India
| | | | | | - Heather Draper
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Elin M Svensson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anthony J Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Simon A, Velloso-Junior SO, Mesquita RD, Fontao APGA, Costa TEMM, Honorio TS, Guimaraes TF, Sousa EGR, Viçosa AL, Sampaio ALF, do Carmo FA, Healy AM, Cabral LM, Castro RR. Development of inhaled moxifloxacin-metformin formulation as an alternative for pulmonary tuberculosis treatment. Int J Pharm 2024; 666:124740. [PMID: 39341387 DOI: 10.1016/j.ijpharm.2024.124740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Resistant M. tuberculosis strains threaten pulmonary tuberculosis (P-TB) control since they limit drug options. Drug repositioning and new development strategies are urgently required to overcome resistance. Studies have already shown the beneficial role of the oral antidiabetic metformin as an anti-tuberculosis adjuvant drug. This work aimed to develop an inhalatory dry powder co-formulation of metformin and moxifloxacin to figure out a future option for P-TB treatment. Pre-formulation evaluations indicated the physicochemical compatibility of constituents, demonstrating powder crystallinity and acceptable drug content. Eight moxifloxacin-metformin dry powder formulations were produced by spray drying, and solid-state characterizations showed partial amorphization, ascribed to moxifloxacin. Four formulations containing L-leucine exhibited micromeritic and in vitro deposition profiles indicating pulmonary delivery suitability, like spherical and corrugated particle surface, geometric diameters < 5 μm, high emitted doses (>85 %), and mass median aerodynamic diameters between 1-5 μm. The use of a second spray dryer model further optimized the aerodynamic properties and yield of the best formulation, demonstrating the influence of the equipment used on the product obtained. Moreover, the final formulation showed high in vitro cell tolerability and characteristics in permeability studies indicative of good drug retention in the lungs.
Collapse
Affiliation(s)
- A Simon
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - S O Velloso-Junior
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - R D Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A P G A Fontao
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - T E M M Costa
- Laboratório de Farmacologia Aplicada, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - T S Honorio
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - T F Guimaraes
- Seção de Análise e Identificação de Compostos com Potencial Terapêutico, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - E G R Sousa
- Seção de Análise e Identificação de Compostos com Potencial Terapêutico, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - A L Viçosa
- Laboratorio de Farmacotécnica Experimental, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - A L F Sampaio
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - F A do Carmo
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - A M Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - L M Cabral
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - R R Castro
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Sarkar M, Sarkar J. Therapeutic drug monitoring in tuberculosis. Eur J Clin Pharmacol 2024; 80:1659-1684. [PMID: 39240337 DOI: 10.1007/s00228-024-03749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE Therapeutic drug monitoring (TDM) is a standard clinical procedure that uses the pharmacokinetic and pharmacodynamic parameters of the drug in the body to determine the optimal dose. The pharmacokinetic variability of the drug(s) is a significant contributor to poor treatment outcomes, including the development of acquired drug resistance. TDM aids in dose optimization and improves outcomes while lessening drug toxicity. TDM is used to manage patients with tuberculosis (TB) who exhibit a slow response to therapy, despite good compliance and drug-susceptible organisms. Additional indications include patients at risk of malabsorption or delayed absorption of TB drugs and patients with drug-drug interaction and drug toxicity, which confirm compliance with therapy. TDM usually requires two blood samples: the 2 h and the 6 h post-dose. This narrative review will discuss the pharmacokinetics and pharmacodynamics of TB drugs, determinants of poor response to therapy, indications of TDM, methods of performing TDM, and its interpretations. METHODS This is a narrative review. We searched PubMed, Embase, and the CINAHL from inception to April 2024. We used the following search terms: tuberculosis, therapeutic drug monitoring, anti-TB drugs, pharmacokinetics, pharmacodynamics, limited sample strategies, diabetes and TB, HIV and TB, and multidrug-resistant TB. All types of articles were selected. RESULTS TDM is beneficial in managing TB, especially in patients with slow responses, drug-resistance TB, recurrent TB, and comorbidities such as diabetes mellitus and human immunodeficiency virus infection. CONCLUSION TDM is beneficial for improving outcomes, reducing the risk of acquired drug resistance, and avoiding side effects.
Collapse
Affiliation(s)
- M Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, 171001, Himachal Pradesh, India.
| | - J Sarkar
- MRes Neuroscience, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Walter K, Te Brake LHM, Lemm AK, Hoelscher M, Svensson EM, Hölscher C, Heinrich N. Investigating the treatment shortening potential of a combination of bedaquiline, delamanid and moxifloxacin with and without sutezolid, in a murine tuberculosis model with confirmed drug exposures. J Antimicrob Chemother 2024; 79:2607-2610. [PMID: 39110473 PMCID: PMC11441997 DOI: 10.1093/jac/dkae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/11/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND New and shorter regimens against multi-drug resistant tuberculosis (TB) remain urgently needed. To inform treatment duration in clinical trials, this study aimed to identify human pharmacokinetic equivalent doses, antimycobacterial and sterilizing activity of a novel regimen, containing bedaquiline, delamanid, moxifloxacin and sutezolid (BDMU), in the standard mouse model (BALB/c) of Mycobacterium tuberculosis (Mtb) infection. METHODS Treatment of mice with B25D0.6M200U200, B25D0.6M200, B25D0.6M200(U2003) or H10R10Z150E100 (isoniazid, rifampicin, pyrazinamide, ethambutol, HRZE), started 3 weeks after Mtb infection. Bactericidal activity was assessed after 1, 2, 3 and 4 months of treatment and relapse rates were assessed 3 months after completing treatment durations of 2, 3 and 4 months. RESULTS B25D0.6M200U200 generated human equivalent exposures in uninfected BALB/c mice. After 1 month of treatment, a higher bactericidal activity was observed for the B25D0.6M200U200 and the B25D0.6M200 regimen compared to the standard H10R10Z150E100 regimen. Furthermore, 3 months of therapy with both BDM-based regimens resulted in negative lung cultures, whereas all H10R10Z150E100 treated mice were still culture positive. After 3 months of therapy 7% and 13% of mice relapsed receiving B25D0.6M200U200 and B25D0.6M200, respectively, compared to 40% for H10R10Z150E100 treatment showing an increased sterilizing activity of both BDM-based regimens. CONCLUSIONS BDM-based regimens, with and without sutezolid, have a higher efficacy than the HRZE regimen in the BALB/c model of TB, with some improvement by adding sutezolid. By translating these results to TB patients, this novel BDMU regimen should be able to reduce treatment duration by 25% compared to HRZE therapy.
Collapse
Affiliation(s)
- Kerstin Walter
- Division of Infection Immunology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Lindsey H M Te Brake
- Department of Pharmacy, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ann-Kathrin Lemm
- Division of Infection Immunology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Michael Hoelscher
- Institute of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research, Partner Site Munich, Munich, Germany
- Fraunhofer Institute ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
- Unit Global Health, Helmholtz Zentrum Munich, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Christoph Hölscher
- Division of Infection Immunology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Norbert Heinrich
- Institute of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research, Partner Site Munich, Munich, Germany
- Fraunhofer Institute ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
| |
Collapse
|
5
|
Maranchick NF, Kwara A, Peloquin CA. Clinical considerations and pharmacokinetic interactions between HIV and tuberculosis therapeutics. Expert Rev Clin Pharmacol 2024; 17:537-547. [PMID: 38339997 DOI: 10.1080/17512433.2024.2317954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION Tuberculosis (TB) is a leading infectious disease cause of mortality worldwide, especially for people living with human immunodeficiency virus (PLWH). Treating TB in PLWH can be challenging due to numerous drug interactions. AREAS COVERED This review discusses drug interactions between antitubercular and antiretroviral drugs. Due to its clinical importance, initiation of antiretroviral therapy in patients requiring TB treatment is discussed. Special focus is placed on the rifamycin class, as it accounts for the majority of interactions. Clinically relevant guidance is provided on how to manage these interactions. An additional section on utilizing therapeutic drug monitoring (TDM) to optimize drug exposure and minimize toxicities is included. EXPERT OPINION Antitubercular and antiretroviral coadministration can be successfully managed. TDM can be used to optimize drug exposure and minimize toxicity risk. As new TB and HIV drugs are discovered, additional research will be needed to assess for clinically relevant drug interactions.
Collapse
Affiliation(s)
- Nicole F Maranchick
- Infectious Disease Pharmacokinetics Lab, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, USA
| | - Awewura Kwara
- Emerging Pathogens Institute, University of Florida, Gainesville, USA
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, USA
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Lab, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, USA
| |
Collapse
|
6
|
Mariager T, Terkelsen JH, Bue M, Öbrink-Hansen K, Nau R, Bjarkam CR, Nielsen H, Bodilsen J. Continuous evaluation of single-dose moxifloxacin concentrations in brain extracellular fluid, cerebrospinal fluid, and plasma: a novel porcine model. J Antimicrob Chemother 2024; 79:1313-1319. [PMID: 38573940 DOI: 10.1093/jac/dkae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Knowledge regarding CNS pharmacokinetics of moxifloxacin is limited, with unknown consequences for patients with meningitis caused by bacteria resistant to beta-lactams or caused by TB. OBJECTIVE (i) To develop a novel porcine model for continuous investigation of moxifloxacin concentrations within brain extracellular fluid (ECF), CSF and plasma using microdialysis, and (ii) to compare these findings to the pharmacokinetic/pharmacodynamic (PK/PD) target against TB. METHODS Six female pigs received an intravenous single dose of moxifloxacin (6 mg/kg) similar to the current oral treatment against TB. Subsequently, moxifloxacin concentrations were determined by microdialysis within five compartments: brain ECF (cortical and subcortical) and CSF (ventricular, cisternal and lumbar) for the following 8 hours. Data were compared to simultaneously obtained plasma samples. Chemical analysis was performed by high pressure liquid chromatography with mass spectrometry. The applied PK/PD target was defined as a maximum drug concentration (Cmax):MIC ratio >8. RESULTS We present a novel porcine model for continuous in vivo CNS pharmacokinetics for moxifloxacin. Cmax and AUC0-8h within brain ECF were significantly lower compared to plasma and lumbar CSF, but insignificantly different compared to ventricular and cisternal CSF. Unbound Cmax:MIC ratio across all investigated compartments ranged from 1.9 to 4.3. CONCLUSION A single dose of weight-adjusted moxifloxacin administered intravenously did not achieve adequate target site concentrations within the uninflamed porcine brain ECF and CSF to reach the applied TB CNS target.
Collapse
Affiliation(s)
- T Mariager
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Neurosurgery, Aalborg University Hospital, Aalborg, Denmark
| | - J H Terkelsen
- Department of Neurosurgery, Aalborg University Hospital, Aalborg, Denmark
| | - M Bue
- Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Aarhus University Hospital, Aarhus, Denmark
| | - K Öbrink-Hansen
- Department of Infectious Diseases, Internal Medicine, Gødstrup Hospital, Herning, Denmark
| | - R Nau
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - C R Bjarkam
- Department of Neurosurgery, Aalborg University Hospital, Aalborg, Denmark
| | - H Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - J Bodilsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
7
|
Davies Forsman L, Kim HY, Nguyen TA, Alffenaar JWC. Salivary Therapeutic Drug Monitoring of Antimicrobial Therapy: Feasible or Futile? Clin Pharmacokinet 2024; 63:269-278. [PMID: 38300489 PMCID: PMC10954910 DOI: 10.1007/s40262-024-01346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/02/2024]
Abstract
Personalised drug dosing through therapeutic drug monitoring (TDM) is important to maximise efficacy and to minimise toxicity. Hurdles preventing broad implementation of TDM in routine care include the need of sophisticated equipment and highly trained staff, high costs and lack of timely results. Salivary TDM is a non-invasive, patient-friendly alternative to blood sampling, which has the potential to overcome barriers with traditional TDM. A mobile UV spectrophotometer may provide a simple solution for analysing drug concentrations in saliva samples. Salivary TDM utilising point-of-care tests can support personalised dosing in various settings including low-resource as well as remote settings. In this opinion paper, we describe how hurdles of implementing traditional TDM may be mitigated by salivary TDM with new strategies for patient-friendly point-of-care testing.
Collapse
Affiliation(s)
- Lina Davies Forsman
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Solna, Sweden
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Building A15, Science Road, Sydney, NSW, 2006, Australia
- Westmead Hospital, Sydney, Australia
| | - Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Building A15, Science Road, Sydney, NSW, 2006, Australia
- The University of Sydney Infectious Diseases Institute (Sydney ID), Sydney, Australia
- Westmead Hospital, Sydney, Australia
| | - Thi Anh Nguyen
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Building A15, Science Road, Sydney, NSW, 2006, Australia
- The University of Sydney Infectious Diseases Institute (Sydney ID), Sydney, Australia
- Westmead Hospital, Sydney, Australia
| | - Jan-Willem C Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Building A15, Science Road, Sydney, NSW, 2006, Australia.
- The University of Sydney Infectious Diseases Institute (Sydney ID), Sydney, Australia.
- Westmead Hospital, Sydney, Australia.
| |
Collapse
|
8
|
Singha B, Murmu S, Nair T, Rawat RS, Sharma AK, Soni V. Metabolic Rewiring of Mycobacterium tuberculosis upon Drug Treatment and Antibiotics Resistance. Metabolites 2024; 14:63. [PMID: 38248866 PMCID: PMC10820029 DOI: 10.3390/metabo14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, further compounded by the issue of antimicrobial resistance (AMR). AMR is a result of several system-level molecular rearrangements enabling bacteria to evolve with better survival capacities: metabolic rewiring is one of them. In this review, we present a detailed analysis of the metabolic rewiring of Mtb in response to anti-TB drugs and elucidate the dynamic mechanisms of bacterial metabolism contributing to drug efficacy and resistance. We have discussed the current state of AMR, its role in the prevalence of the disease, and the limitations of current anti-TB drug regimens. Further, the concept of metabolic rewiring is defined, underscoring its relevance in understanding drug resistance and the biotransformation of drugs by Mtb. The review proceeds to discuss the metabolic adaptations of Mtb to drug treatment, and the pleiotropic effects of anti-TB drugs on Mtb metabolism. Next, the association between metabolic changes and antimycobacterial resistance, including intrinsic and acquired drug resistance, is discussed. The review concludes by summarizing the challenges of anti-TB treatment from a metabolic viewpoint, justifying the need for this discussion in the context of novel drug discovery, repositioning, and repurposing to control AMR in TB.
Collapse
Affiliation(s)
- Biplab Singha
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Sumit Murmu
- Regional Centre of Biotechnology, Faridabad 121001, India;
| | - Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA;
| | - Rahul Singh Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India;
| | - Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
9
|
Hughes J. Pharmacokinetics and Safety of Group A and B Anti-Tuberculosis Drugs Used in Treatment of Rifampicin-Resistant Tuberculosis during Pregnancy and Post-Partum: A Narrative Review. Pathogens 2023; 12:1385. [PMID: 38133270 PMCID: PMC10745846 DOI: 10.3390/pathogens12121385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Recommendations for treatment of rifampicin-resistant tuberculosis (RR-TB) during pregnancy and post-partum now include Group A and B antituberculosis drugs. While pharmacokinetic data for most of these drugs among adults receiving treatment for RR-TB are limited, the data from pregnant patients and their infants are extremely scarce. Existing data suggest that fluoroquinolones, bedaquiline, clofazimine and terizidone may be used safely in pregnancy. Pharmacokinetic exposures, particularly between trimesters, are potentially sub-optimal; however, there is currently no evidence to support dose adjustment during pregnancy. Linezolid poses a potentially serious toxicity risk, particularly as exposures appear to be high in the later stages of pregnancy and post-partum following extended use, but this should be considered alongside the benefits of this extremely effective drug in the treatment of this life-threatening disease. While plenty of questions remain regarding the exposure to Group A and B antituberculosis drugs through breastmilk, existing literature suggests minimal harm to the breastfed infant. Pregnant patients and their infants should be included in therapeutic trials and pharmacokinetic studies of effective antituberculosis drugs.
Collapse
Affiliation(s)
- Jennifer Hughes
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa
| |
Collapse
|
10
|
Yadav R, Meena D, Singh K, Tyagi R, Yadav Y, Sagar R. Recent advances in the synthesis of new benzothiazole based anti-tubercular compounds. RSC Adv 2023; 13:21890-21925. [PMID: 37483662 PMCID: PMC10359851 DOI: 10.1039/d3ra03862a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
This review highlights the recent synthetic developments of benzothiazole based anti-tubercular compounds and their in vitro and in vivo activity. The inhibitory concentrations of the newly synthesized molecules were compared with the standard reference drugs. The better inhibition potency was found in new benzothiazole derivatives against M. tuberculosis. Synthesis of benzothiazole derivatives was achieved through various synthetic pathways including diazo-coupling, Knoevenagel condensation, Biginelli reaction, molecular hybridization techniques, microwave irradiation, one-pot multicomponent reactions etc. Other than recent synthetic developments, mechanism of resistance of anti-TB drugs is also incorporated in this review. Structure activity relationships of the new benzothiazole derivatives along with the molecular docking studies of selected compounds have been discussed against the target DprE1 in search of a potent inhibitor with enhanced anti-tubercular activity.
Collapse
Affiliation(s)
- Rakhi Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Dilkhush Meena
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| |
Collapse
|
11
|
Chirehwa MT, Resendiz-Galvan JE, Court R, De Kock M, Wiesner L, de Vries N, Harding J, Gumbo T, Warren R, Maartens G, Denti P, McIlleron H. Optimizing Moxifloxacin Dose in MDR-TB Participants with or without Efavirenz Coadministration Using Population Pharmacokinetic Modeling. Antimicrob Agents Chemother 2023; 67:e0142622. [PMID: 36744891 PMCID: PMC10019313 DOI: 10.1128/aac.01426-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Moxifloxacin is included in some treatment regimens for drug-sensitive tuberculosis (TB) and multidrug-resistant TB (MDR-TB). Aiming to optimize dosing, we described moxifloxacin pharmacokinetic and MIC distribution in participants with MDR-TB. Participants enrolled at two TB hospitals in South Africa underwent intensive pharmacokinetic sampling approximately 1 to 6 weeks after treatment initiation. Plasma drug concentrations and clinical data were analyzed using nonlinear mixed-effects modeling with simulations to evaluate doses for different scenarios. We enrolled 131 participants (54 females), with median age of 35.7 (interquartile range, 28.5 to 43.5) years, median weight of 47 (42.0 to 54.0) kg, and median fat-free mass of 40.1 (32.3 to 44.7) kg; 79 were HIV positive, 29 of whom were on efavirenz-based antiretroviral therapy. Moxifloxacin pharmacokinetics were described with a 2-compartment model, transit absorption, and elimination via a liver compartment. We included allometry based on fat-free mass to estimate disposition parameters. We estimated an oral clearance for a typical patient to be 17.6 L/h. Participants treated with efavirenz had increased clearance, resulting in a 44% reduction in moxifloxacin exposure. Simulations predicted that, even at a median MIC of 0.25 (0.06 to 16) mg/L, the standard daily dose of 400 mg has a low probability of attaining the ratio of the area under the unbound concentration-time curve from 0 to 24 h to the MIC (fAUC0-24)/MIC target of >53, particularly in heavier participants. The high-dose WHO regimen (600 to 800 mg) yielded higher, more balanced exposures across the weight ranges, with better target attainment. When coadministered with efavirenz, moxifloxacin doses of up to 1,000 mg are needed to match these exposures. The safety of higher moxifloxacin doses in clinical settings should be confirmed.
Collapse
Affiliation(s)
- M. T. Chirehwa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - J. E. Resendiz-Galvan
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - R. Court
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - M. De Kock
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - L. Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - N. de Vries
- Brooklyn Chest Hospital, Cape Town, South Africa
| | - J. Harding
- DP Marais Hospital, Cape Town, South Africa
| | - T. Gumbo
- Quantitative Preclinical and Clinical Sciences Department, Praedicare Inc., Dallas, Texas, USA
| | - R. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - G. Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - P. Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - H. McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Jones AJ, Mathad JS, Dooley KE, Eke AC. Evidence for Implementation: Management of TB in HIV and Pregnancy. Curr HIV/AIDS Rep 2022; 19:455-470. [PMID: 36308580 PMCID: PMC9617238 DOI: 10.1007/s11904-022-00641-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Pregnant people living with HIV (PLWH) are at especially high risk for progression from latent tuberculosis infection (LTBI) to active tuberculosis (TB) disease. Among pregnant PLWH, concurrent TB increases the risk of complications such as preeclampsia, intrauterine fetal-growth restriction, low birth weight, preterm-delivery, perinatal transmission of HIV, and admission to the neonatal intensive care unit. The grave impact of superimposed TB disease on maternal morbidity and mortality among PLWH necessitates clear guidelines for concomitant therapy and an understanding of the pharmacokinetics (PK) and potential drug-drug interactions (DDIs) between antitubercular (anti-TB) agents and antiretroviral therapy (ART) in pregnancy. RECENT FINDINGS This review discusses the currently available evidence on the use of anti-TB agents in pregnant PLWH on ART. Pharmacokinetic and safety studies of anti-TB agents during pregnancy and postpartum are limited, and available data on second-line and newer anti-TB agents used in pregnancy suggest that several research gaps exist. DDIs between ART and anti-TB agents can decrease plasma concentration of ART, with the potential for perinatal transmission of HIV. Current recommendations for the treatment of LTBI, drug-susceptible TB, and multidrug-resistant TB (MDR-TB) are derived from observational studies and case reports in pregnant PLWH. While the use of isoniazid, rifamycins, and ethambutol in pregnancy and their DDIs with various ARTs are well-characterized, there is limited data on the use of pyrazinamide and several new and second-line antitubercular drugs in pregnant PLWH. Further research into treatment outcomes, PK, and safety data for anti-TB agent use during pregnancy and postpartum is urgently needed.
Collapse
Affiliation(s)
- Amanda J Jones
- Department of Obstetrics & Gynecology, Christiana Care Health Services, 4755 Ogletown Stanton Road, Newark, DE, 19713, USA
| | - Jyoti S Mathad
- Center for Global Health, Department of Medicine and Obstetrics & Gynecology, Weill Cornell Medicine, 402 E 67th Street, 2nd floor, New York, NY, 10021, USA
| | - Kelly E Dooley
- Division of Clinical Pharmacology & Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD, 21287, USA
| | - Ahizechukwu C Eke
- Division of Maternal Fetal Medicine, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Phipps 228, Baltimore, MD, 21287, USA.
| |
Collapse
|
13
|
Sidamo T, Rao PS, Aklillu E, Shibeshi W, Park Y, Cho YS, Shin JG, Heysell SK, Mpagama SG, Engidawork E. Population Pharmacokinetics of Levofloxacin and Moxifloxacin, and the Probability of Target Attainment in Ethiopian Patients with Multidrug-Resistant Tuberculosis. Infect Drug Resist 2022; 15:6839-6852. [PMID: 36465811 PMCID: PMC9717595 DOI: 10.2147/idr.s389442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/11/2022] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE This study aimed to explore the population pharmacokinetic modeling (PopPK) of levofloxacin (LFX) and moxifloxacin (MXF), as well as the percent probability of target attainment (PTA) as defined by the ratio of the area under the plasma concentration-time curve over 24 h and the in vitro minimum inhibitory concentration (AUC0-24/MIC) in Ethiopian multidrug resistant tuberculosis (MDR-TB) patients. METHODS Steady state-plasma concentration of the drugs in MDR-TB patients were determined using optimized liquid chromatography-tandem mass spectrometry. PopPK and simulations were run at various doses, and pharmacokinetic parameters were estimated. The effect of covariates on the PK parameters and PTA for maximum mycobacterial kill and resistance prevention was also investigated. RESULTS LFX and MXF both fit in a one-compartment model with adjustments. Serum-creatinine (Cr) influenced (p = 0.01) the clearance of LFX, whereas body mass index (BMI) influenced (p = 0.01) the apparent volume of distribution (V) of MXF. The PTA for LFX maximal mycobacterial kill at the critical MIC of 0.5 mg/L with the simulated 750 mg, 1000 mg, and 1500 mg doses were 29%, 62%, and 95%, respectively, whereas the PTA for resistance prevention at 1500 mg was only 4.8%, with none of the lower doses achieving this target. At the critical MIC of 0.25 mg/L, there was no change in the PTA for maximum bacterial kill when the MXF dose was increased (600 mg, 800 mg, and 1000 mg), but the PTA for resistance prevention was improved. CONCLUSION The standard doses of LFX and MXF may not provide adequate drug exposure. PopPK of LFX is more predictable for maximum mycobacterial kill, whereas MXF's resistance prevention target increases with dose. Cr and BMI are likely important covariates for dose optimization in Ethiopian patients.
Collapse
Affiliation(s)
- Temesgen Sidamo
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Prakruti S Rao
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Eleni Aklillu
- Department of Laboratory of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Workineh Shibeshi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yumi Park
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
- Center for Personalized Precision Medicine of Tuberculosis (cPMTb), Inje University College of Medicine, Busan, Republic of Korea
| | - Yong-soon Cho
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
- Center for Personalized Precision Medicine of Tuberculosis (cPMTb), Inje University College of Medicine, Busan, Republic of Korea
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
- Center for Personalized Precision Medicine of Tuberculosis (cPMTb), Inje University College of Medicine, Busan, Republic of Korea
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
14
|
Lemaitre F. Has the Time Come for Systematic Therapeutic Drug Monitoring of First-Line and WHO Group A Antituberculosis Drugs? Ther Drug Monit 2022; 44:133-137. [PMID: 34857693 DOI: 10.1097/ftd.0000000000000948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Tuberculosis (TB) is a major global health issue, with approximately 10 million people being infected each year, and is the leading cause of mortality from infectious disease, with 1.5 million deaths a year. Optimal TB treatment requires a combination of drugs for an adequate treatment duration owing to persistent organisms, hardly accessible infection sites, and a high risk of resistance selection. Long-term therapy increases the risk of patients' loss of adherence, adverse drug reactions, and drug-drug interactions, potentially leading to treatment failure. The high interpatient variability of TB drug exposure is another point eliciting interest in therapeutic drug monitoring (TDM) to optimize treatment. Studies reporting clinically relevant exposure thresholds, which might be proposed as targets toward treatment personalization, are discussed. Practical TDM strategies have also been reported to circumvent issues related to delayed drug absorption and the need for multiple samples when evaluating the area under the curve of drug concentrations. The need for treatment individualization is further emphasized because of the development of multidrug-resistant TB or extensively drug-resistant TB. Finally, the willingness to shorten the treatment duration while maintaining success is also a driver for ensuring adequate exposure to TB drugs with TDM. The aim of the present review was to underline the role of TDM in drug-susceptible TB and World Health Organization group A TB drugs.
Collapse
Affiliation(s)
- Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail); and
- Univ Rennes, CHU Rennes, Inserm, CIC 1414 (Centre d'Investigation Clinique de Rennes), Rennes, France
| |
Collapse
|
15
|
Yun HY, Chang V, Radtke KK, Wang Q, Strydom N, Chang MJ, Savic RM. Model-based efficacy and toxicity comparisons of moxifloxacin for multi-drug-resistant tuberculosis. Open Forum Infect Dis 2021; 9:ofab660. [PMID: 35146045 PMCID: PMC8825669 DOI: 10.1093/ofid/ofab660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Moxifloxacin (MOX) is used as a first-choice drug to treat multi-drug-resistant tuberculosis (MDR-TB), however, evidence-based dosing optimization should be strengthened by integrative analysis. The primary goal of this study was to evaluate MOX efficacy and toxicity using integratvie model-based approaches in MDR-TB patients.
Methods
In total, 113 MDR-TB patients from five different clinical trials were analyzed for the development of a population pharmacokinetics (PK) model. A final population PK model was merged with a previously developed lung-lesion distribution and QT prolongation model. Monte Carlo simulation was used to calculate the probability target attainment (PTA) value based on concentration. An area under the concentration-time curve (AUC)-based target was identified as the minimum inhibitory concentration (MIC) of MOX isolated from MDR-TB patients.
Results
The presence of human immunodeficiency virus (HIV) increased clearance by 32.7% and decreased the AUC by 27.4%, compared with HIV-negative MDR-TB patients. A daily dose of 800 mg or a 400 mg twice daily dose of MOX is expected to be effective in MDR-TB patients with an MIC of ≤ 0.25 µg/mL, regardless of PK differences resulting from the presence of HIV. The effect of MOX in HIV-positive MDR-TB patients tended to be decreased dramatically from 0.5 µg/mL, in contrast to the findings in HIV-negative patients. A regimen of twice-daily doses of 400 mg should be considered safer than an 800 mg once-daily dosing regimen, because of the narrow fluctuation of concentrations.
Conclusions
Our results suggest that a 400 mg twice-daily dose of MOX is an optimal dosing regimen for MDR-TB patients because it provides superior efficacy and safety.
Collapse
Affiliation(s)
- Hwi-yeol Yun
- Department of Pharmacy, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Vincent Chang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Kendra K Radtke
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Qianwen Wang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Natasha Strydom
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Min Jung Chang
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
16
|
Clinical relevance of rifampicin-moxifloxacin interaction in isoniazid resistant/intolerant tuberculosis patients. Antimicrob Agents Chemother 2021; 66:e0182921. [PMID: 34807758 DOI: 10.1128/aac.01829-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moxifloxacin is an attractive drug for the treatment of isoniazid-resistant rifampicin-susceptible tuberculosis (TB) or drug-susceptible TB complicated by isoniazid intolerance. However, co-administration with rifampicin decreases moxifloxacin exposure. It remains unclear whether this drug-drug interaction has clinical implications. This retrospective study in a Dutch TB centre investigated how rifampicin affected moxifloxacin exposure in patients with isoniazid-resistant or -intolerant TB. Moxifloxacin exposures were measured between 2015 and 2020 in 31 patients with isoniazid-resistant or -intolerant TB receiving rifampicin, and 20 TB patients receiving moxifloxacin without rifampicin. Moxifloxacin exposure, i.e. area under the concentration-time curve (AUC0-24h), and attainment of AUC0-24h/minimal inhibitory concentration (MIC) > 100 were investigated for 400 mg moxifloxacin and 600 mg rifampicin, and increased doses of moxifloxacin (600 mg) or rifampicin (900 mg). Moxifloxacin AUC0-24h and peak concentration with a 400 mg dose were decreased when rifampicin was co-administered compared to moxifloxacin alone (ratio of geometric means 0.61 (90% CI (0.53, 0.70) and 0.81 (90% CI (0.70, 0.94), respectively). Among patients receiving rifampicin, 65% attained an AUC0-24h/MIC > 100 for moxifloxacin compared to 78% of patients receiving moxifloxacin alone; this difference was not significant. Seven out of eight patients receiving an increased dose of 600 mg moxifloxacin reached the target AUC0-24h/MIC > 100. This study showed a clinically significant 39% decrease in moxifloxacin exposure when rifampicin was co-administered. Moxifloxacin dose adjustment may compensate for this drug-drug interaction. Further exploring the impact of higher doses of these drugs in patients with isoniazid resistance or intolerance is paramount.
Collapse
|
17
|
Alffenaar JWC, Jongedijk EM, van Winkel CAJ, Sariko M, Heysell SK, Mpagama S, Touw DJ. A mobile microvolume UV/visible light spectrophotometer for the measurement of levofloxacin in saliva. J Antimicrob Chemother 2021; 76:423-429. [PMID: 33089322 PMCID: PMC7816168 DOI: 10.1093/jac/dkaa420] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Therapeutic drug monitoring (TDM) for personalized dosing of fluoroquinolones has been recommended to optimize efficacy and reduce acquired drug resistance in the treatment of MDR TB. Therefore, the aim of this study was to develop a simple, low-cost, robust assay for TDM using mobile UV/visible light (UV/VIS) spectrophotometry to quantify levofloxacin in human saliva at the point of care for TB endemic settings. METHODS All experiments were performed on a mobile UV/VIS spectrophotometer. The levofloxacin concentration was quantified by using the amplitude of the second-order spectrum between 300 and 400 nm of seven calibrators. The concentration of spiked samples was calculated from the spectrum amplitude using linear regression. The method was validated for selectivity, specificity, linearity, accuracy and precision. Drugs frequently co-administered were tested for interference. RESULTS The calibration curve was linear over a range of 2.5-50.0 mg/L for levofloxacin, with a correlation coefficient of 0.997. Calculated accuracy ranged from -5.2% to 2.4%. Overall precision ranged from 2.1% to 16.1%. Application of the Savitsky-Golay method reduced the effect of interferents on the quantitation of levofloxacin. Although rifampicin and pyrazinamide showed analytical interference at the lower limit of quantitation of levofloxacin concentrations, this interference had no implication on decisions regarding the levofloxacin dose. CONCLUSIONS A simple UV/VIS spectrophotometric method to quantify levofloxacin in saliva using a mobile nanophotometer has been validated. This method can be evaluated in programmatic settings to identify patients with low levofloxacin drug exposure to trigger personalized dose adjustment.
Collapse
Affiliation(s)
- Jan-Willem C Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia.,Westmead Hospital, Sydney, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.,University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Erwin M Jongedijk
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Claudia A J van Winkel
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | | | - Scott K Heysell
- University of Virginia, Division of Infectious Diseases and International Health, Charlottesville, VA, USA
| | - Stellah Mpagama
- Kibong'oto Infectious Diseases Hospital, Kilimanjaro, Tanzania
| | - Daan J Touw
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| |
Collapse
|
18
|
Srivastava S, Deshpande D, Magombedze G, van Zyl J, Cirrincione K, Martin K, Bendet P, Berg A, Hanna D, Romero K, Hermann D, Gumbo T. Duration of pretomanid/moxifloxacin/pyrazinamide therapy compared with standard therapy based on time-to-extinction mathematics. J Antimicrob Chemother 2021; 75:392-399. [PMID: 31713607 PMCID: PMC6966096 DOI: 10.1093/jac/dkz460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 01/13/2023] Open
Abstract
Objectives Animal models have suggested that the combination of pretomanid with pyrazinamide and moxifloxacin (PaMZ) may shorten TB therapy duration to 3–4 months. Here, we tested that in the hollow-fibre system model of TB (HFS-TB). Methods A series of HFS-TB experiments were performed to compare the kill rates of the PaMZ regimen with the standard three-drug combination therapy. HFS-TB experiments were performed with bacilli in log-phase growth treated for 28 days, intracellular bacilli treated daily for 28 days and semi-dormant Mycobacterium tuberculosis treated with daily therapy for 56 days for sterilizing effect. Next, time-to-extinction equations were employed, followed by morphism transformation and Latin hypercube sampling, to determine the proportion of patients who achieved a time to extinction of 3, 4 or 6 months with each regimen. Results Using linear regression, the HFS-TB sterilizing effect rates of the PaMZ regimen versus the standard-therapy regimen during the 56 days were 0.18 (95% credible interval=0.13–0.23) versus 0.15 (95% credible interval=0.08–0.21) log10 cfu/mL/day, compared with 0.16 (95% credible interval=0.13–0.18) versus 0.11 (95% credible interval=0.09–0.13) log10 cfu/mL/day in the Phase II clinical trial, respectively. Using time-to-extinction and Latin hypercube sampling modelling, the expected percentages of patients in which the PaMZ regimen would achieve sterilization were 40.37% (95% credible interval=39.1–41.34) and 72.30% (95% credible interval=71.41–73.17) at 3 and 4 months duration of therapy, respectively, versus 93.67% (95% credible interval=93.18–94.13) at 6 months for standard therapy. Conclusions The kill rates of the PaMZ regimen were predicted to be insufficient to achieve cure in less than 6 months in most patients.
Collapse
Affiliation(s)
- Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Devyani Deshpande
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Gesham Magombedze
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Johanna van Zyl
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Kayle Cirrincione
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | | | | | - Alexander Berg
- Critical Path to TB Drug Regimens, Critical Path Institute, Tucson, AZ, USA
| | - Debra Hanna
- Critical Path to TB Drug Regimens, Critical Path Institute, Tucson, AZ, USA.,Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Klaus Romero
- Critical Path to TB Drug Regimens, Critical Path Institute, Tucson, AZ, USA
| | - Dave Hermann
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA.,Praedicare Laboratories, Dallas, TX, USA.,Lung Infection and Immunity Unit, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Sturkenboom MGG, Märtson AG, Svensson EM, Sloan DJ, Dooley KE, van den Elsen SHJ, Denti P, Peloquin CA, Aarnoutse RE, Alffenaar JWC. Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs. Clin Pharmacokinet 2021; 60:685-710. [PMID: 33674941 PMCID: PMC7935699 DOI: 10.1007/s40262-021-00997-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Tuberculosis (TB) is still the number one cause of death due to an infectious disease. Pharmacokinetics and pharmacodynamics of anti-TB drugs are key in the optimization of TB treatment and help to prevent slow response to treatment, acquired drug resistance, and adverse drug effects. The aim of this review was to provide an update on the pharmacokinetics and pharmacodynamics of anti-TB drugs and to show how population pharmacokinetics and Bayesian dose adjustment can be used to optimize treatment. We cover aspects on preclinical, clinical, and population pharmacokinetics of different drugs used for drug-susceptible TB and multidrug-resistant TB. Moreover, we include available data to support therapeutic drug monitoring of these drugs and known pharmacokinetic and pharmacodynamic targets that can be used for optimization of therapy. We have identified a wide range of population pharmacokinetic models for first- and second-line drugs used for TB, which included models built on NONMEM, Pmetrics, ADAPT, MWPharm, Monolix, Phoenix, and NPEM2 software. The first population models were built for isoniazid and rifampicin; however, in recent years, more data have emerged for both new anti-TB drugs, but also for defining targets of older anti-TB drugs. Since the introduction of therapeutic drug monitoring for TB over 3 decades ago, further development of therapeutic drug monitoring in TB next steps will again depend on academic and clinical initiatives. We recommend close collaboration between researchers and the World Health Organization to provide important guideline updates regarding therapeutic drug monitoring and pharmacokinetics/pharmacodynamics.
Collapse
Affiliation(s)
- Marieke G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Derek J Sloan
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Liverpool School of Tropical Medicine, Liverpool, UK.,School of Medicine, University of St Andrews, St Andrews, UK
| | - Kelly E Dooley
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Simone H J van den Elsen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy, Hospital Group Twente, Almelo, Hengelo, the Netherlands
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. .,Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia. .,Westmead Hospital, Westmead, NSW, Australia. .,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
20
|
Gao J, Du J, Shu W, Liu Y, Wang Y, Xue Z, Li L, Pang Y. Stepwise selection of mutation conferring fluroquinolone resistance: multisite MDR-TB cohort study. Eur J Clin Microbiol Infect Dis 2021; 40:1767-1771. [PMID: 33604720 DOI: 10.1007/s10096-021-04187-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
In this study, we demonstrate that fluroquinolone (FQ) is at risk of acquired drug resistance after continuous exposure. The reduced susceptibility is observed in subsequent Mycobacterium tuberculosis isolates from patients without FQ exposure. The stepwise selection of mutation of increasing FQ resistance highlights the urgent need for monitoring FQ resistance in multidrug-resistant tuberculosis patients throughout the entire treatment course.
Collapse
Affiliation(s)
- Jingtao Gao
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Jian Du
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Wei Shu
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Yuhong Liu
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Yufeng Wang
- Department of Laboratory Quality Control, Innovation Alliance on Tuberculosis Diagnosis and Treatment (Beijing), Beijing, People's Republic of China
| | - Zhongtan Xue
- Department of Laboratory Quality Control, Innovation Alliance on Tuberculosis Diagnosis and Treatment (Beijing), Beijing, People's Republic of China
| | - Liang Li
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China.
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China.
| |
Collapse
|
21
|
Märtson AG, Burch G, Ghimire S, Alffenaar JWC, Peloquin CA. Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems. Expert Opin Drug Metab Toxicol 2020; 17:23-39. [PMID: 33040625 DOI: 10.1080/17425255.2021.1836158] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Therapeutic drug monitoring (TDM) has been recommended for treatment optimization in tuberculosis (TB) but is only is used in certain countries e.g. USA, Germany, the Netherlands, Sweden and Tanzania. Recently, new drugs have emerged and PK studies in TB are continuing, which contributes further evidence for TDM in TB. The aim of this review is to provide an update on drugs used in TB, treatment strategies for these drugs, and TDM to support broader implementation. AREAS COVERED This review describes the different drug classes used for TB, multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), along with their pharmacokinetics, dosing strategies, TDM and sampling strategies. Moreover, the review discusses TDM for patient TB and renal or liver impairment, patients co-infected with HIV or hepatitis, and special patient populations - children and pregnant women. EXPERT OPINION TB treatment has a long history of using 'one size fits all.' This has contributed to treatment failures, treatment relapses, and the selection of drug-resistant isolates. While challenging in resource-limited circumstances, TDM offers the clinician the opportunity to individualize and optimize treatment early in treatment. This approach may help to refine treatment and thereby reduce adverse effects and poor treatment outcomes. Funding, training, and randomized controlled trials are needed to advance the use of TDM for patients with TB.
Collapse
Affiliation(s)
- Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Gena Burch
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida , Gainesville, FL, USA
| | - Samiksha Ghimire
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands.,Department of Pharmacy, Westmead Hospital , Sydney, Australia.,Sydney Pharmacy School, The University of Sydney , Sydney, New South Wales, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney , Sydney, Australia
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida , Gainesville, FL, USA
| |
Collapse
|
22
|
Davies Forsman L, Niward K, Kuhlin J, Zheng X, Zheng R, Ke R, Hong C, Werngren J, Paues J, Simonsson US, Eliasson E, Hoffner S, Xu B, Alffenaar JW, Schön T, Hu Y, Bruchfeld J. Suboptimal moxifloxacin and levofloxacin drug exposure during treatment of patients with multidrug-resistant tuberculosis: results from a prospective study in China. Eur Respir J 2020; 57:13993003.03463-2020. [DOI: 10.1183/13993003.03463-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
|
23
|
van den Elsen SH, Sturkenboom MG, Akkerman O, Barkane L, Bruchfeld J, Eather G, Heysell SK, Hurevich H, Kuksa L, Kunst H, Kuhlin J, Manika K, Moschos C, Mpagama SG, Muñoz Torrico M, Skrahina A, Sotgiu G, Tadolini M, Tiberi S, Volpato F, van der Werf TS, Wilson MR, Zúñiga J, Touw DJ, Migliori GB, Alffenaar JW. Prospective evaluation of improving fluoroquinolone exposure using centralised therapeutic drug monitoring (TDM) in patients with tuberculosis (PERFECT): a study protocol of a prospective multicentre cohort study. BMJ Open 2020; 10:e035350. [PMID: 32554740 PMCID: PMC7304807 DOI: 10.1136/bmjopen-2019-035350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Global multidrug-resistant tuberculosis (MDR-TB) treatment success rates remain suboptimal. Highly active WHO group A drugs moxifloxacin and levofloxacin show intraindividual and interindividual pharmacokinetic variability which can cause low drug exposure. Therefore, therapeutic drug monitoring (TDM) of fluoroquinolones is recommended to personalise the drug dosage, aiming to prevent the development of drug resistance and optimise treatment. However, TDM is considered laborious and expensive, and the clinical benefit in MDR-TB has not been extensively studied. This observational multicentre study aims to determine the feasibility of centralised TDM and to investigate the impact of fluoroquinolone TDM on sputum conversion rates in patients with MDR-TB compared with historical controls. METHODS AND ANALYSIS Patients aged 18 years or older with sputum smear and culture-positive pulmonary MDR-TB will be eligible for inclusion. Patients receiving TDM using a limited sampling strategy (t=0 and t=5 hours) will be matched to historical controls without TDM in a 1:2 ratio. Sample analysis and dosing advice will be performed in a centralised laboratory. Centralised TDM will be considered feasible if >80% of the dosing recommendations are returned within 7 days after sampling and 100% within 14 days. The number of patients who are sputum smear and culture-negative after 2 months of treatment will be determined in the prospective TDM group and will be compared with the control group without TDM to determine the impact of TDM. ETHICS AND DISSEMINATION Ethical clearance was obtained by the ethical review committees of the 10 participating hospitals according to local procedures or is pending (online supplementary file 1). Patients will be included after obtaining written informed consent. We aim to publish the study results in a peer-reviewed journal. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (NCT03409315).
Collapse
Affiliation(s)
- Simone Hj van den Elsen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marieke Gg Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Onno Akkerman
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Tuberculosis Center Beatrixoord, University of Groningen, University Medical Center Groningen, Haren, The Netherlands
| | - Linda Barkane
- Department of Multidrug Resistant Tuberculosis, Riga East University Hospital TB and Lung Disease Clinic, Riga, Latvia
| | - Judith Bruchfeld
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Geoffrey Eather
- Department of Respiratory Medicine and Metro South Clinical Tuberculosis Service, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Henadz Hurevich
- The Republican Scientific and Practical Center for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Liga Kuksa
- Department of Multidrug Resistant Tuberculosis, Riga East University Hospital TB and Lung Disease Clinic, Riga, Latvia
| | - Heinke Kunst
- Department of Respiratory Medicine, Blizard Institute, Queen Mary University of London, Barts Health NHS Trust, London, UK
| | - Johanna Kuhlin
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Katerina Manika
- Pulmonary Department, Respiratory Infections Unit, G. Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charalampos Moschos
- Drug-Resistant Tuberculosis Unit, 'Sotiria' Hospital for Chest Diseases, Athens, Greece
| | - Stellah G Mpagama
- Kibong'oto Infectious Diseases Hospital, Kilimanjaro, United Republic of Tanzania
| | - Marcela Muñoz Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Alena Skrahina
- The Republican Scientific and Practical Center for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Giovanni Sotgiu
- Department of Medical, Surgical and Experimental Sciences, Clinical Epidemiology and Medical Statistics Unit, University of Sassari, Sassari, Italy
| | - Marina Tadolini
- Department of Medical and Surgical Sciences, Unit of Infectious Diseases, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Simon Tiberi
- Department of Infection, Blizard Institute, Queen Mary University of London, Barts Health NHS Trust, London, UK
| | - Francesca Volpato
- Department of Medical and Surgical Sciences, Unit of Infectious Diseases, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Tjip S van der Werf
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Malcolm R Wilson
- Department of Respiratory Medicine and Metro South Clinical Tuberculosis Service, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Joaquin Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de Salud, Mexico City, Mexico
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Giovanni B Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - Jan-Willem Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
van den Elsen SH, Akkerman OW, Jongedijk EM, Wessels M, Ghimire S, van der Werf TS, Touw DJ, Bolhuis MS, Alffenaar JWC. Therapeutic drug monitoring using saliva as matrix: an opportunity for linezolid, but challenge for moxifloxacin. Eur Respir J 2020; 55:13993003.01903-2019. [DOI: 10.1183/13993003.01903-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/10/2020] [Indexed: 11/05/2022]
|
25
|
Abstract
The inability to use powerful antituberculosis drugs in an increasing number of patients seems to be the biggest threat towards global tuberculosis (TB) elimination. Simplified, shorter and preferably less toxic drug regimens are being investigated for pulmonary TB to counteract emergence of drug resistance. Intensified regimens with high-dose anti-TB drugs during the first weeks of treatment are being investigated for TB meningitis to increase the survival rate among these patients. Moxifloxacin, gatifloxacin and levofloxacin are seen as core agents in case of resistance or intolerance against first-line anti-TB drugs. However, based on their pharmacokinetics (PK) and pharmacodynamics (PD), these drugs are also promising for TB meningitis and might perhaps have the potential to shorten pulmonary TB treatment if dosing could be optimized. We prepared a comprehensive summary of clinical trials investigating the outcome of TB regimens based on moxifloxacin, gatifloxacin and levofloxacin in recent years. In the majority of clinical trials, treatment success was not in favour of these drugs compared to standard regimens. By discussing these results, we propose that incorporation of extended PK/PD analysis into the armamentarium of drug-development tools is needed to clarify the role of moxifloxacin, gatifloxacin and levofloxacin for TB, using the right dose. In addition, to prevent failure of treatment or emergence of drug-resistance, PK and PD variability advocates for concentration-guided dosing in patients at risk for too low a drug-exposure.
Collapse
|
26
|
Limited Sampling Strategies Using Linear Regression and the Bayesian Approach for Therapeutic Drug Monitoring of Moxifloxacin in Tuberculosis Patients. Antimicrob Agents Chemother 2019; 63:AAC.00384-19. [PMID: 31010868 DOI: 10.1128/aac.00384-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
Therapeutic drug monitoring (TDM) of moxifloxacin is recommended to improve the response to tuberculosis treatment and reduce acquired drug resistance. Limited sampling strategies (LSSs) are able to reduce the burden of TDM by using a small number of appropriately timed samples to estimate the parameter of interest, the area under the concentration-time curve. This study aimed to develop LSSs for moxifloxacin alone (MFX) and together with rifampin (MFX+RIF) in tuberculosis (TB) patients. Population pharmacokinetic (popPK) models were developed for MFX (n = 77) and MFX+RIF (n = 24). In addition, LSSs using Bayesian approach and multiple linear regression were developed. Jackknife analysis was used for internal validation of the popPK models and multiple linear regression LSSs. Clinically feasible LSSs (one to three samples, 6-h timespan postdose, and 1-h interval) were tested. Moxifloxacin exposure was slightly underestimated in the one-compartment models of MFX (mean -5.1%, standard error [SE] 0.8%) and MFX+RIF (mean -10%, SE 2.5%). The Bayesian LSSs for MFX and MFX+RIF (both 0 and 6 h) slightly underestimated drug exposure (MFX mean -4.8%, SE 1.3%; MFX+RIF mean -5.5%, SE 3.1%). The multiple linear regression LSS for MFX (0 and 4 h) and MFX+RIF (1 and 6 h), showed mean overestimations of 0.2% (SE 1.3%) and 0.9% (SE 2.1%), respectively. LSSs were successfully developed using the Bayesian approach (MFX and MFX+RIF; 0 and 6 h) and multiple linear regression (MFX, 0 and 4 h; MFX+RIF, 1 and 6 h). These LSSs can be implemented in clinical practice to facilitate TDM of moxifloxacin in TB patients.
Collapse
|
27
|
Dekkers BG, Bolhuis MS, ter Beek L, de Lange WC, van der Werf TS, Alffenaar JWC, Akkerman OW. Reduced moxifloxacin exposure in patients with tuberculosis and diabetes. Eur Respir J 2019; 54:13993003.00373-2019. [DOI: 10.1183/13993003.00373-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/20/2019] [Indexed: 12/12/2022]
|
28
|
Ghimire S, Maharjan B, Jongedijk EM, Kosterink JGW, Ghimire GR, Touw DJ, van der Werf TS, Shrestha B, Alffenaar JWC. Levofloxacin pharmacokinetics, pharmacodynamics and outcome in multidrug-resistant tuberculosis patients. Eur Respir J 2019; 53:13993003.02107-2018. [PMID: 30655280 DOI: 10.1183/13993003.02107-2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/28/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Samiksha Ghimire
- University of Groningen, University Medical Center Groningen, Dept of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Bhagwan Maharjan
- German Nepal TB Project, Nepal Anti-Tuberculosis Association, Kathmandu, Nepal
| | - Erwin M Jongedijk
- University of Groningen, University Medical Center Groningen, Dept of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Jos G W Kosterink
- University of Groningen, University Medical Center Groningen, Dept of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Gokarna R Ghimire
- Government of Nepal, Ministry of Health and Population, Dept of Health Services, National Tuberculosis Center, Kathmandu, Nepal
| | - Daan J Touw
- University of Groningen, University Medical Center Groningen, Dept of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Tjip S van der Werf
- University of Groningen, Groningen Research Institute of Pharmacy, Dept of Pharmacokinetics, Toxicology and Targeting, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Infectious Diseases Service and Tuberculosis Unit, Groningen, The Netherlands
| | - Bhabana Shrestha
- German Nepal TB Project, Nepal Anti-Tuberculosis Association, Kathmandu, Nepal
| | - Jan-Willem C Alffenaar
- University of Groningen, University Medical Center Groningen, Dept of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| |
Collapse
|
29
|
Alffenaar JWC, Akkerman OW, Bothamley G. Monitoring during and after tuberculosis treatment. Tuberculosis (Edinb) 2018. [DOI: 10.1183/2312508x.10022217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Assessment of the Additional Value of Verapamil to a Moxifloxacin and Linezolid Combination Regimen in a Murine Tuberculosis Model. Antimicrob Agents Chemother 2018; 62:AAC.01354-18. [PMID: 29987154 DOI: 10.1128/aac.01354-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/24/2023] Open
Abstract
The favorable treatment outcome rate for multidrug-resistant tuberculosis (MDR-TB) is only 54%, and therefore new drug regimens are urgently needed. In this study, we evaluated the activity of the combination of moxifloxacin and linezolid as a possible new MDR-TB regimen in a murine TB model and the value of the addition of the efflux pump inhibitor verapamil to this backbone. BALB/c mice were infected with drug-sensitive Mycobacterium tuberculosis and were treated with human-equivalent doses of moxifloxacin (200 mg/kg of body weight) and linezolid (100 mg/kg) with or without verapamil (12.5 mg/kg) for 12 weeks. Pharmacokinetic parameters were collected during treatment at the steady state. After 12 weeks of treatment, a statistically significant decline in mycobacterial load in the lungs was observed with the moxifloxacin-linezolid regimen with and without verapamil (5.9 and 5.0 log CFU, respectively), but sterilization was not achieved yet. The spleens of all mice were culture negative after 12 weeks of treatment with both treatment modalities, and the addition of verapamil caused a significant reduction in relapse (14/14 positive spleens without versus 9/15 with verapamil, P = 0.017). In conclusion, treatment with a combination regimen of moxifloxacin and linezolid showed a strong decline in mycobacterial load in the mice. The addition of verapamil to this backbone had a modest additional effect in terms of reducing mycobacterial load in the lung as well as reducing the spleen relapse rate. These results warrant further studies on the role of efflux pump inhibition in improving the efficacy of MDR-TB backbone regimens.
Collapse
|
31
|
Weiner M, Gelfond J, Johnson-Pais TL, Engle M, Peloquin CA, Johnson JL, Sizemore EE, Mac Kenzie WR. Elevated Plasma Moxifloxacin Concentrations and SLCO1B1 g.-11187G>A Polymorphism in Adults with Pulmonary Tuberculosis. Antimicrob Agents Chemother 2018; 62:e01802-17. [PMID: 29463526 PMCID: PMC5923103 DOI: 10.1128/aac.01802-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/08/2018] [Indexed: 01/30/2023] Open
Abstract
Moxifloxacin exhibits concentration-dependent prolongation of human QTc intervals and bactericidal activity against Mycobacterium tuberculosis However, moxifloxacin plasma concentrations are variable between patients. We evaluated whether human gene polymorphisms affect moxifloxacin plasma concentrations in tuberculosis patients from two geographic regions. We enrolled a convenience sample of 49 adults with drug-sensitive pulmonary tuberculosis from Africa and the United States enrolled in two treatment trials of moxifloxacin as part of multidrug therapy. Pharmacokinetic parameters were evaluated by noncompartmental techniques. Human single-nucleotide polymorphisms of transporter genes were evaluated by analysis of covariance (ANCOVA) on moxifloxacin exposure and the peak (maximum) concentration (Cmax). The moxifloxacin area under the concentration-time curve from 0 to 24 h (AUC0-24) and Cmax were significantly increased by the drug milligram-per-kilogram dosage and the genotype of variant g.-11187G>A in the SLCO1B1 gene (rs4149015) but not by geographic region. The median moxifloxacin AUC0-24 was 46% higher and the median Cmax was 30% higher in 4 (8%) participants who had the SLCO1B1 g.-11187 AG genotype than in 45 participants who had the wild-type GG genotype (median AUC0-24 from the model, 34.4 versus 23.6 μg · h/ml [P = 0.005, ANCOVA]; median Cmax from the model, 3.5 versus 2.7 μg/ml [P = 0.009, ANCOVA]). Because moxifloxacin exhibits concentration-dependent prolongation of human QTc intervals and prolonged QTc intervals are associated with cardiac arrhythmia, further study is needed to evaluate the risk associated with the SLCO1B1 g.-11187G>A variant. (This study has been registered at ClinicalTrials.gov under identifier NCT00164463.).
Collapse
Affiliation(s)
- Marc Weiner
- University of Texas Health Science Center, San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Jon Gelfond
- University of Texas Health Science Center, San Antonio, San Antonio, Texas, USA
| | | | - Melissa Engle
- University of Texas Health Science Center, San Antonio, San Antonio, Texas, USA
| | | | - John L Johnson
- Case Western Reserve University, Department of Medicine, Uganda-Case Western Reserve University Research Collaboration, Cleveland, Ohio, USA
| | - Erin E Sizemore
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - William R Mac Kenzie
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
32
|
Luo T, Yuan J, Peng X, Yang G, Mi Y, Sun C, Wang C, Zhang C, Bao L. Double mutation in DNA gyrase confers moxifloxacin resistance and decreased fitness of Mycobacterium smegmatis. J Antimicrob Chemother 2018; 72:1893-1900. [PMID: 28387828 DOI: 10.1093/jac/dkx110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/13/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives Ofloxacin and moxifloxacin are the most commonly used fluoroquinolones (FQs) for the treatment of tuberculosis. As a new generation FQ, moxifloxacin has been recommended for the treatment of ofloxacin-resistant TB. However, the mechanism by which ofloxacin-resistant Mycobacterium tuberculosis further gains resistance to moxifloxacin remains unclear. Methods We used Mycobacterium smegmatis as a model for studying FQ resistance in M. tuberculosis . Moxifloxacin-resistant M. smegmatis was selected in vitro based on strains with primary ofloxacin resistance. The gyrA and gyrB genes of the resistant strains were sequenced to identify resistance-associated mutations. An in vitro competition assay was applied to explore the influence of gyrA / gyrB mutations on bacterial fitness. Finally, we evaluated the clinical relevance of our findings by analysing the WGS data of 1984 globally collected M. tuberculosis strains. Results A total of 57 moxifloxacin-resistant M. smegmatis strains based on five ofloxacin-resistant strains were obtained. Sequencing results revealed that all moxifloxacin-resistant strains harboured second-step mutations in gyrA or gyrB . The relative fitnesses of the double-mutation strains varied from 0.65 to 0.93 and were mostly lower than those of their mono-mutation parents. From the genomic data, we identified 37 clinical M. tuberculosis strains harbouring double mutations in gyrA and/or gyrB and 36 of them carried at least one low-level FQ-resistance mutation. Conclusions Double mutation in DNA gyrase leads to moxifloxacin resistance and decreased fitness in M. smegmatis . Under current dosing of moxifloxacin, double mutations mainly happened in M. tuberculosis strains with primary low-level resistance mutations.
Collapse
Affiliation(s)
- Tao Luo
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Jinning Yuan
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Xuan Peng
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Guoping Yang
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Youjun Mi
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Changfeng Sun
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Chuhan Wang
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Chunxi Zhang
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Lang Bao
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Naidoo A, Ramsuran V, Chirehwa M, Denti P, McIlleron H, Naidoo K, Yende-Zuma N, Singh R, Ngcapu S, Chaudhry M, Pepper MS, Padayatchi N. Effect of genetic variation in UGT1A and ABCB1 on moxifloxacin pharmacokinetics in South African patients with tuberculosis. Pharmacogenomics 2018; 19:17-29. [PMID: 29210323 PMCID: PMC5753622 DOI: 10.2217/pgs-2017-0144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/10/2017] [Indexed: 01/10/2023] Open
Abstract
AIM We assessed the effect of genetic variability in UGT1A and ABCB1 genes on moxifloxacin pharmacokinetics. METHODS Genotypes for selected UGT1A and ABCB1 SNPs were determined using a TaqMan® Genotyping OpenArray™ and high-resolution melt analysis for rs8175347. A nonlinear mixed-effects model was used to describe moxifloxacin pharmacokinetics. RESULTS Genotypes of UGT1A SNPs, rs8175347 and rs3755319 (20.6% lower and 11.6% increased clearance, respectively) and ABCB1 SNP rs2032582 (40% reduced bioavailability in one individual) were significantly associated with changes in moxifloxacin pharmacokinetic parameters. CONCLUSION Genetic variation in UGT1A as represented by rs8175347 to a lesser extent rs3755319 and the ABCB1 rs2032582 SNP is modestly associated with the interindividual variability reported in moxifloxacin pharmacokinetics and exposure. Clinical relevance of the effects of genetic variation on moxifloxacin pharmacokinetic requires further investigation.
Collapse
Affiliation(s)
- Anushka Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Veron Ramsuran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
- School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Maxwell Chirehwa
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Western Cape, South Africa
| | - Paolo Denti
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Western Cape, South Africa
| | - Helen McIlleron
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Western Cape, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis & Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Nonhlanhla Yende-Zuma
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Ravesh Singh
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, KwaZulu-Natal, South Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Mamoonah Chaudhry
- Department of Immunology & the Institute for Cellular & Molecular Medicine; South African Medical Research Council Extramural Unit for Stem Cell Research & Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Michael S Pepper
- Department of Immunology & the Institute for Cellular & Molecular Medicine; South African Medical Research Council Extramural Unit for Stem Cell Research & Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis & Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| |
Collapse
|
34
|
Al-Humadi HW, Al-Saigh RJ, Al-Humadi AW. Addressing the Challenges of Tuberculosis: A Brief Historical Account. Front Pharmacol 2017; 8:689. [PMID: 29033842 PMCID: PMC5626940 DOI: 10.3389/fphar.2017.00689] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/14/2017] [Indexed: 02/04/2023] Open
Abstract
Tuberculosis (TB) is a highly contagious disease that still poses a threat to human health. Mycobacterium tuberculosis (MTB), the pathogen responsible for TB, uses diverse ways in order to survive in a variety of host lesions and to subsequently evade immune surveillance; as a result, fighting TB and its associated multidrug resistance has been an ongoing challenge. The aim of this review article is to summarize the historical sequence of drug development and use in the fight against TB, with a particular emphasis on the decades between World War II and the dawn of the twenty first century (2000).
Collapse
Affiliation(s)
- Hussam W. Al-Humadi
- Department of Pharmacology and Toxicology, Pharmacy College, University of Babylon, Babylon, Iraq
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Rafal J. Al-Saigh
- Department of Pharmacology and Toxicology, Pharmacy College, University of Babylon, Babylon, Iraq
| | - Ahmed W. Al-Humadi
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
35
|
Naidoo A, Naidoo K, McIlleron H, Essack S, Padayatchi N. A Review of Moxifloxacin for the Treatment of Drug-Susceptible Tuberculosis. J Clin Pharmacol 2017; 57:1369-1386. [PMID: 28741299 DOI: 10.1002/jcph.968] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/21/2017] [Indexed: 11/08/2022]
Abstract
Moxifloxacin, an 8-methoxy quinolone, is an important drug in the treatment of multidrug-resistant tuberculosis and is being investigated in novel drug regimens with pretomanid, bedaquiline, and pyrazinamide, or rifapentine, for the treatment of drug-susceptible tuberculosis. Early results of these studies are promising. Although current evidence does not support the use of moxifloxacin in treatment-shortening regimens for drug-susceptible tuberculosis, it may be recommended in patients unable to tolerate standard first-line drug regimens or for isoniazid monoresistance. Evidence suggests that the standard 400-mg dose of moxifloxacin used in the treatment of tuberculosis may be suboptimal in some patients, leading to worse tuberculosis treatment outcomes and emergence of drug resistance. Furthermore, a drug interaction with the rifamycins results in up to 31% reduced plasma concentrations of moxifloxacin when these are combined for treatment of drug-susceptible tuberculosis, although the clinical relevance of this interaction is unclear. Moxifloxacin exhibits extensive interindividual pharmacokinetic variability. Higher doses of moxifloxacin may be needed to achieve drug exposures required for improved clinical outcomes. Further study is, however, needed to determine the safety of proposed higher doses and clinically validated targets for drug exposure to moxifloxacin associated with improved tuberculosis treatment outcomes. We discuss in this review the evidence for the use of moxifloxacin in drug-susceptible tuberculosis and explore the role of moxifloxacin pharmacokinetics, pharmacodynamics, and drug interactions with rifamycins, on tuberculosis treatment outcomes when used in first-line tuberculosis drug regimens.
Collapse
Affiliation(s)
- Anushka Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.,MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sabiha Essack
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.,MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
36
|
Naidoo A, Chirehwa M, McIlleron H, Naidoo K, Essack S, Yende-Zuma N, Kimba-Phongi E, Adamson J, Govender K, Padayatchi N, Denti P. Effect of rifampicin and efavirenz on moxifloxacin concentrations when co-administered in patients with drug-susceptible TB. J Antimicrob Chemother 2017; 72:1441-1449. [PMID: 28175315 PMCID: PMC5890691 DOI: 10.1093/jac/dkx004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 11/14/2022] Open
Abstract
Objectives We compared the pharmacokinetics of moxifloxacin during rifampicin co-treatment or when dosed alone in African patients with drug-susceptible recurrent TB. Methods Patients in the intervention arm of the Improving Retreatment Success (IMPRESS) randomized controlled TB trial received 400 mg of moxifloxacin, with rifampicin, isoniazid and pyrazinamide in the treatment regimen. Moxifloxacin concentrations were measured in plasma during rifampicin-based TB treatment and again 4 weeks after treatment completion, when given alone as a single dose. Moxifloxacin concentration-time data were analysed using non-linear mixed-effects models. Results We included 58 patients; 42 (72.4%) were HIV co-infected and 40 (95%) of these were on efavirenz-based ART. Moxifloxacin pharmacokinetics was best described using a two-compartment disposition model with first-order lagged absorption and elimination using a semi-mechanistic model describing hepatic extraction. Oral clearance (CL/F) of moxifloxacin during rifampicin-based TB treatment was 24.3 L/h for a typical patient (fat-free mass of 47 kg), resulting in an AUC of 16.5 mg·h/L. This exposure was 7.8% lower than the AUC following the single dose of moxifloxacin given alone after TB treatment completion. In HIV-co-infected patients taking efavirenz-based ART, CL/F of moxifloxacin was increased by 42.4%, resulting in a further 30% reduction in moxifloxacin AUC. Conclusions Moxifloxacin clearance was high and plasma concentrations low in our patients overall. Moxifloxacin AUC was further decreased by co-administration of efavirenz-based ART and, to a lesser extent, rifampicin. The clinical relevance of the low moxifloxacin concentrations for TB treatment outcomes and the need for moxifloxacin dose adjustment in the presence of rifampicin and efavirenz co-treatment need further investigation.
Collapse
Affiliation(s)
- Anushka Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Maxwell Chirehwa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal
| | - Sabiha Essack
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Nonhlanhla Yende-Zuma
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Eddy Kimba-Phongi
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - John Adamson
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa
| | - Katya Govender
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| |
Collapse
|
37
|
Davies Forsman L, Bruchfeld J, Alffenaar JWC. Therapeutic drug monitoring to prevent acquired drug resistance of fluoroquinolones in the treatment of tuberculosis. Eur Respir J 2017; 49:49/4/1700173. [PMID: 28446561 DOI: 10.1183/13993003.00173-2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/15/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Lina Davies Forsman
- Karolinska Institutet, Dept of Medicine, Unit of Infectious Disease, Stockholm, Sweden.,Karolinska University Hospital, Dept of Infectious Disease, Stockholm, Sweden
| | - Judith Bruchfeld
- Karolinska Institutet, Dept of Medicine, Unit of Infectious Disease, Stockholm, Sweden.,Karolinska University Hospital, Dept of Infectious Disease, Stockholm, Sweden
| | - Jan-Willem C Alffenaar
- University of Groningen, University Medical Center Groningen, Dept of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| |
Collapse
|
38
|
Kang BH, Jo KW, Shim TS. Current Status of Fluoroquinolone Use for Treatment of Tuberculosis in a Tertiary Care Hospital in Korea. Tuberc Respir Dis (Seoul) 2017; 80:143-152. [PMID: 28416954 PMCID: PMC5392485 DOI: 10.4046/trd.2017.80.2.143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/05/2016] [Accepted: 01/23/2017] [Indexed: 11/24/2022] Open
Abstract
Background Fluoroquinolones are considered important substitutes for the treatment of tuberculosis. This study investigates the current status of fluoroquinolone for the treatment of tuberculosis. Methods In 2009, a retrospective analysis was performed at one tertiary referral center for 953 patients diagnosed with tuberculosis. Results A total of 226 patients (23.6%), who received fluoroquinolone at any time during treatment for tuberculosis, were enrolled in this study. The most common reasons for fluoroquinolone use were adverse events due to other anti-tuberculosis drugs (52.7%), drug resistance (23.5%), and underlying diseases (16.8%). Moxifloxacin (54.0%, 122/226) was the most commonly administered fluoroquinolone, followed by levofloxacin (36.3%, 82/226) and ofloxacin (9.7%, 22/226). The frequency of total adverse events from fluoroquinolone-containing anti-tuberculosis medication was 22.6%, whereas fluoroquinolone-related adverse events were estimated to be 2.2% (5/226). The most common fluoroquinolone-related adverse events were gastrointestinal problems (3.5%, 8/226). There were no significant differences in the treatment success rate between the fluoroquinolone and fluoroquinolone-naïve groups (78.3% vs. 78.4%, respectively). Conclusion At our institution, fluoroquinolones are commonly used for the treatment of both multidrug-resistant tuberculosis and susceptible tuberculosis, especially as a substitute for adverse event-related drugs. Considering the low adverse event rates and the comparable treatment success rates, fluoroquinolones seem to be an invaluable drug for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Bo Hyoung Kang
- Department of Pulmonary and Critical Care Medicine, Dong-A University Hospital, Dong-A University College of Medicine, Busan, Korea
| | - Kyung-Wook Jo
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Sun Shim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Van Kampenhout E, Bolhuis MS, Alffenaar JWC, Oswald LM, Kerstjens HA, de Lange WC, van der Werf TS, Akkerman OW. Pharmacokinetics of moxifloxacin and linezolid during and after pregnancy in a patient with multidrug-resistant tuberculosis. Eur Respir J 2017; 49:49/3/1601724. [DOI: 10.1183/13993003.01724-2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/25/2016] [Indexed: 11/05/2022]
|
40
|
Ghimire S, van't Boveneind-Vrubleuskaya N, Akkerman OW, de Lange WCM, van Soolingen D, Kosterink JGW, van der Werf TS, Wilffert B, Touw DJ, Alffenaar JWC. Pharmacokinetic/pharmacodynamic-based optimization of levofloxacin administration in the treatment of MDR-TB. J Antimicrob Chemother 2016; 71:2691-703. [DOI: 10.1093/jac/dkw164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
41
|
Zuur MA, Bolhuis MS, Anthony R, den Hertog A, van der Laan T, Wilffert B, de Lange W, van Soolingen D, Alffenaar JWC. Current status and opportunities for therapeutic drug monitoring in the treatment of tuberculosis. Expert Opin Drug Metab Toxicol 2016; 12:509-21. [DOI: 10.1517/17425255.2016.1162785] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Marlanka A. Zuur
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mathieu S. Bolhuis
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Richard Anthony
- Royal Tropical Institute (KIT), KIT Biomedical Research, Amsterdam, The Netherlands
| | - Alice den Hertog
- Royal Tropical Institute (KIT), KIT Biomedical Research, Amsterdam, The Netherlands
| | - Tridia van der Laan
- National Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Bob Wilffert
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pharmacy, section Pharmacotherapy and Pharmaceutical Care, University of Groningen, Groningen, The Netherlands
| | - Wiel de Lange
- University of Groningen, University Medical Center Groningen, Tuberculosis Centre Beatrixoord, Haren, The Netherlands
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dick van Soolingen
- National Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Departments of Pulmonary Diseases and Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jan-Willem C. Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Ghimire S, Bolhuis MS, Sturkenboom MG, Akkerman OW, de Lange WC, van der Werf TS, Alffenaar JWC. Incorporating therapeutic drug monitoring into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J 2016; 47:1867-9. [DOI: 10.1183/13993003.00040-2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/28/2016] [Indexed: 01/14/2023]
|
43
|
van Rijn SP, van Altena R, Akkerman OW, van Soolingen D, van der Laan T, de Lange WC, Kosterink JG, van der Werf TS, Alffenaar JWC. Pharmacokinetics of ertapenem in patients with multidrug-resistant tuberculosis. Eur Respir J 2016; 47:1229-34. [DOI: 10.1183/13993003.01654-2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/15/2015] [Indexed: 02/04/2023]
Abstract
Treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) is becoming more challenging because of increased levels of drug resistance against second-line TB drugs. One promising group of antimicrobial drugs is carbapenems. Ertapenem is an attractive carbapenem for the treatment of MDR- and XDR-TB because its relatively long half-life enables once-daily dosing.A retrospective study was performed for all patients with suspected MDR-TB at the Tuberculosis Center Beatrixoord of the University Medical Center Groningen (Haren, the Netherlands) who received ertapenem as part of their treatment regimen between December 1, 2010 and March 1, 2013. Safety and pharmacokinetics were evaluated.18 patients were treated with 1000 mg ertapenem for a mean (range) of 77 (5–210) days. Sputum smear and culture were converted in all patients. Drug exposure was evaluated in 12 patients. The mean (range) area under the concentration–time curve up to 24 h was 544.9 (309–1130) h·mg·L−1. The mean (range) maximum observed plasma concentration was 127.5 (73.9–277.9) mg·L−1.In general, ertapenem treatment was well tolerated during MDR-TB treatment and showed a favourable pharmacokinetic/pharmacodynamic profile in MDR-TB patients. We conclude that ertapenem is a highly promising drug for the treatment of MDR-TB that warrants further investigation.
Collapse
|
44
|
Olaru ID, Lange C, Heyckendorf J. Personalized medicine for patients with MDR-TB. J Antimicrob Chemother 2015; 71:852-5. [PMID: 26507429 DOI: 10.1093/jac/dkv354] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The emergence of MDR-TB is a cause of great concern due to difficulties in patient management and poor treatment outcomes. Currently the duration of treatment and the choice of drugs for patients with MDR-TB are standardized in many countries. This might not be the best approach since the optimal therapy may depend on different pathogen- and host-related features. Combining the introduction of technological innovations such as whole bacillary genome sequencing for the identification of drug-resistance-associated mutations, therapeutic drug monitoring and host-directed therapies with an individualized approach to MDR-TB management will likely lead to more tolerable, shorter and more efficient treatment regimens and an increase in the quality of life of those affected by MDR-TB.
Collapse
Affiliation(s)
- Ioana D Olaru
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany Clinical Tuberculosis Center, German Center for Infection Research (DZIF), Borstel, Germany International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany Clinical Tuberculosis Center, German Center for Infection Research (DZIF), Borstel, Germany International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany Department of Medicine, Karolinska Institute, Stockholm, Sweden Department of Internal Medicine, University of Namibia School of Medicine, Windhoek, Namibia
| | - Jan Heyckendorf
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany Clinical Tuberculosis Center, German Center for Infection Research (DZIF), Borstel, Germany International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| |
Collapse
|
45
|
Zhang B, Huang X, Fan H, Zeng X, Mei D, Fu Q. Pharmacokinetics of intravenous moxifloxacin in the cerebrospinal fluid of a patient with central nervous system shunt infection. Diagn Microbiol Infect Dis 2015; 84:249-51. [PMID: 26746981 DOI: 10.1016/j.diagmicrobio.2015.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/06/2015] [Accepted: 10/01/2015] [Indexed: 11/30/2022]
Abstract
We report the first case describing the pharmacokinetics of moxifloxacin in the cerebrospinal fluid after multiple-dose intravenous administration in a patient with central nervous system shunt infection. The ratio of the area under the concentration-time curve over 24h (AUC) in cerebrospinal fluid to the AUC in serum was 0.7 in this patient.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoming Huang
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongwei Fan
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuejun Zeng
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Mei
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Fu
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
46
|
Ferrand H, Blanc-Gruyelle AL, Amsilli M, Lemaire X, Papot E, Papy E, Bervar J, Senneville E, Bouvet E, Yazdanpanah Y. Use of fluoroquinolones for the treatment of TB: 8 years of experience: Table 1. J Antimicrob Chemother 2015; 70:3166-7. [DOI: 10.1093/jac/dkv227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Gumbo T, Pasipanodya JG, Romero K, Hanna D, Nuermberger E. Forecasting Accuracy of the Hollow Fiber Model of Tuberculosis for Clinical Therapeutic Outcomes. Clin Infect Dis 2015. [DOI: 10.1093/cid/civ427] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Potter J, Agrawal R, Barraclough C, Rahman F, Westcott M, Pavesio CE, White V. Moxifloxacin: An Alternative to Ethambutol for the Treatment of Presumed Ocular Tuberculosis. Ocul Immunol Inflamm 2015. [PMID: 26222893 DOI: 10.3109/09273948.2015.1019155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To present moxifloxacin as an alternative treatment option to ethambutol in an anti-tubercular therapy (ATT) regime in patients with presumed ocular tuberculosis (TB). METHODS We identified all cases in our hospital referred for treatment of presumed ocular TB between 2009 and 2013. Age, gender, ophthalmic examination, blood tests, treatment regimens, adverse drug reactions, and outcomes were collected and analyzed for the patients who had moxifloxacin as part of their ATT. RESULTS Forty-three cases of presumed ocular TB were treated with moxifloxacin as a part of ATT. Mean age was 44.18 ± 12.47 years; 62.8% were male. A response to treatment, with no evidence of disease recurrence, was seen in 72.1% of cases. Shortened ATT duration was associated with increased risk of treatment failure (p = 0.02, 95% CI: -0.77 to -0.00). CONCLUSIONS Moxifloxacin can be considered as a safe and effective alternative to ethambutol for the treatment of presumed ocular TB.
Collapse
Affiliation(s)
| | - Rupesh Agrawal
- b Moorfields Eye Hospital, NHS Foundation Trust , London , UK .,c Biomedical Research Centre, UCL Institute of Ophthalmology , London , UK , and.,d National Healthcare Group Eye Institute, Tan Tock Seng Hospital , Singapore
| | | | - Farzana Rahman
- b Moorfields Eye Hospital, NHS Foundation Trust , London , UK
| | - Mark Westcott
- b Moorfields Eye Hospital, NHS Foundation Trust , London , UK
| | - Carlos E Pavesio
- b Moorfields Eye Hospital, NHS Foundation Trust , London , UK .,c Biomedical Research Centre, UCL Institute of Ophthalmology , London , UK , and
| | | |
Collapse
|
49
|
van der Paardt AF, Wilffert B, Akkerman OW, de Lange WC, van Soolingen D, Sinha B, van der Werf TS, Kosterink JG, Alffenaar JWC. Evaluation of macrolides for possible use against multidrug-resistant Mycobacterium tuberculosis. Eur Respir J 2015; 46:444-55. [DOI: 10.1183/09031936.00147014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/20/2015] [Indexed: 01/16/2023]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is a major global health problem. The loss of susceptibility to an increasing number of drugs behoves us to consider the evaluation of non-traditional anti-tuberculosis drugs.Clarithromycin, a macrolide antibiotic, is defined as a group 5 anti-tuberculosis drug by the World Health Organization; however, its role or efficacy in the treatment of MDR-TB is unclear. A systematic review of the literature was conducted to summarise the evidence for the activity of macrolides against MDR-TB, by evaluating in vitro, in vivo and clinical studies. PubMed and Embase were searched for English language articles up to May 2014.Even though high minimum inhibitory concentration values are usually found, suggesting low activity against Mycobacterium tuberculosis, the potential benefits of macrolides are their accumulation in the relevant compartments and cells in the lungs, their immunomodulatory effects and their synergistic activity with other anti-TB drugs.A future perspective may be use of more potent macrolide analogues to enhance the activity of the treatment regimen.
Collapse
|
50
|
Aarnoutse RE, Sturkenboom MGG, Robijns K, Harteveld AR, Greijdanus B, Uges DRA, Touw DJ, Alffenaar JW. An interlaboratory quality control programme for the measurement of tuberculosis drugs. Eur Respir J 2015; 46:268-71. [PMID: 25882800 DOI: 10.1183/09031936.00177014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/09/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Rob E Aarnoutse
- Dept of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands Association for Quality Assessment in TDM and Clinical Toxicology (KKGT) (a section of the Dutch Foundation for Quality Assessment in Medical Laboratories (SKML)), The Hague, The Netherlands
| | - Marieke G G Sturkenboom
- Dept of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karen Robijns
- Association for Quality Assessment in TDM and Clinical Toxicology (KKGT) (a section of the Dutch Foundation for Quality Assessment in Medical Laboratories (SKML)), The Hague, The Netherlands
| | - Anneke R Harteveld
- Association for Quality Assessment in TDM and Clinical Toxicology (KKGT) (a section of the Dutch Foundation for Quality Assessment in Medical Laboratories (SKML)), The Hague, The Netherlands
| | - Ben Greijdanus
- Dept of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Donald R A Uges
- Dept of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daniel J Touw
- Association for Quality Assessment in TDM and Clinical Toxicology (KKGT) (a section of the Dutch Foundation for Quality Assessment in Medical Laboratories (SKML)), The Hague, The Netherlands Dept of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Willem Alffenaar
- Dept of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|