1
|
Namsrai T, Northey JM, Ambikairajah A, Ahmed O, Alateeq K, Espinoza Oyarce DA, Burns R, Rattray B, Cherbuin N. Sleep characteristics and brain structure: A systematic review with meta-analysis. Sleep Med 2025; 129:316-329. [PMID: 40086297 DOI: 10.1016/j.sleep.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND As the global population ages, the prevalence of associated conditions, including neurodegeneration and dementia, will increase. Thus, reducing risk factors is crucial to prevention. Sleep contributes to brain homeostasis and repair, which, if impaired, could lead to neurodegeneration. However, the relationship between sleep characteristics, disorders, and brain morphology is poorly understood in healthy adults. Therefore, we aimed to systematically analyse the literature and clarify how sleep characteristics are associated with brain structures. METHODS We systematically searched PUBMED, MEDLINE, ProQuest, Web of Science, and Scopus for empirical studies of healthy adults examining the associations between sleep characteristics or disorders and brain structure, adjusting for age, gender, and head size. We conducted a meta-analysis with random effects models for volumetric studies and a seed-based spatial analysis for voxel-based morphometry (VBM) studies. RESULTS One hundred and five articles (60 volumetric, 45 VBM) with 106 studies reporting 108,364 participants were included. Most studies (73.1%) found sleep characteristics and disorders to be associated with predominantly lower brain volumes (cross-sectional: 51.9% of all cross-sectional; longitudinal: 45.5% of longitudinal). In VBM studies, REM sleep behaviour disorder was linked to lower grey matter volume in the right frontal gyrus (z-score = -3.617, 68 voxels, p-value = <0 0.001). CONCLUSION Sleep characteristics - poor quality, short or long sleep - and sleep disorders are predominantly associated with lower brain volumes, suggesting that inadequate sleep (short, long or poor quality) might contribute to neurodegeneration. This insight highlights the importance of monitoring, managing, and enforcing sleep health to prevent or mitigate potential neurodegenerative processes.
Collapse
Affiliation(s)
- Tergel Namsrai
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia.
| | - Joseph M Northey
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia; Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, Australia
| | - Ananthan Ambikairajah
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia; Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australia; Centre for Ageing Research and Translation, Faculty of Health, University of Canberra, Canberra, Australia; The University of Sydney, School of Psychology, Sydney, Australia; The University of Sydney, Brain and Mind Centre, Sydney, Australia
| | - Oli Ahmed
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Khawlah Alateeq
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia; Radiological Science, College of Applied Medical Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Richard Burns
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Ben Rattray
- Centre for Ageing Research and Translation, Faculty of Health, University of Canberra, Canberra, Australia
| | - Nicolas Cherbuin
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| |
Collapse
|
2
|
Rissardo JP, Caprara ALF. A Narrative Review on Biochemical Markers and Emerging Treatments in Prodromal Synucleinopathies. Clin Pract 2025; 15:65. [PMID: 40136601 PMCID: PMC11941140 DOI: 10.3390/clinpract15030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Alpha-synuclein has been associated with neurodegeneration, especially in Parkinson's disease (PD). This study aimed to review clinical, biochemical, and neuroimaging markers and management of prodromal synucleinopathies. The prodromal state of synucleinopathies can be better understood with PD pathophysiology, and it can be separated into premotor and pre-diagnostic phases. The incidence of PD in patients with prodromal phase symptoms ranges from 0.07 to 14.30, and the most frequently studied pathology is the REM behavioral disorder (RBD). Neuroimaging markers are related to dopamine denervation, brain perfusion changes, gross anatomy changes, and peripheral abnormalities. α-synuclein assays (SAA) in CSF revealed high sensitivity (up to 97%) and high specificity (up to 92%); in the last decade, there was the development of other matrices (blood, skin, and olfactory mucosa) for obtaining quantitative and qualitative α-synuclein. Other biomarkers are neurofilament light chain, DOPA decarboxylase, and multiplexed mass spectrometry assay. Regarding genetic counseling in α-synucleinopathies, it is an important topic in clinical practice to discuss with patients with high-risk individuals and should involve basic principles of autonomy, beneficence, and non-maleficence. Some of the themes that should be reviewed are the involvement of physical activity, diet (including alcohol, coffee, and vitamin supplementation), smoking, sleep, and stress in the pathophysiology of synucleinopathies. The number of trials related to prodromal symptoms is still scarce, and the number of studies evaluating intervention is even lower.
Collapse
|
3
|
Yoon EJ, Lee JY, Woo KA, Kim S, Kim H, Park H, Kim R, Jin B, Lee S, Nam H, Kim YK. Mild behavioral impairment and its relation to amyloid load in isolated REM sleep behavior disorder. Parkinsonism Relat Disord 2025; 132:107267. [PMID: 39862445 DOI: 10.1016/j.parkreldis.2025.107267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/04/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION In isolated REM sleep behavior disorder (iRBD), the evidence of cognitive impairment and co-existing amyloid pathology suggests that mild behavioral impairment (MBI) may be associated with disease progression. In this study, we investigated MBI and its association with cognitive function, brain amyloid load and glucose metabolism in iRBD patients to evaluate the utility of MBI as a predictive marker of disease progression. METHODS Patients with iRBD underwent a neuropsychological evaluation, 18F-florbetaben (FBB) PET, and 18F-fluorodeoxyglucose (FDG) PET. MBI was evaluated using the MBI-checklist (MBI-C). Comparisons between MBI-positive and MBI-negative groups and correlations with MBI-C total scores were examined on neuropsychological performances and PET regional standardized uptake value ratios (SUVRs). Additionally, associations between regional amyloid burden and glucose metabolism and mediating role of MBI status on these associations were evaluated in all iRBD patients. RESULTS Of 36 iRBD patients, about one-third were classified as MBI-positive. Although we did not find the differences between the MBI groups and correlations with MBI-C total scores in neuropsychological performances and brain glucose metabolism, the MBI-positive group revealed higher FBB SUVRs in the anterior cingulate cortex, prefrontal cortex, caudate nucleus, and putamen than the MBI-negative group. The FBB SUVR of caudate nucleus was negatively correlated with glucose metabolism in the precuneus, which was not directly mediated by the MBI. CONCLUSION Characteristic amyloid accumulation in prefrontal and subcortical structures in MBI-positive iRBD patients suggests that MBI may be associated with early amyloid pathology that can be an integral role in disease progression.
Collapse
Affiliation(s)
- Eun Jin Yoon
- Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Kyung Ah Woo
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoyeon Kim
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hyunwoong Park
- Department of Laboratory Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ryul Kim
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bora Jin
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seungmin Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunwoo Nam
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Baun AM, Iranzo A, Terkelsen MH, Stokholm MG, Stær K, Serradell M, Otto M, Svendsen KB, Garrido A, Vilas D, Santamaria J, Møller A, Gaig C, Brooks DJ, Borghammer P, Tolosa E, Eskildsen SF, Pavese N. Cuneus atrophy and Parkinsonian phenoconversion in cognitively unimpaired patients with isolated REM sleep behavior disorder. J Neurol 2024; 272:59. [PMID: 39680182 DOI: 10.1007/s00415-024-12762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 12/17/2024]
Abstract
Isolated rapid-eye-movement sleep behavior disorder (iRBD) is a strong predictor of Parkinson's disease and Dementia with Lewy bodies. Previous studies indicate that cortical atrophy in iRBD patients may be linked to cognitive impairment, but the pattern of atrophy is inconsistently reported. This study aimed to elucidate cortical atrophy patterns in a cognitively unimpaired iRBD cohort, focusing on regions associated with cognitive functions, particularly the cuneus/precuneus, and evaluated the predictive value for future phenoconversion. We conducted voxel-based morphometry and region of interest (ROI) analysis of structural MRI scans of 36 healthy controls and 19 iRBD patients, nine of whom also received a 3-year follow-up MRI scan. The iRBD patients were followed clinically for 8 years, and time-to-event analyses, using Cox regression, were performed based on baseline ROI volumes. The iRBD patients had lower gray-matter volume in the cuneus/precuneus region as well as in subcortical structures (caudate nuclei and putamen) compared to controls. Eight iRBD patients developed either Parkinson's disease (N = 4) or Dementia with Lewy bodies (N = 4) during the follow-up period. Time-to-event analyses showed that lower right cuneus volume was associated with a higher risk of phenoconversion to alpha-synuclein-linked Parkinsonism in the iRBD patients (Hazard ratio = 13.0, CI: 1.53-110), and correlated with shorter time to conversion. In addition, lower volumes of the bilateral precuneus trended to indicate a higher risk of phenoconversion. These findings suggest a potential predictive value of cuneus and precuneus volumes in identifying iRBD patients at risk of disease progression, even before the onset of cognitive impairment.
Collapse
Affiliation(s)
- Andreas Myhre Baun
- Department of Nuclear Medicine & PET Centre, J220, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark.
| | - Alex Iranzo
- Neurology Service, Department of Neurology, Hospital Clínic de Barcelona, 08036, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain.
- Multidisciplinary Sleep Unit, Hospital Clinic, Barcelona, Spain.
| | - Miriam Højholt Terkelsen
- Department of Nuclear Medicine & PET Centre, J220, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Gersel Stokholm
- Department of Nuclear Medicine & PET Centre, J220, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
| | - Kristian Stær
- Department of Nuclear Medicine & PET Centre, J220, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
| | - Mónica Serradell
- Neurology Service, Department of Neurology, Hospital Clínic de Barcelona, 08036, Barcelona, Spain
- Multidisciplinary Sleep Unit, Hospital Clinic, Barcelona, Spain
| | - Marit Otto
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Alicia Garrido
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Catalonia, Spain
| | - Dolores Vilas
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Catalonia, Spain
| | - Joan Santamaria
- Neurology Service, Department of Neurology, Hospital Clínic de Barcelona, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain
- Multidisciplinary Sleep Unit, Hospital Clinic, Barcelona, Spain
| | - Arne Møller
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Carles Gaig
- Neurology Service, Department of Neurology, Hospital Clínic de Barcelona, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain
- Multidisciplinary Sleep Unit, Hospital Clinic, Barcelona, Spain
| | - David J Brooks
- Department of Nuclear Medicine & PET Centre, J220, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, England
| | - Per Borghammer
- Department of Nuclear Medicine & PET Centre, J220, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
| | - Eduardo Tolosa
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Catalonia, Spain
| | - Simon Fristed Eskildsen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Nicola Pavese
- Department of Nuclear Medicine & PET Centre, J220, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, England
| |
Collapse
|
5
|
Forkert ND, MacEachern SJ, Duh AK, Moon P, Lee S, Yeom KW. Children with Congenital Heart Diseases Exhibit Altered Deep Gray Matter Structures. Clin Neuroradiol 2024; 34:771-778. [PMID: 38743101 DOI: 10.1007/s00062-024-01417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Children with congenital heart diseases (CHDs) have an increased risk of developing neurologic deficits, even in the absence of apparent brain pathology. The aim of this work was to compare quantitative macro- and microstructural properties of subcortical gray matter structures of pediatric CHD patients with normal appearing brain magnetic resonance imaging to healthy controls. METHODS We retrospectively reviewed children with coarctation of the aorta (COA) and hypoplastic left heart syndrome (HLHS) admitted to our hospital. We identified 24 pediatric CHD patients (17 COA, 7 HLHS) with normal-appearing brain MRI. Using an atlas-based approach, the volume and apparent diffusion coefficient (ADC) were determined for the thalamus, caudate, putamen, pallidum, hippocampus, amygdala, nucleus accumbens, cerebral white matter, cerebral cortex, and brainstem. Multivariate statistics were used to compare the extracted values to reference values from 100 typically developing children without any known cardiac or neurological diseases. RESULTS Multivariate analysis of covariance using the regional ADC and volume values as dependent variables and age and sex as co-variates revealed a significant difference between pediatric CHD patients and healthy controls (p < 0.001). Post-hoc comparisons demonstrated significantly reduced brain volumes in most subcortical brain regions investigated and elevated ADC values in the thalamus for children with CHD. No significant differences were found comparing children with COA and HLHS. CONCLUSIONS Despite normal appearing brain MRI, children with CHD exhibit wide-spread macro-structural and regional micro-structural differences of subcortical brain structures compared to healthy controls, which could negatively impact neurodevelopment, leading to neurological deficits in childhood and beyond.
Collapse
Affiliation(s)
- Nils D Forkert
- Department of Radiology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, T2N 4N1, Calgary, AB, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Sarah J MacEachern
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Allison K Duh
- Stanford University School of Medicine, Stanford, CA, USA
| | - Peter Moon
- Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah Lee
- Department of Neurology, Divisions of Stroke and Child Neurology, Stanford School of Medicine, Palo Alto, CA, USA
| | - Kristen W Yeom
- Department of Radiology, Phoenix Children's Hospital, Phoenix, AZ, USA
| |
Collapse
|
6
|
Churchill L, Chen YC, Lewis SJG, Matar E. Understanding REM Sleep Behavior Disorder through Functional MRI: A Systematic Review. Mov Disord 2024; 39:1679-1696. [PMID: 38934216 DOI: 10.1002/mds.29898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Neuroimaging studies in rapid eye movement sleep behavior disorder (RBD) can inform fundamental questions about the pathogenesis of Parkinson's disease (PD). Across modalities, functional magnetic resonance imaging (fMRI) may be better suited to identify changes between neural networks in the earliest stages of Lewy body diseases when structural changes may be subtle or absent. This review synthesizes the findings from all fMRI studies of RBD to gain further insight into the pathophysiology and progression of Lewy body diseases. A total of 32 studies were identified using a systematic review conducted according to PRISMA guidelines between January 2000 to February 2024 for original fMRI studies in patients with either isolated RBD (iRBD) or RBD secondary to PD. Common functional alterations were detectable in iRBD patients compared with healthy controls across brainstem nuclei, basal ganglia, frontal and occipital lobes, and whole brain network measures. Patients with established PD and RBD demonstrated decreased functional connectivity across the whole brain and brainstem nuclei, but increased functional connectivity in the cerebellum and frontal lobe compared with those PD patients without RBD. Finally, longitudinal changes in resting state functional connectivity were found to track with disease progression. Currently, fMRI studies in RBD have demonstrated early signatures of neurodegeneration across both motor and non-motor pathways. Although more work is needed, such findings have the potential to inform our understanding of disease, help to distinguish between prodromal PD and prodromal dementia with Lewy bodies, and support the development of fMRI-based outcome measures of phenoconversion and progression in future disease modifying trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lachlan Churchill
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yu-Chi Chen
- Brain Dynamic Centre, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Simon J G Lewis
- Macquarie Medical School and Macquarie University Centre for Parkinson's Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Elie Matar
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Xie C, Li T, Lin Y, Fu Z, Li N, Qi W, Yu X, Zhu L, Wang H. Prevalence and correlates of probable rapid eye movement sleep behavior disorder among middle-aged and older adults in a psychiatric outpatient clinic: A cross-sectional survey. Sleep Med 2024; 121:266-274. [PMID: 39032185 DOI: 10.1016/j.sleep.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/22/2024]
Abstract
OBJECTIVE Rapid eye movement sleep behavior disorder (RBD) is often underdiagnosed among people living with mental disorders. The present study aimed to investigate the prevalence of probable RBD (pRBD) and its associated factors among middle-aged and older adults in a psychiatric outpatient clinic. METHODS We conducted a cross-sectional survey among 2907 people aged 45-80 years who visited the outpatient clinic between March 1 and August 31, 2022 in a psychiatric hospital. A cutoff score ≥5 on the RBD Screening Questionnaire (RBDSQ) was used to indicate the presence of probable RBD (pRBD). Potential factors associated with pRBD were also assessed with a structured checklist. The association between these factors and the presence of pRBD was examined with logistic regression. RESULTS The response rate was 64.3 %. Among 1868 respondents [age 58.5 ± 9.6 years, male n = 738 (39.5 %), female n = 1130 (60.5 %)], 15.9 % (95 % CI 14.2-17.6 %) screened positive for pRBD. Occupational exposure to chemicals; positive family history of psychotic disorders; a late start of mental health care; a medical history of autonomic dysfunction; mood problems; and use of antidepressants, hypnotics, and acetylcholinesterase inhibitors were associated with an increased likelihood of having pRBD (P < 0.05 for all). CONCLUSION pRBD is common among outpatients with mental disorders, especially in mental disorders due to neurological diseases and physical conditions, mood disorders and anxiety or somatoform disorders. The findings highlight the importance of identifying sleep behavior disorders among people living with mental disorders in clinical practice.
Collapse
Affiliation(s)
- Caixia Xie
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Tao Li
- Dementia Care and Research Center, Beijing Dementia Key Lab, Peking University Institute of Mental Health (Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Yongsheng Lin
- Shangrao Third People's Hospital, Shangrao, 334000, China.
| | - Zhiqiang Fu
- Shangrao Third People's Hospital, Shangrao, 334000, China.
| | - Nan Li
- Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China.
| | - Wei Qi
- Shangrao Third People's Hospital, Shangrao, 334000, China.
| | - Xin Yu
- Dementia Care and Research Center, Beijing Dementia Key Lab, Peking University Institute of Mental Health (Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Limao Zhu
- Shangrao Third People's Hospital, Shangrao, 334000, China.
| | - Huali Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325000, China; Dementia Care and Research Center, Beijing Dementia Key Lab, Peking University Institute of Mental Health (Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
8
|
Ophey A, Röttgen S, Pauquet J, Weiß KL, Scharfenberg D, Doppler CEJ, Seger A, Hansen C, Fink GR, Sommerauer M, Kalbe E. Cognitive training and promoting a healthy lifestyle for individuals with isolated REM sleep behavior disorder: study protocol of the delayed-start randomized controlled trial CogTrAiL-RBD. Trials 2024; 25:428. [PMID: 38943191 PMCID: PMC11214208 DOI: 10.1186/s13063-024-08265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Isolated REM sleep behavior disorder (iRBD) is an early α-synucleinopathy often accompanied by incipient cognitive impairment. As executive dysfunctions predict earlier phenotypic conversion from iRBD to Parkinson's disease and Lewy body dementia, cognitive training focusing on executive functions could have disease-modifying effects for individuals with iRBD. METHODS The study CogTrAiL-RBD investigates the short- and long-term effectiveness and the feasibility and underlying neural mechanisms of a cognitive training intervention for individuals with iRBD. The intervention consists of a 5-week digital cognitive training accompanied by a module promoting a healthy, active lifestyle. In this monocentric, single-blinded, delayed-start randomized controlled trial, the intervention's effectiveness will be evaluated compared to an initially passive control group that receives the intervention in the second, open-label phase of the study. Eighty individuals with iRBD confirmed by polysomnography will be consecutively recruited from the continuously expanding iRBD cohort at the University Hospital Cologne. The evaluation will focus on cognition and additional neuropsychological and motor variables. Furthermore, the study will examine the feasibility of the intervention, effects on physical activity assessed by accelerometry, and interrogate the intervention's neural effects using magnetic resonance imaging and polysomnography. Besides, a healthy, age-matched control group (HC) will be examined at the first assessment time point, enabling a cross-sectional comparison between individuals with iRBD and HC. DISCUSSION This study will provide insights into whether cognitive training and psychoeducation on a healthy, active lifestyle have short- and long-term (neuro-)protective effects for individuals with iRBD. TRIAL REGISTRATION The study was prospectively registered in the German Clinical Trial Register (DRKS00024898) on 2022-03-11, https://drks.de/search/de/trial/DRKS00024898 . PROTOCOL VERSION V5 2023-04-24.
Collapse
Affiliation(s)
- Anja Ophey
- Department of Medical Psychology | Neuropsychology and Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany.
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany.
| | - Sinah Röttgen
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Julia Pauquet
- Department of Medical Psychology | Neuropsychology and Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Kim-Lara Weiß
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Daniel Scharfenberg
- Department of Medical Psychology | Neuropsychology and Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Christopher E J Doppler
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Aline Seger
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Clint Hansen
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Michael Sommerauer
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center of Neurology, Department of Parkinson, Sleep and Movement Disorders, University of Bonn, Bonn, Germany
| | - Elke Kalbe
- Department of Medical Psychology | Neuropsychology and Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Li J, Wang X, Liu M, Yin Y, Wu Y, Xu G, Ma X. Sex-specific grey matter abnormalities in individuals with chronic insomnia. Neurol Sci 2024; 45:2301-2310. [PMID: 38063921 DOI: 10.1007/s10072-023-07224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/23/2023] [Indexed: 04/17/2024]
Abstract
Previous studies have reported sex differences in altered brain function in patients with chronic insomnia (CI). However, sex-related alterations in brain morphology have rarely been investigated. This study aimed to investigate sex-specific grey matter (GM) alterations in patients with CI and to examine the relationship between GM alterations and neuropsychological assessments. Ninety-three (65 females and 28 males) patients and 78 healthy (50 females and 28 males) controls were recruited. Structural magnetic resonance imaging data were analysed using voxel-based morphometry to test for interactions between sex and diagnosis. Spearman's correlation was used to assess the associations among structure, disease duration, and sleep-, mood-, and cognition-related assessments. Males with CI showed reduced GM volume in the left inferior parietal lobe, left middle cingulate cortex, and right supramarginal gyrus. Females with CI showed increased GM volume in the right Rolandic operculum. Moreover, mood-related assessments were negatively correlated with GM volumes in the right supramarginal gyrus and left inferior parietal lobe in the male patients, and cognitive-related assessments were positively correlated with GM volumes in the Rolandic operculum in the female patients. Our findings indicate sex-specific alterations in brain morphology in CI, thereby broadening our understanding of sex differences in CI and potentially providing complementary evidence for the development of more effective therapies and individual treatments.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Nuclear medicine, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
- The Second School of Clinical Medicine, Southern Medial University, No. 253 Industrial Avenue Central, Guangzhou, 510260, P. R. China
| | - Xinzhi Wang
- Department of Nuclear medicine, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Mengchen Liu
- Department of Nuclear medicine, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Yi Yin
- Department of Nuclear medicine, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Yunfan Wu
- Department of Nuclear medicine, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Guang Xu
- Department of Neurology, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Xiaofen Ma
- Department of Nuclear medicine, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China.
- The Second School of Clinical Medicine, Southern Medial University, No. 253 Industrial Avenue Central, Guangzhou, 510260, P. R. China.
| |
Collapse
|
10
|
Leitner C, D'Este G, Verga L, Rahayel S, Mombelli S, Sforza M, Casoni F, Zucconi M, Ferini-Strambi L, Galbiati A. Neuropsychological Changes in Isolated REM Sleep Behavior Disorder: A Systematic Review and Meta-analysis of Cross-sectional and Longitudinal Studies. Neuropsychol Rev 2024; 34:41-66. [PMID: 36588140 DOI: 10.1007/s11065-022-09572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/28/2022] [Indexed: 01/03/2023]
Abstract
The aim of this meta-analysis is twofold: (a) to assess cognitive impairments in isolated rapid eye movement (REM) sleep behavior disorder (iRBD) patients compared to healthy controls (HC); (b) to quantitatively estimate the risk of developing a neurodegenerative disease in iRBD patients according to baseline cognitive assessment. To address the first aim, cross-sectional studies including polysomnography-confirmed iRBD patients, HC, and reporting neuropsychological testing were included. To address the second aim, longitudinal studies including polysomnography-confirmed iRBD patients, reporting baseline neuropsychological testing for converted and still isolated patients separately were included. The literature search was conducted based on PRISMA guidelines and the protocol was registered at PROSPERO (CRD42021253427). Cross-sectional and longitudinal studies were searched from PubMed, Web of Science, Scopus, and Embase databases. Publication bias and statistical heterogeneity were assessed respectively by funnel plot asymmetry and using I2. Finally, a random-effect model was performed to pool the included studies. 75 cross-sectional (2,398 HC and 2,460 iRBD patients) and 11 longitudinal (495 iRBD patients) studies were selected. Cross-sectional studies showed that iRBD patients performed significantly worse in cognitive screening scores (random-effects (RE) model = -0.69), memory (RE model = -0.64), and executive function (RE model = -0.50) domains compared to HC. The survival analyses conducted for longitudinal studies revealed that lower executive function and language performance, as well as the presence of mild cognitive impairment (MCI), at baseline were associated with an increased risk of conversion at follow-up. Our study underlines the importance of a comprehensive neuropsychological assessment in the context of iRBD.
Collapse
Affiliation(s)
- Caterina Leitner
- "Vita-Salute" San Raffaele University, Milan, Italy
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Giada D'Este
- "Vita-Salute" San Raffaele University, Milan, Italy
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Laura Verga
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Faculty of Psychology and Neuroscience, Department NP&PP, Maastricht University, Maastricht, The Netherlands
| | - Shady Rahayel
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal - Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada
| | - Samantha Mombelli
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Marco Sforza
- "Vita-Salute" San Raffaele University, Milan, Italy
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Francesca Casoni
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Marco Zucconi
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Luigi Ferini-Strambi
- "Vita-Salute" San Raffaele University, Milan, Italy
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Andrea Galbiati
- "Vita-Salute" San Raffaele University, Milan, Italy.
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy.
| |
Collapse
|
11
|
Donzuso G, Cicero CE, Giuliano L, Squillaci R, Luca A, Palmucci S, Basile A, Lanza G, Ferri R, Zappia M, Nicoletti A. Neuroanatomical findings in isolated REM sleep behavior disorder and early Parkinson's disease: a Voxel-based morphometry study. Brain Imaging Behav 2024; 18:83-91. [PMID: 37897654 PMCID: PMC10844466 DOI: 10.1007/s11682-023-00815-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) is a parasomnia characterized by loss of physiological atonia of skeletal muscles with abnormal behaviors arising during REM sleep. RBD is often the early manifestation of neurodegenerative diseases, particularly alpha-synucleinopathies, such as Parkinson's disease (PD). Both structural and functional neuroimaging studies suggest that iRBD might share, or even precede, some of the features commonly found in PD, although without a definitive conclusion. Aim of the study is to evaluate the presence of structural abnormalities involving cortical and subcortical areas in PD patients with RBD and iRBD. Patients with video-polysomnographic (VPSG)-confirmed iRBD, and patients with a diagnosis of PD were recruited. In all PD patients, the presence of probable RBD was assessed during the follow-up visits (PD/pRBD). A group of healthy controls (HC) subjects was also recruited. Each subject underwent a structural brain MRI using a 3-D T1-weighted spoiled gradient echo sequence. Twenty-three patients with iRBD, 24 PD/pRBD, and 26 HC were enrolled. Voxel-based morphometry-AnCOVA analysis revealed clusters of grey matter changes in iRBD and PD/pRBD compared to HC in several regions, involving mainly the frontal and temporal regions. The involvement of cortical brain structures associated to the control of sleep cycle and REM stage both in PD/pRBD and iRBD might suggest the presence of a common structural platform linking iRBD and PD, although this pattern may not underlie exclusively RBD-related features. Further longitudinal studies are needed to clarify the patterns of changes occurring at different time points of RBD-related neurodegeneration.
Collapse
Affiliation(s)
- Giulia Donzuso
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Calogero E Cicero
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Loretta Giuliano
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Raffaele Squillaci
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Antonina Luca
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Stefano Palmucci
- Radiodiagnostic and Radiotherapy Unit, University Hospital "Policlinico-San Marco", Via Santa Sofia 78, 95123, Catania, Italy
| | - Antonello Basile
- Radiodiagnostic and Radiotherapy Unit, University Hospital "Policlinico-San Marco", Via Santa Sofia 78, 95123, Catania, Italy
| | - Giuseppe Lanza
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123, Catania, Italy
| | - Raffaele Ferri
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Mario Zappia
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Alessandra Nicoletti
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
| |
Collapse
|
12
|
Mala C, Havlík F, Mana J, Nepožitek J, Dostálová S, Růžička E, Šonka K, Keller J, Jech R, Dušek P, Bezdicek O, Krupička R. Cortical and subcortical morphometric changes and their relation to cognitive impairment in isolated REM sleep behavior disorder. Neurol Sci 2024; 45:613-627. [PMID: 37670125 PMCID: PMC10791856 DOI: 10.1007/s10072-023-07040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVE To date, very few studies have focused on structural changes and their association with cognitive performance in isolated REM sleep behaviour disorder (iRBD). Moreover, the results of these studies are inconclusive. This study aims to evaluate differences in the associations between brain morphology and cognitive tests in iRBD and healthy controls. METHODS Sixty-three patients with iRBD and thirty-six controls underwent MRI with a 3 T scanner. The cognitive performance was assessed by a comprehensive neuropsychological battery. Based on performance, the iRBD group was divided into two subgroups with (iRBD-MCI) and without mild cognitive impairment (iRBD-NC). The high-resolution T1-weighted images were analysed using an automated atlas segmentation tool, voxel-based (VBM) and deformation-based (DBM) morphometry to identify between-group differences and correlations with cognitive performance. RESULTS VBM, DBM and the comparison of ROI volumes yielded no significant differences between iRBD and controls. In the iRBD group, significant correlations in VBM were found between several cortical and subcortical structures primarily located in the temporal, parietal, occipital lobe, cerebellum, and basal ganglia and three cognitive tests assessing psychomotor speed and one memory test. Between-group analysis of cognition revealed a significant difference between iRBD-MCI and iRBD-NC in tests including a processing speed component. CONCLUSIONS iRBD shows deficits in several cognitive tests that correlate with morphological changes, the most prominent of which is in psychomotor speed and visual attention as measured by the TMT-A and associated with the volume of striatum, insula, cerebellum, temporal lobe, pallidum and amygdala.
Collapse
Affiliation(s)
- Christiane Mala
- Department of Biomedical Informatics, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Filip Havlík
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
| | - Josef Mana
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jiří Nepožitek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Simona Dostálová
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Karel Šonka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jiří Keller
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petr Dušek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ondrej Bezdicek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Radim Krupička
- Department of Biomedical Informatics, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| |
Collapse
|
13
|
Rahayel S, Postuma R, Baril AA, Misic B, Pelletier A, Soucy JP, Montplaisir J, Dagher A, Gagnon JF. 99mTc-HMPAO SPECT Perfusion Signatures Associated With Clinical Progression in Patients With Isolated REM Sleep Behavior Disorder. Neurology 2024; 102:e208015. [PMID: 38315966 PMCID: PMC10890831 DOI: 10.1212/wnl.0000000000208015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/03/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Idiopathic/isolated REM sleep behavior disorder (iRBD) is associated with dementia with Lewy bodies and Parkinson disease. Despite evidence of abnormal cerebral perfusion in iRBD, there is currently no pattern that can predict whether an individual will develop dementia with Lewy bodies or Parkinson disease. The objective was to identify a perfusion signature associated with conversion to dementia with Lewy bodies in iRBD. METHODS Patients with iRBD underwent video-polysomnography, neurologic and neuropsychological assessments, and baseline 99mTc-HMPAO SPECT to assess relative cerebral blood flow. Partial least squares correlation was used to identify latent variables that maximized covariance between 27 clinical features and relative gray matter perfusion. Patient-specific scores on the latent variables were used to test the association with conversion to dementia with Lewy bodies compared with that with Parkinson disease. The signature's expression was also assessed in 24 patients with iRBD who underwent a second perfusion scan, 22 healthy controls, and 19 individuals with Parkinson disease. RESULTS Of the 137 participants, 93 underwent SPECT processing, namely 52 patients with iRBD (67.9 years, 73% men), 19 patients with Parkinson disease (67.3 years, 37% men), and 22 controls (67.0 years, 73% men). Of the 47 patients with iRBD followed up longitudinally (4.5 years), 12 (26%) developed a manifest synucleinopathy (4 dementia with Lewy bodies and 8 Parkinson disease). Analysis revealed 2 latent variables between relative blood flow and clinical features: the first was associated with a broad set of features that included motor, cognitive, and perceptual variables, age, and sex; the second was mostly associated with cognitive features and RBD duration. When brought back into the patient's space, the expression of the first variable was associated with conversion to a manifest synucleinopathy, whereas the second was associated with conversion to dementia with Lewy bodies. The expression of the patterns changed over time and was associated with worse motor features. DISCUSSION This study identified a brain perfusion signature associated with cognitive impairment in iRBD and transition to dementia with Lewy bodies. This signature, which can be derived from individual scans, has the potential to be developed into a biomarker that predicts dementia with Lewy bodies in at-risk individuals.
Collapse
Affiliation(s)
- Shady Rahayel
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| | - Ronald Postuma
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| | - Andrée-Ann Baril
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| | - Bratislav Misic
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| | - Amélie Pelletier
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| | - Jean-Paul Soucy
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| | - Jacques Montplaisir
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| | - Alain Dagher
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| | - Jean-François Gagnon
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| |
Collapse
|
14
|
Joza S, Hu MT, Jung K, Kunz D, Arnaldi D, Lee J, Ferini‐Strambi L, Antelmi E, Sixel‐Döring F, De Cock VC, Montplaisir JY, Welch J, Kim H, Bes F, Mattioli P, Woo KA, Marelli S, Plazzi G, Mollenhauer B, Pelletier A, Razzaque J, Sunwoo J, Girtler N, Trenkwalder C, Gagnon J, Postuma RB. Prodromal dementia with Lewy bodies in REM sleep behavior disorder: A multicenter study. Alzheimers Dement 2024; 20:91-102. [PMID: 37461299 PMCID: PMC10917000 DOI: 10.1002/alz.13386] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/12/2023] [Indexed: 01/18/2024]
Abstract
INTRODUCTION Isolated/idiopathic rapid eye movement sleep behavior disorder (iRBD) is a powerful early predictor of dementia with Lewy bodies (DLB) and Parkinson's disease (PD). This provides an opportunity to directly observe the evolution of prodromal DLB and to identify which cognitive variables are the strongest predictors of evolving dementia. METHODS IRBD participants (n = 754) from 10 centers of the International RBD Study Group underwent annual neuropsychological assessment. Competing risk regression analysis determined optimal predictors of dementia. Linear mixed-effect models determined the annual progression of neuropsychological testing. RESULTS Reduced attention and executive function, particularly performance on the Trail Making Test Part B, were the strongest identifiers of early DLB. In phenoconverters, the onset of cognitive decline began up to 10 years prior to phenoconversion. Changes in verbal memory best differentiated between DLB and PD subtypes. DISCUSSION In iRBD, attention and executive dysfunction strongly predict dementia and begin declining several years prior to phenoconversion. HIGHLIGHTS Cognitive decline in iRBD begins up to 10 years prior to phenoconversion. Attention and executive dysfunction are the strongest predictors of dementia in iRBD. Decline in episodic memory best distinguished dementia-first from parkinsonism-first phenoconversion.
Collapse
Affiliation(s)
- Stephen Joza
- Department of NeurologyMontreal Neurological InstituteMontrealCanada
| | - Michele T. Hu
- Nuffield Department of Clinical Neurosciences, Division of Neurology and Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| | - Ki‐Young Jung
- Department of Neurology, Seoul National University College of MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Dieter Kunz
- Clinic for Sleep & ChronomedicineSt. Hedwig‐KrankenhausBerlinGermany
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical NeurologyUniversity of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Jee‐Young Lee
- Department of NeurologySeoul National University College of MedicineSeoul Metropolitan Government‐Seoul National University Boramae Medical CenterSeoulSouth Korea
| | | | - Elena Antelmi
- DIMI Department of Engineering and Medicine of InnovationUniversity of VeronaVeronaItaly
| | - Friederike Sixel‐Döring
- Department of Neurology and Section on Clinical NeurosciencePhilipps University MarburgMarburgGermany
- Paracelsus Elena KlinikCentre for Movement DisordersKasselGermany
| | - Valérie Cochen De Cock
- EuroMov Digital Health in MotionUniversity of MontpellierIMT Mines AlesMontpellierFrance
- Department of Neurology and SleepBeau Soleil ClinicMontpellierFrance
| | - Jacques Y. Montplaisir
- Centre d’Études Avancées en Médecine du SommeilHôpital du Sacré‐Cœur de MontréalMontréalQuebecCanada
- Department of PsychologyUniversité du Québec à MontréalMontréalQuebecCanada
| | - Jessica Welch
- Nuffield Department of Clinical Neurosciences, Division of Neurology and Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| | - Han‐Joon Kim
- Department of Neurology, Seoul National University College of MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Frederik Bes
- Clinic for Sleep & ChronomedicineSt. Hedwig‐KrankenhausBerlinGermany
| | - Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical NeurologyUniversity of GenoaGenoaItaly
| | - Kyung Ah Woo
- Department of NeurologySeoul National University College of MedicineSeoul Metropolitan Government‐Seoul National University Boramae Medical CenterSeoulSouth Korea
| | - Sara Marelli
- Sleep Disorders CenterVita‐Salute San Raffaele UniversityMilanItaly
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio‐EmiliaModenaItaly
| | - Brit Mollenhauer
- Department of Neurology and Section on Clinical NeurosciencePhilipps University MarburgMarburgGermany
- Paracelsus Elena KlinikCentre for Movement DisordersKasselGermany
| | - Amelie Pelletier
- Department of NeurologyMontreal Neurological InstituteMontrealCanada
- Centre d’Études Avancées en Médecine du SommeilHôpital du Sacré‐Cœur de MontréalMontréalQuebecCanada
| | - Jamil Razzaque
- Nuffield Department of Clinical Neurosciences, Division of Neurology and Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| | - Jun‐Sang Sunwoo
- Department of NeurologyKangbuk Samsung HospitalSeoulRepublic of Korea
| | - Nicola Girtler
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical NeurologyUniversity of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Claudia Trenkwalder
- Paracelsus Elena KlinikCentre for Movement DisordersKasselGermany
- Department of NeurosurgeryUniversity Medical Center GoettingenGöttingenGermany
| | - Jean‐François Gagnon
- Centre d’Études Avancées en Médecine du SommeilHôpital du Sacré‐Cœur de MontréalMontréalQuebecCanada
- Department of PsychologyUniversité du Québec à MontréalMontréalQuebecCanada
| | - Ronald B. Postuma
- Department of NeurologyMontreal Neurological InstituteMontrealCanada
- Centre d’Études Avancées en Médecine du SommeilHôpital du Sacré‐Cœur de MontréalMontréalQuebecCanada
| | | |
Collapse
|
15
|
Savoie FA, Arpin DJ, Vaillancourt DE. Magnetic Resonance Imaging and Nuclear Imaging of Parkinsonian Disorders: Where do we go from here? Curr Neuropharmacol 2024; 22:1583-1605. [PMID: 37533246 PMCID: PMC11284713 DOI: 10.2174/1570159x21666230801140648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 08/04/2023] Open
Abstract
Parkinsonian disorders are a heterogeneous group of incurable neurodegenerative diseases that significantly reduce quality of life and constitute a substantial economic burden. Nuclear imaging (NI) and magnetic resonance imaging (MRI) have played and continue to play a key role in research aimed at understanding and monitoring these disorders. MRI is cheaper, more accessible, nonirradiating, and better at measuring biological structures and hemodynamics than NI. NI, on the other hand, can track molecular processes, which may be crucial for the development of efficient diseasemodifying therapies. Given the strengths and weaknesses of NI and MRI, how can they best be applied to Parkinsonism research going forward? This review aims to examine the effectiveness of NI and MRI in three areas of Parkinsonism research (differential diagnosis, prodromal disease identification, and disease monitoring) to highlight where they can be most impactful. Based on the available literature, MRI can assist with differential diagnosis, prodromal disease identification, and disease monitoring as well as NI. However, more work is needed, to confirm the value of MRI for monitoring prodromal disease and predicting phenoconversion. Although NI can complement or be a substitute for MRI in all the areas covered in this review, we believe that its most meaningful impact will emerge once reliable Parkinsonian proteinopathy tracers become available. Future work in tracer development and high-field imaging will continue to influence the landscape for NI and MRI.
Collapse
Affiliation(s)
- Félix-Antoine Savoie
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - David J. Arpin
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - David E. Vaillancourt
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Seger A, Ophey A, Doppler CEJ, Kickartz J, Lindner MS, Hommelsen M, Fink GR, Sommerauer M. Clinical subtypes in patients with isolated REM sleep behaviour disorder. NPJ Parkinsons Dis 2023; 9:155. [PMID: 37978183 PMCID: PMC10656506 DOI: 10.1038/s41531-023-00598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Patients with Parkinson's disease (PD) show a broad heterogeneity in clinical presentation, and subtypes may already arise in prodromal disease stages. Isolated REM sleep behaviour disorder (iRBD) is the most specific marker of prodromal PD, but data on clinical subtyping of patients with iRBD remain scarce. Therefore, this study aimed to identify iRBD subtypes. We conducted comprehensive clinical assessments in 66 patients with polysomnography-proven iRBD, including motor and non-motor evaluations, and applied a two-step cluster analysis. Besides, we compared iRBD clusters to matched healthy controls and related the resulting cluster solution to cortical and subcortical grey matter volumes by voxel-based morphometry analysis. We identified two distinct subtypes of patients based on olfactory function, dominant electroencephalography frequency, amount of REM sleep without atonia, depressive symptoms, disease duration, and motor functions. One iRBD cluster (Cluster I, late onset-aggressive) was characterised by higher non-motor symptom burden despite shorter disease duration than the more benign subtype (Cluster II, early onset-benign). Motor functions were comparable between the clusters. Patients from Cluster I were significantly older at iRBD onset and exhibited a widespread reduction of cortical grey matter volume compared to patients from Cluster II. In conclusion, our findings suggest the existence of clinical subtypes already in the prodromal stage of PD. Future longitudinal studies are warranted that replicate these findings and investigate the risk of the more aggressive phenotype for earlier phenoconversion and dementia development.
Collapse
Grants
- M. Sommerauer received grants from the Else Kröner-Fresenius-Stiftung (grant number 2019_EKES.02), and the Koeln Fortune Program, Faculty of Medicine, University of Cologne (grant number 453/2018, 343/2020, and 466/2020). MS is receiving funding from the program " Netzwerke 2021", an initiative of the Ministry of Culture and Science of the State of Northrhine Westphalia.
- A. Ophey received a grant from the Koeln Fortune Program (grant-no. 329/2021), Faculty of Medicine, University of Cologne, and the “Novartis-Stiftung für therapeutische Forschung”, both outside the submitted work.
- C. E. J. Doppler received grants from the Clinician Scientist Program (CCSP), funded by the German Research Foundation (DFG, FI 773/15-1).
- G. R. Fink receives royalties from the publication of the books Funktionelle MRT in Psychiatrie und Neurologie, Neurologische Differentialdiagnose, and SOP Neurologie and received honoraria for speaking engagements from Forum für medizinische Fortbildung FomF GmbH as well as grants from Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project-ID 431549029, SFB 1451.
Collapse
Affiliation(s)
- Aline Seger
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Anja Ophey
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Medical Psychology | Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Interventions (CeNDI), Cologne, Germany
| | - Christopher E J Doppler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Johanna Kickartz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Marie-Sophie Lindner
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Maximilian Hommelsen
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Gereon R Fink
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Michael Sommerauer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany.
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
17
|
Figorilli M, Meloni F, Lecca R, Tamburrino L, Mascia MG, Cocco V, Meloni M, Marques AR, Vidal T, Congiu P, Defazio G, Durif F, Lanza G, Ferri R, Schenck CH, Fantini ML, Puligheddu M. Severity of REM sleep without atonia correlates with measures of cognitive impairment and depressive symptoms in REM sleep behaviour disorder. J Sleep Res 2023; 32:e13880. [PMID: 36998161 DOI: 10.1111/jsr.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 04/01/2023]
Abstract
This study aimed to correlate REM sleep without atonia (RSWA) and neuropsychological data in patients with idiopathic/isolated REM sleep behaviour disorder (iRBD) and those with RBD associated with Parkinson's disease (PDRBD), in order to assess whether higher degrees of RSWA are related to poorer cognitive performance. A total of 142 subjects were enrolled: 48 with iRBD, 55 with PDRBD, and 39 PD without RBD (PDnoRBD). All participants underwent video-polysomnographic recording, clinical and neuropsychological assessment. RSWA was quantified according to two manual scoring methods (Montréal, SINBAR) and one automated (REM atonia index, RAI). Mild cognitive impairment (MCI) was diagnosed according to diagnostic criteria for MCI in Parkinson's disease. The relationship between neuropsychological scores and RSWA metrics was explored by multiple linear regression analysis and logistic regression models. Patients with iRBD showed significantly lower visuospatial functions and working memory, compared with the others. More severe RSWA was associated with a higher risk of reduced visuospatial abilities (OR 0.15), working memory (OR 2.48), attention (OR 2.53), and semantic fluency (OR 0.15) in the iRBD. In the whole group, a greater RSWA was associated with an increased risk for depressive symptoms (OR 3.6). A total of 57(40%) MCI subjects were found (17 iRBD, 26 PDRBD, and 14 PDnoRBD). Preserved REM-atonia was associated with a reduced odds of multi-domain MCI in the whole study population (OR 0.54). In conclusion, a greater severity of RSWA was associated with an increased risk for poor cognitive performance and depressive mood in patients with RBD. Moreover, higher RAI was associated with a lower risk of multi-domain MCI.
Collapse
Affiliation(s)
- Michela Figorilli
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Federico Meloni
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Rosamaria Lecca
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Ludovica Tamburrino
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Viola Cocco
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Mario Meloni
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Ana Raquel Marques
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurophysiology Department, Clermont-Ferrand, France
| | - Tiphaine Vidal
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurophysiology Department, Clermont-Ferrand, France
| | - Patrizia Congiu
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giovanni Defazio
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Frank Durif
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurophysiology Department, Clermont-Ferrand, France
| | - Giuseppe Lanza
- Sleep Research Centre, Oasi Research Institute-IRCCS, Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute-IRCCS, Troina, Italy
| | - Carlos H Schenck
- Minnesota Regional Sleep Disorders Center, and Departments of Psychiatry, Hennepin County Medical Center and University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Maria Livia Fantini
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurophysiology Department, Clermont-Ferrand, France
| | - Monica Puligheddu
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| |
Collapse
|
18
|
Del Gaudio N, Ferrao Santos S, Raftopoulos C. Modified Vertical Parasagittal Sub-Insular Hemispherotomy-Case Series and Technical Note. Brain Sci 2023; 13:1395. [PMID: 37891764 PMCID: PMC10605112 DOI: 10.3390/brainsci13101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Hemispherotomy is the generally accepted treatment for hemispheric drug-resistant epilepsy (DRE). Lateral or vertical approaches are performed according to the surgeon's preference. Multiple technical variations have been proposed since Delalande first described his vertical technique. We propose a sub-insular variation of the vertical parasagittal hemispherotomy (VPH) and describe our case series of patients operated on using this procedure. (2) Methods: Data from a continuous series of patients with hemispheric DRE who were operated on by the senior author (CR) using the modified sub-insular VPH technique were analyzed retrospectively. Pre-operative demographic and epilepsy characteristics, functional outcome, and surgical complications were extracted from medical charts. (3) Results: Twenty-five patients were operated on between August 2008 and August 2023; 23 have at least 3 months of follow-up. Of this group, 20 (86.9%) patients are seizure-free. Only two patients developed postoperative hydrocephalus (8.7%). All patients who were able to walk autonomously preoperatively and 20 (86.9%) of those with follow-up were able to walk without assistance. A total of 17 (74%) patients were able to perform adapted social activities at the latest follow-up. (4) Conclusions: Modified sub-insular VPH is a successful surgical technique for hemispheric DRE with seizure freedom rates similar to the largest series reported in the literature. Compared to other series, patients who were operated on with our modified technique had a lower rate of postoperative hydrocephalus and excellent long-term motor and cognitive outcomes.
Collapse
Affiliation(s)
- Nicole Del Gaudio
- Neurosurgery Department, University Hospital Saint Luc, Université Catholique de Louvain, Av. Hippocrate 10, 1200 Brussels, Belgium;
| | - Susana Ferrao Santos
- Neurology Department, University Hospital Saint Luc, Université Catholique de Louvain, Av. Hippocrate 10, 1200 Brussels, Belgium;
| | | |
Collapse
|
19
|
Grimaldi S, Guye M, Bianciardi M, Eusebio A. Brain MRI Biomarkers in Isolated Rapid Eye Movement Sleep Behavior Disorder: Where Are We? A Systematic Review. Brain Sci 2023; 13:1398. [PMID: 37891767 PMCID: PMC10604962 DOI: 10.3390/brainsci13101398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing number of MRI studies focused on prodromal Parkinson's Disease (PD) demonstrates a strong interest in identifying early biomarkers capable of monitoring neurodegeneration. In this systematic review, we present the latest information regarding the most promising MRI markers of neurodegeneration in relation to the most specific prodromal symptoms of PD, namely isolated rapid eye movement (REM) sleep behavior disorder (iRBD). We reviewed structural, diffusion, functional, iron-sensitive, neuro-melanin-sensitive MRI, and proton magnetic resonance spectroscopy studies conducted between 2000 and 2023, which yielded a total of 77 relevant papers. Among these markers, iron and neuromelanin emerged as the most robust and promising indicators for early neurodegenerative processes in iRBD. Atrophy was observed in several regions, including the frontal and temporal cortices, limbic cortices, and basal ganglia, suggesting that neurodegenerative processes had been underway for some time. Diffusion and functional MRI produced heterogeneous yet intriguing results. Additionally, reduced glymphatic clearance function was reported. Technological advancements, such as the development of ultra-high field MRI, have enabled the exploration of minute anatomical structures and the detection of previously undetectable anomalies. The race to achieve early detection of neurodegeneration is well underway.
Collapse
Affiliation(s)
- Stephan Grimaldi
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Centre d’Exploration Métabolique par Résonnance Magnétique, Assistance Publique des Hôpitaux de Marseille, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129, USA
| | - Maxime Guye
- Centre d’Exploration Métabolique par Résonnance Magnétique, Assistance Publique des Hôpitaux de Marseille, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Marta Bianciardi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129, USA
- Division of Sleep Medicine, Harvard University, Boston, MA 02114, USA
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Institut de Neurosciences de la Timone, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
| |
Collapse
|
20
|
Yang A, Li G. Nucleus basalis of Meynert predicts cognitive changes in isolated REM sleep behavior disorder. Sleep Med 2023; 109:11-17. [PMID: 37393717 DOI: 10.1016/j.sleep.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Degeneration of the nucleus basalis of Meynert (NBM) has been implicated in cognitive impairments in Parkinson's disease. The role of the NBM volumes in the cognitive function in isolated rapid eye movement (REM) sleep behavior disorder (iRBD) has not been explored. METHOD We investigated changes in NBM volumes and their associations with cognitive deficits in iRBD. Baseline NBM volumes were compared between 29 iRBD patients and 29 healthy controls by using structural MRI data from the Parkinson Progression Marker Initiative database. Partial correlation analyses were used to evaluate cross-sectional relationships between baseline NBM volumes and cognitive performance in iRBD. Linear mixed models were applied to assess between-group differences in longitudinal cognitive changes, and whether baseline NBM volumes could predict longitudinal changes of cognition in iRBD. RESULTS Compared with controls, NBM volumes were significantly reduced in iRBD patients. In patients with iRBD, higher NBM volumes were significantly associated with greater performance in global cognition function. In the longitudinal analyses, iRBD patients showed more severe and rapid decline on tests of global cognition compared to healthy controls. Furthermore, greater baseline NBM volumes were significantly associated with greater follow-up Montreal Cognitive Assessment (MoCA) scores, thus predicting less longitudinal cognitive changes in iRBD. CONCLUSION This study provides important in vivo evidence for an association between the NBM degeneration and cognitive impairments in iRBD.
Collapse
Affiliation(s)
- Amei Yang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guanglu Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
21
|
Rahayel S, Tremblay C, Vo A, Misic B, Lehéricy S, Arnulf I, Vidailhet M, Corvol JC, Gagnon JF, Postuma RB, Montplaisir J, Lewis S, Matar E, Ehgoetz Martens K, Borghammer P, Knudsen K, Hansen AK, Monchi O, Gan-Or Z, Dagher A. Mitochondrial function-associated genes underlie cortical atrophy in prodromal synucleinopathies. Brain 2023; 146:3301-3318. [PMID: 36826230 PMCID: PMC10393413 DOI: 10.1093/brain/awad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/12/2023] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Isolated rapid eye movement sleep behaviour disorder (iRBD) is a sleep disorder characterized by the loss of rapid eye movement sleep muscle atonia and the appearance of abnormal movements and vocalizations during rapid eye movement sleep. It is a strong marker of incipient synucleinopathy such as dementia with Lewy bodies and Parkinson's disease. Patients with iRBD already show brain changes that are reminiscent of manifest synucleinopathies including brain atrophy. However, the mechanisms underlying the development of this atrophy remain poorly understood. In this study, we performed cutting-edge imaging transcriptomics and comprehensive spatial mapping analyses in a multicentric cohort of 171 polysomnography-confirmed iRBD patients [67.7 ± 6.6 (49-87) years; 83% men] and 238 healthy controls [66.6 ± 7.9 (41-88) years; 77% men] with T1-weighted MRI to investigate the gene expression and connectivity patterns associated with changes in cortical thickness and surface area in iRBD. Partial least squares regression was performed to identify the gene expression patterns underlying cortical changes in iRBD. Gene set enrichment analysis and virtual histology were then done to assess the biological processes, cellular components, human disease gene terms, and cell types enriched in these gene expression patterns. We then used structural and functional neighbourhood analyses to assess whether the atrophy patterns in iRBD were constrained by the brain's structural and functional connectome. Moreover, we used comprehensive spatial mapping analyses to assess the specific neurotransmitter systems, functional networks, cytoarchitectonic classes, and cognitive brain systems associated with cortical changes in iRBD. All comparisons were tested against null models that preserved spatial autocorrelation between brain regions and compared to Alzheimer's disease to assess the specificity of findings to synucleinopathies. We found that genes involved in mitochondrial function and macroautophagy were the strongest contributors to the cortical thinning occurring in iRBD. Moreover, we demonstrated that cortical thinning was constrained by the brain's structural and functional connectome and that it mapped onto specific networks involved in motor and planning functions. In contrast with cortical thickness, changes in cortical surface area were related to distinct genes, namely genes involved in the inflammatory response, and to different spatial mapping patterns. The gene expression and connectivity patterns associated with iRBD were all distinct from those observed in Alzheimer's disease. In summary, this study demonstrates that the development of brain atrophy in synucleinopathies is constrained by specific genes and networks.
Collapse
Affiliation(s)
- Shady Rahayel
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal H4J 1C5, Canada
| | - Christina Tremblay
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
| | - Andrew Vo
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
| | - Bratislav Misic
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
| | - Stéphane Lehéricy
- Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, Sorbonne Université, Paris 75013, France
| | - Isabelle Arnulf
- Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, Sorbonne Université, Paris 75013, France
| | - Marie Vidailhet
- Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, Sorbonne Université, Paris 75013, France
| | - Jean-Christophe Corvol
- Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, Sorbonne Université, Paris 75013, France
| | - Jean-François Gagnon
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal H4J 1C5, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal H2X 3P2, Canada
- Research Centre, Institut universitaire de gériatrie de Montréal, Montreal H3W 1W5, Canada
| | - Ronald B Postuma
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal H4J 1C5, Canada
- Department of Neurology, Montreal General Hospital, Montreal H3G 1A4, Canada
| | - Jacques Montplaisir
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal H4J 1C5, Canada
- Department of Psychiatry, University of Montreal, Montreal H3T 1J4, Canada
| | - Simon Lewis
- ForeFront Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown NSW 2050, Australia
| | - Elie Matar
- ForeFront Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown NSW 2050, Australia
| | - Kaylena Ehgoetz Martens
- ForeFront Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown NSW 2050, Australia
- Department of Kinesiology, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus DK-8200, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus DK-8200, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus DK-8200, Denmark
| | - Oury Monchi
- Research Centre, Institut universitaire de gériatrie de Montréal, Montreal H3W 1W5, Canada
- Department of Radiology, Radio-Oncology, and Nuclear Medicine, University of Montreal, Montreal H3T 1A4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal H3A 1A1, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal H3A 1A1, Canada
- Department of Human Genetics, McGill University, Montreal H3A 0C7, Canada
| | - Alain Dagher
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal H3A 1A1, Canada
| | | |
Collapse
|
22
|
Nepozitek J, Varga Z, Dostalova S, Perinova P, Keller J, Robinson S, Ibarburu V, Prihodova I, Bezdicek O, Ruzicka E, Sonka K, Dusek P. Magnetic susceptibility changes in the brainstem reflect REM sleep without atonia severity in isolated REM sleep behavior disorder. NPJ Parkinsons Dis 2023; 9:112. [PMID: 37452075 PMCID: PMC10349141 DOI: 10.1038/s41531-023-00557-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
REM sleep without atonia (RWA) is the hallmark of isolated REM sleep behavior disorder (iRBD) and is caused by neurodegeneration of brainstem structures. Previously, quantitative susceptibility mapping (QSM) was shown to detect microstructural tissue changes in neurodegenerative diseases. The goal of the study was to compare brainstem magnetic susceptibility (MS) in iRBD and controls using the voxel-based QSM approach and to examine the association between brainstem MS and severity of RWA in iRBD. Sixty iRBD patients and 41 healthy controls were included in the study. Phasic, tonic, mixed RWA and SINBAR score was quantified. QSM maps were reconstructed with QSMbox software from a multi-gradient-echo sequence acquired at 3T MRI system and normalized using a custom T1 template. Voxel-based analysis with age and gender as covariates was performed using a two-sample t-test model for between-group comparison and using a linear regression model for association with the RWA parameters. Statistical maps were generated using threshold free cluster enhancement with p-value p < 0.05, corrected for family wise error. Compared to controls, the iRBD group had higher MS in bilateral substantia nigra (SN), red nucleus and the ventral tegmental area. MS positively correlated with iRBD duration in the right pedunculotegmental nucleus and white matter of caudal mesencephalic and pontine tegmentum and with phasic RWA in bilateral SN. QSM was able to detect MS abnormalities in several brainstem structures in iRBD. Association of MS levels in the brainstem with the intensity of RWA suggests that increased iron content in SN is related to RWA severity.
Collapse
Affiliation(s)
- Jiri Nepozitek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Zsoka Varga
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Simona Dostalova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavla Perinova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiri Keller
- Radiodiagnostic Department, Na Homolce Hospital, Prague, Czech Republic
| | - Simon Robinson
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Centre of Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Veronika Ibarburu
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Iva Prihodova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ondrej Bezdicek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Evzen Ruzicka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Karel Sonka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
23
|
Shin JH, Kim H, Kim YK, Yoon EJ, Nam H, Jeon B, Lee JY. Longitudinal evolution of cortical thickness signature reflecting Lewy body dementia in isolated REM sleep behavior disorder: a prospective cohort study. Transl Neurodegener 2023; 12:27. [PMID: 37217951 DOI: 10.1186/s40035-023-00356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND The isolated rapid-eye-movement sleep behavior disorder (iRBD) is a prodromal condition of Lewy body disease including Parkinson's disease and dementia with Lewy bodies (DLB). We aim to investigate the longitudinal evolution of DLB-related cortical thickness signature in a prospective iRBD cohort and evaluate the possible predictive value of the cortical signature index in predicting dementia-first phenoconversion in individuals with iRBD. METHODS We enrolled 22 DLB patients, 44 healthy controls, and 50 video polysomnography-proven iRBD patients. Participants underwent 3-T magnetic resonance imaging (MRI) and clinical/neuropsychological evaluations. We characterized DLB-related whole-brain cortical thickness spatial covariance pattern (DLB-pattern) using scaled subprofile model of principal components analysis that best differentiated DLB patients from age-matched controls. We analyzed clinical and neuropsychological correlates of the DLB-pattern expression scores and the mean values of the whole-brain cortical thickness in DLB and iRBD patients. With repeated MRI data during the follow-up in our prospective iRBD cohort, we investigated the longitudinal evolution of the cortical thickness signature toward Lewy body dementia. Finally, we analyzed the potential predictive value of cortical thickness signature as a biomarker of phenoconversion in iRBD cohort. RESULTS The DLB-pattern was characterized by thinning of the temporal, orbitofrontal, and insular cortices and relative preservation of the precentral and inferior parietal cortices. The DLB-pattern expression scores correlated with attentional and frontal executive dysfunction (Trail Making Test-A and B: R = - 0.55, P = 0.024 and R = - 0.56, P = 0.036, respectively) as well as visuospatial impairment (Rey-figure copy test: R = - 0.54, P = 0.0047). The longitudinal trajectory of DLB-pattern revealed an increasing pattern above the cut-off in the dementia-first phenoconverters (Pearson's correlation, R = 0.74, P = 6.8 × 10-4) but no significant change in parkinsonism-first phenoconverters (R = 0.0063, P = 0.98). The mean value of the whole-brain cortical thickness predicted phenoconversion in iRBD patients with hazard ratio of 9.33 [1.16-74.12]. The increase in DLB-pattern expression score discriminated dementia-first from parkinsonism-first phenoconversions with 88.2% accuracy. CONCLUSION Cortical thickness signature can effectively reflect the longitudinal evolution of Lewy body dementia in the iRBD population. Replication studies would further validate the utility of this imaging marker in iRBD.
Collapse
Affiliation(s)
- Jung Hwan Shin
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul, South Korea
- Department of Neurology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, South Korea
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul, South Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul, South Korea.
| | - Eun Jin Yoon
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul, South Korea
| | - Hyunwoo Nam
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul, South Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, South Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
24
|
Figorilli M, Meloni M, Lanza G, Casaglia E, Lecca R, Saibene FL, Congiu P, Puligheddu M. Considering REM Sleep Behavior Disorder in the Management of Parkinson's Disease. Nat Sci Sleep 2023; 15:333-352. [PMID: 37180094 PMCID: PMC10167974 DOI: 10.2147/nss.s266071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is the result of the loss of physiological inhibition of muscle tone during REM sleep, characterized by dream-enacting behavior and widely recognized as a prodromal manifestation of alpha-synucleinopathies. Indeed, patients with isolated RBD (iRBD) have an extremely high estimated risk to develop a neurodegenerative disease after a long follow up. Nevertheless, in comparison with PD patients without RBD (PDnoRBD), the occurrence of RBD in the context of PD (PDRBD) seems to identify a unique, more malignant phenotype, characterized by a more severe burden of disease in terms of both motor and non-motor symptoms and increased risk for cognitive decline. However, while some medications (eg, melatonin, clonazepam, etc.) and non-pharmacological options have been found to have some therapeutic benefits on RBD there is no available treatment able to modify the disease course or, at least, slow down the neurodegenerative process underlying phenoconversion. In this scenario, the long prodromal phase may allow an early therapeutic window and, therefore, the identification of multimodal biomarkers of disease onset and progression is becoming increasingly crucial. To date, several clinical (motor, cognitive, olfactory, visual, and autonomic features) neurophysiological, neuroimaging, biological (biofluids or tissue biopsy), and genetic biomarkers have been identified and proposed, also in combination, as possible diagnostic or prognostic markers, along with a potential role for some of them as outcome measures and index of treatment response. In this review, we provide an insight into the present knowledge on both existing and future biomarkers of iRBD and highlight the difference with PDRBD and PDnoRBD, including currently available treatment options.
Collapse
Affiliation(s)
- Michela Figorilli
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Mario Meloni
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Elisa Casaglia
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Rosamaria Lecca
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Patrizia Congiu
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Monica Puligheddu
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
25
|
Diaz-Galvan P, Miyagawa T, Przybelski SA, Lesnick TG, Senjem ML, Jack CR, Forsberg LK, Min HK, St. Louis EK, Savica R, Fields JA, Benarroch EE, Lowe V, Petersen RC, Boeve BF, Kantarci K. Brain glucose metabolism and nigrostriatal degeneration in isolated rapid eye movement sleep behaviour disorder. Brain Commun 2023; 5:fcad021. [PMID: 36844148 PMCID: PMC9945851 DOI: 10.1093/braincomms/fcad021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Alterations of cerebral glucose metabolism can be detected in patients with isolated rapid eye movement sleep behaviour disorder, a prodromal feature of neurodegenerative diseases with α-synuclein pathology. However, metabolic characteristics that determine clinical progression in isolated rapid eye movement sleep behaviour disorder and their association with other biomarkers need to be elucidated. We investigated the pattern of cerebral glucose metabolism on 18F-fluorodeoxyglucose PET in patients with isolated rapid eye movement sleep behaviour disorder, differentiating between those who clinically progressed and those who remained stable over time. Second, we studied the association between 18F-fluorodeoxyglucose PET and lower dopamine transporter availability in the putamen, another hallmark of synucleinopathies. Patients with isolated rapid eye movement sleep behaviour disorder from the Mayo Clinic Alzheimer's Disease Research Center and Center for Sleep Medicine (n = 22) and age-and sex-matched clinically unimpaired controls (clinically unimpaired; n = 44) from the Mayo Clinic Study of Aging were included. All participants underwent 18F-fluorodeoxyglucose PET and dopamine transporter imaging with iodine 123-radiolabeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane on single-photon emission computerized tomography. A subset of patients with isolated rapid eye movement sleep behaviour disorder with follow-up evaluations (n = 17) was classified as isolated rapid eye movement sleep behaviour disorder progressors (n = 7) if they developed mild cognitive impairment or Parkinson's disease; or isolated rapid eye movement sleep behaviour disorder stables (n = 10) if they remained with a diagnosis of isolated rapid eye movement sleep behaviour disorder with no cognitive impairment. Glucose metabolic abnormalities in isolated rapid eye movement sleep behaviour disorder were determined by comparing atlas-based regional 18F-fluorodeoxyglucose PET uptake between isolated rapid eye movement sleep behaviour disorder and clinically unimpaired. Associations between 18F-fluorodeoxyglucose PET and dopamine transporter availability in the putamen were analyzed with Pearson's correlation within the nigrostriatal pathway structures and with voxel-based analysis in the cortex. Patients with isolated rapid eye movement sleep behaviour disorder had lower glucose metabolism in the substantia nigra, retrosplenial cortex, angular cortex, and thalamus, and higher metabolism in the amygdala and entorhinal cortex compared with clinically unimpaired. Patients with isolated rapid eye movement sleep behaviour disorder who clinically progressed over time were characterized by higher glucose metabolism in the amygdala and entorhinal cortex, and lower glucose metabolism in the cerebellum compared with clinically unimpaired. Lower dopamine transporter availability in the putamen was associated with higher glucose metabolism in the pallidum within the nigrostriatal pathway; and with higher 18F-fluorodeoxyglucose uptake in the amygdala, insula, and temporal pole on a voxel-based analysis, although these associations did not survive after correcting for multiple comparisons. Our findings suggest that cerebral glucose metabolism in isolated rapid eye movement sleep behaviour disorder is characterized by hypometabolism in regions frequently affected during the prodromal stage of synucleinopathies, potentially reflecting synaptic dysfunction. Hypermetabolism is also seen in isolated rapid eye movement sleep behaviour disorder, suggesting that synaptic metabolic disruptions may be leading to a lack of inhibition, compensatory mechanisms, or microglial activation, especially in regions associated with nigrostriatal degeneration.
Collapse
Affiliation(s)
| | - Toji Miyagawa
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy G Lesnick
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew L Senjem
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Leah K Forsberg
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Val Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
26
|
Vacca M, Assogna F, Pellicano C, Chiaravalloti A, Placidi F, Izzi F, Camedda R, Schillaci O, Spalletta G, Lombardo C, Mercuri NB, Liguori C. Neuropsychiatric, neuropsychological, and neuroimaging features in isolated REM sleep behavior disorder: The importance of MCI. Sleep Med 2022; 100:230-237. [PMID: 36116292 DOI: 10.1016/j.sleep.2022.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/23/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is frequently diagnosed in patients with isolated rapid eye movement (REM) sleep behavior disorder (iRBD), although the extent of MCI-associated neuropathology has not yet been quantified. The present study compared the differences in neuropsychiatric, neuropsychological, and neuroimaging markers of neurodegeneration in MCI-iRBD and iRBD patients with normal cognition. METHODS Sixty-one patients with iRBD were included in the study: 30 patients were included in the MCI subgroup (RBD-MCI) and 31 in the normal cognition subgroup (RBD-NC). Both groups underwent neuropsychiatric and neuropsychological assessments to evaluate psychopathological symptoms and neuropsychological functions. Brain [18F]FDG PET and 123I-FP-CIT-SPECT were performed to evaluate brain glucose metabolism and nigrostriatal dopaminergic function in convenient subgroups of patients, respectively. RESULTS Neuropsychological measures generally confirmed overall cognitive decline in patients with iRBD-MCI. Immediate long-term verbal memory and visuospatial functions, as well as attentional-executive impairment were evident in the MCI group compared to the NC group. Neuroimaging results indicated reduced brain glucose uptake in the bilateral posterior cingulate cortex and more evident nigrostriatal deafferentation in the RBD-MCI group. There were no differences in psychopathological symptoms between the two groups. CONCLUSIONS This study confirmed that iRBD patients with MCI had a more impaired cognitive status that those with NC. Moreover, the MCI subgroup presented reduced cerebral glucose consumption in brain areas critical for cognition, and a more severe deafferentation of the nigro-striatal regions, highlighting the importance of identifying iRBD patients with MCI for urgent neuroprotective trials.
Collapse
Affiliation(s)
| | | | | | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Fabio Placidi
- Sleep Medicine Center, Neurology Unit, University Hospital of Rome "Tor Vergata", Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Francesca Izzi
- Sleep Medicine Center, Neurology Unit, University Hospital of Rome "Tor Vergata", Italy
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Italy
| | | | | | - Nicola Biagio Mercuri
- IRCCS Santa Lucia Foundation, Rome, Italy; Sleep Medicine Center, Neurology Unit, University Hospital of Rome "Tor Vergata", Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Claudio Liguori
- Sleep Medicine Center, Neurology Unit, University Hospital of Rome "Tor Vergata", Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Italy.
| |
Collapse
|
27
|
Mattioli P, Pardini M, Girtler N, Brugnolo A, Orso B, Andrea D, Calizzano F, Mancini R, Massa F, Michele T, Bauckneht M, Morbelli S, Sambuceti G, Flavio N, Arnaldi D. Cognitive and Brain Metabolism Profiles of Mild Cognitive Impairment in Prodromal Alpha-Synucleinopathy. J Alzheimers Dis 2022; 90:433-444. [DOI: 10.3233/jad-220653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Mild cognitive impairment (MCI) is a heterogeneous condition. Idiopathic REM sleep behavior disorder (iRBD) can be associated with MCI (MCI-RBD). Objective: To investigate neuropsychological and brain metabolism features of patients with MCI-RBD by comparison with matched MCI-AD patients. To explore their predictive value toward conversion to a full-blown neurodegenerative disease. Methods: Seventeen MCI-RBD patients (73.6±6.5 years) were enrolled. Thirty-four patients with MCI-AD were matched for age (74.8±4.4 years), Mini-Mental State Exam score and education with a case-control criterion. All patients underwent a neuropsychological assessment and brain 18F-FDG-PET. Images were compared between groups to identify hypometabolic volumes of interest (MCI-RBD-VOI and MCI-AD-VOI). The dependency of whole-brain scaled metabolism levels in MCI-RBD-VOI and MCI-AD-VOI on neuropsychological test scores was explored with linear regression analyses in both groups, adjusting for age and education. Survival analysis was performed to investigate VOIs phenoconversion prediction power. Results: MCI-RBD group scored lower in executive functions and higher in verbal memory compared to MCI-AD group. Also, compared with MCI-AD, MCI-RBD group showed relative hypometabolism in a posterior brain area including cuneus, precuneus, and occipital regions while the inverse comparison revealed relative hypometabolism in the hippocampus/parahippocampal areas in MCI-AD group. MCI-RBD-VOI metabolism directly correlated with executive functions in MCI-RBD (p = 0.04). MCI-AD-VOI metabolism directly correlated with verbal memory in MCI-AD (p = 0.001). MCI-RBD-VOI metabolism predicted (p = 0.03) phenoconversion to an alpha-synucleinopathy. MCI-AD-VOI metabolism showed a trend (p = 0.07) in predicting phenoconversion to dementia. Conclusion: MCI-RBD and MCI-AD showed distinct neuropsychological and brain metabolism profiles, that may be helpful for both diagnosis and prognosis purposes.
Collapse
Affiliation(s)
- Pietro Mattioli
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicola Girtler
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinical Psychology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Brugnolo
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinical Psychology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Beatrice Orso
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Donniaquio Andrea
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Raffaele Mancini
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Terzaghi Michele
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine Unit, Dept. of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine Unit, Dept. of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Gianmario Sambuceti
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine Unit, Dept. of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nobili Flavio
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
28
|
Wenke Š, Mana J, Havlík F, Cohn M, Nikolai T, Buschke H, Nepožitek J, Peřinová P, Dostálová S, Ibarburu Lorenzo Y Losada V, Růžička E, Šonka K, Dušek P, Bezdicek O. Characterization of memory profile in idiopathic REM sleep behavior disorder. J Clin Exp Neuropsychol 2022; 44:237-250. [DOI: 10.1080/13803395.2022.2107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Štěpán Wenke
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Josef Mana
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Filip Havlík
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Melanie Cohn
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Tomáš Nikolai
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Herman Buschke
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York City, New York, USA
| | - Jiří Nepožitek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Pavla Peřinová
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Simona Dostálová
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Veronika Ibarburu Lorenzo Y Losada
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Karel Šonka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petr Dušek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ondrej Bezdicek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
29
|
Ota Y, Kanel P, Bohnen N. Imaging of sleep disorders in pre-Parkinsonian syndromes. Curr Opin Neurol 2022; 35:443-452. [PMID: 35788559 PMCID: PMC9308698 DOI: 10.1097/wco.0000000000001084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Neuroimaging has been advanced in the last years and enabled clinicians to evaluate sleep disorders, especially isolated rapid eye movement sleep disorder (iRBD), which can be seen in alpha-synucleinopathies. iRBD is the best prodromal clinical marker for phenoconversion to these neurodegenerative diseases. This review aims to provide an update on advanced neuroimaging biomarkers in iRBD. RECENT FINDINGS Advanced structural MRI techniques, such as diffusion tensor imaging and functional MRI, neuromelanin-sensitive MRI, and scintigraphic neuroimaging such as cholinergic PET, dopamine transporter imaging - single-photon emission computerized tomography, perfusional single-photon emission computerized tomography, and cardiac metaiodobenzylguanidine can provide diagnostic and prognostic imaging biomarkers for iRBD, in isolation and more robustly when combined. SUMMARY New advanced neuroimaging can provide imaging biomarkers and aid in the appropriate clinical assessment and future therapeutic trials.
Collapse
Affiliation(s)
- Yoshiaki Ota
- The Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Prabesh Kanel
- The Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Parkinson’s Foundation Research Center of Excellence, Ann Arbor, MI, USA
| | - Nicolaas Bohnen
- The Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Parkinson’s Foundation Research Center of Excellence, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- GRECC & Neurology Service, VAAAHS, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Valli M, Uribe C, Mihaescu A, Strafella AP. Neuroimaging of rapid eye movement sleep behavior disorder and its relation to Parkinson's disease. J Neurosci Res 2022; 100:1815-1833. [DOI: 10.1002/jnr.25099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Mikaeel Valli
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Brain Institute, UHN University of Toronto Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
| | - Carme Uribe
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience University of Barcelona Barcelona Spain
| | - Alexander Mihaescu
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Brain Institute, UHN University of Toronto Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
| | - Antonio P. Strafella
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Brain Institute, UHN University of Toronto Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
- Edmond J. Safra Parkinson Disease Program & Morton and Gloria Shulman Movement Disorder Unit, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN University of Toronto Toronto Ontario Canada
| |
Collapse
|
31
|
Rahayel S, Tremblay C, Vo A, Zheng YQ, Lehéricy S, Arnulf I, Vidailhet M, Corvol JC, Gagnon JF, Postuma RB, Montplaisir J, Lewis S, Matar E, Ehgoetz Martens K, Borghammer P, Knudsen K, Hansen A, Monchi O, Misic B, Dagher A. Brain atrophy in prodromal synucleinopathy is shaped by structural connectivity and gene expression. Brain 2022; 145:3162-3178. [PMID: 35594873 DOI: 10.1093/brain/awac187] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
Isolated REM sleep behaviour disorder (iRBD) is a synucleinopathy characterized by abnormal behaviours and vocalizations during REM sleep. Most iRBD patients develop dementia with Lewy bodies, Parkinson's disease, or multiple system atrophy over time. Patients with iRBD exhibit brain atrophy patterns that are reminiscent of those observed in overt synucleinopathies. However, the mechanisms linking brain atrophy to the underlying alpha-synuclein pathophysiology are poorly understood. Our objective was to investigate how the prion-like and regional vulnerability hypotheses of alpha-synuclein might explain brain atrophy in iRBD. Using a multicentric cohort of 182 polysomnography-confirmed iRBD patients who underwent T1-weighted MRI, we performed vertex-based cortical surface and deformation-based morphometry analyses to quantify brain atrophy in patients (67.8 years, 84% men) and 261 healthy controls (66.2 years, 75%) and investigated the morphological correlates of motor and cognitive functioning in iRBD. Next, we applied the agent-based Susceptible-Infected-Removed model (i.e., a computational model that simulates in silico the spread of pathologic alpha-synuclein based on structural connectivity and gene expression) and tested if it recreated atrophy in iRBD by statistically comparing simulated regional brain atrophy to the atrophy observed in patients. The impact of SNCA and GBA gene expression and brain connectivity was then evaluated by comparing the model fit to the one obtained in null models where either gene expression or connectivity was randomized. The results showed that iRBD patients present with cortical thinning and tissue deformation, which correlated with motor and cognitive functioning. Next, we found that the computational model recreated cortical thinning (r = 0.51, p = 0.0007) and tissue deformation (r = 0.52, p = 0.0005) in patients, and that the connectome's architecture along with SNCA and GBA gene expression contributed to shaping atrophy in iRBD. We further demonstrated that the full agent-based model performed better than network measures or gene expression alone in recreating the atrophy pattern in iRBD. In summary, atrophy in iRBD is extensive, correlates with motor and cognitive function, and can be recreated using the dynamics of agent-based modelling, structural connectivity, and gene expression. These findings support the concepts that both prion-like spread and regional susceptibility account for the atrophy observed in prodromal synucleinopathies. Therefore, the agent-based Susceptible-Infected-Removed model may be a useful tool for testing hypotheses underlying neurodegenerative diseases and new therapies aimed at slowing or stopping the spread of alpha-synuclein pathology.
Collapse
Affiliation(s)
- Shady Rahayel
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada.,Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal H4J 1C5, Montreal, Canada
| | - Christina Tremblay
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
| | - Andrew Vo
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
| | - Ying-Qiu Zheng
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Stéphane Lehéricy
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris 75013, France
| | - Isabelle Arnulf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris 75013, France
| | - Marie Vidailhet
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris 75013, France
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris 75013, France
| | | | - Jean-François Gagnon
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal H4J 1C5, Montreal, Canada.,Department of Psychology, Université du Québec à Montréal, Montreal H2X 3P2, Canada.,Research Centre, Institut universitaire de gériatrie de Montréal, Montreal H3W 1W5, Canada
| | - Ronald B Postuma
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal H4J 1C5, Montreal, Canada.,Department of Neurology, Montreal General Hospital, Montreal H3G 1A4, Canada
| | - Jacques Montplaisir
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal H4J 1C5, Montreal, Canada.,Department of Psychiatry, Université de Montréal, Montreal H3 T 1J4, Canada
| | - Simon Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown NSW 2050, Australia
| | - Elie Matar
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown NSW 2050, Australia
| | - Kaylena Ehgoetz Martens
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown NSW 2050, Australia.,Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus DK-8200, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus DK-8200, Denmark
| | - Allan Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus DK-8200, Denmark
| | - Oury Monchi
- Research Centre, Institut universitaire de gériatrie de Montréal, Montreal H3W 1W5, Canada.,Departments of Clinical Neurosciences, Radiology, and Hotchkiss Brain Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - Bratislav Misic
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
| | - Alain Dagher
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
| |
Collapse
|
32
|
Yoon EJ, Lee JY, Kim H, Yoo D, Shin JH, Nam H, Jeon B, Kim YK. Brain Metabolism Related to Mild Cognitive Impairment and Phenoconversion in Patients With Isolated REM Sleep Behavior Disorder. Neurology 2022; 98:e2413-e2424. [PMID: 35437260 PMCID: PMC9231839 DOI: 10.1212/wnl.0000000000200326] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/17/2022] [Indexed: 11/15/2022] Open
Abstract
Background and Objectives Mild cognitive impairment (MCI) in isolated REM sleep behavior disorder (iRBD) is a risk factor for subsequent neurodegeneration. We aimed to identify brain metabolism and functional connectivity changes related to MCI in patients with iRBD and the neuroimaging markers' predictive value for phenoconversion. Methods This is a prospective cohort study of patients with iRBD with a mean follow-up of 4.2 ± 2.6 years. At baseline, patients with iRBD and age- and sex-matched healthy controls (HCs) underwent 18F-fluorodeoxyglucose (FDG)–PET and resting-state fMRI scans and a comprehensive neuropsychological test battery. Voxel-wise group comparisons for FDG-PET data were performed using a general linear model. Seed-based connectivity maps were computed using brain regions showing significant hypometabolism associated with MCI in patients with iRBD and compared between groups. A Cox regression analysis was applied to investigate the association between brain metabolism and risk of phenoconversion. Results Forty patients with iRBD, including 21 with MCI (iRBD-MCI) and 19 with normal cognition (iRBD-NC), and 24 HCs were included in the study. The iRBD-MCI group revealed relative hypometabolism in the inferior parietal lobule, lateral and medial occipital, and middle and inferior temporal cortex bilaterally compared with HC and the iRBD-NC group. In seed-based connectivity analyses, the iRBD-MCI group exhibited decreased functional connectivity of the left angular gyrus with the occipital cortex. Of 40 patients with iRBD, 12 patients converted to Parkinson disease (PD) or dementia with Lewy bodies (DLB). Hypometabolism of the occipital pole (hazard ratio [95% CI] 6.652 [1.387–31.987]), medial occipital (4.450 [1.143–17.327]), and precuneus (3.635 [1.009–13.093]) was associated with higher phenoconversion rate to PD/DLB. Discussion MCI in iRBD is related to functional and metabolic changes in broad brain areas, particularly the occipital and parietal areas. Moreover, hypometabolism in these brain regions was a predictor of phenoconversion to PD or DLB. Evaluation of cognitive function and neuroimaging characteristics could be useful for risk stratification in patients with iRBD.
Collapse
Affiliation(s)
- Eun Jin Yoon
- Memory Network Medical Research Center, Seoul National University, Seoul, Korea, Republic of.,Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Jee-Young Lee
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of.,Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea, Republic of
| | - Dallah Yoo
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of.,Department of Neurology, Kyung Hee University Hospital, Seoul, Korea, Republic of
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Hyunwoo Nam
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| |
Collapse
|
33
|
Postuma RB, Pelletier A, Gagnon JF, Montplaisir J. Evolution of Prodromal Multiple System Atrophy from REM Sleep Behavior Disorder: A Descriptive Study. JOURNAL OF PARKINSON'S DISEASE 2022; 12:983-991. [PMID: 35094998 PMCID: PMC9789475 DOI: 10.3233/jpd-213039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Prodromal multiple system atrophy (MSA) has been characterized mainly by retrospective chart reviews. Direct observation and tracking of prodromal markers in MSA have been very limitedObjective:To report the baseline characteristics and evolution of prodromal markers of MSA as they were prospectively measured in patients with idiopathic/isolated REM sleep behavior disorder (iRBD)Methods:Patients with iRBD were evaluated as part of a comprehensive protocol repeated annually. The protocol included assessment of motor, sleep, psychiatric, and autonomic symptoms supplemented by motor examination, quantitative motor testing, neuropsychological examination, orthostatic blood pressure measurement, and tests of olfaction and color vision. Patients who eventually developed MSA were described and compared with those who phenoconverted to Lewy body disease (Parkinson's disease and dementia with Lewy bodies). RESULTS Of 67 phenocoverters, 4 developed MSA-P and 63 developed Lewy body disease. An additional 2 MSA-C patients were seen at baseline, already with cerebellar signs. Compared to those with Lewy body disease, those with MSA-P were younger, had less severe loss of tonic REM sleep atonia, more insomnia symptoms, and better olfaction. Clinically-evident autonomic dysfunction was not invariable in prodromal stages, often developing proximate to or after motor phenoconversion. Of the autonomic symptoms, genitourinary dysfunction was the first to develop in all cases. Olfaction and cognition remained normal throughout the prodromal and clinical disease course, in clear contrast to patients with Lewy body disease. CONCLUSION Prodromal MSA progresses rapidly, often without substantial autonomic dysfunction, and with preserved olfaction and cognition throughout its prodromal course.
Collapse
Affiliation(s)
- Ronald B. Postuma
- Department of Neurology, McGill University, Montreal General Hospital, Montreal, Quebec, Canada,
Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada,Correspondence to: Dr. Ronald B. Postuma, MD, Department of Neurology, Montreal Neurological Institute, 3801 University Avenue NW107, Montreal, H3A 2B4, Canada. E-mail:
| | - Amelie Pelletier
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada
| | - Jean-Francois Gagnon
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada,
Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Jaccques Montplaisir
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada,
Department of Psychiatry, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Makarious MB, Leonard HL, Vitale D, Iwaki H, Sargent L, Dadu A, Violich I, Hutchins E, Saffo D, Bandres-Ciga S, Kim JJ, Song Y, Maleknia M, Bookman M, Nojopranoto W, Campbell RH, Hashemi SH, Botia JA, Carter JF, Craig DW, Van Keuren-Jensen K, Morris HR, Hardy JA, Blauwendraat C, Singleton AB, Faghri F, Nalls MA. Multi-modality machine learning predicting Parkinson's disease. NPJ Parkinsons Dis 2022; 8:35. [PMID: 35365675 PMCID: PMC8975993 DOI: 10.1038/s41531-022-00288-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Personalized medicine promises individualized disease prediction and treatment. The convergence of machine learning (ML) and available multimodal data is key moving forward. We build upon previous work to deliver multimodal predictions of Parkinson's disease (PD) risk and systematically develop a model using GenoML, an automated ML package, to make improved multi-omic predictions of PD, validated in an external cohort. We investigated top features, constructed hypothesis-free disease-relevant networks, and investigated drug-gene interactions. We performed automated ML on multimodal data from the Parkinson's progression marker initiative (PPMI). After selecting the best performing algorithm, all PPMI data was used to tune the selected model. The model was validated in the Parkinson's Disease Biomarker Program (PDBP) dataset. Our initial model showed an area under the curve (AUC) of 89.72% for the diagnosis of PD. The tuned model was then tested for validation on external data (PDBP, AUC 85.03%). Optimizing thresholds for classification increased the diagnosis prediction accuracy and other metrics. Finally, networks were built to identify gene communities specific to PD. Combining data modalities outperforms the single biomarker paradigm. UPSIT and PRS contributed most to the predictive power of the model, but the accuracy of these are supplemented by many smaller effect transcripts and risk SNPs. Our model is best suited to identifying large groups of individuals to monitor within a health registry or biobank to prioritize for further testing. This approach allows complex predictive models to be reproducible and accessible to the community, with the package, code, and results publicly available.
Collapse
Affiliation(s)
- Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Hampton L Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Glen Echo, MD, USA
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Dan Vitale
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Glen Echo, MD, USA
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Glen Echo, MD, USA
| | - Lana Sargent
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- School of Nursing, Virginia Commonwealth University, Richmond, VA, USA
- Geriatric Pharmacotherapy Program, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Anant Dadu
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ivo Violich
- Institute of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth Hutchins
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - David Saffo
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jonggeol Jeff Kim
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Yeajin Song
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Glen Echo, MD, USA
| | | | - Matt Bookman
- Verily Life Sciences, South San Francisco, CA, USA
| | | | - Roy H Campbell
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sayed Hadi Hashemi
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Juan A Botia
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, London, UK
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | | | - David W Craig
- Institute of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | | | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - John A Hardy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- UK Dementia Research Institute and Department of Neurodegenerative Disease and Reta Lila Weston Institute, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Faraz Faghri
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.
- Data Tecnica International LLC, Glen Echo, MD, USA.
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.
- Data Tecnica International LLC, Glen Echo, MD, USA.
| |
Collapse
|
35
|
Geng C, Wang S, Li Z, Xu P, Bai Y, Zhou Y, Zhang X, Li Y, Zhang J, Zhang H. Resting-State Functional Network Topology Alterations of the Occipital Lobe Associated With Attention Impairment in Isolated Rapid Eye Movement Behavior Disorder. Front Aging Neurosci 2022; 14:844483. [PMID: 35431890 PMCID: PMC9012114 DOI: 10.3389/fnagi.2022.844483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThis study investigates the topological properties of brain functional networks in patients with isolated rapid eye movement sleep behavior disorder (iRBD).Participants and MethodsA total of 21 patients with iRBD (iRBD group) and 22 healthy controls (HCs) were evaluated using resting-state functional MRI (rs-fMRI) and neuropsychological measures in cognitive and motor function. Data from rs-fMRI were analyzed using graph theory, which included small-world properties, network efficiency, network local efficiency, nodal shortest path, node efficiency, and network connectivity, as well as the relationship between behavioral characteristics and altered brain topological features.ResultsRey-Osterrieth complex figure test (ROCFT-copy), symbol digital modalities test (SDMT), auditory verbal learning test (AVLT)-N1, AVLT-N2, AVLT-N3, and AVLT-N1-3 scores were significantly lower in patients with iRBD than in HC (P < 0.05), while trail making test A (TMT-A), TMT-B, and Unified Parkinson’s Disease Rating Scale Part-III (UPDRS-III) scores were higher in patients with iRBD (P < 0.05). Compared with the HCs, patients with iRBD had no difference in the small-world attributes (P > 0.05). However, there was a significant decrease in network global efficiency (P = 0.0052) and network local efficiency (P = 0.0146), while an increase in characteristic path length (P = 0.0071). There was lower nodal efficiency in occipital gyrus and nodal shortest path in frontal, parietal, temporal lobe, and cingulate gyrus. Functional connectivities were decreased between the nodes of occipital with the regions where they had declined nodal shortest path. There was a positive correlation between TMT-A scores and the nodal efficiency of the right middle occipital gyrus (R = 0.602, P = 0.014).ConclusionThese results suggest that abnormal behaviors may be associated with disrupted brain network topology and functional connectivity in patients with iRBD and also provide novel insights to understand pathophysiological mechanisms in iRBD.
Collapse
Affiliation(s)
- Chaofan Geng
- Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shenghui Wang
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zhonglin Li
- Department of Radiology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Pengfei Xu
- Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yingying Bai
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yao Zhou
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xinyu Zhang
- Department of Neurology, Henan Provincial People’s Hospital Affiliated to Xinxiang Medical University, Zhengzhou, China
| | - Yongli Li
- Department of Functional Imaging, Henan Key Laboratory for Medical Imaging of Neurological Diseases, Zhengzhou, China
| | - Jiewen Zhang
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Hongju Zhang
- Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People’s Hospital Affiliated to Xinxiang Medical University, Zhengzhou, China
- *Correspondence: Hongju Zhang,
| |
Collapse
|
36
|
de Natale ER, Wilson H, Politis M. Predictors of RBD progression and conversion to synucleinopathies. Curr Neurol Neurosci Rep 2022; 22:93-104. [PMID: 35274191 PMCID: PMC9001233 DOI: 10.1007/s11910-022-01171-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Purpose of review Rapid eye movement (REM) sleep behaviour disorder (RBD) is considered the expression of the initial neurodegenerative process underlying synucleinopathies and constitutes the most important marker of their prodromal phase. This article reviews recent research from longitudinal research studies in isolated RBD (iRBD) aiming to describe the most promising progression biomarkers of iRBD and to delineate the current knowledge on the level of prediction of future outcome in iRBD patients at diagnosis. Recent findings Longitudinal studies revealed the potential value of a variety of biomarkers, including clinical markers of motor, autonomic, cognitive, and olfactory symptoms, neurophysiological markers such as REM sleep without atonia and electroencephalography, genetic and epigenetic markers, cerebrospinal fluid and serum markers, and neuroimaging markers to track the progression and predict phenoconversion. To-date the most promising neuroimaging biomarker in iRBD to aid the prediction of phenoconversion is striatal presynaptic striatal dopaminergic dysfunction. Summary There is a variety of potential biomarkers for monitoring disease progression and predicting iRBD conversion into synucleinopathies. A combined multimodal biomarker model could offer a more sensitive and specific tool. Further longitudinal studies are warranted to iRBD as a high-risk population for early neuroprotective interventions and disease-modifying therapies.
Collapse
Affiliation(s)
| | - Heather Wilson
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK.
| |
Collapse
|
37
|
Ehgoetz Martens KA, Matar E, Phillips JR, Shine JM, Grunstein RR, Halliday GM, Lewis SJG. Narrow doorways alter brain connectivity and step patterns in isolated REM sleep behaviour disorder. Neuroimage Clin 2022; 33:102958. [PMID: 35151040 PMCID: PMC8844611 DOI: 10.1016/j.nicl.2022.102958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/19/2022]
Abstract
iRBD had slower and more variable stepping compared to controls in this VR task. iRBD showed exaggerated responses when passing narrow compared to wide doorways iRBD had altered task-related brain connectivity which was correlated to motor deficits.
Background Motor impairments in those with isolated REM sleep behaviour disorder (iRBD) significantly increases the likelihood of developing Lewy body disease (e.g. Parkinson’s disease and Dementia with Lewy Bodies). Objective This study sought to explore the prodromal process of neurodegeneration by examining the neural signature underlying motor deficits in iRBD patients. Methods A virtual reality (VR) gait paradigm (which has previously been shown to elicit adaptive changes in gait performance whilst navigating doorways in Parkinson’s Disease - PD) was paired with fMRI to investigate whether iRBD patients demonstrated worsened motor performance and altered connectivity across frontoparietal, motor and basal ganglia networks compared to healthy controls. Forty participants (23 iRBD and 17 healthy controls) completed the virtual reality gait task whilst in the MRI scanner, and an additional cohort of 19 Early PD patients completed the behavioural virtual reality gait task. Results As predicted, iRBD patients demonstrated slower and more variable stepping compared to healthy control participants and demonstrated an exaggerated response when navigating narrow compared to wide doorways, a phenomenon characteristically seen in PD. The iRBD patients also demonstrated less BOLD signal change in the left posterior putamen and right mesencephalic locomotor region, as well as reduced functional connectivity between the frontoparietal network and the motor network, when navigating narrow versus wide doorways compared to healthy control participants. Conclusions Taken together, this study demonstrates that iRBD patients have altered task-related brain connectivity, which may represent the neural underpinnings of early motor impairments that are evident in iRBD.
Collapse
Affiliation(s)
- Kaylena A Ehgoetz Martens
- ForeFront Research Team, Brain and Mind Centre, University of Sydney, Australia; Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia; Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada.
| | - Elie Matar
- ForeFront Research Team, Brain and Mind Centre, University of Sydney, Australia; Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia; Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada
| | - Joseph R Phillips
- ForeFront Research Team, Brain and Mind Centre, University of Sydney, Australia; Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia; School of Social Sciences and Psychology, Western Sydney University, Sydney, Australia
| | - James M Shine
- ForeFront Research Team, Brain and Mind Centre, University of Sydney, Australia; Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia
| | - Ron R Grunstein
- ForeFront Research Team, Brain and Mind Centre, University of Sydney, Australia; Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada
| | - Glenda M Halliday
- ForeFront Research Team, Brain and Mind Centre, University of Sydney, Australia
| | - Simon J G Lewis
- ForeFront Research Team, Brain and Mind Centre, University of Sydney, Australia; Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia; Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada; Sleep and Circadian Group (CIRUS), Woolcock Institute of Medical Research, University of Sydney and Royal Prince Alfred Hospital, Australia
| |
Collapse
|
38
|
Chen J, Zhou L, Jiang C, Chen Z, Zhang L, Zhou H, Kang W, Jiang X, Li Y, Luo N, Yao M, Niu M, Chen S, Zuo XN, Li L, Liu J. Impaired Ocular Tracking and Cortical Atrophy in Idiopathic Rapid Eye Movement Sleep Behavior Disorder. Mov Disord 2022; 37:972-982. [PMID: 35107831 DOI: 10.1002/mds.28931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a prodromal stage of synucleinopathies. Patients with synucleinopathies frequently display eye movement abnormalities. However, whether patients with iRBD have eye movement abnormalities remains unknown. OBJECTIVE The aim of this study was to assess eye movement abnormalities and related gray matter alterations and explore whether such abnormalities can serve as biomarkers to indicate phenoconversion to synucleinopathies in iRBD. METHODS Forty patients with iRBD with early disease progression and 35 healthy control subjects participated in a 15-minute ocular-tracking task that evaluated their control of eye movement abilities. They also underwent clinical assessments for olfactory function, nonmotor symptoms, and autonomic symptoms, all of which are biomarkers to predict phenoconversion to synucleinopathies in iRBD. A subgroup of the participants (20 patients with iRBD and 20 healthy control subjects) also participated in structural magnetic resonance imaging. RESULTS The ocular-tracking ability in patients with iRBD was inferior to that of healthy control subjects in two aspects: pursuit initiation and steady-state tracking. Cortical thinning in the right visual area V4 in patients with iRBD is coupled with impaired pursuit initiation. Furthermore, prolonged pursuit initiation in patients with iRBD exhibits a trend of correlation with olfactory loss, the earliest biomarker that develops prior to other prodromal biomarkers. CONCLUSIONS We found ocular-tracking abnormalities in patients with iRBD even early in their disease progression that have not been reported before. These abnormalities are coupled with atrophy of brain areas involved in the perception of object motion and might indicate phenoconversion to synucleinopathies in iRBD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jing Chen
- Faculty of Arts and Science, New York University Shanghai, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at New York University Shanghai, Shanghai, China
- Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Jiang
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhichun Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lina Zhang
- Department of Biostatistics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyan Kang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xufeng Jiang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningdi Luo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengsha Yao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyue Niu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Nian Zuo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Li
- Faculty of Arts and Science, New York University Shanghai, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at New York University Shanghai, Shanghai, China
- Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Peng X, Zhang H. Research progress in rapid eye movement sleep behavior disorder. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1415-1422. [PMID: 35232913 PMCID: PMC10930583 DOI: 10.11817/j.issn.1672-7347.2021.200928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 06/14/2023]
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by abnormal dream acting behavior such as vocalization and twitching related to dream content during REM sleep. The diagnosis requires polysomnography demonstrating a loss of normal skeletal muscle atonia during REM sleep. Both idiopathic RBD and secondary RBD are highly related to synucleinopathy including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Almost all idiopathic RBD patients will develop synucleinopathy after a few years. Therefore, RBD may be an early marker in the progression of synucleinopathy.
Collapse
Affiliation(s)
- Xinke Peng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Hainan Zhang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
40
|
Zhou Y, Si X, Chen Y, Chao Y, Lin CP, Li S, Zhang X, Ming D, Li Q. Hippocampus- and Thalamus-Related Fiber-Specific White Matter Reductions in Mild Cognitive Impairment. Cereb Cortex 2021; 32:3159-3174. [PMID: 34891164 DOI: 10.1093/cercor/bhab407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/04/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Early diagnosis of mild cognitive impairment (MCI) fascinates screening high-risk Alzheimer's disease (AD). White matter is found to degenerate earlier than gray matter and functional connectivity during MCI. Although studies reveal white matter degenerates in the limbic system for MCI, how other white matter degenerates during MCI remains unclear. In our method, regions of interest with a high level of resting-state functional connectivity with hippocampus were selected as seeds to track fibers based on diffusion tensor imaging (DTI). In this way, hippocampus-temporal and thalamus-related fibers were selected, and each fiber's DTI parameters were extracted. Then, statistical analysis, machine learning classification, and Pearson's correlations with behavior scores were performed between MCI and normal control (NC) groups. Results show that: 1) the mean diffusivity of hippocampus-temporal and thalamus-related fibers are significantly higher in MCI and could be used to classify 2 groups effectively. 2) Compared with normal fibers, the degenerated fibers detected by the DTI indexes, especially for hippocampus-temporal fibers, have shown significantly higher correlations with cognitive scores. 3) Compared with the hippocampus-temporal fibers, thalamus-related fibers have shown significantly higher correlations with depression scores within MCI. Our results provide novel biomarkers for the early diagnoses of AD.
Collapse
Affiliation(s)
- Yu Zhou
- School of Microelectronics, Tianjin University, Tianjin 300072, China
| | - Xiaopeng Si
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China.,Institute of Applied Psychology, Tianjin University, Tianjin 300350, China
| | - Yuanyuan Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Yiping Chao
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.,Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience Hsinchu City, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Sicheng Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Xingjian Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Qiang Li
- School of Microelectronics, Tianjin University, Tianjin 300072, China
| |
Collapse
|
41
|
Jeong E, Cha KS, Shin HR, Kim EY, Jun JS, Kim TJ, Byun JI, Shin JW, Sunwoo JS, Jung KY. Alerting network alteration in isolated rapid eye movement sleep behavior disorder patients with mild cognitive impairment. Sleep Med 2021; 89:10-18. [PMID: 34864507 DOI: 10.1016/j.sleep.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Mild cognitive impairment (MCI) was found in 30-50% of the isolated REM sleep behavior disorder (iRBD) patients. Furthermore, it is known that patients with Parkinson's disease have attention network defects. Given that iRBD is known to be the prodromal disease of α-synucleinopathies, our aim was to investigate whether there are attention network dysfunctions in iRBD patients following the presence of MCI. METHODS 14 healthy controls, 48 iRBD patients, 24 with MCI and 24 without MCI, were included in this study. Attention network task (ANT) was used to assess alerting, orienting, and executive control networks. Event-related potentials (ERPs) and behavioral performances were recorded during the ANT. Parietal N1 and P3 components were analyzed to find effects of the three attention networks. RESULTS IRBD patients without MCI showed neuropsychological, behavioral, and ERP results similar to those of healthy controls. On the other hand, iRBD patients with MCI showed a general decline in cognitive domains with no alerting effect (controls, p = 0.043; iRBD-noMCI, p = 0.014; iRBD-MCI, p = 0.130) while preserving orienting and executive control effect. Furthermore, iRBD patients with MCI had impairments in executive function and verbal memory domains, compared to iRBD patients without MCI. CONCLUSIONS Our findings indicate that when cognition is reduced to MCI levels in iRBD patients, the attention network, especially the alerting component, is impaired. The attention network and cognition, on the other hand, can be preserved in iRBD patients due to the compensatory mechanism.
Collapse
Affiliation(s)
- El Jeong
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, South Korea
| | - Kwang Su Cha
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye-Rim Shin
- Department of Neurology, Dankook University Hospital, Cheonan, South Korea
| | - Eun Young Kim
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong, South Korea
| | - Jin-Sun Jun
- Department of Neurology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Tae-Joon Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Jung-Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Jung-Won Shin
- Department of Neurology, CHA University, Bundang CHA Medical Center, Seongnam, South Korea
| | - Jun-Sang Sunwoo
- Department of Neurosurgery, Seoul National University Hospital, Seoul, South Korea
| | - Ki-Young Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
42
|
Rémillard-Pelchat D, Rahayel S, Gaubert M, Postuma RB, Montplaisir J, Pelletier A, Monchi O, Brambati SM, Carrier J, Gagnon JF. Comprehensive Analysis of Brain Volume in REM Sleep Behavior Disorder with Mild Cognitive Impairment. JOURNAL OF PARKINSONS DISEASE 2021; 12:229-241. [PMID: 34690149 DOI: 10.3233/jpd-212691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Rapid-eye-movement sleep behavior disorder (RBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. More than a third of RBD patients have mild cognitive impairment (MCI), but their specific structural brain alterations remain poorly understood. OBJECTIVE This study aimed to investigate the local deformation and volume of gray and white matter tissue underlying MCI in RBD. METHODS Fifty-two idiopathic RBD patients, including 17 with MCI (33%), underwent polysomnography, neuropsychological, neurological, and magnetic resonance imaging assessments. MCI diagnosis was based on a subjective complaint, cognitive impairment on the neuropsychological battery, and preserved daily functioning. Forty-one controls were also included. Deformation-based morphometry (DBM), voxel-based morphometry (VBM), and regional volume analyses of the corpus callosum and basal forebrain cholinergic were performed. Multiple regressions models were also computed using anatomical, cognitive (composite z score), and motor parameters. RESULTS Globally, patients with MCI displayed a widespread pattern of local deformation and volume atrophy in the cortical (bilateral insula, cingulate cortex, precuneus, frontal and temporal regions, right angular gyrus, and mid-posterior segment of the corpus callosum) and subcortical (brainstem, corona radiata, basal ganglia, thalamus, amygdala, and right hippocampus) regions compared to patients without MCI (DBM) or controls (DBM and VBM). Moreover, brain deformation (DBM) in patients were associated with lower performance in attention and executive functions, visuospatial abilities, and higher motor symptoms severity. CONCLUSION The present study identified novel brain structural alterations in RBD patients with MCI which correlated with poorer cognitive performance. These results are consistent with those reported in patients with synucleinopathies-related cognitive impairment.
Collapse
Affiliation(s)
- David Rémillard-Pelchat
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal -Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Shady Rahayel
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal -Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Malo Gaubert
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal -Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Ronald B Postuma
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal -Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Neurology, Montreal General Hospital, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal -Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Psychiatry, Université de Montréal, Montreal, Quebec, Canada
| | - Amélie Pelletier
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal -Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Oury Monchi
- Department of Radiology, Radio-Oncology, and Nuclear Medicine, Université de Montréal, Montreal, Quebec, Canada.,Departments of Clinical Neurosciences, Radiology, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Simona Maria Brambati
- Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal -Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-François Gagnon
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal -Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada.,Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Mitchell T, Lehéricy S, Chiu SY, Strafella AP, Stoessl AJ, Vaillancourt DE. Emerging Neuroimaging Biomarkers Across Disease Stage in Parkinson Disease: A Review. JAMA Neurol 2021; 78:1262-1272. [PMID: 34459865 PMCID: PMC9017381 DOI: 10.1001/jamaneurol.2021.1312] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance Imaging biomarkers in Parkinson disease (PD) are increasingly important for monitoring progression in clinical trials and also have the potential to improve clinical care and management. This Review addresses a critical need to make clear the temporal relevance for diagnostic and progression imaging biomarkers to be used by clinicians and researchers over the clinical course of PD. Magnetic resonance imaging (diffusion imaging, neuromelanin-sensitive imaging, iron-sensitive imaging, T1-weighted imaging), positron emission tomography/single-photon emission computed tomography dopaminergic, serotonergic, and cholinergic imaging as well as metabolic and cerebral blood flow network neuroimaging biomarkers in the preclinical, prodromal, early, and moderate to late stages are characterized. Observations If a clinical trial is being carried out in the preclinical and prodromal stages, potentially useful disease-state biomarkers include dopaminergic imaging of the striatum; metabolic imaging; free-water, neuromelanin-sensitive, and iron-sensitive imaging in the substantia nigra; and T1-weighted structural magnetic resonance imaging. Disease-state biomarkers that can distinguish atypical parkinsonisms are metabolic imaging, free-water imaging, and T1-weighted imaging; dopaminergic imaging and other molecular imaging track progression in prodromal patients, whereas other established progression biomarkers need to be evaluated in prodromal cohorts. Progression in early-stage PD can be monitored using dopaminergic imaging in the striatum, metabolic imaging, and free-water and neuromelanin-sensitive imaging in the posterior substantia nigra. Progression in patients with moderate to late-stage PD can be monitored using free-water imaging in the anterior substantia nigra, R2* of substantia nigra, and metabolic imaging. Cortical thickness and gyrification might also be useful markers or predictors of progression. Dopaminergic imaging and free-water imaging detect progression over 1 year, whereas other modalities detect progression over 18 months or longer. The reliability of progression biomarkers varies with disease stage, whereas disease-state biomarkers are relatively consistent in individuals with preclinical, prodromal, early, and moderate to late-stage PD. Conclusions and Relevance Imaging biomarkers for various stages of PD are readily available to be used as outcome measures in clinical trials and are potentially useful in multimodal combination with routine clinical assessment. This Review provides a critically important template for considering disease stage when implementing diagnostic and progression biomarkers in both clinical trials and clinical care settings.
Collapse
Affiliation(s)
- Trina Mitchell
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville
| | - Stéphane Lehéricy
- Paris Brain Institute, Centre de NeuroImagerie de Recherche, INSERM 1127, CNRS 7225, Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Shannon Y Chiu
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville
| | - Antonio P Strafella
- Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Research Imaging Centre, Campbell Family Mental Health, Toronto, Ontario, Canada
- Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and Parkinson's Foundation Centre of Excellence, Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - David E Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville
| |
Collapse
|
44
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Neurochemical Features of Rem Sleep Behaviour Disorder. J Pers Med 2021; 11:jpm11090880. [PMID: 34575657 PMCID: PMC8468296 DOI: 10.3390/jpm11090880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Dopaminergic deficiency, shown by many studies using functional neuroimaging with Single Photon Emission Computerized Tomography (SPECT) and Positron Emission Tomography (PET), is the most consistent neurochemical feature of rapid eye movement (REM) sleep behaviour disorder (RBD) and, together with transcranial ultrasonography, and determination of alpha-synuclein in certain tissues, should be considered as a reliable marker for the phenoconversion of idiopathic RBD (iRBD) to a synucleopathy (Parkinson’s disease –PD- or Lewy body dementia -LBD). The possible role in the pathogenesis of RBD of other neurotransmitters such as noradrenaline, acetylcholine, and excitatory and inhibitory neurotransmitters; hormones such as melatonin, and proinflammatory factors have also been suggested by recent reports. In general, brain perfusion and brain glucose metabolism studies have shown patterns resembling partially those of PD and LBD. Finally, the results of structural and functional MRI suggest the presence of structural changes in deep gray matter nuclei, cortical gray matter atrophy, and alterations in the functional connectivity within the basal ganglia, the cortico-striatal, and the cortico-cortical networks, but they should be considered as preliminary.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, C/Marroquina 14, 3 B, E28030 Madrid, Spain;
- Correspondence: or ; Tel.: +34-636968395; Fax: +34-913280704
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, C/Marroquina 14, 3 B, E28030 Madrid, Spain;
| | - Elena García-Martín
- UNEx, ARADyAL, Instituto de Salud Carlos III, University Institute of Molecular Pathology, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- UNEx, ARADyAL, Instituto de Salud Carlos III, University Institute of Molecular Pathology, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
45
|
Miglis MG, Adler CH, Antelmi E, Arnaldi D, Baldelli L, Boeve BF, Cesari M, Dall'Antonia I, Diederich NJ, Doppler K, Dušek P, Ferri R, Gagnon JF, Gan-Or Z, Hermann W, Högl B, Hu MT, Iranzo A, Janzen A, Kuzkina A, Lee JY, Leenders KL, Lewis SJG, Liguori C, Liu J, Lo C, Ehgoetz Martens KA, Nepozitek J, Plazzi G, Provini F, Puligheddu M, Rolinski M, Rusz J, Stefani A, Summers RLS, Yoo D, Zitser J, Oertel WH. Biomarkers of conversion to α-synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder. Lancet Neurol 2021; 20:671-684. [PMID: 34302789 DOI: 10.1016/s1474-4422(21)00176-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
Patients with isolated rapid-eye-movement sleep behaviour disorder (RBD) are commonly regarded as being in the early stages of a progressive neurodegenerative disease involving α-synuclein pathology, such as Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy. Abnormal α-synuclein deposition occurs early in the neurodegenerative process across the central and peripheral nervous systems and might precede the appearance of motor symptoms and cognitive decline by several decades. These findings provide the rationale to develop reliable biomarkers that can better predict conversion to clinically manifest α-synucleinopathies. In addition, biomarkers of disease progression will be essential to monitor treatment response once disease-modifying therapies become available, and biomarkers of disease subtype will be essential to enable prediction of which subtype of α-synucleinopathy patients with isolated RBD might develop.
Collapse
Affiliation(s)
- Mitchell G Miglis
- Department of Neurology and Neurological Sciences and Department of Psychiatry and Behavioral Science, Stanford University, Palo Alto, CA, USA.
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Elena Antelmi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Dario Arnaldi
- Clinical Neurology, DINOGMI, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Baldelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Bradley F Boeve
- Department of Neurology and Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
| | - Matteo Cesari
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irene Dall'Antonia
- Department of Neurology and Center of Clinical Neuroscience, Charles University First Faculty of Medicine, Prague, Czech Republic
| | - Nico J Diederich
- Department of Neuroscience, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Kathrin Doppler
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Petr Dušek
- Department of Neurology and Center of Clinical Neuroscience, Charles University First Faculty of Medicine, Prague, Czech Republic
| | | | - Jean-François Gagnon
- Centre for Advanced Research in Sleep Medicine, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal-Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
| | - Ziv Gan-Or
- The Neuro-Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Wiebke Hermann
- Department of Neurology, University of Rostock, Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE), Research Site Rostock, Rostock, Germany
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alex Iranzo
- Sleep Disorders Center, Neurology Service, Hospital Clínic Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Annette Janzen
- Department of Neurology and Section on Clinical Neuroscience, Philipps University Marburg, Marburg, Germany
| | | | - Jee-Young Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| | - Klaus L Leenders
- Department of Nuclear Medicine and Biomedical Imaging, University Medical Center Groningen, Groningen, Netherlands
| | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Claudio Liguori
- Sleep Medicine Center, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Jun Liu
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christine Lo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kaylena A Ehgoetz Martens
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Jiri Nepozitek
- Department of Neurology and Center of Clinical Neuroscience, Charles University First Faculty of Medicine, Prague, Czech Republic
| | - Giuseppe Plazzi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Provini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; UOC Clinica Neurologica Rete Metropolitana NEUROMET, Bellaria Hospital, Bologna, Italy
| | - Monica Puligheddu
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Michal Rolinski
- Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Jan Rusz
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Dallah Yoo
- Department of Neurology, Kyung Hee University Hospital, Seoul, South Korea
| | - Jennifer Zitser
- Department of Neurology and Neurological Sciences, University of California, San Francisco, CA, USA; Department of Neurology, Tel Aviv Sourasky Medical Center, Affiliate of Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Wolfgang H Oertel
- Department of Neurology and Section on Clinical Neuroscience, Philipps University Marburg, Marburg, Germany; Institute for Neurogenomics, Helmholtz Center for Health and Environment, München-Neuherberg, Germany
| |
Collapse
|
46
|
Mild cognitive impairment and abnormal brain metabolic expression in idiopathic REM sleep behavior disorder. Parkinsonism Relat Disord 2021; 90:1-7. [PMID: 34314988 DOI: 10.1016/j.parkreldis.2021.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/09/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a common feature of isolated rapid-eye-movement sleep behavior disorder (iRBD). Here, we assessed cognitive functions and MCI in a prospective iRBD cohort and investigated their association with disease-specific brain metabolic patterns. METHODS Forty-four patients with polysomnography-confirmed iRBD performed a standardized battery of neuropsychological examinations every two years. We used previously established spatial covariance patterns from de novo drug-naïve Parkinson's disease with concomitant RBD (denovoPDRBD-RP) and iRBD (iRBD-RP) using 18F-fluorodeoxyglucose PET scan. We compared those expressions between iRBD with normal cognition (iRBD-NC) and with mild cognitive impairment (iRBD-MCI), and evaluated whether they predict progressive cognitive deterioration. RESULTS Twenty iRBD patients (45 %) had MCI at baseline and 12 patients (27 %, about 7 % per year) had clinically significant cognitive deterioration after 4 years. The iRBD-MCI and iRBD-NC groups showed similar rates of cognitive change, but iRBD-MCI consistently performed worse in the domains of verbal memory and executive function. Elevated denovoPDRBD-RP expression predicted cognitive deterioration (hazard ratio = 5.98 [1.70-21.06]), whereas iRBD-RP did not. CONCLUSIONS Increased disease-specific brain metabolic patterns are associated with iRBD-MCI and impending cognitive deterioration with the risk of progression to Lewy body dementia.
Collapse
|
47
|
Zhang HJ, Wang SH, Bai YY, Zhang JW, Chen S. Abnormal Striatal-Cortical Networks Contribute to the Attention/Executive Function Deficits in Idiopathic REM Sleep Behavior Disorder: A Resting State Functional MRI Study. Front Aging Neurosci 2021; 13:690854. [PMID: 34276345 PMCID: PMC8280755 DOI: 10.3389/fnagi.2021.690854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction The structural and functional damages of the striatum were evident in idiopathic REM sleep behavior disorder (iRBD). With the research on iRBD deepens, cognitive impairment in iRBD is getting increasing attention. However, the mechanism of cognitive impairment in iRBD was poorly understood. Methods Neuropsychological assessment was carried out in 21 polysomnographies (PSGs) confirmed iRBD patients and 22 normal controls. Both regional homogeneity (ReHo) and seed-based functional connectivity (FC) rs-fMRI analyses were applied to explore the FC abnormalities and its association with cognition in iRBD patients. Positive ReHo clusters were set as seeds for further FC analysis. Results Idiopathic REM sleep behavior disorder patients presented cognitive deficits in attention/working memory, executive function, immediate memory, and visuo-spatial ability. ReHo analysis revealed abnormal spontaneous brain activities in the striatum (right caudate, left pallidum and bilateral putamen) in iRBD. FC analysis showed decreased striatum-related FCs in the frontal, temporal, occipital lobes, thalamus, anterior cingulate gyrus, as well as decreased intrinsic FCs between bilateral putamen and between caudate and pallidum. Deficits in attention/working memory, executive function, and immediate memory were associated with abnormal striatal-cortical FCs including frontal, temporal, and anterior cingulate cortices. Conclusion Functional changes of striatum and cognitive impairment in iRBD were reconfirmed in the present study. Abnormal striatal-cortical networks, especially the striatal-frontal network, contribute to the working memory/executive function deficits in iRBDs. These findings supported the role of striatum not only in motor but also in cognition impairment in iRBD.
Collapse
Affiliation(s)
- Hong-Ju Zhang
- Department of Neurology People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Sheng-Hui Wang
- Department of Neurology People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying-Ying Bai
- Department of Neurology People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie-Wen Zhang
- Department of Neurology People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Chen
- Department of Neurology People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Holtbernd F, Romanzetti S, Oertel WH, Knake S, Sittig E, Heidbreder A, Maier A, Krahe J, Wojtala J, Dogan I, Schulz JB, Schiefer J, Janzen A, Reetz K. Convergent patterns of structural brain changes in rapid eye movement sleep behavior disorder and Parkinson's disease on behalf of the German rapid eye movement sleep behavior disorder study group. Sleep 2021; 44:5911473. [PMID: 32974664 DOI: 10.1093/sleep/zsaa199] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/08/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Rapid eye movement sleep behavior disorder (RBD) is considered a prodromal state of Parkinson's disease (PD). We aimed to characterize patterns of structural brain changes in RBD and PD patients using multimodal MRI. METHODS A total of 30 patients with isolated RBD, 29 patients with PD, and 56 age-matched healthy controls (HC) underwent MRI at 3T, including tensor-based morphometry, diffusion tensor imaging, and assessment of cortical thickness. RESULTS RBD individuals showed increased volume of the right caudate nucleus compared with HC, and higher cerebellar volume compared with both PD subjects and HC. Similar to PD subjects, RBD patients displayed increased fractional anisotropy (FA) in the corticospinal tracts, several tracts mainly related to non-motor function, and reduced FA of the corpus callosum compared with HC. Further, RBD subjects showed higher FA in the cerebellar peduncles and brainstem compared with both, PD patients and HC. PD individuals exhibited lower than normal volume in the basal ganglia, midbrain, pedunculopontine nuclei, and cerebellum. In contrast, volume in PD subjects was increased in the thalamus compared with both HC and RBD subjects. CONCLUSIONS We found convergent patterns of structural brain alterations in RBD and PD patients compared with HC. The changes observed suggest a co-occurrence of neurodegeneration and compensatory mechanisms that fail with emerging PD pathology. Our findings strengthen the hypothesis of RBD and PD constituting a continuous disease spectrum.
Collapse
Affiliation(s)
- Florian Holtbernd
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 4 (INM-4), Juelich Research Center, Juelich, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | | | - Susanne Knake
- Department of Neurology, Philipps-University Marburg, Marburg, Germany.,CMBB, Center for Mind, Brain and Behavior, University Hospital Marburg, Marburg, Germany
| | - Elisabeth Sittig
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Anna Heidbreder
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany.,Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Andrea Maier
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Janna Krahe
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Jennifer Wojtala
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Jörg Bernhard Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | | | - Annette Janzen
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| |
Collapse
|
49
|
Sunwoo JS, Cha KS, Byun JI, Jun JS, Kim TJ, Shin JW, Lee ST, Jung KH, Park KI, Chu K, Kim M, Lee SK, Kim HJ, Schenck CH, Jung KY. Nonrapid eye movement sleep electroencephalographic oscillations in idiopathic rapid eye movement sleep behavior disorder: a study of sleep spindles and slow oscillations. Sleep 2021; 44:5896006. [PMID: 32827438 DOI: 10.1093/sleep/zsaa160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/18/2020] [Indexed: 12/29/2022] Open
Abstract
STUDY OBJECTIVES We investigated electroencephalographic (EEG) slow oscillations (SOs), sleep spindles (SSs), and their temporal coordination during nonrapid eye movement (NREM) sleep in patients with idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD). METHODS We analyzed 16 patients with video-polysomnography-confirmed iRBD (age, 65.4 ± 6.6 years; male, 87.5%) and 10 controls (age, 62.3 ± 7.5 years; male, 70%). SSs and SOs were automatically detected during stage N2 and N3. We analyzed their characteristics, including density, frequency, duration, and amplitude. We additionally identified SO-locked spindles and examined their phase distribution and phase locking with the corresponding SO. For inter-group comparisons, we used the independent samples t-test or Wilcoxon rank-sum test, as appropriate. RESULTS The SOs of iRBD patients had significantly lower amplitude, longer duration (p = 0.005 for both), and shallower slope (p < 0.001) than those of controls. The SS power of iRBD patients was significantly lower than that of controls (p = 0.002), although spindle density did not differ significantly. Furthermore, SO-locked spindles of iRBD patients prematurely occurred during the down-to-up-state transition of SOs, whereas those of controls occurred at the up-state peak of SOs (p = 0.009). The phase of SO-locked spindles showed a positive correlation with delayed recall subscores (p = 0.005) but not with tonic or phasic electromyography activity during REM sleep. CONCLUSIONS In this study, we found abnormal EEG oscillations during NREM sleep in patients with iRBD. The impaired temporal coupling between SOs and SSs may reflect early neurodegenerative changes in iRBD.
Collapse
Affiliation(s)
- Jun-Sang Sunwoo
- Department of Neurosurgery, Seoul National University Hospital, Seoul, South Korea
| | - Kwang Su Cha
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Jung-Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jin-Sun Jun
- Department of Neurology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Tae-Joon Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Jung-Won Shin
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Protein Metabolism and Dementia Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Carlos H Schenck
- Minnesota Regional Sleep Disorders Center and Department of Psychiatry, Hennepin County Medical Center, University of Minnesota Medical School, Minneapolis, MN
| | - Ki-Young Jung
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
50
|
Campabadal A, Segura B, Junque C, Iranzo A. Structural and functional magnetic resonance imaging in isolated REM sleep behavior disorder: A systematic review of studies using neuroimaging software. Sleep Med Rev 2021; 59:101495. [PMID: 33979733 DOI: 10.1016/j.smrv.2021.101495] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022]
Abstract
Isolated rapid eye movement sleep behavior disorder (iRBD) is a harbinger for developing clinical synucleinopathies. Magnetic resonance imaging (MRI) has been suggested as a tool for understanding the brain bases of iRBD and its evolution. This review systematically analyzed original full text articles on structural and functional MRI in patients with video-polysomnography-confirmed iRBD according to systematic procedures suggested by Reviews and Meta-analyses (PRISMA). The literature search was conducted via the PubMed database for articles related to structural and functional MRI in iRBD from 2000 to 2020. Investigations to date have been diverse in terms of methodology, but most agree that patients with iRBD have structural changes in deep gray matter nuclei, cortical gray matter atrophy, and disrupted functional connectivity within the basal ganglia, the cortico-striatal and cortico-cortical networks. Furthermore, there is evidence that MRI detects structural and functional brain changes associated with the motor and non-motor symptoms of iRBD. The current review highlights the need for larger multicenter and longitudinal studies, using complex approaches based on data-driven and unsupervised machine learning that will help to identify structural and functional patterns of brain degeneration. In turn, this may even allow for the prediction of subsequent phenoconversion from iRBD to the clinically defined synucleinopathies.
Collapse
Affiliation(s)
- Anna Campabadal
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Barbara Segura
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED:CB06/05/0018-ISCIII), Barcelona, Spain
| | - Carme Junque
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED:CB06/05/0018-ISCIII), Barcelona, Spain.
| | - Alex Iranzo
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED:CB06/05/0018-ISCIII), Barcelona, Spain; Sleep Disorders Center, Neurology Service, Hospital Clínic, Barcelona, Catalonia, Spain
| |
Collapse
|