1
|
Kobia FM, Castro E Almeida L, Paganoni AJ, Carminati F, Andronache A, Lavezzari F, Wade M, Vaccari T. Novel determinants of NOTCH1 trafficking and signaling in breast epithelial cells. Life Sci Alliance 2025; 8:e202403122. [PMID: 39663000 PMCID: PMC11633778 DOI: 10.26508/lsa.202403122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
The evolutionarily conserved Notch signaling pathway controls cell-cell communication, enacting cell fate decisions during development and tissue homeostasis. Its dysregulation is associated with a wide range of diseases, including congenital disorders and cancers. Signaling outputs depend on maturation of Notch receptors and trafficking to the plasma membrane, endocytic uptake and sorting, lysosomal and proteasomal degradation, and ligand-dependent and independent proteolytic cleavages. We devised assays to follow quantitatively the trafficking and signaling of endogenous human NOTCH1 receptor in breast epithelial cells in culture. Based on such analyses, we executed a high-content screen of 2,749 human genes to identify new regulators of Notch that might be amenable to pharmacologic intervention. We uncovered 39 new NOTCH1 modulators for NOTCH1 trafficking and signaling. Among them, we find that PTPN23 and HCN2 act as positive NOTCH1 regulators by promoting endocytic trafficking and NOTCH1 maturation in the Golgi apparatus, respectively, whereas SGK3 serves as a negative regulator that can be modulated by pharmacologic inhibition. Our findings might be relevant in the search of new strategies to counteract pathologic Notch signaling.
Collapse
Affiliation(s)
- Francis M Kobia
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | | | - Alyssa Jj Paganoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | | | - Adrian Andronache
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | | | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
2
|
Xu L, Zhao XH, Zhang YY, Zhang MY, Zhang LY, Ye KH, Teng L, Han MM, Yue YM, Yang J, Ogle R, Netherton J, Tang D, Lan S, Baker M, Ye Y, Liu T, Wang YF, Zhang XD, Fan T, Jin L. SNORD80-guided 2'-O-methylation stabilizes the lncRNA GAS5 to regulate cellular stress responses. Proc Natl Acad Sci U S A 2025; 122:e2418996122. [PMID: 39946530 PMCID: PMC11848286 DOI: 10.1073/pnas.2418996122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
The introns of the gene encoding the long noncoding RNA (lncRNA) GAS5 host up to 10 C/D box small nucleolar RNAs (snoRNAs). However, whether there is a regulatory and functional relationship between these snoRNAs and GAS5 is unknown. Here, we show that the expression of SNORD80, but not the other snoRNAs, parallels GAS5 expression and is regulated alongside GAS5 in response to cellular stress. The 2'-O-methylation at the A496 site, located within a segment of GAS5 complementing the conserved RNA-binding region on SNORD80, promotes GAS5 stability and consequent upregulation. This methylation requires SNORD80, as it is diminished by knockdown of SNORD80 and increased by SNORD80 overexpression, similar to the effects of manipulating the expression of fibrillarin, the methyltransferase of the box C/D small nucleolar ribonucleoprotein particle (snoRNP). The upregulation of SNORD80 in response to cellular stress is due to an enhancement in its stability, which is associated with an increase in its interaction with fibrillarin. Collectively, these results identify a role for SNORD80 in guiding 2'-O-methylation to stabilize GAS5. This uncovers a feedforward regulatory loop at the GAS5 gene locus in response to cellular stress and sheds light on posttranscriptional mechanisms governing lncRNA expression.
Collapse
Affiliation(s)
- Liang Xu
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Meng Yao Zhang
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Long Yue Zhang
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Kai Hong Ye
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Liu Teng
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Man Man Han
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Yi Meng Yue
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Jiezhen Yang
- Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen361015, China
| | - Rachel Ogle
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Jacob Netherton
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Deng Tang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan610041, China
| | - Siqi Lan
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan610041, China
| | - Mark Baker
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui230032, China
| | - Tao Liu
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
- Children’s Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, NSW2750, Australia
| | - Yu Fang Wang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan610041, China
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Tianli Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Henan450001, China
| | - Lei Jin
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW2308, Australia
| |
Collapse
|
3
|
Ma S, Zhang Y, Zhu Z, Wang D, Zhou X, Wang J, Bian W, Tang X. Nucleolus-Targeting Carbon Dot Nanocomplexes for Combined Photodynamic/Photothermal Therapy. Mol Pharm 2025; 22:958-971. [PMID: 39895310 DOI: 10.1021/acs.molpharmaceut.4c01211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The low cure rate and high mortality associated with cancer pose significant threats to human health. Photodynamic and photothermal therapies have emerged as promising treatment strategies for various types of cancers. In this study, we successfully synthesized a novel type of carbon dot (CD) using 1,2,4-aminobenzene and ethylenediamine as precursors. Surprisingly, these CDs exhibited outstanding nucleolus-targeting capabilities coupled with a remarkable photothermal effect. Through the integration of these nucleolus-targeting CDs with indocyanine green (ICG) and folic acid (FA), we created CDs-ICG-FA nanocomplexes suitable for combined photodynamic and photothermal therapy. In vitro experiments demonstrated that CDs-ICG-FA maintained a robust photothermal ability, achieving a conversion efficiency of up to 34.3%. Furthermore, CDs-ICG-FA generated abundant reactive oxygen species, effectively inducing cancer cell death and demonstrating its potential for photodynamic therapy. In MCF-7 cancer cells, CDs-ICG-FA exhibited a pronounced synergistic photothermal/photodynamic anticancer effect. Subsequent in vivo experiments in mice revealed that CDs-ICG-FA could selectively accumulate at tumor sites, significantly inhibiting tumor growth upon exposure to an 808 nm laser. These findings suggest that the developed nucleolus-targeting CDs-ICG-FA hold promising potential for cancer targeting and the application of combined photothermal/photodynamic therapy.
Collapse
Affiliation(s)
- Shaofang Ma
- School of Basic Medical Science and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Yan Zhang
- School of Basic Medical Science and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Zihan Zhu
- School of Basic Medical Science and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Deping Wang
- School of Basic Medical Science and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xin Zhou
- School of Basic Medical Science and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Bian
- School of Basic Medical Science and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Cheng S, Qiu Z, Zhang Z, Li Y, Zhu Y, Zhou Y, Yang Y, Zhang Y, Yang D, Zhang Y, Liu H, Dai Z, Sun SL, Liu S. USP39 phase separates into the nucleolus and drives lung adenocarcinoma progression by promoting GLI1 expression. Cell Commun Signal 2025; 23:56. [PMID: 39885503 PMCID: PMC11783868 DOI: 10.1186/s12964-025-02059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Intracellular membraneless organelles formed by liquid-liquid phase separation (LLPS) function in diverse physiological processes and have been linked to tumor-promoting properties. The nucleolus is one of the largest membraneless organelle formed through LLPS. Deubiquitylating enzymes (DUBs) emerge as novel therapeutic targets against human cancers. However, the nucleolar phase separation of DUBs and association with lung cancer development have remained incompletely investigated till now. METHODS GFP-USP39 fusion proteins were analyzed for LLPS properties using immunofluorescence, fluorescence recovery after photobleaching (FRAP) and in vitro LLPS assays. Intrinsically-disordered regions of USP39 were analyzed by PhaSepDB database. Transcriptomic profiling, Western blot, RT-PCR and luciferase reporter assays were conducted to identify targets regulated by USP39. The effects of USP39 depletion on tumor progression were tested using doxycycline-inducible USP39 knockdown and rescue lung adenocarcinoma cells both in vitro and in vivo by performing MTT, colony formation, EdU staining, transwell and tumor xenograft model experiments. RESULTS USP39 phase separates into nucleoli depending upon its N-terminal disordered region with amino acid residues 1-103. Lung cancer cell growth and migration were dramatically inhibited by USP39 knockdown, which was rescued by exogenous USP39 complementation. Moreover, knockdown of USP39 reduced oncogenic transcription effector GLI1 levels. Finally, USP39 downregulation restricted the formation of lung cancer xenografts in nude mice. CONCLUSIONS USP39 undergoes LLPS in the nucleolus and promotes tumor progression by regulating GLI1 expression. Downregulation of USP39 effectively suppressed lung cancer growth, and therefore targeting USP39 provides novel therapeutic strategy to treat lung cancer.
Collapse
Affiliation(s)
- Shaoxuan Cheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhiyuan Qiu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Ziyi Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yuxuan Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yue Zhu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yuxin Zhou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yinghui Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yaowen Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Dian Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhaoxia Dai
- The Second Department of Thoracic Medical Oncology, Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
| | - Shu-Lan Sun
- Central Laboratory, Cancer Hospital, Cancer Hospital of China Medical University, Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Shuyan Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China.
| |
Collapse
|
5
|
Li Y, Yang Y, Sears RC, Dai MS, Sun XX. USP36 SUMOylates Las1L and Promotes Its Function in Pre-Ribosomal RNA ITS2 Processing. CANCER RESEARCH COMMUNICATIONS 2024; 4:2835-2845. [PMID: 39356143 PMCID: PMC11523043 DOI: 10.1158/2767-9764.crc-24-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024]
Abstract
Ribosome biogenesis is a highly regulated cellular process requiring a large cohort of accessory factors to ensure the accurate production of ribosomes. Dysregulation of ribosome biogenesis is associated with the development of various human diseases, including cancer. The Las1L-Nol9 endonuclease-kinase complex is essential for the cleavage of the rRNA internal transcribed spacer 2 (ITS2), the phosphorylation of the 5'-hydroxyl end of the resulting precursor, and, thus, the maturation of the 60S ribosome. However, how the Las1L-Nol9 complex is regulated in cells is unclear. In this study, we report that the nucleolar ubiquitin-specific protease USP36 is a novel regulator of the Las1L-Nol9 complex. USP36 interacts with both Las1L and Nol9 and regulates their stability via deubiquitination. Intriguingly, USP36 also mediates the SUMOylation of Las1L, mainly at lysine (K) 565. Mutating K565 to arginine (R) does not affect the levels of Las1L and the formation of the Las1L-Nol9 complex, but abolishes its function in ITS2 processing, as unlike wild-type Las1L, the K565R mutant failed to rescue the defects in the ITS2 processing induced by the knockdown of endogenous Las1L. These results suggest that USP36-mediated Las1L SUMOylation is critical for ITS2 processing and that USP36 plays a critical role in ribosome biogenesis by regulating the Las1L-Nol9 complex. SIGNIFICANCE This study identifies USP36 as a deubiquitinating and small ubiquitin-like modifier ligase dual-function enzyme to mediate Las1L deubiquitination and SUMOylation. Las1L SUMOylation at K565 plays a critical role in pre-rRNA ITS2 processing. Thus, our study reveals a novel downstream pathway for USP36-regulated ribosome biogenesis.
Collapse
Affiliation(s)
- Yanping Li
- Department of Molecular and Medical Genetics, School of Medicine, and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Yunhan Yang
- Department of Molecular and Medical Genetics, School of Medicine, and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, School of Medicine, and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
6
|
Rossio V, Paulo JA, Liu X, Gygi SP, King RW. Specificity profiling of deubiquitylases against endogenously generated ubiquitin-protein conjugates. Cell Chem Biol 2024; 31:1349-1362.e5. [PMID: 38810651 PMCID: PMC11260241 DOI: 10.1016/j.chembiol.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
Deubiquitylating enzymes (DUBs) remove ubiquitin from proteins thereby regulating their stability or activity. Our understanding of DUB-substrate specificity is limited because DUBs are typically not compared to each other against many physiological substrates. By broadly inhibiting DUBs in Xenopus egg extract, we generated hundreds of ubiquitylated proteins and compared the ability of 30 DUBs to deubiquitylate them using quantitative proteomics. We identified five high-impact DUBs (USP7, USP9X, USP36, USP15, and USP24) that each reduced ubiquitylation of over 10% of the isolated proteins. Candidate substrates of high-impact DUBs showed substantial overlap and were enriched for disordered regions, suggesting this feature may promote substrate recognition. Other DUBs showed lower impact and non-overlapping specificity, targeting distinct non-disordered proteins including complexes such as the ribosome or the proteasome. Altogether our study identifies candidate DUB substrates and defines patterns of functional redundancy and specificity, revealing substrate characteristics that may influence DUB-substrate recognition.
Collapse
Affiliation(s)
- Valentina Rossio
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Xinyue Liu
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Randall W King
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Gao B, Qiao Y, Zhu S, Yang N, Zou SS, Liu YJ, Chen J. USP36 inhibits apoptosis by deubiquitinating cIAP1 and survivin in colorectal cancer cells. J Biol Chem 2024; 300:107463. [PMID: 38876304 PMCID: PMC11268115 DOI: 10.1016/j.jbc.2024.107463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
Chemotherapeutic agents for treating colorectal cancer (CRC) primarily induce apoptosis in tumor cells. The ubiquitin-proteasome system is critical for apoptosis regulation. Deubiquitinating enzymes (DUBs) remove ubiquitin from substrates to reverse ubiquitination. Although over 100 DUB members have been discovered, the biological functions of only a small proportion of DUBs have been characterized. Here, we aimed to systematically identify the DUBs that contribute to the development of CRC. Among the DUBs, ubiquitin-specific protease 36 (USP36) is upregulated in CRC. We showed that the knockdown of USP36 induces intrinsic and extrinsic apoptosis. Through gene silencing and coimmunoprecipitation techniques, we identified survivin and cIAP1 as USP36 targets. Mechanistically, USP36 binds and removes lysine-11-linked ubiquitin chains from cIAP1 and lysine-48-linked ubiquitin chains from survivin to abolish protein degradation. Overexpression of USP36 disrupts the formation of the XIAP-second mitochondria-derived activator of caspase complex and promotes receptor-interacting protein kinase 1 ubiquitination, validating USP36 as an inhibitor to intrinsic and extrinsic apoptosis through deubiquitinating survivin and cIAP1. Therefore, our results suggest that USP36 is involved in CRC progression and is a potential therapeutic target.
Collapse
Affiliation(s)
- Bao Gao
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuan Qiao
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shan Zhu
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ning Yang
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shan-Shan Zou
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yong-Jun Liu
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Jingtao Chen
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
8
|
Niu MY, Liu YJ, Shi JJ, Chen RY, Zhang S, Li CY, Cao JF, Yang GJ, Chen J. The Emerging Role of Ubiquitin-Specific Protease 36 (USP36) in Cancer and Beyond. Biomolecules 2024; 14:572. [PMID: 38785979 PMCID: PMC11118191 DOI: 10.3390/biom14050572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and removing ubiquitin chains from target proteins and facilitating their proteasome-dependent degradation. The multifaceted functions of USP36 have been implicated in various disease processes, including cancer, infections, and inflammation, via the modulation of numerous cellular events, including gene transcription regulation, cell cycle regulation, immune responses, signal transduction, tumor growth, and inflammatory processes. The objective of this review is to provide a comprehensive summary of the current state of research on the roles of USP36 in different pathological conditions. By synthesizing the findings from previous studies, we have aimed to increase our understanding of the mechanisms underlying these diseases and identify potential therapeutic targets for their treatment.
Collapse
Affiliation(s)
- Meng-Yao Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Shun Zhang
- Ningbo No.2 Hospital, Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China;
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
- Ningbo No.2 Hospital, Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China;
| |
Collapse
|
9
|
Wang D, Jiang Z, Kan J, Jiang X, Pan C, You S, Chang R, Zhang J, Yang H, Zhu L, Gu Y. USP36-mediated PARP1 deubiquitination in doxorubicin-induced cardiomyopathy. Cell Signal 2024; 117:111070. [PMID: 38307305 DOI: 10.1016/j.cellsig.2024.111070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Doxorubicin (Dox) is a potent antineoplastic agent, but its use is curtailed by severe cardiotoxicity, known as Dox-induced cardiomyopathy (DIC). The molecular mechanism underlying this cardiotoxicity remains unclear. Our current study investigates the role of Ubiquitin-Specific Protease 36 (USP36), a nucleolar deubiquitinating enzyme (DUB), in the progression of DIC and its mechanism. We found increased USP36 expression in neonatal rat cardiomyocytes and H9C2 cells exposed to Dox. Silencing USP36 significantly mitigated Dox-induced oxidative stress injury and apoptosis in vitro. Mechanistically, USP36 upregulation positively correlated with Poly (ADP-ribose) polymerase 1 (PARP1) expression, and its knockdown led to a reduction in PARP1 levels. Further investigation revealed that USP36 could bind to and mediate the deubiquitination of PARP1, thereby increasing its protein stability in cardiomyocytes upon Dox exposure. Moreover, overexpression of wild-type (WT) USP36 plasmid, but not its catalytically inactive mutant (C131A), stabilized PARP1 in HEK293T cells. We also established a DIC model in mice and observed significant upregulation of USP36 in the heart. Cardiac knockdown of USP36 in mice using a type 9 recombinant adeno-associated virus (rAAV9)-shUSP36 significantly preserved cardiac function after Dox treatment and protected against Dox-induced structural changes within the myocardium. In conclusion, these findings suggest that Dox promotes DIC progression by activating USP36-mediated PARP1 deubiquitination. This novel USP36/PARP1 axis may play a significant regulatory role in the pathogenesis of DIC.
Collapse
Affiliation(s)
- Dongchen Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zihao Jiang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junyan Kan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaomin Jiang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chang Pan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shijie You
- Dushu Lake Hospital Affiliated to Soochow University (Suzhou Dushu Lake Hospital), Suzhou, China
| | - Ruirui Chang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Juan Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongfeng Yang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Linlin Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Yang Y, Li Y, Sears RC, Sun XX, Dai MS. SUMOylation regulation of ribosome biogenesis: Emerging roles for USP36. FRONTIERS IN RNA RESEARCH 2024; 2:1389104. [PMID: 38764604 PMCID: PMC11101209 DOI: 10.3389/frnar.2024.1389104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Ribosome biogenesis is essential for cell growth, proliferation, and animal development. Its deregulation leads to various human disorders such as ribosomopathies and cancer. Thus, tight regulation of ribosome biogenesis is crucial for normal cell homeostasis. Emerging evidence suggests that posttranslational modifications such as ubiquitination and SUMOylation play a crucial role in regulating ribosome biogenesis. Our recent studies reveal that USP36, a nucleolar deubiquitinating enzyme (DUB), acts also as a SUMO ligase to regulate nucleolar protein group SUMOylation, thereby being essential for ribosome biogenesis. Here, we provide an overview of the current understanding of the SUMOylation regulation of ribosome biogenesis and discuss the role of USP36 in nucleolar SUMOylation.
Collapse
Affiliation(s)
- Yunhan Yang
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Yanping Li
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Rosalie C. Sears
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Xiao-Xin Sun
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Mu-Shui Dai
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
11
|
Kang H, Hoang DH, Valerio M, Pathak K, Zhang L, Buettner R, Chen F, Estrella K, Graff W, Li Z, Xie J, Horne D, Kuo YH, Zhang B, Pirrotte P, Nguyen LXT, Marcucci G. OST-01, a natural product from Baccharis coridifolia, targets c-Myc-dependent ribogenesis in acute myeloid leukemia. Leukemia 2024; 38:657-662. [PMID: 38233463 PMCID: PMC10912030 DOI: 10.1038/s41375-024-02146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Affiliation(s)
- HyunJun Kang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | - Dinh Hoa Hoang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | - Melissa Valerio
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | - Khyatiben Pathak
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Lianjun Zhang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | - Ralf Buettner
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | - Fang Chen
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | - Katrina Estrella
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | | | - Zhuo Li
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Jun Xie
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - David Horne
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Ya-Huei Kuo
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | - Bin Zhang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | - Patrick Pirrotte
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Le Xuan Truong Nguyen
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA.
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA.
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
12
|
Rossio V, Paulo JA, Liu X, Gygi SP, King RW. Substrate identification and specificity profiling of deubiquitylases against endogenously-generated ubiquitin-protein conjugates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572581. [PMID: 38187689 PMCID: PMC10769257 DOI: 10.1101/2023.12.20.572581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Deubiquitylating enzymes (DUBs) remove ubiquitin from proteins thereby regulating their stability or activity. Our understanding of DUB-substrate specificity is limited because DUBs are typically not compared to each other against many physiological substrates. By broadly inhibiting DUBs in Xenopus egg extract, we generated hundreds of ubiquitylated proteins and compared the ability of 30 DUBs to deubiquitylate them using quantitative proteomics. We identified five high impact DUBs (USP7, USP9X, USP36, USP15 and USP24) that each reduced ubiquitylation of over ten percent of the isolated proteins. Candidate substrates of high impact DUBs showed substantial overlap and were enriched for disordered regions, suggesting this feature may promote substrate recognition. Other DUBs showed lower impact and non-overlapping specificity, targeting distinct non-disordered proteins including complexes such as the ribosome or the proteasome. Altogether our study identifies candidate DUB substrates and defines patterns of functional redundancy and specificity, revealing substrate characteristics that may influence DUB-substrate recognition.
Collapse
|
13
|
O'Dea R, Kazi N, Hoffmann-Benito A, Zhao Z, Recknagel S, Wendrich K, Janning P, Gersch M. Molecular basis for ubiquitin/Fubi cross-reactivity in USP16 and USP36. Nat Chem Biol 2023; 19:1394-1405. [PMID: 37443395 PMCID: PMC10611586 DOI: 10.1038/s41589-023-01388-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Ubiquitin and ubiquitin-like proteins typically use distinct machineries to facilitate diverse functions. The immunosuppressive ubiquitin-like protein Fubi is synthesized as an N-terminal fusion to a ribosomal protein (Fubi-S30). Its proteolytic maturation by the nucleolar deubiquitinase USP36 is strictly required for translationally competent ribosomes. What endows USP36 with this activity, how Fubi is recognized and whether other Fubi proteases exist are unclear. Here, we report a chemical tool kit that facilitated the discovery of dual ubiquitin/Fubi cleavage activity in USP16 in addition to USP36 by chemoproteomics. Crystal structures of USP36 complexed with Fubi and ubiquitin uncover its substrate recognition mechanism and explain how other deubiquitinases are restricted from Fubi. Furthermore, we introduce Fubi C-terminal hydrolase measurements and reveal a synergistic role of USP16 in Fubi-S30 maturation. Our data highlight how ubiquitin/Fubi specificity is achieved in a subset of human deubiquitinases and open the door to a systematic investigation of the Fubi system.
Collapse
Affiliation(s)
- Rachel O'Dea
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Nafizul Kazi
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Alicia Hoffmann-Benito
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Zhou Zhao
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Sarah Recknagel
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Kim Wendrich
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Petra Janning
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Malte Gersch
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
14
|
Qin K, Yu S, Liu Y, Guo R, Guo S, Fei J, Wang Y, Jia K, Xu Z, Chen H, Li F, Niu M, Dai MS, Dai L, Cao Y, Zhang Y, Xiao ZXJ, Yi Y. USP36 stabilizes nucleolar Snail1 to promote ribosome biogenesis and cancer cell survival upon ribotoxic stress. Nat Commun 2023; 14:6473. [PMID: 37833415 PMCID: PMC10575996 DOI: 10.1038/s41467-023-42257-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Tumor growth requires elevated ribosome biogenesis. Targeting ribosomes is an important strategy for cancer therapy. The ribosome inhibitor, homoharringtonine (HHT), is used for the clinical treatment of leukemia, yet it is ineffective for the treatment of solid tumors, the reasons for which remain unclear. Here we show that Snail1, a key factor in the regulation of epithelial-to-mesenchymal transition, plays a pivotal role in cellular surveillance response upon ribotoxic stress. Mechanistically, ribotoxic stress activates the JNK-USP36 signaling to stabilize Snail1 in the nucleolus, which facilitates ribosome biogenesis and tumor cell survival. Furthermore, we show that HHT activates the JNK-USP36-Snail1 axis in solid tumor cells, but not in leukemia cells, resulting in solid tumor cell resistance to HHT. Importantly, a combination of HHT with the inhibition of the JNK-USP36-Snail1 axis synergistically inhibits solid tumor growth. Together, this study provides a rationale for targeting the JNK-USP36-Snail1 axis in ribosome inhibition-based solid tumor therapy.
Collapse
Affiliation(s)
- Kewei Qin
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China
| | - Shuhan Yu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China
| | - Yang Liu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China
| | - Rongtian Guo
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China
| | - Shiya Guo
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China
| | - Junjie Fei
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China
| | - Yuemeng Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China
| | - Kaiyuan Jia
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China
| | - Zhiqiang Xu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Hu Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, 610500, Chengdu, China
| | - Fengtian Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China
| | - Mengmeng Niu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China
| | - Mu-Shui Dai
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China
| | - Yujun Zhang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China.
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China.
| |
Collapse
|
15
|
Zhao Z, O’Dea R, Wendrich K, Kazi N, Gersch M. Native Semisynthesis of Isopeptide-Linked Substrates for Specificity Analysis of Deubiquitinases and Ubl Proteases. J Am Chem Soc 2023; 145:20801-20812. [PMID: 37712884 PMCID: PMC10540217 DOI: 10.1021/jacs.3c04062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 09/16/2023]
Abstract
Post-translational modifications with ubiquitin (Ub) and ubiquitin-like proteins (Ubls) are regulated by isopeptidases termed deubiquitinases (DUBs) and Ubl proteases. Here, we describe a mild chemical method for the preparation of fluorescence polarization substrates for these enzymes that is based on the activation of C-terminal Ub/Ubl hydrazides to acyl azides and their subsequent functionalization to isopeptides. The procedure is complemented by native purification routes and thus circumvents the previous need for desulfurization and refolding. Its broad applicability was demonstrated by the generation of fully cleavable substrates for Ub, SUMO1, SUMO2, NEDD8, ISG15, and Fubi. We employed these reagents for the investigation of substrate specificities of human UCHL3, USPL1, USP2, USP7, USP16, USP18, and USP36. Pronounced selectivity of USPL1 for SUMO2/3 over SUMO1 was observed, which we rationalize with crystal structures and biochemical assays, revealing a SUMO paralogue specificity mechanism distinct from SENP family deSUMOylases. Moreover, we investigated the recently identified Fubi proteases USP16 and USP36 and found both to act as bona fide deFubiylases, harboring catalytic activity against isopeptide-linked Fubi. Surprisingly, we also noticed the activity of both enzymes toward ISG15, previously not identified in chemoproteomics, which makes USP16 and USP36 the first human DUBs with specific isopeptidase activity toward three distinct modifiers. The methods described here for the preparation of isopeptide-linked, fully folded substrates will aid in the characterization of further DUBs/Ubl proteases. More broadly, our findings highlight possible limitations associated with fluorogenic substrates and Ubl activity-based probes and stress the importance of isopeptide-containing reagents for validating isopeptidase activities and quantifying substrate specificities.
Collapse
Affiliation(s)
- Zhou Zhao
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Str.
15, 44227 Dortmund, Germany
| | - Rachel O’Dea
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Str.
15, 44227 Dortmund, Germany
| | - Kim Wendrich
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Str.
15, 44227 Dortmund, Germany
| | - Nafizul Kazi
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Str.
15, 44227 Dortmund, Germany
| | - Malte Gersch
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Str.
15, 44227 Dortmund, Germany
| |
Collapse
|
16
|
Li Y, Carey TS, Feng CH, Zhu HM, Sun XX, Dai MS. The Ubiquitin-specific Protease USP36 Associates with the Microprocessor Complex and Regulates miRNA Biogenesis by SUMOylating DGCR8. CANCER RESEARCH COMMUNICATIONS 2023; 3:459-470. [PMID: 36950067 PMCID: PMC10026737 DOI: 10.1158/2767-9764.crc-22-0344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
miRNA biogenesis is a cellular process that produces mature miRNAs from their primary transcripts, pri-miRNAs, via two RNAse III enzyme complexes: the Drosha-DGCR8 microprocessor complex in the nucleus and the Dicer-TRBP complex in the cytoplasm. Emerging evidence suggests that miRNA biogenesis is tightly regulated by posttranscriptional and posttranslational modifications and aberrant miRNA biogenesis is associated with various human diseases including cancer. DGCR8 has been shown to be modified by SUMOylation. Yet, the SUMO ligase mediating DGCR8 SUMOylation is currently unknown. Here, we report that USP36, a nucleolar ubiquitin-specific protease essential for ribosome biogenesis, is a novel regulator of DGCR8. USP36 interacts with the microprocessor complex and promotes DGCR8 SUMOylation, specifically modified by SUMO2. USP36-mediated SUMOylation does not affect the levels of DGCR8 and the formation of the Drosha-DGCR8 complex, but promotes the binding of DGCR8 to pri-miRNAs. Consistently, abolishing DGCR8 SUMOylation significantly attenuates its binding to pri-miRNAs and knockdown of USP36 attenuates pri-miRNA processing, resulting in marked reduction of tested mature miRNAs. Induced expression of a SUMOylation-defective mutant of DGCR8 inhibits cell proliferation. Together, these results suggest that USP36 plays an important role in regulating miRNA biogenesis by SUMOylating DGCR8. Significance This study identifies that USP36 mediates DGCR8 SUMOylation by SUMO2 and is critical for miRNA biogenesis. As USP36 is frequently overexpressed in various human cancers, our study suggests that deregulated USP36-miRNA biogenesis pathway may contribute to tumorigenesis.
Collapse
Affiliation(s)
- Yanping Li
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Timothy S. Carey
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Catherine H. Feng
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Hong-Ming Zhu
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
17
|
Chen YY, Chen S, Ok K, Duncan FE, O’Halloran TV, Woodruff TK. Zinc dynamics regulate early ovarian follicle development. J Biol Chem 2022; 299:102731. [PMID: 36423685 PMCID: PMC9800340 DOI: 10.1016/j.jbc.2022.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
Zinc fluctuations regulate key steps in late oocyte and preimplantation embryo development; however, roles for zinc in preceding stages in early ovarian follicle development, when cooperative interactions exist between the oocyte and somatic cells, are unknown. To understand the roles of zinc during early follicle development, we applied single cell X-ray fluorescence microscopy, a radioactive zinc tracer, and a labile zinc probe to measure zinc in individual mouse oocytes and associated somatic cells within early follicles. Here, we report a significant stage-specific increase and compartmental redistribution in oocyte zinc content upon the initiation of early follicle growth. The increase in zinc correlates with the increased expression of specific zinc transporters, including two that are essential in oocyte maturation. While oocytes in follicles exhibit high tolerance to pronounced changes in zinc availability, somatic survival and proliferation are significantly more sensitive to zinc chelation or supplementation. Finally, transcriptomic, proteomic, and zinc loading analyses reveal enrichment of zinc targets in the ubiquitination pathway. Overall, these results demonstrate that distinct cell type-specific zinc regulations are required for follicle growth and indicate that physiological fluctuation in the localization and availability of this inorganic cofactor has fundamental functions in early gamete development.
Collapse
Affiliation(s)
- Yu-Ying Chen
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Si Chen
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - Kiwon Ok
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Thomas V. O’Halloran
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA,Department of Chemistry, Michigan State University, East Lansing, Michigan, USA,Department of Chemistry, Northwestern University, Evanston, Illinois, USA,The Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA,For correspondence: Thomas V. O’Halloran; Teresa K. Woodruff
| | - Teresa K. Woodruff
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, Michigan, USA,For correspondence: Thomas V. O’Halloran; Teresa K. Woodruff
| |
Collapse
|
18
|
Jin Z, Yang Z, Sheng Z, Teng J, Chen W, Chen F, Gong M. USP36 Facilitates the Progression of Hepatocellular Carcinoma by Upregulating Myc. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective: Our study will explore the function and regulatory mechanism of USP36 in hepatocellular carcinoma (HCC). Methods: USP36-overexpressed and USP36-knockdown cells were established. The USP36 and Myc level were checked by Western blotting and the cell viability
was checked by the MTT method. The apoptotic rate was checked by flow cytometry, while the migration was detected by the Transwell assay. A xenograft model was constructed in nude mice to explore the function of USP36 in HCC. USP36-overexpressed and USP-knockdown cells were constructed by
transfecting pcDNA3.1-USP36 and siRNA-USP36 (si-USP36), respectively. Myc-overexpressed cells were constructed by transfecting pcDNA3.1-Myc. Results: Significantly declined cell viability, increased apoptotic rate, elevated number of migrated cells, downregulated Myc, and repressed
tumor growth were observed in USP36-knockdown HepG2 and HUH7 cells, while opposite results were observed in USP36-overexpressed HepG2 and HUH7 cells. The expression level of Myc was positively regulated by USP36. However, the USP36 level was not regulated by Myc. Lastly, the declined cell
viability, increased apoptotic rate, and elevated number of migrated cells in USP36-knockdown HepG2 cells were dramatically abrogated by the overexpression of Myc. Conclusion: USP36 facilitated the progression of hepatocellular carcinoma by upregulating Myc.
Collapse
Affiliation(s)
- Zhaoqing Jin
- Department of General Surgery, First People’s Hospital of Hangzhou Lin’an District (Affiliated Lin’an People’s Hospital, Hangzhou, Medical College), Hangzhou, 310013, China
| | - Ziqiang Yang
- Department of General Surgery, First People’s Hospital of Hangzhou Lin’an District (Affiliated Lin’an People’s Hospital, Hangzhou, Medical College), Hangzhou, 310013, China
| | - Zhen Sheng
- Department of General Surgery, First People’s Hospital of Hangzhou Lin’an District (Affiliated Lin’an People’s Hospital, Hangzhou, Medical College), Hangzhou, 310013, China
| | - Jiao Teng
- Department of General Surgery, First People’s Hospital of Hangzhou Lin’an District (Affiliated Lin’an People’s Hospital, Hangzhou, Medical College), Hangzhou, 310013, China
| | - Weiqing Chen
- Department of General Surgery, First People’s Hospital of Hangzhou Lin’an District (Affiliated Lin’an People’s Hospital, Hangzhou, Medical College), Hangzhou, 310013, China
| | - Feihua Chen
- Department of General Surgery, First People’s Hospital of Hangzhou Lin’an District (Affiliated Lin’an People’s Hospital, Hangzhou, Medical College), Hangzhou, 310013, China
| | - Mouchun Gong
- Department of General Surgery, First People’s Hospital of Hangzhou Lin’an District (Affiliated Lin’an People’s Hospital, Hangzhou, Medical College), Hangzhou, 310013, China
| |
Collapse
|
19
|
van den Heuvel J, Ashiono C, Gillet LC, Dörner K, Wyler E, Zemp I, Kutay U. Processing of the ribosomal ubiquitin-like fusion protein FUBI-eS30/FAU is required for 40S maturation and depends on USP36. eLife 2021; 10:70560. [PMID: 34318747 PMCID: PMC8354635 DOI: 10.7554/elife.70560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
In humans and other holozoan organisms, the ribosomal protein eS30 is synthesized as a fusion protein with the ubiquitin-like protein FUBI. However, FUBI is not part of the mature 40S ribosomal subunit and cleaved off by an as-of-yet unidentified protease. How FUBI-eS30 processing is coordinated with 40S subunit maturation is unknown. To study the mechanism and importance of FUBI-eS30 processing, we expressed non-cleavable mutants in human cells, which affected late steps of cytoplasmic 40S maturation, including the maturation of 18S rRNA and recycling of late-acting ribosome biogenesis factors. Differential affinity purification of wild-type and non-cleavable FUBI-eS30 mutants identified the deubiquitinase USP36 as a candidate FUBI-eS30 processing enzyme. Depletion of USP36 by RNAi or CRISPRi indeed impaired FUBI-eS30 processing and moreover, purified USP36 cut FUBI-eS30 in vitro. Together, these data demonstrate the functional importance of FUBI-eS30 cleavage and identify USP36 as a novel protease involved in this process.
Collapse
Affiliation(s)
- Jasmin van den Heuvel
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Caroline Ashiono
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ludovic C Gillet
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Kerstin Dörner
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Emanuel Wyler
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ivo Zemp
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Non-canonical function of DGCR8 in DNA double-strand break repair signaling and tumor radioresistance. Nat Commun 2021; 12:4033. [PMID: 34188037 PMCID: PMC8242032 DOI: 10.1038/s41467-021-24298-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 06/11/2021] [Indexed: 12/21/2022] Open
Abstract
In response to DNA double-strand breaks (DSBs), repair proteins are recruited to the damaged sites. Ubiquitin signaling plays a critical role in coordinating protein recruitment during the DNA damage response. Here, we find that the microRNA biogenesis factor DGCR8 promotes tumor resistance to X-ray radiation independently of its Drosha-binding ability. Upon radiation, the kinase ATM and the deubiquitinase USP51 mediate the activation and stabilization of DGCR8 through phosphorylation and deubiquitination. Specifically, radiation-induced ATM-dependent phosphorylation of DGCR8 at serine 677 facilitates USP51 to bind, deubiquitinate, and stabilize DGCR8, which leads to the recruitment of DGCR8 and DGCR8’s binding partner RNF168 to MDC1 and RNF8 at DSBs. This, in turn, promotes ubiquitination of histone H2A, repair of DSBs, and radioresistance. Altogether, these findings reveal the non-canonical function of DGCR8 in DSB repair and suggest that radiation treatment may result in therapy-induced tumor radioresistance through ATM- and USP51-mediated activation and upregulation of DGCR8. The molecular mechanisms underlying cancer cell radioresistance need to be elucidated. In this study, the authors show that the microRNA biogenesis factor DGCR8 is stabilized by USP51 and ATM upon irradiation and by consequence it promotes the repair of DNA double-strand breaks and radioresistance by recruiting RNF168 to sites of damage.
Collapse
|
21
|
Zhu S, Hou S, Lu Y, Sheng W, Cui Z, Dong T, Feng H, Wan Q. USP36-Mediated Deubiquitination of DOCK4 Contributes to the Diabetic Renal Tubular Epithelial Cell Injury via Wnt/β-Catenin Signaling Pathway. Front Cell Dev Biol 2021; 9:638477. [PMID: 33968925 PMCID: PMC8102983 DOI: 10.3389/fcell.2021.638477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/03/2021] [Indexed: 01/11/2023] Open
Abstract
Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease but the efficacy of current treatment remains unsatisfactory. The pathogenesis of DKD needs a more in-depth research. Ubiquitin specific proteases 36 (USP36), a member of deubiquitinating enzymes family, has aroused wide concerns for its role in deubiquitinating and stabilizing target proteins. Nevertheless, the role of USP36 in diabetes has never been reported yet. Herein, we identified an increased expression of USP36 both in vitro and in vivo in diabetic renal tubular epithelial cells (TECs), and its overexpression is related to the enhanced epithelial-to-mesenchymal transition (EMT). Further investigation into the mechanisms proved that USP36 could directly bind to and mediate the deubiquitination of dedicator of cytokinesis 4 (DOCK4), a guanine nucleotide exchange factor (GEF) that could activate Wnt/β-catenin signaling pathway and induce EMT. Our study revealed a new mechanism that USP36 participates in the pathogenesis of DKD, and provided potential intervening targets accordingly.
Collapse
Affiliation(s)
- Suwei Zhu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoshuai Hou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Lu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Sheng
- Department of Cancer Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhengguo Cui
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tianyi Dong
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hong Feng
- Department of Cancer Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Wan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
22
|
Ryu H, Sun XX, Chen Y, Li Y, Wang X, Dai RS, Zhu HM, Klimek J, David L, Fedorov LM, Azuma Y, Sears RC, Dai MS. The deubiquitinase USP36 promotes snoRNP group SUMOylation and is essential for ribosome biogenesis. EMBO Rep 2021; 22:e50684. [PMID: 33852194 DOI: 10.15252/embr.202050684] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
SUMOylation plays a crucial role in regulating diverse cellular processes including ribosome biogenesis. Proteomic analyses and experimental evidence showed that a number of nucleolar proteins involved in ribosome biogenesis are modified by SUMO. However, how these proteins are SUMOylated in cells is less understood. Here, we report that USP36, a nucleolar deubiquitinating enzyme (DUB), promotes nucleolar SUMOylation. Overexpression of USP36 enhances nucleolar SUMOylation, whereas its knockdown or genetic deletion reduces the levels of SUMOylation. USP36 interacts with SUMO2 and Ubc9 and directly mediates SUMOylation in cells and in vitro. We show that USP36 promotes the SUMOylation of the small nucleolar ribonucleoprotein (snoRNP) components Nop58 and Nhp2 in cells and in vitro and their binding to snoRNAs. It also promotes the SUMOylation of snoRNP components Nop56 and DKC1. Functionally, we show that knockdown of USP36 markedly impairs rRNA processing and translation. Thus, USP36 promotes snoRNP group SUMOylation and is critical for ribosome biogenesis and protein translation.
Collapse
Affiliation(s)
- Hyunju Ryu
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Xiao-Xin Sun
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Yingxiao Chen
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Yanping Li
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Xiaoyan Wang
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Roselyn S Dai
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Hong-Ming Zhu
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - John Klimek
- Department of Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA.,OHSU Proteomics Shared Resource, Oregon Health & Science University, Portland, OR, USA
| | - Larry David
- Department of Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA.,OHSU Proteomics Shared Resource, Oregon Health & Science University, Portland, OR, USA
| | - Lev M Fedorov
- OHSU Transgenic Mouse Models Shared Resource, Oregon Health & Science University, Portland, OR, USA
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Rosalie C Sears
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Mu-Shui Dai
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
23
|
Mende H, Müller S. Surveillance of nucleolar homeostasis and ribosome maturation by autophagy and the ubiquitin-proteasome system. Matrix Biol 2021; 100-101:30-38. [PMID: 33556475 DOI: 10.1016/j.matbio.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
The nucleolus functions as the cellular hub for the initiation and early steps of ribosome biogenesis. Ribosomes are key components of the translation machinery and, accordingly, their abundance needs to be adjusted to the cellular energy status. Further, to ensure translational fidelity, the integrity and quality of ribosomes needs to be monitored under conditions of cellular stress. Stressful insults, such as nutrient, genotoxic or proteotoxic stress, interfere with ribosome biogenesis and activate a cellular response referred to as nucleolar stress. This nucleolar stress response typically affects nucleolar integrity and is intricately linked to the activation of protein quality control pathways, including (i) the ubiquitin proteasome system (UPS) and (ii) the autophagy machinery, to restore cellular proteostasis. Here we will review some key features of the nucleolar stress response with a particular focus on the role of the UPS and autophagy in this process.
Collapse
Affiliation(s)
- Hannah Mende
- Institute of Biochemistry II, Goethe University, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Goethe University, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
24
|
Yan Y, Xu Z, Huang J, Guo G, Gao M, Kim W, Zeng X, Kloeber JA, Zhu Q, Zhao F, Luo K, Lou Z. The deubiquitinase USP36 Regulates DNA replication stress and confers therapeutic resistance through PrimPol stabilization. Nucleic Acids Res 2020; 48:12711-12726. [PMID: 33237263 PMCID: PMC7736794 DOI: 10.1093/nar/gkaa1090] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
PrimPol has been recently identified as a DNA damage tolerant polymerase that plays an important role in replication stress response. However, the regulatory mechanisms of PrimPol are not well defined. In this study, we identify that the deubiquitinase USP36 interferes with degradation of PrimPol to regulate the replication stress response. Mechanistically, USP36 is deubiquitinated following DNA replication stress, which in turn facilitates its upregulation and interaction with PrimPol. USP36 deubiquitinates K29-linked polyubiquitination of PrimPol and increases its protein stability. Depletion of USP36 results in replication stress-related defects and elevates cell sensitivity to DNA-damage agents, such as cisplatin and olaparib. Moreover, USP36 expression positively correlates with the level of PrimPol protein and poor prognosis in patient samples. These findings indicate that the regulation of PrimPol K29-linked ubiquitination by USP36 plays a critical role in DNA replication stress and chemotherapy response.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Wootae Kim
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiangyu Zeng
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Qian Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
25
|
Abstract
Enzymatic reactions and noncovalent (i.e., supramolecular) interactions are two fundamental nongenetic attributes of life. Enzymatic noncovalent synthesis (ENS) refers to a process where enzymatic reactions control intermolecular noncovalent interactions for spatial organization of higher-order molecular assemblies that exhibit emergent properties and functions. Like enzymatic covalent synthesis (ECS), in which an enzyme catalyzes the formation of covalent bonds to generate individual molecules, ENS is a unifying theme for understanding the functions, morphologies, and locations of molecular ensembles in cellular environments. This review intends to provide a summary of the works of ENS within the past decade and emphasize ENS for functions. After comparing ECS and ENS, we describe a few representative examples where nature uses ENS, as a rule of life, to create the ensembles of biomacromolecules for emergent properties/functions in a myriad of cellular processes. Then, we focus on ENS of man-made (synthetic) molecules in cell-free conditions, classified by the types of enzymes. After that, we introduce the exploration of ENS of man-made molecules in the context of cells by discussing intercellular, peri/intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and other applications. Finally, we provide a perspective on the promises of ENS for developing molecular assemblies/processes for functions. This review aims to be an updated introduction for researchers who are interested in exploring noncovalent synthesis for developing molecular science and technologies to address societal needs.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
26
|
Thevenon D, Seffouh I, Pillet C, Crespo-Yanez X, Fauvarque MO, Taillebourg E. A Nucleolar Isoform of the Drosophila Ubiquitin Specific Protease dUSP36 Regulates MYC-Dependent Cell Growth. Front Cell Dev Biol 2020; 8:506. [PMID: 32637412 PMCID: PMC7316882 DOI: 10.3389/fcell.2020.00506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
The c-Myc oncogene is a transcription factor that regulates the expression of a very large set of genes mainly involved in cell growth and proliferation. It is overexpressed in more than 70% of human cancers, illustrating the importance of keeping its levels and activity under control. The ubiquitin proteasome system is a major regulator of MYC levels in humans as well as in model organisms such as Drosophila melanogaster. Although the E3 ligases that promote MYC ubiquitination have been largely investigated, the identity and the role of the deubiquitinating enzymes, which counteract their action is only beginning to be unraveled. Using isoform-specific CRISPR-Cas9 mutagenesis, we show that the Drosophila homolog of the Ubiquitin Specific Protease USP36 has different isoforms with specific sub-cellular localizations and that the nucleolar dUSP36-D isoform is specifically required for cell and organismal growth. We also demonstrate that this isoform interacts with dMYC and the E3 ligase AGO and regulates their stability and ubiquitination levels. Furthermore, we show that dUSP36 is ubiquitinated by AGO and is able to self-deubiquitinate. Finally, we provide in vivo evidence supporting the functional relevance of these regulatory relationships. Together these results reveal that dMYC, AGO and dUSP36 form a tripartite, evolutionary conserved complex that acts as a regulatory node to control dMYC protein levels.
Collapse
|
27
|
Chen PH, Chen YT, Chu TY, Ma TH, Wu MH, Lin HH, Chang YS, Tan BCM, Lo SJ. Nucleolar control by a non-apoptotic p53-caspases-deubiquitinylase axis promotes resistance to bacterial infection. FASEB J 2020; 34:1107-1121. [PMID: 31914708 DOI: 10.1096/fj.201901959r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/02/2019] [Accepted: 10/15/2019] [Indexed: 11/11/2022]
Abstract
The nucleolus is best known for its cellular role in regulating ribosome production and growth. More recently, an unanticipated role for the nucleolus in innate immunity has recently emerged whereby downregulation of fibrillarin and nucleolar contraction confers pathogen resistance across taxa. The mechanism of this downregulation, however, remains obscure. Here we report that rather than fibrillarin itself being the proximal factor in this pathway, the key player is a fibrillarin-stabilizing deubiquitinylase USP-33. This was discovered by a candidate-gene search of Caenorhabditis elegans in which CED-3 caspase was revealed to execute targeted cleavage of USP-33, thus destabilizing fibrillarin. We also showed that cep-1 and ced-3 mutant worms altered nucleolar size and decreased antimicrobial peptide gene, spp-1, expression rendering susceptibility to bacterial infection. These phenotypes were reversed by usp-33 knockdown, thus linking the CEP-1-CED-3-USP-33 pathway with nucleolar control and resistance to bacterial infection in worms. Parallel experiments with the human analogs of caspases and USP36 revealed similar roles in coordinating these two processes. In summary, our work outlined a conserved cascade that connects cell death signaling to nucleolar control and innate immune response.
Collapse
Affiliation(s)
- Po-Hsiang Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Tung Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tai-Ying Chu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Tian-Hsiang Ma
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Hsuan Wu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsi-Hsien Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Szecheng J Lo
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
28
|
Sun J, Shi X, Mamun MAA, Gao Y. The role of deubiquitinating enzymes in gastric cancer. Oncol Lett 2019; 19:30-44. [PMID: 31897112 PMCID: PMC6924028 DOI: 10.3892/ol.2019.11062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022] Open
Abstract
The epigenetic regulation of gene expression (via DNA methylation, histone modification and microRNA interference) contributes to a variety of diseases, particularly cancer. Protein deubiquitination serves a key role in the mechanism underlying histone modification, and consequently influences tumor development and progression. Improved characterization of the role of ubiquitinating enzymes has led to the identification of numerous deubiquitinating enzymes (DUBs) with various functions. Gastric cancer (GC) is a highly prevalent cancer type that exhibits a high mortality rate. Latest analysis about cancer patient revealed that GC is sixth deadliest cancer type, which frequently occur in male (7.2%) than female (4.1%). Complex associations between DUBs and GC progression have been revealed in multiple studies; however, the molecular mechanism underpinning the metastasis and recurrence of GC is yet to be elucidated. Generally, DUBs were upregulated in gastric cancer. The relation of DUBs and tumor size, classification and staging was observed in GC. Besides, 5-yar survival rate of patients with GC is effeccted by expression level of DUBs. Among the highly expressed DUBs, specifically six DUBs namely UCHs, USPs, OTUs, MJDs, JAMMs and MCPIPs effect on this survival rate. Consequently, the association between GC and DUBs has received increasing attention in recent years. Therefore, in the present review, literature investigating the association between DUBs and GC pathophysiology was analyzed and critically appraised.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaojing Shi
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China
| | - M A A Mamun
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
29
|
Geisler S, Jäger L, Golombek S, Nakanishi E, Hans F, Casadei N, Terradas AL, Linnemann C, Kahle PJ. Ubiquitin-specific protease USP36 knockdown impairs Parkin-dependent mitophagy via downregulation of Beclin-1-associated autophagy-related ATG14L. Exp Cell Res 2019; 384:111641. [DOI: 10.1016/j.yexcr.2019.111641] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/18/2023]
|
30
|
Liu Q, Sheng W, Ma Y, Zhen J, Roy S, Alvira Jafar C, Xin W, Wan Q. USP36 protects proximal tubule cells from ischemic injury by stabilizing c-Myc and SOD2. Biochem Biophys Res Commun 2019; 513:502-508. [PMID: 30975468 DOI: 10.1016/j.bbrc.2019.03.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
Acute kidney injury (AKI) is a progressive renal injury with high morbidity and mortality, however, the mechanism is far from being clarified and effective clinical interventions are lacking. USP36 is a deubiquitination enzyme involved in a variety of cellular biological processes, but its involvement in renal cell apoptosis and kidney disease is largely unknown. In the present study, we confirmed the decreased expression of USP36 both in vivo in mouse and human AKI samples and in vitro ischemic human renal proximal tubular cells, which are extremely sensitive to the damage of ischemic injury. Importantly, we found that overexpression of USP36 markedly decreased ischemia-induced apoptosis and oxidative stress in HK-2 cells, which was accompanied by elevated c-Myc and SOD2 protein levels with alleviated ischemia-induced ubiquitination of both proteins. Our findings revealed a novel role of USP36 in inhibiting apoptosis of human renal tubular cells induced by ischemia, and provided a potential therapeutic target for AKI treatment.
Collapse
Affiliation(s)
- Qing Liu
- Weifang Medical University, 261000, Weifang, Shandong Province, China
| | - Wei Sheng
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250012, China
| | - Yuan Ma
- School of Medicine, Shandong University, Jinan, 250012, China
| | - Junhui Zhen
- Department of Pathology, Shandong University School of Medicine, Jinan, 250012, China
| | - Satyajit Roy
- Department of Nephrology and Dialysis Unit, Bangabondhu Memorial Hospital Affiliated to University of Science & Technology, Chittagong, Bangladesh
| | | | - Wei Xin
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250012, China.
| | - Qiang Wan
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250012, China.
| |
Collapse
|
31
|
Wang H, Cheung F, Stoll AC, Rockwell P, Figueiredo-Pereira ME. Mitochondrial and calcium perturbations in rat CNS neurons induce calpain-cleavage of Parkin: Phosphatase inhibition stabilizes pSer 65Parkin reducing its calpain-cleavage. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1436-1450. [PMID: 30796971 DOI: 10.1016/j.bbadis.2019.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
Mitochondrial impairment and calcium (Ca++) dyshomeostasis are associated with Parkinson's disease (PD). When intracellular ATP levels are lowered, Ca++-ATPase pumps are impaired causing cytoplasmic Ca++ to be elevated and calpain activation. Little is known about the effect of calpain activation on Parkin integrity. To address this gap, we examined the effects of mitochondrial inhibitors [oligomycin (Oligo), antimycin and rotenone] on endogenous Parkin integrity in rat midbrain and cerebral cortical cultures. All drugs induced calpain-cleavage of Parkin to ~36.9/43.6 kDa fragments. In contrast, treatment with the proinflammatory prostaglandin J2 (PGJ2) and the proteasome inhibitor epoxomicin induced caspase-cleavage of Parkin to fragments of a different size, previously shown by others to be triggered by apoptosis. Calpain-cleaved Parkin was enriched in neuronal mitochondrial fractions. Pre-treatment with the phosphatase inhibitor okadaic acid prior to Oligo-treatment, stabilized full-length Parkin phosphorylated at Ser65, and reduced calpain-cleavage of Parkin. Treatment with the Ca++ ionophore A23187, which facilitates Ca++ transport across the plasma membrane, mimicked the effect of Oligo by inducing calpain-cleavage of Parkin. Removing extracellular Ca++ from the media prevented oligomycin- and ionophore-induced calpain-cleavage of Parkin. Computational analysis predicted that calpain-cleavage of Parkin liberates its UbL domain. The phosphagen cyclocreatine moderately mitigated Parkin cleavage by calpain. Moreover, the pituitary adenylate cyclase activating peptide (PACAP27), which stimulates cAMP production, prevented caspase but not calpain-cleavage of Parkin. Overall, our data support a link between Parkin phosphorylation and its cleavage by calpain. This mechanism reflects the impact of mitochondrial impairment and Ca++-dyshomeostasis on Parkin integrity and could influence PD pathogenesis.
Collapse
Affiliation(s)
- Hu Wang
- Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, NY 10065, USA
| | - Fanny Cheung
- Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, NY 10065, USA
| | - Anna C Stoll
- Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, NY 10065, USA
| | - Patricia Rockwell
- Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, NY 10065, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, NY 10065, USA.
| |
Collapse
|
32
|
Kunchala P, Kuravi S, Jensen R, McGuirk J, Balusu R. When the good go bad: Mutant NPM1 in acute myeloid leukemia. Blood Rev 2018; 32:167-183. [DOI: 10.1016/j.blre.2017.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022]
|
33
|
Kim SY, Choi J, Lee DH, Park JH, Hwang YJ, Baek KH. PME-1 is regulated by USP36 in ERK and Akt signaling pathways. FEBS Lett 2018; 592:1575-1588. [PMID: 29577269 DOI: 10.1002/1873-3468.13039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
Abstract
Deubiquitinating enzymes (DUBs) play an important role in the ubiquitin-proteasome system (UPS) by eliminating ubiquitins from substrates and inhibiting proteasomal degradation. Protein phosphatase methylesterase 1 (PME-1) inactivates protein phosphatase 2A (PP2A) and enhances the ERK and Akt signaling pathways, which increase cell proliferation and malignant cell transformation. In this study, we demonstrate that USP36 regulates PME-1 through its deubiquitinating enzyme activity. USP36 increases PME-1 stability, and depletion of USP36 decreases the PME-1 expression level. Furthermore, we demonstrate that USP36 promotes the ERK and Akt signaling pathways. In summary, it is suggested that USP36 regulates PME-1 as a DUB and participates in the ERK and Akt signaling pathways.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam-Si, Gyeonggi-Do, Korea
| | - Jihye Choi
- Department of Biomedical Science, CHA University, Seongnam-Si, Gyeonggi-Do, Korea
| | - Da-Hye Lee
- Department of Biomedical Science, CHA University, Seongnam-Si, Gyeonggi-Do, Korea
| | - Jun-Hyeok Park
- Department of Biomedical Science, CHA University, Seongnam-Si, Gyeonggi-Do, Korea
| | - Young-Jae Hwang
- Department of Biomedical Science, CHA University, Seongnam-Si, Gyeonggi-Do, Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Seongnam-Si, Gyeonggi-Do, Korea
| |
Collapse
|
34
|
Fraile JM, Campos-Iglesias D, Rodríguez F, Astudillo A, Vilarrasa-Blasi R, Verdaguer-Dot N, Prado MA, Paulo JA, Gygi SP, Martín-Subero JI, Freije JMP, López-Otín C. Loss of the deubiquitinase USP36 destabilizes the RNA helicase DHX33 and causes preimplantation lethality in mice. J Biol Chem 2017; 293:2183-2194. [PMID: 29273634 DOI: 10.1074/jbc.m117.788430] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 12/19/2017] [Indexed: 12/22/2022] Open
Abstract
Deubiquitinases are proteases with a wide functional diversity that profoundly impact multiple biological processes. Among them, the ubiquitin-specific protease 36 (USP36) has been implicated in the regulation of nucleolar activity. However, its functional relevance in vivo has not yet been fully described. Here, we report the generation of an Usp36-deficient mouse model to examine the function of this enzyme. We show that Usp36 depletion is lethal in preimplantation mouse embryos, where it blocks the transition from morula to blastocyst during embryonic development. USP36 reduces the ubiquitination levels and increases the stability of the DEAH-box RNA helicase DHX33, which is critically involved in ribosomal RNA synthesis and mRNA translation. In agreement with this finding, O-propargyl-puromycin incorporation experiments, Northern blot, and electron microscopy analyses demonstrated the role of USP36 in ribosomal RNA and protein synthesis. Finally, we show that USP36 down-regulation alters cell proliferation in human cancer cells by inducing both apoptosis and cell cycle arrest, and that reducing DHX33 levels through short hairpin RNA interference has the same effect. Collectively, these results support that Usp36 is essential for cell and organism viability because of its role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, by regulating DHX33 stability.
Collapse
Affiliation(s)
- Julia M Fraile
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006-Oviedo, Spain
| | - Diana Campos-Iglesias
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006-Oviedo, Spain
| | - Francisco Rodríguez
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006-Oviedo, Spain
| | - Aurora Astudillo
- the Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, 33006-Oviedo, Spain
| | - Roser Vilarrasa-Blasi
- the Departamento de Anatomía Patológica, Farmacología y Microbiología, Universitat de Barcelona, IDIBAPS, 08036-Barcelona, Spain
| | - Nuria Verdaguer-Dot
- the Departamento de Anatomía Patológica, Farmacología y Microbiología, Universitat de Barcelona, IDIBAPS, 08036-Barcelona, Spain
| | - Miguel A Prado
- the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Joao A Paulo
- the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Steven P Gygi
- the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - José I Martín-Subero
- the Departamento de Anatomía Patológica, Farmacología y Microbiología, Universitat de Barcelona, IDIBAPS, 08036-Barcelona, Spain
| | - José M P Freije
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006-Oviedo, Spain, .,the Centro de Investigación Biomédica en Red de Cáncer, Spain
| | - Carlos López-Otín
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006-Oviedo, Spain, .,the Centro de Investigación Biomédica en Red de Cáncer, Spain
| |
Collapse
|
35
|
DeVine T, Sears RC, Dai MS. The ubiquitin-specific protease USP36 is a conserved histone H2B deubiquitinase. Biochem Biophys Res Commun 2017; 495:2363-2368. [PMID: 29274341 DOI: 10.1016/j.bbrc.2017.12.107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 01/16/2023]
Abstract
Histone H2B monoubiquitination plays a critical role in the regulation of gene transcription. Deregulation of H2B monoubiquitination contributes to human pathologies, such as cancer. Here we report that human USP36 is a novel H2Bub1 deubiquitinase. We show that USP36 interacts with H2B and deubiquitinates H2Bub1 in cells and in vitro. Overexpression of USP36 markedly reduced the levels of H2Bub1 in cells. Using the p21 gene as a model, we demonstrate that depletion of USP36 increases H2Bub1 at the p21 locus, primarily within its gene body. Consistently, knockdown of USP36 induced the expression of p21 and inhibits cell proliferation. Together, our results reveal USP36 as a novel H2B deubiquitinase and shed light on its additional functions in regulating gene expression.
Collapse
Affiliation(s)
- Tiffany DeVine
- Department of Molecular and Medical Genetics, School of Medicine, The OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, School of Medicine, The OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, The OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, United States.
| |
Collapse
|
36
|
Zou Y, Qiu G, Jiang L, Cai Z, Sun W, Hu H, Lu C, Jin W, Hu G. Overexpression of ubiquitin specific proteases 44 promotes the malignancy of glioma by stabilizing tumor-promoter securin. Oncotarget 2017; 8:58231-58246. [PMID: 28938551 PMCID: PMC5601647 DOI: 10.18632/oncotarget.16447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 12/20/2022] Open
Abstract
Ubiquitin specific peptidase 44 (USP44) has been identified as an important component of spindle assemble checkpoint (SAC) to prevent the formation of aneuploidy. However, recent study raised a controversy about the effect of USP44 in tumor. Here, we first confirmed the intranuclear localization of USP44 by testing several specific antibodies to recognize endogenous USP44. Then, data from IHC and qRT-PCR assay indicated that the high expression of USP44 existed in high-grade glioma tissues and signified a poor prognosis. Knockdown of USP44 inhibited proliferation, migration and invasion, induced apoptosis, and arrested cell cycle in G2/M phase in the established glioma cell lines. Down-regulation of oncoprotein securin was detected in USP44 deficient cells, and the interaction of endogenous USP44 and securin was confirmed by immunoprecipitation in U251MG cells, which indicated that securin was a substrate of USP44, and might be stabilized by USP44. In vivo, knockdown of USP44 inhibited the tumorigenicity of U87MG cells significantly. Consequently, our findings suggested that overexpression of USP44 could enhance the malignancy of glioma via securin. USP44 might serve as a predictive biomarker, and the USP44-securin pathway might provide a new therapeutic strategy for the treatment of glioma.
Collapse
Affiliation(s)
- Yongxiang Zou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Guanzhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, PR China
| | - Lei Jiang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Zheng Cai
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Wei Sun
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Hongkang Hu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Chengyin Lu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Guohan Hu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| |
Collapse
|
37
|
Abstract
Ubiquitination plays a key and complex role in the regulation of c-Myc stability, transactivation, and oncogenic activity. c-Myc is ubiquitinated by a number of ubiquitin ligases (E3s), such as SCF(Fbw7) and SCF(Skp2). Depending on the E3s, ubiquitination can either positively or negatively regulate c-Myc levels and activity. Meanwhile, c-Myc ubiquitination can be reversed by deubiquitination. An early study showed that USP28 deubiquitinates c-Myc via interacting with Fbw7α whereas a recent study reveals that USP37 deubiquitinates c-Myc independently of Fbw7 and c-Myc phosphorylation. Consequently, both USP28 and USP37 stabilize c-Myc and enhance its activity. We recently found the nucleolar USP36 as a novel c-Myc deubiquitinase that controls the end-point of c-Myc degradation pathway in the nucleolus. Here we briefly review the current understanding of ubiquitination and deubiquitination regulation of c-Myc and further discuss the USP36-c-Myc regulatory pathway.
Collapse
Affiliation(s)
- Xiao-Xin Sun
- a Departments of Molecular & Medical Genetics ; School of Medicine and the OHSU Knight Cancer Institute; Oregon Health & Science University ; Portland , OR USA
| | - Rosalie C Sears
- a Departments of Molecular & Medical Genetics ; School of Medicine and the OHSU Knight Cancer Institute; Oregon Health & Science University ; Portland , OR USA
| | - Mu-Shui Dai
- a Departments of Molecular & Medical Genetics ; School of Medicine and the OHSU Knight Cancer Institute; Oregon Health & Science University ; Portland , OR USA
| |
Collapse
|
38
|
Anta B, Martín-Rodríguez C, Gomis-Perez C, Calvo L, López-Benito S, Calderón-García AA, Vicente-García C, Villarroel Á, Arévalo JC. Ubiquitin-specific Protease 36 (USP36) Controls Neuronal Precursor Cell-expressed Developmentally Down-regulated 4-2 (Nedd4-2) Actions over the Neurotrophin Receptor TrkA and Potassium Voltage-gated Channels 7.2/3 (Kv7.2/3). J Biol Chem 2016; 291:19132-45. [PMID: 27445338 DOI: 10.1074/jbc.m116.722637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 11/06/2022] Open
Abstract
Ubiquitination of the TrkA neurotrophin receptor in response to NGF is critical in the regulation of TrkA activation and functions. TrkA is ubiquitinated, among other E3 ubiquitin ligases, by Nedd4-2. To understand mechanistically how TrkA ubiquitination is regulated, we performed a siRNA screening to identify deubiquitinating enzymes and found that USP36 acts as an important regulator of TrkA activation kinetics and ubiquitination. However, USP36 action on TrkA was indirect because it does not deubiquitinate TrkA. Instead, USP36 binds to Nedd4-2 and regulates the association of TrkA and Nedd4-2. In addition, depletion of USP36 increases TrkA·Nedd4-2 complex formation, whereas USP36 expression disrupts the complex, resulting in an enhancement or impairment of Nedd4-2-dependent TrkA ubiquitination, respectively. Moreover, USP36 depletion leads to enhanced total and surface TrkA expression that results in increased NGF-mediated TrkA activation and signaling that augments PC12 cell differentiation. USP36 actions extend beyond TrkA because the presence of USP36 interferes with Nedd4-2-dependent Kv7.2/3 channel regulation. Our results demonstrate that USP36 binds to and regulates the actions of Nedd4-2 over different substrates affecting their expression and functions.
Collapse
Affiliation(s)
- Begoña Anta
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| | - Carlos Martín-Rodríguez
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| | - Carolina Gomis-Perez
- the Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Universidad del País Vasco, barrio Sarriena s/n, 48940 Leoia, Spain
| | - Laura Calvo
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| | - Saray López-Benito
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| | - Andrés A Calderón-García
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
| | - Cristina Vicente-García
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| | - Álvaro Villarroel
- the Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Universidad del País Vasco, barrio Sarriena s/n, 48940 Leoia, Spain
| | - Juan C Arévalo
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| |
Collapse
|
39
|
Olazabal-Herrero A, García-Santisteban I, Rodríguez JA. Mutations in the ‘Fingers’ subdomain of the deubiquitinase USP1 modulate its function and activity. FEBS J 2016; 283:929-46. [DOI: 10.1111/febs.13648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/16/2015] [Accepted: 01/08/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Anne Olazabal-Herrero
- Department of Genetics, Physical Anthropology and Animal Physiology; University of the Basque Country (UPV/EHU); Leioa Spain
| | - Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology; University of the Basque Country (UPV/EHU); Leioa Spain
| | - Jose Antonio Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology; University of the Basque Country (UPV/EHU); Leioa Spain
| |
Collapse
|
40
|
Reed BJ, Locke MN, Gardner RG. A Conserved Deubiquitinating Enzyme Uses Intrinsically Disordered Regions to Scaffold Multiple Protein Interaction Sites. J Biol Chem 2015; 290:20601-12. [PMID: 26149687 DOI: 10.1074/jbc.m115.650952] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Indexed: 12/24/2022] Open
Abstract
In the canonical view of protein function, it is generally accepted that the three-dimensional structure of a protein determines its function. However, the past decade has seen a dramatic growth in the identification of proteins with extensive intrinsically disordered regions (IDRs), which are conformationally plastic and do not appear to adopt single three-dimensional structures. One current paradigm for IDR function is that disorder enables IDRs to adopt multiple conformations, expanding the ability of a protein to interact with a wide variety of disparate proteins. The capacity for many interactions is an important feature of proteins that occupy the hubs of protein networks, in particular protein-modifying enzymes that usually have a broad spectrum of substrates. One such protein modification is ubiquitination, where ubiquitin is attached to proteins through ubiquitin ligases (E3s) and removed through deubiquitinating enzymes. Numerous proteomic studies have found that thousands of proteins are dynamically regulated by cycles of ubiquitination and deubiquitination. Thus, how these enzymes target their wide array of substrates is of considerable importance for understanding the function of the cell's diverse ubiquitination networks. Here, we characterize a yeast deubiquitinating enzyme, Ubp10, that possesses IDRs flanking its catalytic protease domain. We show that Ubp10 possesses multiple, distinct binding modules within its IDRs that are necessary and sufficient for directing protein interactions important for Ubp10's known roles in gene silencing and ribosome biogenesis. The human homolog of Ubp10, USP36, also has IDRs flanking its catalytic domain, and these IDRs similarly contain binding modules important for protein interactions. This work highlights the significant protein interaction scaffolding abilities of IDRs in the regulation of dynamic protein ubiquitination.
Collapse
Affiliation(s)
- Benjamin J Reed
- From the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Melissa N Locke
- From the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Richard G Gardner
- From the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
41
|
The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc. Proc Natl Acad Sci U S A 2015; 112:3734-9. [PMID: 25775507 DOI: 10.1073/pnas.1411713112] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
c-Myc protein stability and activity are tightly regulated by the ubiquitin-proteasome system. Aberrant stabilization of c-Myc contributes to many human cancers. c-Myc is ubiquitinated by SCF(Fbw7) (a SKP1-cullin-1-F-box complex that contains the F-box and WD repeat domain-containing 7, Fbw7, as the F-box protein) and several other ubiquitin ligases, whereas it is deubiquitinated and stabilized by ubiquitin-specific protease (USP) 28. The bulk of c-Myc degradation appears to occur in the nucleolus. However, whether c-Myc is regulated by deubiquitination in the nucleolus is not known. Here, we report that the nucleolar deubiquitinating enzyme USP36 is a novel c-Myc deubiquitinase. USP36 interacts with and deubiquitinates c-Myc in cells and in vitro, leading to the stabilization of c-Myc. This USP36 regulation of c-Myc occurs in the nucleolus. Interestingly, USP36 interacts with the nucleolar Fbw7γ but not the nucleoplasmic Fbw7α. However, it abolished c-Myc degradation mediated both by Fbw7γ and by Fbw7α. Consistently, knockdown of USP36 reduces the levels of c-Myc and suppresses cell proliferation. We further show that USP36 itself is a c-Myc target gene, suggesting that USP36 and c-Myc form a positive feedback regulatory loop. High expression levels of USP36 are found in a subset of human breast and lung cancers. Altogether, these results identified USP36 as a crucial and bono fide deubiquitinating enzyme controlling c-Myc's nucleolar degradation pathway.
Collapse
|
42
|
Anckar J, Bonni A. Regulation of neuronal morphogenesis and positioning by ubiquitin-specific proteases in the cerebellum. PLoS One 2015; 10:e0117076. [PMID: 25607801 PMCID: PMC4301861 DOI: 10.1371/journal.pone.0117076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/19/2014] [Indexed: 11/19/2022] Open
Abstract
Ubiquitin signaling mechanisms play fundamental roles in the cell-intrinsic control of neuronal morphogenesis and connectivity in the brain. However, whereas specific ubiquitin ligases have been implicated in key steps of neural circuit assembly, the roles of ubiquitin-specific proteases (USPs) in the establishment of neuronal connectivity have remained unexplored. Here, we report a comprehensive analysis of USP family members in granule neuron morphogenesis and positioning in the rodent cerebellum. We identify a set of 32 USPs that are expressed in granule neurons. We also characterize the subcellular localization of the 32 USPs in granule neurons using a library of expression plasmids encoding GFP-USPs. In RNAi screens of the 32 neuronally expressed USPs, we uncover novel functions for USP1, USP4, and USP20 in the morphogenesis of granule neuron dendrites and axons and we identify a requirement for USP30 and USP33 in granule neuron migration in the rodent cerebellar cortex in vivo. These studies reveal that specific USPs with distinct spatial localizations harbor key functions in the control of neuronal morphogenesis and positioning in the mammalian cerebellum, with important implications for our understanding of the cell-intrinsic mechanisms that govern neural circuit assembly in the brain.
Collapse
Affiliation(s)
- Julius Anckar
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Azad Bonni
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
43
|
Physical and functional interaction of the TPL2 kinase with nucleophosmin. Oncogene 2014; 34:2516-26. [PMID: 24998852 DOI: 10.1038/onc.2014.183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 05/01/2014] [Accepted: 05/21/2014] [Indexed: 12/18/2022]
Abstract
Tumor Progression Locus 2 (TPL2) is widely recognized as a cytoplasmic mitogen-activated protein 3 kinase with a prominent role in the regulation of inflammatory and oncogenic signal transduction. Herein we report that TPL2 may also operate in the nucleus as a physical and functional partner of nucleophosmin (NPM/B23), a major nucleolar phosphoprotein with diverse cellular activities linked to malignancy. We demonstrate that TPL2 mediates the phosphorylation of a fraction of NPM at threonine 199, an event required for its proteasomal degradation and maintenance of steady-state NPM levels. Upon exposure to ultraviolet C, Tpl2 is required for the translocation of de-phosphorylated NPM from the nucleolus to the nucleoplasm. NPM is an endogenous inhibitor of HDM2:p53 interaction and knockdown of TPL2 was found to result in reduced binding of NPM to HDM2, with concomitant defects in p53 accumulation following genotoxic or ribosomal stress. These findings expand our understanding of the function of TPL2 as a negative regulator of carcinogenesis by defining a nuclear role for this kinase in the topological sequestration of NPM, linking p53 signaling to the generation of threonine 199-phosphorylated NPM.
Collapse
|
44
|
Peltonen K, Colis L, Liu H, Trivedi R, Moubarek MS, Moore HM, Bai B, Rudek MA, Bieberich CJ, Laiho M. A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. Cancer Cell 2014; 25:77-90. [PMID: 24434211 PMCID: PMC3930145 DOI: 10.1016/j.ccr.2013.12.009] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/03/2013] [Accepted: 12/16/2013] [Indexed: 01/07/2023]
Abstract
We define the activity and mechanisms of action of a small molecule lead compound for cancer targeting. We show that the compound, BMH-21, has wide and potent antitumorigenic activity across NCI60 cancer cell lines and represses tumor growth in vivo. BMH-21 binds GC-rich sequences, which are present at a high frequency in ribosomal DNA genes, and potently and rapidly represses RNA polymerase I (Pol I) transcription. Strikingly, we find that BMH-21 causes proteasome-dependent destruction of RPA194, the large catalytic subunit protein of Pol I holocomplex, and this correlates with cancer cell killing. Our results show that Pol I activity is under proteasome-mediated control, which reveals an unexpected therapeutic opportunity.
Collapse
Affiliation(s)
- Karita Peltonen
- Molecular Cancer Biology Program and Centre for Drug Research, University of Helsinki, Helsinki 00014, Finland
| | - Laureen Colis
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Hester Liu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rishi Trivedi
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michael S Moubarek
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Henna M Moore
- Molecular Cancer Biology Program and Centre for Drug Research, University of Helsinki, Helsinki 00014, Finland
| | - Baoyan Bai
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michelle A Rudek
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Charles J Bieberich
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Marikki Laiho
- Molecular Cancer Biology Program and Centre for Drug Research, University of Helsinki, Helsinki 00014, Finland; Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
45
|
Leal MF, Mazzotti TKF, Calcagno DQ, Cirilo PDR, Martinez MC, Demachki S, Assumpção PP, Chammas R, Burbano RR, Smith MC. Deregulated expression of Nucleophosmin 1 in gastric cancer and its clinicopathological implications. BMC Gastroenterol 2014; 14:9. [PMID: 24410879 PMCID: PMC3893589 DOI: 10.1186/1471-230x-14-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
Background The process of gastric carcinogenesis still remains to be elucidated. The identification of genes related to this process may help to reduce mortality rates through early diagnosis and the development of new anticancer therapies. Nucleophosmin 1 (NPM1) acts in ribosome biogenesis, centrosome duplication, maintenance of genomic stability, and embryonic development. Recently, NPM1 has been implicated in the tumorigenesis processes. Here, we evaluated NPM1 gene and protein expression in gastric tumors and in corresponding non-neoplastic gastric samples. Methods NPM1 protein expression was determined by Western blot in 17 pairs of gastric tumors and corresponding non-neoplastic gastric tissue. The protein immunoreactivity was observed in 12 tumor samples. mRNA expression was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in 22 pairs of gastric tumors and in matched non-neoplastic gastric tissue. Results NPM1 protein expression was significantly reduced in gastric cancer samples compared to matched non-neoplastic gastric samples (P = 0.019). The protein level of NPM1 was reduced at least 1.5-fold in 35% of tumors compared to paired non-neoplastic gastric tissue. However, NPM1 immunoreactivity was detected in neoplastic and non-neoplastic cells, including in intestinal metaplastic, gastritis and inflammatory cells. NPM1 was mainly expressed in nucleus and nucleolus subcellular compartments. The staining intensity and the percentage of immunoreactive cells varied among the studied cases. The NPM1 mRNA level was reduced at least 1.5-fold in 45.5% of samples and increased in 27.3% of samples. An inverse correlation between protein and mRNA expression was detected (r = -0.509, P = 0.037). Intestinal-type gastric cancer presented higher mRNA levels than diffuse-type (P = 0.026). However, reduced NPM1 protein expression was associated with intestinal-type gastric cancer compared to matched non-neoplastic gastric samples (P = 0.018). In addition, tumors from patients with known distant metastasis presented reduced NPM1 protein levels compared to tumors from patients without distant metastasis (P < 0.001). Conclusion Although the expression of NPM1 is heterogeneous in gastric tumors, our results suggest that NPM1 down-regulation may have a role in gastric carcinogenesis and may help in the selection of anticancer treatment strategies.
Collapse
Affiliation(s)
- Mariana Ferreira Leal
- Genetics Division, Department of Morphology and Genetic, Federal University of São Paulo, R, Botucatu, 740, São Paulo, SP CEP 04023-900, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jung H, Kim BG, Han WH, Lee JH, Cho JY, Park WS, Maurice MM, Han JK, Lee MJ, Finley D, Jho EH. Deubiquitination of Dishevelled by Usp14 is required for Wnt signaling. Oncogenesis 2013; 2:e64. [PMID: 23958854 PMCID: PMC3759127 DOI: 10.1038/oncsis.2013.28] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 07/13/2013] [Indexed: 12/14/2022] Open
Abstract
Dishevelled (Dvl) is a key regulator of Wnt signaling both in the canonical and non-canonical pathways. Here we report the identification of a regulatory domain of ubiquitination (RDU) in the C-terminus of Dvl. Mutations in the RDU resulted in accumulation of polyubiquitinated forms of Dvl, which were mainly K63 linked. Small interfering RNA-based screening identified Usp14 as a mediator of Dvl deubiquitination. Genetic and chemical suppression of Usp14 activity caused an increase in Dvl polyubiquitination and significantly impaired downstream Wnt signaling. These data suggest that Usp14 functions as a positive regulator of the Wnt signaling pathway. Consistently, tissue microarray analysis of colon cancer revealed a strong correlation between the levels of Usp14 and β-catenin, which suggests an oncogenic role for Usp14 via enhancement of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- H Jung
- Department of Life Science, The University of Seoul, Seoul, Korea
| | - B-G Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Advanced institute of Convergence Technology, Suwon-si, Korea
| | - W H Han
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - J H Lee
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yongin-si, Korea
| | - J-Y Cho
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - W S Park
- Department of Pathology, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - M M Maurice
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J-K Han
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - M J Lee
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yongin-si, Korea
| | - D Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - E-h Jho
- Department of Life Science, The University of Seoul, Seoul, Korea
| |
Collapse
|
47
|
Zhou F, Qiu W, Sun L, Xiang J, Sun X, Sui A, Ding A, Yue L. Clinical significance of nucleophosmin/B23 and human epidermal growth factor receptor 2/neu expressions in gastric cancers. APMIS 2013; 121:582-91. [PMID: 23489260 DOI: 10.1111/apm.12043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/09/2012] [Indexed: 12/19/2022]
Abstract
The aim of the study was to investigate the expression levels of 'NPM'/nucleophosmin/B23 and human epidermal growth factor receptor 2 (Her-2)/neu in gastric cancer (GC) and corresponding non-malignant tissues, correlation with their clinicopathological parameters and the relationship of nucleophosmin/B23 and Her-2/neu in the occurrence and development of GC. A total of 131 postoperative patients were examined for nucleophosmin/B23 expression by immuno-histochemistry and for Her-2/neu expression by fluorescence in situ hybridization with the median follow-up period of 38 months. The positive expression rates of nucleophosmin (NPM) in neoplastic tissues and adjacent gastric mucosa were 65.6% and 52.7%, respectively. Nucleophosmin/B23 levels were linked to more advanced tumor stages, poor prognosis, and likelihood of recurrence (p < 0.05). The Cox multivariate analysis indicated that the nucleophosmin/B23 expression was an independent indicator for tumor recurrence (p = 0.011). Of the total GC specimens 12.21% were positive for Her-2/neu, but whose expression was of no correlation with patients' survival. Patients who were positive for Her-2/neu also had high NPM expression levels (p = 0.0303). The results suggest that nucleophosmin/B23 is a favorable prognostic indicator for GC. But Her-2/neu has no relationship with the prognosis of GC. The combined clinical significance of nucleophosmin/B23 and Her-2/neu remains to be further investigated.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Oncology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong Province, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Proteasome activity influences UV-mediated subnuclear localization changes of NPM. PLoS One 2013; 8:e59096. [PMID: 23554979 PMCID: PMC3595268 DOI: 10.1371/journal.pone.0059096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/12/2013] [Indexed: 01/08/2023] Open
Abstract
UV damage activates cellular stress signaling pathways, causes DNA helix distortions and inhibits transcription by RNA polymerases I and II. In particular, the nucleolus, which is the site of RNA polymerase I transcription and ribosome biogenesis, disintegrates following UV damage. The disintegration is characterized by reorganization of the subnucleolar structures and change of localization of many nucleolar proteins. Here we have queried the basis of localization change of nucleophosmin (NPM), a nucleolar granular component protein, which is increasingly detected in the nucleoplasm following UV radiation. Using photobleaching experiments of NPM-fluorescent fusion protein in live human cells we show that NPM mobility increases after UV damage. However, we show that the increase in NPM nucleoplasmic abundance after UV is independent of UV-activated cellular stress and DNA damage signaling pathways. Unexpectedly, we find that proteasome activity affects NPM redistribution. NPM nucleolar expression was maintained when the UV-treated cells were exposed to proteasome inhibitors or when the expression of proteasome subunits was inhibited using RNAi. However, there was no evidence of increased NPM turnover in the UV damaged cells, or that ubiquitin or ubiquitin recycling affected NPM localization. These findings suggest that proteasome activity couples to nucleolar protein localizations in UV damage stress.
Collapse
|
49
|
Richardson LA, Reed BJ, Charette JM, Freed EF, Fredrickson EK, Locke MN, Baserga SJ, Gardner RG. A conserved deubiquitinating enzyme controls cell growth by regulating RNA polymerase I stability. Cell Rep 2012; 2:372-85. [PMID: 22902402 DOI: 10.1016/j.celrep.2012.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/11/2012] [Accepted: 07/25/2012] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic ribosome biogenesis requires hundreds of trans-acting factors and dozens of RNAs. Although most factors required for ribosome biogenesis have been identified, little is known about their regulation. Here, we reveal that the yeast deubiquitinating enzyme Ubp10 is localized to the nucleolus and that ubp10Δ cells have reduced pre-rRNAs, mature rRNAs, and translating ribosomes. Through proteomic analyses, we found that Ubp10 interacts with proteins that function in rRNA production and ribosome biogenesis. In particular, we discovered that the largest subunit of RNA polymerase I (RNAPI) is stabilized via Ubp10-mediated deubiquitination and that this is required in order to achieve optimal levels of ribosomes and cell growth. USP36, the human ortholog of Ubp10, complements the ubp10Δ allele for RNAPI stability, pre-rRNA processing, and cell growth in yeast, suggesting that deubiquitination of RNAPI may be conserved in eukaryotes. Our work implicates Ubp10/USP36 as a key regulator of rRNA production through control of RNAPI stability.
Collapse
|
50
|
Taillebourg E, Gregoire I, Viargues P, Jacomin AC, Thevenon D, Faure M, Fauvarque MO. The deubiquitinating enzyme USP36 controls selective autophagy activation by ubiquitinated proteins. Autophagy 2012; 8:767-79. [PMID: 22622177 DOI: 10.4161/auto.19381] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Initially described as a nonspecific degradation process induced upon starvation, autophagy is now known also to be involved in the degradation of specific ubiquitinated substrates such as mitochondria, bacteria and aggregated proteins, ensuring crucial functions in cell physiology and immunity. We report here that the deubiquitinating enzyme USP36 controls selective autophagy activation in Drosophila and in human cells. We show that dUsp36 loss of function autonomously inhibits cell growth while activating autophagy. Despite the phenotypic similarity, dUSP36 is not part of the TOR signaling pathway. Autophagy induced by dUsp36 loss of function depends on p62/SQSTM1, an adaptor for delivering cargo marked by polyubiquitin to autophagosomes. Consistent with p62 requirement, dUsp36 mutant cells display nuclear aggregates of ubiquitinated proteins, including Histone H2B, and cytoplasmic ubiquitinated proteins; the latter are eliminated by autophagy. Importantly, USP36 function in p62-dependent selective autophagy is conserved in human cells. Our work identifies a novel, crucial role for a deubiquitinating enzyme in selective autophagy.
Collapse
Affiliation(s)
- Emmanuel Taillebourg
- CEA/Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biologie à Grande Echelle, Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|