451
|
Abstract
Faecal samples were obtained from 433 wild birds being treated in wildlife recovery centres in Galicia (Northwest Spain), between February 2007 and September 2009. The birds belonged to 64 species representing 17 different orders. Giardia cysts and Cryptosporidium oocysts were detected by an immunofluorescence antibody test and identified at the molecular level by established PCR-sequencing methods. The overall prevalence of Giardia was 2·1% and that of Cryptosporidium, 8·3%. To our knowledge, this is the first description of Giardia sp. in Tyto alba and Caprimulgus europaeus; and of Cryptosporidium sp. in Apus apus, Athene noctua, C. europaeus, Falco tinnunculus, Morus bassanus, Parabuteo unicinctus and Strix aluco. Furthermore, the first PCR-sequence confirmed detection of Giardia duodenalis assemblage B in, Buteo buteo, Coturnix coturnix and Pica pica; G. duodenalis assemblage D in Garrulus glandarius; and G. duodenalis assemblage F in Anas platyrhynchos; Cryptosporidium parvum in Accipiter nisus, B. buteo, Milvus migrans, Pernis apivorus and P. pica; and Cryptosporidium meleagridis in Streptopelia turtur. The study findings demonstrate the wide spread of Giardia and Cryptosporidium between wild birds.
Collapse
|
452
|
Wells B, Shaw H, Hotchkiss E, Gilray J, Ayton R, Green J, Katzer F, Wells A, Innes E. Prevalence, species identification and genotyping Cryptosporidium from livestock and deer in a catchment in the Cairngorms with a history of a contaminated public water supply. Parasit Vectors 2015; 8:66. [PMID: 25650114 PMCID: PMC4324427 DOI: 10.1186/s13071-015-0684-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/21/2015] [Indexed: 11/10/2022] Open
Abstract
Background The apicomplexan parasite Cryptosporidium represents a threat to water quality and public health. An important zoonotic species involved in human cryptosporidiosis from contaminated water is Cryptosporidium parvum (C. parvum), the main reservoirs of which are known to be farm livestock particularly neonatal calves, although adult cattle, sheep, lambs and wildlife are also known to contribute to catchment loading of C. parvum. This study aimed to establish Cryptosporidium prevalence, species and genotype in livestock, deer and water in a catchment with a history of Cryptosporidium contamination in the public water supply. Methods A novel method of processing adult ruminant faecal sample was used to concentrate oocysts, followed by a nested species specific multiplex (nssm) PCR, targeting the 18S rRNA gene, to speciate Cryptosporidium. A multilocus fragment typing (MLFT) tool was used, in addition to GP60 sequencing, to genotype C. parvum positive samples. Results A very high prevalence of Cryptosporidium was detected, with speciation identifying a predominance of C. parvum in livestock, deer and water samples. Four GP60 subtypes were detected within C. parvum with the majority IIaA15G2R1 which was detected in all host species and on all farms. Multilocus fragment typing further differentiated these into 6 highly related multilocus genotypes. Conclusion The high prevalence of Cryptosporidium detected was possibly due to a combination of the newly developed sample processing technique used and a reflection of the high rates of the parasite present in this catchment. The predominance of C. parvum in livestock and deer sampled in this study suggested that they represented a significant risk to water quality and public health. Genotyping results suggested that the parasite is being transmitted locally within the study area, possibly via free-roaming sheep and deer. Further studies are needed to verify particular host associations with subtypes/MLGs. Land and livestock management solutions to reduce Cryptosporidium on farm and in the catchment are planned with the aim to improve animal health and production as well as water quality and public health.
Collapse
Affiliation(s)
- Beth Wells
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, EH26 0PZ, UK.
| | - Hannah Shaw
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, EH26 0PZ, UK.
| | - Emily Hotchkiss
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, EH26 0PZ, UK.
| | - Janice Gilray
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, EH26 0PZ, UK.
| | - Remedios Ayton
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, EH26 0PZ, UK.
| | - James Green
- Scottish Water, Juniper House, Heriot Watt Research Centre, Edinburgh, EH14 4AP, UK.
| | - Frank Katzer
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, EH26 0PZ, UK.
| | - Andrew Wells
- The Crown Estate, 6 Bells Brae, Edinburgh, EH4 3BJ, UK.
| | - Elisabeth Innes
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, EH26 0PZ, UK.
| |
Collapse
|
453
|
Ryan U, Paparini A, Tong K, Yang R, Gibson-Kueh S, O'Hara A, Lymbery A, Xiao L. Cryptosporidium huwi n. sp. (Apicomplexa: Eimeriidae) from the guppy (Poecilia reticulata). Exp Parasitol 2015; 150:31-5. [PMID: 25637783 DOI: 10.1016/j.exppara.2015.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/08/2014] [Accepted: 01/22/2015] [Indexed: 11/29/2022]
Abstract
The morphological, biological, and molecular characteristics of Cryptosporidium piscine genotype 1 from the guppy (Poecilia reticulata) are described, and the species name Cryptosporidium huwi n. sp. is proposed to reflect its genetic and biological differences from gastric and intestinal Cryptosporidium species. Oocysts of C.huwi n. sp. over-lap in size with Cryptosporidium molnari, measuring approximately 4.4-4.9 µm (mean 4.6) by 4.0-4.8 µm (mean 4.4 µm) with a length to width ratio of 1.04 (0.92-1.35) (n = 50). Similar to C.molnari, C.huwi n. sp. was identified in the stomach only and clusters of oogonial and sporogonial stages were identified deep within the epithelium. However, phylogenetic analysis of 18S rRNA sequences indicated that C. huwi n. sp. exhibited 8.5-9.2% and 3.5% genetic distance from C.molnari isolates and piscine genotype 7 respectively. At the actin locus, the genetic distance between C.huwi n. sp. and C.molnari was 16.6%. The genetic distance between C.huwi n. sp. and other Cryptosporidium species at the 18S locus was 13.2%-17% and at the actin locus was 18.9%-26.3%. Therefore C. huwi n. sp. is genetically distinct from previously described Cryptosporidium species.
Collapse
Affiliation(s)
- Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Perth, Western Australia 6150, Australia.
| | - Andrea Paparini
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Perth, Western Australia 6150, Australia
| | - Kaising Tong
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Perth, Western Australia 6150, Australia
| | - Rongchang Yang
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Perth, Western Australia 6150, Australia
| | - Susan Gibson-Kueh
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Perth, Western Australia 6150, Australia
| | - Amanda O'Hara
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Perth, Western Australia 6150, Australia
| | - Alan Lymbery
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Perth, Western Australia 6150, Australia
| | - Lihua Xiao
- Public Health Services, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
454
|
Isolation and enrichment of Cryptosporidium DNA and verification of DNA purity for whole-genome sequencing. J Clin Microbiol 2014; 53:641-7. [PMID: 25520441 DOI: 10.1128/jcm.02962-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole-genome sequencing of Cryptosporidium spp. is hampered by difficulties in obtaining sufficient, highly pure genomic DNA from clinical specimens. In this study, we developed procedures for the isolation and enrichment of Cryptosporidium genomic DNA from fecal specimens and verification of DNA purity for whole-genome sequencing. The isolation and enrichment of genomic DNA were achieved by a combination of three oocyst purification steps and whole-genome amplification (WGA) of DNA from purified oocysts. Quantitative PCR (qPCR) analysis of WGA products was used as an initial quality assessment of amplified genomic DNA. The purity of WGA products was assessed by Sanger sequencing of cloned products. Next-generation sequencing tools were used in final evaluations of genome coverage and of the extent of contamination. Altogether, 24 fecal specimens of Cryptosporidium parvum, C. hominis, C. andersoni, C. ubiquitum, C. tyzzeri, and Cryptosporidium chipmunk genotype I were processed with the procedures. As expected, WGA products with low (<16.0) threshold cycle (CT) values yielded mostly Cryptosporidium sequences in Sanger sequencing. The cloning-sequencing analysis, however, showed significant contamination in 5 WGA products (proportion of positive colonies derived from Cryptosporidium genomic DNA, ≤25%). Following this strategy, 20 WGA products from six Cryptosporidium species or genotypes with low (mostly <14.0) CT values were submitted to whole-genome sequencing, generating sequence data covering 94.5% to 99.7% of Cryptosporidium genomes, with mostly minor contamination from bacterial, fungal, and host DNA. These results suggest that the described strategy can be used effectively for the isolation and enrichment of Cryptosporidium DNA from fecal specimens for whole-genome sequencing.
Collapse
|
455
|
Hu Y, Feng Y, Huang C, Xiao L. Occurrence, source, and human infection potential of Cryptosporidium and Enterocytozoon bieneusi in drinking source water in Shanghai, China, during a pig carcass disposal incident. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:14219-14227. [PMID: 25383482 PMCID: PMC5788171 DOI: 10.1021/es504464t] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In March 2013, thousands of domestic pig carcasses were found floating in the Huangpu River, a drinking source water in Shanghai, China. To investigate the impact of the pig carcass incident on microbial water quality, 178 river water samples were collected from the upper Huangpu River from March 2013 to March 2014. Samples were concentrated by calcium carbonate flocculation and examined for host-adapted Cryptosporidium and Enterocytozoon bieneusi by ploymerase chain reaction (PCR). Positive PCR products were sequenced to determine Cryptosporidium species and E. bieneusi genotypes. A total of 67 (37.6%) and 56 (31.5%) samples were PCR-positive for Cryptosporidium and E. bieneusi, respectively. The occurrence rates of Cryptosporidium and E. bieneusi in March 2013 (83.3%; 41.7%) and May 2013 (73.5%; 44.1%) were significantly higher than rates in later sampling times. Among the 13 Cryptosporidium species/genotypes identified, C. andersoni and C. suis were the most common species, being found in 38 and 27 samples, respectively. Seventeen E. bieneusi genotypes were found, belonging to 11 established genotypes (EbpC, EbpA, D, CS-8, PtEb IX, Peru 8, Peru 11, PigEBITS4, EbpB, G, O) and six new ones (RWSH1 to RWSH6), most of which belonged to pig-adapted Groups 1d and 1e. EbpC was the most common genotype, being found in 37 samples. The distribution of Cryptosporidium species and E. bieneusi genotypes suggest that dead pigs contributed significantly to Cryptosporidium and E. bieneusi contamination in the Huangpu River. Although most Cryptosporidium species found in river water were not major human pathogens, the majority of E. bieneusi genotypes detected were endemic in China. Data from this study should be useful in the development of strategies in addressing future contamination events in drinking water supplies.
Collapse
Affiliation(s)
- Yue Hu
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengchen Huang
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| |
Collapse
|
456
|
Cui Z, Wang R, Huang J, Wang H, Zhao J, Luo N, Li J, Zhang Z, Zhang L. Cryptosporidiosis caused by Cryptosporidium parvum subtype IIdA15G1 at a dairy farm in Northwestern China. Parasit Vectors 2014; 7:529. [PMID: 25430474 PMCID: PMC4254006 DOI: 10.1186/s13071-014-0529-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 11/25/2022] Open
Abstract
Background Cryptosporidium spp. are zoonotic parasites responsible for diarrhoeal diseases in animals and humans worldwide. Cattle are the most common mammalian species in which Cryptosporidium is detected, with pre-weaned calves considered to be reservoirs for zoonotic C. parvum. In October 2013, severe diarrhoea was observed in 396 pre-weaned calves at a farm in the Ningxia Autonomous Region of Northwestern China. 356 of the infected calves died despite antibiotic therapy. Findings 252 faecal samples were collected from the investigated farm. The identity of Cryptosporidium species was determined by polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP) analysis, and by DNA sequence analysis of the small subunit (SSU) rRNA gene. C. parvum was subtyped using sequence analysis of the 60 kDa glycoprotein (gp60) gene. The highest infection rate of 83.3% (40/48) was seen in 2–3-week-old calves with diarrhoea, corresponding to the age at which animals died. Three Cryptosporidium species were identified, including C. parvum (n = 51), C. bovis (n = 1), and C. ryanae (n = 1). All C. parvum isolates were further identified as subtype IIdA15G1. Conclusions Cryptosporidium parvum was likely to be most responsible for diarrhoea and death. This is the first report of a cryptosporidiosis outbreak caused by C. parvum IIdA15G1 in Chinese dairy cattle.
Collapse
Affiliation(s)
- Zhaohui Cui
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China.
| | - Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China.
| | - Jianying Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China.
| | - Haiyan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China.
| | - Jinfeng Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China.
| | - Nannan Luo
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China.
| | - Junqiang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China.
| | - Zhenjie Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China.
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China.
| |
Collapse
|
457
|
Giardia duodenalis and Cryptosporidium occurrence in Australian sea lions (Neophoca cinerea) exposed to varied levels of human interaction. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2014; 3:269-75. [PMID: 25426423 PMCID: PMC4241535 DOI: 10.1016/j.ijppaw.2014.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 11/21/2022]
Abstract
Giardia and Cryptosporidium are amongst the most common protozoan parasites identified as causing enteric disease in pinnipeds. A number of Giardia assemblages and Cryptosporidium species and genotypes are common in humans and terrestrial mammals and have also been identified in marine mammals. To investigate the occurrence of these parasites in an endangered marine mammal, the Australian sea lion (Neophoca cinerea), genomic DNA was extracted from faecal samples collected from wild populations (n = 271) in Southern and Western Australia and three Australian captive populations (n = 19). These were screened using PCR targeting the 18S rRNA of Giardia and Cryptosporidium. Giardia duodenalis was detected in 28 wild sea lions and in seven captive individuals. Successful sequencing of the 18S rRNA gene assigned 27 Giardia isolates to assemblage B and one to assemblage A, both assemblages commonly found in humans. Subsequent screening at the gdh and β-giardin loci resulted in amplification of only one of the 35 18S rRNA positive samples at the β-giardin locus. Sequencing at the β-giardin locus assigned the assemblage B 18S rRNA confirmed isolate to assemblage AI. The geographic distribution of sea lion populations sampled in relation to human settlements indicated that Giardia presence in sea lions was highest in populations less than 25 km from humans. Cryptosporidium was not detected by PCR screening in either wild colonies or captive sea lion populations. These data suggest that the presence of G. duodenalis in the endangered Australian sea lion is likely the result of dispersal from human sources. Multilocus molecular analyses are essential for the determination of G. duodenalis assemblages and subsequent inferences on transmission routes to endangered marine mammal populations.
Collapse
|