451
|
Allione A, Pardini B, Viberti C, Oderda M, Allasia M, Gontero P, Vineis P, Sacerdote C, Matullo G. The prognostic value of basal DNA damage level in peripheral blood lymphocytes of patients affected by bladder cancer. Urol Oncol 2018; 36:241.e15-241.e23. [DOI: 10.1016/j.urolonc.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
|
452
|
Walker C, El-Khamisy SF. Perturbed autophagy and DNA repair converge to promote neurodegeneration in amyotrophic lateral sclerosis and dementia. Brain 2018; 141:1247-1262. [PMID: 29584802 PMCID: PMC5917746 DOI: 10.1093/brain/awy076] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/16/2018] [Accepted: 02/09/2018] [Indexed: 12/13/2022] Open
Abstract
Maintaining genomic stability constitutes a major challenge facing cells. DNA breaks can arise from direct oxidative damage to the DNA backbone, the inappropriate activities of endogenous enzymes such as DNA topoisomerases, or due to transcriptionally-derived RNA/DNA hybrids (R-loops). The progressive accumulation of DNA breaks has been linked to several neurological disorders. Recently, however, several independent studies have implicated nuclear and mitochondrial genomic instability, perturbed co-transcriptional processing, and impaired cellular clearance pathways as causal and intertwined mechanisms underpinning neurodegeneration. Here, we discuss this emerging paradigm in the context of amyotrophic lateral sclerosis and frontotemporal dementia, and outline how this knowledge paves the way to novel therapeutic interventions.
Collapse
Affiliation(s)
- Callum Walker
- Krebs Institute, Department of Molecular biology and biotechnology, University of Sheffield, UK
- The Institute of Cancer Research, London, UK
| | - Sherif F El-Khamisy
- Krebs Institute, Department of Molecular biology and biotechnology, University of Sheffield, UK
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
453
|
Zhang N, Lu Y, Liu X, Yu D, Lv Z, Yang M. Functional Evaluation of ZNF350 Missense Genetic Variants Associated with Breast Cancer Susceptibility. DNA Cell Biol 2018; 37:543-550. [PMID: 29653063 DOI: 10.1089/dna.2018.4160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
ZNF350, a BRCA1-interacting protein, could mediate BRCA1-induced sequence-specific transcriptional repression of several genes, including GADD45α. As a potential breast cancer susceptibility gene, single nucleotide polymorphisms (SNPs), especially missense SNPs, may influence the transcriptional repression of its target tumor suppressor genes and individuals' breast cancer risk. Using the gene-based haplotype-tagging SNPs strategy, we evaluated the association between six ZNF350 polymorphisms and breast cancer risk in a case-control set from a northern Chinese population. The impact of ZNF350 variations on transcriptional repression of GADD45α was also examined. It was found that ZNF350 rs2278420 (L66P) and rs2278415 (S501R) missense genetic variants are in complete linkage disequilibrium and have a significant impact on inter-individual susceptibility to breast cancer. Additionally, ZNF350 GGCGT or GGCGC haplotype is also associated with a significantly increased breast cancer risk compared with the GGCAC haplotype. ZNF350 L66P variant modifies the risk of breast cancer not only by itself but also in a gene-environment interaction manner with age, age at menarche, menopause status, or estrogen receptor status. Interestingly, we observed that ZNF350 L66P and S501R SNPs could weaken the capability of ZNF350-mediated GADD45α transcription repression and it may be an underlying mechanism of the observed epidemiological associations. Our results highlight ZNF350 as an important gene in human mammary oncogenesis and ZNF350 missense genetic polymorphisms confer susceptibility to breast cancer.
Collapse
Affiliation(s)
- Nasha Zhang
- 1 Cheeloo College of Medicine, Shandong University , Jinan, China .,2 Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University , Shandong Academy of Medical Sciences, Jinan, China
| | - Youhua Lu
- 2 Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University , Shandong Academy of Medical Sciences, Jinan, China
| | - Xijun Liu
- 2 Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University , Shandong Academy of Medical Sciences, Jinan, China
| | - Dianke Yu
- 3 School of Public Health, Qingdao University , Qingdao, China
| | - Zheng Lv
- 4 Cancer Center, The First Affiliated Hospital of Jilin University , Changchun, China
| | - Ming Yang
- 2 Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University , Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
454
|
Alessio N, Squillaro T, Özcan S, Di Bernardo G, Venditti M, Melone M, Peluso G, Galderisi U. Stress and stem cells: adult Muse cells tolerate extensive genotoxic stimuli better than mesenchymal stromal cells. Oncotarget 2018; 9:19328-19341. [PMID: 29721206 PMCID: PMC5922400 DOI: 10.18632/oncotarget.25039] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/17/2018] [Indexed: 01/28/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are not a homogenous population but comprehend several cell types, such as stem cells, progenitor cells, fibroblasts, and other types of cells. Among these is a population of pluripotent stem cells, which represent around 1-3% of MSCs. These cells, named multilineage-differentiating stress enduring (Muse) cells, are stress-tolerant cells. Stem cells may undergo several rounds of intrinsic and extrinsic stresses due to their long life and must have a robust and effective DNA damage checkpoint and DNA repair mechanism, which, following a genotoxic episode, promote the complete recovery of cells rather than triggering senescence and/or apoptosis. We evaluated how Muse cells can cope with DNA damaging stress in comparison with MSCs. We found that Muse cells were resistant to chemical and physical genotoxic stresses better than non-Muse cells. Indeed, the level of senescence and apoptosis was lower in Muse cells. Our results proved that the DNA damage repair system (DDR) was properly activated following injury in Muse cells. While in non-Muse cells some anomalies may have occurred because, in some cases, the activation of the DDR persisted by 48 hr post damage, in others no activation took place. In Muse cells, the non-homologous end joining (NHEJ) enzymatic activity increases compared to other cells, while single-strand repair activity (NER, BER) does not. In conclusion, the high ability of Muse cells to cope with genotoxic stress is related to their quick and efficient sensing of DNA damage and activation of DNA repair systems.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Campania University “Luigi Vanvitelli,” Naples, Italy
| | - Tiziana Squillaro
- Department of Experimental Medicine, Campania University “Luigi Vanvitelli,” Naples, Italy
| | - Servet Özcan
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Campania University “Luigi Vanvitelli,” Naples, Italy
| | - Massimo Venditti
- Department of Experimental Medicine, Campania University “Luigi Vanvitelli,” Naples, Italy
| | - Mariarosa Melone
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA, USA
- 2nd Division of Neurology, Center for Rare Diseases & InterUniversity Center for Research in Neurosciences, Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | | | - Umberto Galderisi
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Experimental Medicine, Campania University “Luigi Vanvitelli,” Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
455
|
Torrecilla I, Oehler J, Ramadan K. The role of ubiquitin-dependent segregase p97 (VCP or Cdc48) in chromatin dynamics after DNA double strand breaks. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0282. [PMID: 28847819 PMCID: PMC5577460 DOI: 10.1098/rstb.2016.0282] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2017] [Indexed: 12/27/2022] Open
Abstract
DNA double strand breaks (DSBs) are the most cytotoxic DNA lesions and, if not repaired, lead to chromosomal rearrangement, genomic instability and cell death. Cells have evolved a complex network of DNA repair and signalling molecules which promptly detect and repair DSBs, commonly known as the DNA damage response (DDR). The DDR is orchestrated by various post-translational modifications such as phosphorylation, methylation, ubiquitination or SUMOylation. As DSBs are located in complex chromatin structures, the repair of DSBs is engineered at two levels: (i) at sites of broken DNA and (ii) at chromatin structures that surround DNA lesions. Thus, DNA repair and chromatin remodelling machineries must work together to efficiently repair DSBs. Here, we summarize the current knowledge of the ubiquitin-dependent molecular unfoldase/segregase p97 (VCP in vertebrates and Cdc48 in worms and lower eukaryotes) in DSB repair. We identify p97 as an essential factor that regulates DSB repair. p97-dependent extraction of ubiquitinated substrates mediates spatio-temporal protein turnover at and around the sites of DSBs, thus orchestrating chromatin remodelling and DSB repair. As p97 is a druggable target, p97 inhibition in the context of DDR has great potential for cancer therapy, as shown for other DDR components such as PARP, ATR and CHK1.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Ignacio Torrecilla
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Judith Oehler
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Kristijan Ramadan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
456
|
Chen Y, Li Z, Xu Z, Tang H, Guo W, Sun X, Zhang W, Zhang J, Wan X, Jiang Y, Mao Z. Use of the XRCC2 promoter for in vivo cancer diagnosis and therapy. Cell Death Dis 2018; 9:420. [PMID: 29549248 PMCID: PMC5856804 DOI: 10.1038/s41419-018-0453-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 01/01/2023]
Abstract
The homologous recombination (HR) pathway is a promising target for cancer therapy as it is frequently upregulated in tumors. One such strategy is to target tumors with cancer-specific, hyperactive promoters of HR genes including RAD51 and RAD51C. However, the promoter size and the delivery method have limited its potential clinical applications. Here we identified the ~2.1 kb promoter of XRCC2, similar to ~6.5 kb RAD51 promoter, as also hyperactivated in cancer cells. We found that XRCC2 expression is upregulated in nearly all types of cancers, to a degree comparable to RAD51 while much higher than RAD51C. Further study demonstrated that XRCC2 promoter is hyperactivated in cancer cell lines, and diphtheria toxin A (DTA) gene driven by XRCC2 promoter specifically eliminates cancer cells. Moreover, lentiviral vectors containing XRCC2 promoter driving firefly luciferase or DTA were created and applied to subcutaneous HeLa xenograft mice. We demonstrated that the pXRCC2-luciferase lentivirus is an effective tool for in vivo cancer visualization. Most importantly, pXRCC2-DTA lentivirus significantly inhibited the growth of HeLa xenografts in comparison to the control group. In summary, our results strongly indicate that virus-mediated delivery of constructs built upon the XRCC2 promoter holds great potential for tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Yu Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Zhen Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Zhu Xu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Huanyin Tang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Wenxuan Guo
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaoxiang Sun
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Wenjun Zhang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao-Tong University School of Medicine, 200025, Shanghai, China
| | - Xiaoping Wan
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Ying Jiang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
457
|
Ando K, Shah AK, Sachdev V, Kleinstiver BP, Taylor-Parker J, Welch MM, Hu Y, Salgia R, White FM, Parvin JD, Ozonoff A, Rameh LE, Joung JK, Bharti AK. Camptothecin resistance is determined by the regulation of topoisomerase I degradation mediated by ubiquitin proteasome pathway. Oncotarget 2018; 8:43733-43751. [PMID: 28415827 PMCID: PMC5546437 DOI: 10.18632/oncotarget.16376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/03/2017] [Indexed: 02/06/2023] Open
Abstract
Proteasomal degradation of topoisomerase I (topoI) is one of the most remarkable cellular phenomena observed in response to camptothecin (CPT). Importantly, the rate of topoI degradation is linked to CPT resistance. Formation of the topoI-DNA-CPT cleavable complex inhibits DNA re-ligation resulting in DNA-double strand break (DSB). The degradation of topoI marks the first step in the ubiquitin proteasome pathway (UPP) dependent DNA damage response (DDR). Here, we show that the Ku70/Ku80 heterodimer binds with topoI, and that the DNA-dependent protein kinase (DNA-PKcs) phosphorylates topoI on serine 10 (topoI-pS10), which is subsequently ubiquitinated by BRCA1. A higher basal level of topoI-pS10 ensures rapid topoI degradation leading to CPT resistance. Importantly, PTEN regulates DNA-PKcs kinase activity in this pathway and PTEN deletion ensures DNA-PKcs dependent higher topoI-pS10, rapid topoI degradation and CPT resistance.
Collapse
Affiliation(s)
- Koji Ando
- Department of Medicine, Division of Hematology Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Ankur K Shah
- Department of Medicine, Division of Hematology Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Vibhu Sachdev
- Department of Medicine, Division of Hematology Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Benjamin P Kleinstiver
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Julian Taylor-Parker
- Department of Medicine, Division of Hematology Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Moira M Welch
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Yiheng Hu
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte , CA, USA
| | - Forest M White
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey D Parvin
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Al Ozonoff
- Center for Patient Safety and Quality Research, Boston Children's Hospital, Boston, MA, USA
| | - Lucia E Rameh
- Department of Medicine, Obesity Research Center, Boston University School of Medicine, Boston, MA, USA
| | - J Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ajit K Bharti
- Department of Medicine, Division of Hematology Oncology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
458
|
Suraweera A, O’Byrne KJ, Richard DJ. Combination Therapy With Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi. Front Oncol 2018; 8:92. [PMID: 29651407 PMCID: PMC5884928 DOI: 10.3389/fonc.2018.00092] [Citation(s) in RCA: 491] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/16/2018] [Indexed: 01/10/2023] Open
Abstract
Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs) are key regulators of gene expression that act as transcriptional repressors by removing acetyl groups from histones. HDACs are dysregulated in many cancers, making them a therapeutic target for the treatment of cancer. Histone deacetylase inhibitors (HDACi), a novel class of small-molecular therapeutics, are now approved by the Food and Drug Administration as anticancer agents. While they have shown great promise, resistance to HDACi is often observed and furthermore, HDACi have shown limited success in treating solid tumors. The combination of HDACi with standard chemotherapeutic drugs has demonstrated promising anticancer effects in both preclinical and clinical studies. In this review, we summarize the research thus far on HDACi in combination therapy, with other anticancer agents and their translation into preclinical and clinical studies. We additionally highlight the side effects associated with HDACi in cancer therapy and discuss potential biomarkers to either select or predict a patient's response to these agents, in order to limit the off-target toxicity associated with HDACi.
Collapse
Affiliation(s)
- Amila Suraweera
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth J. O’Byrne
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J. Richard
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
459
|
Liao SG, Liu L, Wang YJ. Effect of RAD51C expression on the chemosensitivity of Eμ-Myc p19 Arf-/- cells and its clinical significance in breast cancer. Oncol Lett 2018; 15:6107-6114. [PMID: 29731842 PMCID: PMC5921229 DOI: 10.3892/ol.2018.8133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/26/2017] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to investigate the chemosensitivity to anti-cancer drugs of RAD51 paralog C (RAD51C)-deficient Eμ-Myc p19Arf-/- cells, to detect the expression of RAD51C in breast cancer tissues by immunohistochemistry (IHC), and to explore their association with clinicopathological factors. Eμ-Myc p19Arf-/- cells were stably transfected with retroviruses co-expressing short hairpin-RNA against RAD51C and green fluorescent protein (GFP). A single-cell flow cytometry-based GFP competition assay was used to assess the change in sensitivity to anti-cancer drugs. GFP-negative cells in the same population served as an internal control. In total, tissue samples from 213 cases of breast cancer and 99 adjacent non-cancerous tissue samples were collected to construct tissue microarrays. IHC was used to detect the expression of RAD51C protein. Relevant clinical information was collected for a correlation analysis. Transfection of RAD51C-shRNA was demonstrated to effectively reduce the RAD51C protein expression in the Eμ-Myc p19Arf-/- cells. The sensitivities of the cells to three drugs, camptothecin, cisplatin and olaparib, significantly increased following RAD51C gene knockdown. In breast cancer tissue, RAD51C expression was significantly higher in the Erb-B2 receptor tyrosine kinase 2 overexpression group. The overall survival time of the patients with RAD51C-negative expression was longer than that of patients with RAD51C-positive expression. RAD51C expression was an independent prognostic factor for survival of breast cancer patients. In summary, the results indicate that silencing of RAD51C may represent a potential therapeutic strategy for malignant tumors, and that measuring RAD51C expression by IHC may have prognostic value for breast cancer patients.
Collapse
Affiliation(s)
- Shao-Guang Liao
- Department of Radiation Oncology, Fuzhou General Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Lu Liu
- Department of Oncology, Shenyang General Hospital, Shenyang, Liaoning 110000, P.R. China
| | - Ya-Jie Wang
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
460
|
Hang B, Wang Y, Huang Y, Wang P, Langley SA, Bi L, Sarker AH, Schick SF, Havel C, Jacob P, Benowitz N, Destaillats H, Tang X, Xia Y, Jen KY, Gundel LA, Mao JH, Snijders AM. Short-term early exposure to thirdhand cigarette smoke increases lung cancer incidence in mice. Clin Sci (Lond) 2018; 132:475-488. [PMID: 29440622 PMCID: PMC6365648 DOI: 10.1042/cs20171521] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/02/2018] [Accepted: 02/09/2018] [Indexed: 02/01/2023]
Abstract
Exposure to thirdhand smoke (THS) is a recently described health concern that arises in many indoor environments. However, the carcinogenic potential of THS, a critical consideration in risk assessment, remains untested. Here we investigated the effects of short-term early exposure to THS on lung carcinogenesis in A/J mice. Forty weeks after THS exposure from 4 to 7 weeks of age, the mice had increased incidence of lung adenocarcinoma, tumor size and, multiplicity, compared with controls. In vitro studies using cultured human lung cancer cells showed that THS exposure induced DNA double-strand breaks and increased cell proliferation and colony formation. RNA sequencing analysis revealed that THS exposure induced endoplasmic reticulum stress and activated p53 signaling. Activation of the p53 pathway was confirmed by an increase in its targets p21 and BAX. These data indicate that early exposure to THS is associated with increased lung cancer risk.
Collapse
Affiliation(s)
- Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Yunshan Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
- International Biotechnology R&D Center, Shandong University School of Ocean, Weihai, Shandong 264209, China
| | - Yurong Huang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Pin Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Sasha A Langley
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Lei Bi
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Altaf H Sarker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Suzaynn F Schick
- Department of Medicine, Division of Occupational and Environmental Medicine, University of California, San Francisco, Box 0843, San Francisco, CA 94143, U.S.A
| | - Christopher Havel
- Division of Clinical Pharmacology and Experimental Therapeutics, Department of Medicine University of California, San Francisco, Box 0843, San Francisco, CA 94143, U.S.A
| | - Peyton Jacob
- Division of Clinical Pharmacology and Experimental Therapeutics, Department of Medicine University of California, San Francisco, Box 0843, San Francisco, CA 94143, U.S.A
| | - Neal Benowitz
- Division of Clinical Pharmacology and Experimental Therapeutics, Medical Services, Department of Medicine, and Bioengineering & Therapeutic Sciences, University of California, San Francisco, Box 0843, San Francisco, CA 94143, U.S.A
| | - Hugo Destaillats
- Indoor Environment Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Xiaochen Tang
- Indoor Environment Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
| | - Kuang-Yu Jen
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA 95817, U.S.A
| | - Lara A Gundel
- Indoor Environment Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A.
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A.
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| |
Collapse
|
461
|
Wei J, Su H, Bi Y, Li J, Feng L, Sheng W. Anti-proliferative effect of isorhamnetin on HeLa cells through inducing G2/M cell cycle arrest. Exp Ther Med 2018; 15:3917-3923. [PMID: 29563987 PMCID: PMC5858116 DOI: 10.3892/etm.2018.5892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 01/10/2018] [Indexed: 11/29/2022] Open
Abstract
As a major cancer type in females, cervical cancer has been explored in depth by researchers. HeLa is a cervical cancer cell line. Isorhamnetin is an O-methylated flavonol that is primarily extracted from sea buckthorn. In the present study, the anti-proliferative effect of isorhamnetin on HeLa cells was evaluated using a Trypan blue dye exclusion assay. Isorhamnetin inhibited the cell proliferation in a time- and dose-dependent manner. Flow cytometric analysis of the cell cycle distribution revealed that isorhamnetin inhibited the cell cycle progression of HeLa by causing G2/M phase arrest and decreasing the proportion of cells in G1 phase. In addition, western blot analysis was performed to evaluate the presence of certain cell cycle-associated proteins. It was demonstrated that isorhamnetin inhibited the protein expression of cyclin B1, cell division cycle 25C (Cdc25C) and Cdc2, but enhanced checkpoint kinase 2 (Chk2), Cdc25C and Cdc2 phosphorylation. In addition, tubulin depolymerization participated in the isorhamnetin-induced cell cycle arrest in G2/M phase. In conclusion, the present results indicated that the anti-proliferative action of isorhamnetin is associated with arrest of the cell cycle in G2/M phase, which is a consequence of activation of the ataxia telangiectasia mutated Chk2 pathway and disruption of microtubule function.
Collapse
Affiliation(s)
- Juan Wei
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, P.R. China
| | - Hailan Su
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, P.R. China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, P.R. China
| | - Jixin Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, P.R. China
| | - Lidan Feng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, P.R. China
| | - Wenjun Sheng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, P.R. China
| |
Collapse
|
462
|
Jin Y, Xu X, Wang X, Kuang H, Osterman M, Feng S, Han D, Wu Y, Li M, Guo H. Increasing sensitivity to DNA damage is a potential driver for human ovarian cancer. Oncotarget 2018; 7:49710-49721. [PMID: 27391345 PMCID: PMC5226541 DOI: 10.18632/oncotarget.10436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is one of the most common cancers among women, accounting for more deaths than any other gynecological diseases. However, the survival rate for ovarian cancer has not essentially improved over the past thirty years. Thus, to understand the molecular mechanism of ovarian tumorigenesis is important for optimizing the early diagnosis and treating this disease. In this study, we observed obvious DNA lesions, especially DNA double strand breaks (DSBs) accompanying cell cycle checkpoint activation, in the human epithelial ovarian cancer samples, which could be due to the impaired DNA response machinery. Following this line, we found that these DNA damage response-deficient primary cancer cells were hypersensitive to DNA damage and lost their ability to repair the DNA breaks, leading to genomic instability. Of note, three key DNA damage response factors, RNF8, Ku70, and FEN1 exhibited dramatically decreased expression level, implying the dysfunctional DNA repair pathways. Re-expression of wild type RNF8, Ku70, or FEN1 in these cells restored the DNA lesions and also partially rescued the cells from death. Our current study therefore proposes that accumulated DNA lesions might be a potential driver of ovarian cancer and the impaired DNA damage responders could be the targets for clinical treatment.
Collapse
Affiliation(s)
- Yimei Jin
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Xin Xu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Xuemeng Wang
- Department of Molecular and Medical pharmacology, University of California, Los Angeles, 90095, USA
| | - Henry Kuang
- Medical School and University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Michael Osterman
- School of Public Health, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Shi Feng
- Education Department, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Deqiang Han
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yu Wu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Mo Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, P.R. China
| |
Collapse
|
463
|
Role of CTCF in DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 780:61-68. [PMID: 31395350 DOI: 10.1016/j.mrrev.2018.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
CCCTC-binding factor (CTCF) is a highly conserved, ubiquitously expressed zinc finger protein. CTCF is a multifunctional protein, associated with a number of vital cellular processes such as transcriptional activation, repression, insulation, imprinting and genome organization. Emerging evidence indicates that CTCF is also involved in DNA damage response. In this review, we focus on the newly identified role of CTCF in facilitating DNA double-strand break repair. Due to the large number of cellular processes in which CTCF is involved, factors that functionally affect CTCF could have serious implications on genomic stability. It is becoming increasingly clear that exposure to environmental toxicants could have adverse effects on CTCF functions. Here we discuss the various ways that environmental toxicants could impact CTCF functions and the potential consequences on DNA damage response.
Collapse
|
464
|
Bakr A, Köcher S, Volquardsen J, Petersen C, Borgmann K, Dikomey E, Rothkamm K, Mansour WY. Impaired 53BP1/RIF1 DSB mediated end-protection stimulates CtIP-dependent end resection and switches the repair to PARP1-dependent end joining in G1. Oncotarget 2018; 7:57679-57693. [PMID: 27494840 PMCID: PMC5295381 DOI: 10.18632/oncotarget.11023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/23/2016] [Indexed: 01/30/2023] Open
Abstract
End processing at DNA double strand breaks (DSB) is a decisive step in repair pathway selection. Here, we investigated the role of 53BP1/RIF1 in limiting BRCA1/CtIP-mediated end resection to control DSB repair pathway choice. ATM orchestrates this process through 53BP1 phosphorylation to promote RIF1 recruitment. As cells enter S/G2-phase, end resection is activated, which displaces pATM from DSB sites and diminishes 53BP1 phosphorylation and RIF1 recruitment. Consistently, the kinetics of ATM and 53BP1 phosphorylation in S/G2-phase concur. We show that defective 53BP1/RIF1-mediated DSB end-protection in G1-phase stimulates CtIP/MRE11-dependent end-resection, which requires Polo-like kinase 3. This end resection activity in G1 was shown to produce only short tracks of ssDNA overhangs, as evidenced by the findings that in 53BP1 depleted cells, (i) RPA focus intensity was significantly lower in G1 compared to that in S/G2 phase, and (ii) EXO1 knockdown did not alter either number or intensity of RPA foci in G1 but significantly decreased the RPA focus intensity in S/G2 phase. Importantly, we report that the observed DSB end resection in G1 phase inhibits DNA-PK-dependent nonhomologous end joining but is not sufficient to stimulate HR. Instead, it switches the repair to the alternative PARP1-dependent end joining pathway.
Collapse
Affiliation(s)
- Ali Bakr
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Köcher
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Volquardsen
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ekkehard Dikomey
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wael Y Mansour
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Tumor Biology Department, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
465
|
HuR silencing elicits oxidative stress and DNA damage and sensitizes human triple-negative breast cancer cells to radiotherapy. Oncotarget 2018; 7:64820-64835. [PMID: 27588488 PMCID: PMC5323119 DOI: 10.18632/oncotarget.11706] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
HuR is an mRNA-binding protein whose overexpression in cancer cells has been associated with poor prognosis and resistance to therapy. While reports on HuR overexpression contributing to chemoresistance exist, limited information is available on HuR and radioresistance especially in triple-negative breast cancer (TNBC). In this study we investigated the role of HuR in radiation resistance in three TNBC (MDA-MB-231, MDA-MB-468 and Hs578t) cell lines. Endogenous HuR expression was higher in TNBC cells compared to normal cells. siRNA mediated knockdown of HuR (siHuR) markedly reduced HuR mRNA and protein levels compared to scrambled siRNA (siScr) treatment. Further, siHuR treatment sensitized TNBC cells to ionizing radiation at 2 Gy compared to siScr treatment as evidenced by the significant reduction in clonogenic cell survival from 59%, 49%, and 65% in siScr-treated cells to 40%, 33%, and 46% in siHuR-treated MDA-MB-231, MDA-MB-468 and Hs578t cells, respectively. Molecular studies showed increased ROS production and inhibition of thioredoxin reductase (TrxR) in HuR knockdown cells contributed to radiosensitization. Associated with increased ROS production was evidence of increased DNA damage, demonstrated by a significant increase (p < 0.05) in γ-H2AX foci that persisted for up to 24 h in siHuR plus radiation treated cells compared to control cells. Further, comet assay revealed that HuR-silenced cells had larger and longer-lasting tails than control cells, indicating higher levels of DNA damage. In conclusion, our studies demonstrate that HuR knockdown in TNBC cells elicits oxidative stress and DNA damage resulting in radiosensitization.
Collapse
|
466
|
Steenwyk JL, Rokas A. Copy Number Variation in Fungi and Its Implications for Wine Yeast Genetic Diversity and Adaptation. Front Microbiol 2018; 9:288. [PMID: 29520259 PMCID: PMC5826948 DOI: 10.3389/fmicb.2018.00288] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
In recent years, copy number (CN) variation has emerged as a new and significant source of genetic polymorphisms contributing to the phenotypic diversity of populations. CN variants are defined as genetic loci that, due to duplication and deletion, vary in their number of copies across individuals in a population. CN variants range in size from 50 base pairs to whole chromosomes, can influence gene activity, and are associated with a wide range of phenotypes in diverse organisms, including the budding yeast Saccharomyces cerevisiae. In this review, we introduce CN variation, discuss the genetic and molecular mechanisms implicated in its generation, how they can contribute to genetic and phenotypic diversity in fungal populations, and consider how CN variants may influence wine yeast adaptation in fermentation-related processes. In particular, we focus on reviewing recent work investigating the contribution of changes in CN of fermentation-related genes in yeast wine strains and offer notable illustrations of such changes, including the high levels of CN variation among the CUP genes, which confer resistance to copper, a metal with fungicidal properties, and the preferential deletion and duplication of the MAL1 and MAL3 loci, respectively, which are responsible for metabolizing maltose and sucrose. Based on the available data, we propose that CN variation is a substantial dimension of yeast genetic diversity that occurs largely independent of single nucleotide polymorphisms. As such, CN variation harbors considerable potential for understanding and manipulating yeast strains in the wine fermentation environment and beyond.
Collapse
Affiliation(s)
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
467
|
Chen JK, Lin WL, Chen Z, Liu HW. PARP-1-dependent recruitment of cold-inducible RNA-binding protein promotes double-strand break repair and genome stability. Proc Natl Acad Sci U S A 2018; 115:E1759-E1768. [PMID: 29432179 PMCID: PMC5828585 DOI: 10.1073/pnas.1713912115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Maintenance of genome integrity is critical for both faithful propagation of genetic information and prevention of mutagenesis induced by various DNA damage events. Here we report cold-inducible RNA-binding protein (CIRBP) as a newly identified key regulator in DNA double-strand break (DSB) repair. On DNA damage, CIRBP temporarily accumulates at the damaged regions and is poly(ADP ribosyl)ated by poly(ADP ribose) polymerase-1 (PARP-1). Its dissociation from the sites of damage may depend on its phosphorylation status as mediated by phosphatidylinositol 3-kinase-related kinases. In the absence of CIRBP, cells showed reduced γH2AX, Rad51, and 53BP1 foci formation. Moreover, CIRBP-depleted cells exhibited impaired homologous recombination, impaired nonhomologous end-joining, increased micronuclei formation, and higher sensitivity to gamma irradiation, demonstrating the active involvement of CIRBP in DSB repair. Furthermore, CIRBP depleted cells exhibited defects in DNA damage-induced chromatin association of the MRN complex (Mre11, Rad50, and NBS1) and ATM kinase. CIRBP depletion also reduced phosphorylation of a variety of ATM substrate proteins and thus impaired the DNA damage response. Taken together, these results reveal a previously unrecognized role for CIRBP in DSB repair.
Collapse
Affiliation(s)
- Jung-Kuei Chen
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Wen-Ling Lin
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Zhang Chen
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Hung-Wen Liu
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712;
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
468
|
Hu X, Liao J, Zhao H, Chen F, Zhu X, Li J, Nong Q. NBS1 rs2735383 polymorphism is associated with an increased risk of laryngeal carcinoma. BMC Cancer 2018; 18:175. [PMID: 29433451 PMCID: PMC5810033 DOI: 10.1186/s12885-018-4078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 01/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nijmegen breakage syndrome 1 (NBS1), as a key protein in the DNA double-strand breaks (DSBs) repair pathway, plays an important role in maintaining genomic stability. Although single nucleotide polymorphisms (SNPs) in NBS1 have frequently been studied in multiple cancers, the relationships of two functional NBS1 polymorphisms (rs2735383 and rs1805794) with laryngeal carcinoma are yet unclear. Therefore, in the present study, we performed a case-control study including 342 cases and 345 controls to analyze the associations between two polymorphisms of NBS1 and the risk of laryngeal carcinoma. METHODS We used the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method to determine the genotypes of the functional SNPs in NBS1 gene. RESULTS In comparison with the homozygous rs2735383GG genotype, the CC genotype was significantly associated with an increased risk of laryngeal carcinoma (adjusted OR = 1.884, 95%CI = 1.215-2.921). The rs2735383C variant genotypes (GC + CC) conferred a 1.410-fold increased risk of laryngeal carcinoma (adjusted OR = 1.410, 95%CI = 1.004-1.980). Furthermore, when compared to rs2735383GG genotype in laryngeal carcinoma tissues, the combined GC and CC genotypes exerted a significantly lower mRNA level of NBS1 (P = 0.003). In contrast, no significant association was found between rs1805794G > C polymorphism and cancer risk (adjusted OR = 1.074, 95%CI = 0.759-1.518 for GC; adjusted OR = 1.100, 95%CI = 0.678-1.787 for CC; adjusted OR = 1.079, 95%CI = 0.774-1.505 for GC + CC). CONCLUSIONS These findings indicate that rs2735383G > C polymorphism in NBS1 may play a crucial role in the development of laryngeal carcinoma.
Collapse
Affiliation(s)
- Xinmei Hu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Juan Liao
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Huiliu Zhao
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Feng Chen
- Department of Medical Oncology Division, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xuefeng Zhu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Jiangheng Li
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Qingqing Nong
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China. .,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
469
|
The mTOR-S6K pathway links growth signalling to DNA damage response by targeting RNF168. Nat Cell Biol 2018; 20:320-331. [PMID: 29403037 PMCID: PMC5826806 DOI: 10.1038/s41556-017-0033-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/22/2017] [Indexed: 01/03/2023]
Abstract
Growth signals, such as extracellular nutrients and growth factors, have substantial effects on genome integrity; however, the direct underlying link remains unclear. Here, we show that the mechanistic target of rapamycin (mTOR)-ribosomal S6 kinase (S6K) pathway, a central regulator of growth signalling, phosphorylates RNF168 at Ser60 to inhibit its E3 ligase activity, accelerate its proteolysis and impair its function in the DNA damage response, leading to accumulated unrepaired DNA and genome instability. Moreover, loss of the tumour suppressor liver kinase B1 (LKB1; also known as STK11) hyperactivates mTOR complex 1 (mTORC1)-S6K signalling and decreases RNF168 expression, resulting in defects in the DNA damage response. Expression of a phospho-deficient RNF168-S60A mutant rescues the DNA damage repair defects and suppresses tumorigenesis caused by Lkb1 loss. These results reveal an important function of mTORC1-S6K signalling in the DNA damage response and suggest a general mechanism that connects cell growth signalling to genome stability control.
Collapse
|
470
|
Mohajeri M, Sahebkar A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit Rev Oncol Hematol 2018; 122:30-51. [PMID: 29458788 DOI: 10.1016/j.critrevonc.2017.12.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/28/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023] Open
Abstract
Doxorubicin (DOX)-induced toxicity and resistance are major obstacles in chemotherapeutic approaches. Despite effective in the treatment of numerous malignancies, some clinicians have voiced concern that DOX has the potential to cause debilitating consequences in organ tissues, especially the heart. The mechanisms of toxicity and resistance are respectively related to induction of reactive oxygen species (ROS) and up-regulation of ATP-binding cassette (ABC) transporter. Curcumin (CUR) with several biological and pharmacological properties is expected to restore DOX-mediated impairments to tissues. This review is intended to address the current knowledge on DOX adverse effects and CUR protective actions in the heart, kidneys, liver, brain, and reproductive organs. Coadministration of CUR and DOX is capable of ameliorating DOX toxicity pertained to antioxidant, apoptosis, autophagy, and mitochondrial permeability.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
471
|
Bermisheva MA, Bogdanova NV, Gilyazova IR, Zinnatullina GF, Bisultanova ZI, Khusnutdinova EK. Ethnic Features of Genetic Susceptibility to Breast Cancer. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418020047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
472
|
Oxidation of dCTP contributes to antibiotic lethality in stationary-phase mycobacteria. Proc Natl Acad Sci U S A 2018; 115:2210-2215. [PMID: 29382762 DOI: 10.1073/pnas.1719627115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growing evidence shows that generation of reactive oxygen species (ROS) derived from antibiotic-induced metabolic perturbation contribute to antibiotic lethality. However, our knowledge of the mechanisms by which antibiotic-induced oxidative stress actually kills cells remains elusive. Here, we show that oxidation of dCTP underlies ROS-mediated antibiotic lethality via induction of DNA double-strand breaks (DSBs). Deletion of mazG-encoded 5-OH-dCTP-specific pyrophosphohydrolase potentiates antibiotic killing of stationary-phase mycobacteria, but did not affect antibiotic efficacy in exponentially growing cultures. Critically, the effect of mazG deletion on potentiating antibiotic killing is associated with antibiotic-induced ROS and accumulation of 5-OH-dCTP. Independent lines of evidence presented here indicate that the increased level of DSBs observed in the ΔmazG mutant is a dead-end event accounting for enhanced antibiotic killing. Moreover, we provided genetic evidence that 5-OH-dCTP is incorporated into genomic DNA via error-prone DNA polymerase DnaE2 and repair of 5-OH-dC lesions via the endonuclease Nth leads to the generation of lethal DSBs. This work provides a mechanistic view of ROS-mediated antibiotic lethality in stationary phase and may have broad implications not only with respect to antibiotic lethality but also to the mechanism of stress-induced mutagenesis in bacteria.
Collapse
|
473
|
Sharma B, Preet Kaur R, Raut S, Munshi A. BRCA1 mutation spectrum, functions, and therapeutic strategies: The story so far. Curr Probl Cancer 2018; 42:189-207. [PMID: 29452958 DOI: 10.1016/j.currproblcancer.2018.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
BRCA1 gene mutations account for about 25-28% of hereditary Breast Cancer as BRCA1 is included in the category of high penetrance genes. Except for few commonmutations, there is a heterogenous spectrum of BRCA1 mutations in various ethnic groups. 185AGdel and 5382ins Care the most common BRCA1 alterations (founder mutations) which have been identified in most of the population. This review has been compiled with an aim to consolidate the information on genetic variants reported in BRCA1 found in various ethnic groups, their functional implications if known; involvement of BRCA1 in various cellular pathways/processes and potential BRCA1 targeted therapies. The pathological variations of BRCA1 vary among different ethical groups. A systematic search in PubMed and Google scholar for the literature on BRCA1 gene was carried out to figure out structure and function of BRCA1 gene. BRCA1 is a large protein having 1863 amino acids with multiple functional domains and interacts with multiple proteins to carry out various crucial cellular processes. BRCA1 plays a major role in maintaining genome integrity, transcription regulation, chromatin remodeling, cell cycle checkpoint control, DNA damage repair, chromosomal segregation, and apoptosis. Studies investigating the phenotypic response of mutant BRCA1 protein and comparing it to wildtype BRCA1 protein are clinically important as they are involved in homologous recombination and other repair mechanisms. These studies may help in developing more targetted therapies, detecting novel interacting partners, identification of new signaling pathways that BRCA1 is a part of or downstream target genes that BRCA1 affects.
Collapse
Affiliation(s)
- Babita Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Raman Preet Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Sonali Raut
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
474
|
Sharma V, Collins LB, Chen TH, Herr N, Takeda S, Sun W, Swenberg JA, Nakamura J. Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations. Oncotarget 2018; 7:25377-90. [PMID: 27015367 PMCID: PMC5041911 DOI: 10.18632/oncotarget.8298] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 03/13/2016] [Indexed: 12/12/2022] Open
Abstract
DNA damage and mutations induced by oxidative stress are associated with various different human pathologies including cancer. The facts that most human tumors are characterized by large genome rearrangements and glutathione depletion in mice results in deletions in DNA suggest that reactive oxygen species (ROS) may cause gene and chromosome mutations through DNA double strand breaks (DSBs). However, the generation of DSBs at low levels of ROS is still controversial. In the present study, we show that H2O2 at biologically-relevant levels causes a marked increase in oxidative clustered DNA lesions (OCDLs) with a significant elevation of replication-independent DSBs. Although it is frequently reported that OCDLs are fingerprint of high-energy IR, our results indicate for the first time that H2O2, even at low levels, can also cause OCDLs leading to DSBs specifically in G1 cells. Furthermore, a reverse genetic approach revealed a significant contribution of the non-homologous end joining (NHEJ) pathway in H2O2-induced DNA repair & mutagenesis. This genomic instability induced by low levels of ROS may be involved in spontaneous mutagenesis and the etiology of a wide variety of human diseases like chronic inflammation-related disorders, carcinogenesis, neuro-degeneration and aging.
Collapse
Affiliation(s)
- Vyom Sharma
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Leonard B Collins
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Ting-Huei Chen
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie Herr
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Wei Sun
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James A Swenberg
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Jun Nakamura
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| |
Collapse
|
475
|
Bohrer RC, Dicks N, Gutierrez K, Duggavathi R, Bordignon V. Double‐strand DNA breaks are mainly repaired by the homologous recombination pathway in early developing swine embryos. FASEB J 2018; 32:1818-1829. [DOI: 10.1096/fj.201700800r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Naomi Dicks
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Karina Gutierrez
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Raj Duggavathi
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Vilceu Bordignon
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
476
|
König A, Zöller N, Kippenberger S, Bernd A, Kaufmann R, Layer PG, Heselich A. Non-thermal near-infrared exposure photobiomodulates cellular responses to ionizing radiation in human full thickness skin models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:115-123. [DOI: 10.1016/j.jphotobiol.2017.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/18/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
|
477
|
Ren Z, Tao Z. Molecular Basis of Colorectal Cancer: Tumor Biology. SURGICAL TREATMENT OF COLORECTAL CANCER 2018:23-34. [DOI: 10.1007/978-981-10-5143-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
478
|
Liao B, Zhang Y, Sun Q, Jiang P. Vorinostat enhances the anticancer effect of oxaliplatin on hepatocellular carcinoma cells. Cancer Med 2018; 7:196-207. [PMID: 29239146 PMCID: PMC5773972 DOI: 10.1002/cam4.1278] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/14/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
Oxaliplatin-based systemic chemotherapy has been proposed to have efficacy in hepatocellular carcinoma (HCC). We investigated the combination of vorinostat and oxaliplatin for possible synergism in HCC cells. SMMC7721, BEL7402, and HepG2 cells were treated with vorinostat and oxaliplatin. Cytotoxicity assay, tumorigenicity assay in vitro, cell cycle analysis, apoptosis analysis, western blot analysis, animal model study, immunohistochemistry, and quantitative PCR were performed. We found that vorinostat and oxaliplatin inhibited the proliferation of SMMC7721, BEL7402, and HepG2 cells. The combination index (CI) values were all <1, and the dose-reduction index values were all greater than 1 in the three cell lines, indicating a synergistic effect of combination of the two agents. Coadministration of vorinostat and oxaliplatin induced G2/M phase arrest, triggered caspase-dependent apoptosis, and decreased tumorigenicity both in vitro and in vivo. Vorinostat suppressed the expression of BRCA1 induced by oxaliplatin. In conclusion, cotreatment with vorinostat and oxaliplatin exhibited synergism in HCC cells. The combination inhibited cell proliferation and tumorigenicity both in vitro and in vivo through induction of cell cycle arrest and apoptosis. Our results predict that a combination of vorinostat and oxaliplatin may be useful in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Bo Liao
- Department of Hepatopancreatobiliary SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yingying Zhang
- Intensive Care UnitZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Quan Sun
- Department of Hepatopancreatobiliary SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Ping Jiang
- Department of Hepatopancreatobiliary SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
479
|
Benítez-Buelga C, Baquero JM, Vaclova T, Fernández V, Martín P, Inglada-Perez L, Urioste M, Osorio A, Benítez J. Genetic variation in the NEIL2 DNA glycosylase gene is associated with oxidative DNA damage in BRCA2 mutation carriers. Oncotarget 2017; 8:114626-114636. [PMID: 29383107 PMCID: PMC5777719 DOI: 10.18632/oncotarget.22638] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023] Open
Abstract
In this report, we have tried to gain molecular insight into a single nucleotide polymorphism (SNP) in the NEIL2 gene previously identified as "cancer risk modifier" for BRCA2 mutation carriers. To that end, we studied the role of this SNP (rs804271) on NEIL2 transcriptional regulation, oxidative DNA damage and genome instability in two independent set of samples: The first one was a series of eighty-six BRCA1 and BRCA2 mutation carriers and eighty non-carrier controls in which we evaluated the effect of the SNP on NEIL2 gene expression and oxidative DNA damage accumulation. The second was a set of twenty lymphoblastoid cell lines (LCLs), thirteen BRCA1 mutation carriers and seven non-carriers control, that were used to analyze the correlation between NEIL2 mRNA and/or protein levels, the oxidative and the double stranded break (DSB) DNA damage levels. Our results suggest that an excessive production of NEIL2 enzyme, associated with the SNP, may have a deleterious effect modifying cancer risk susceptibility in BRCA2 mutation carriers. We hypothesize that due to the SNP impact on NEIL2 transcriptional upregulation, a cascade of events may converge in the accumulation of oxidative DNA damage and its posterior conversion into DSBs for this specific group of patients.
Collapse
Affiliation(s)
| | - Juan Miguel Baquero
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Tereza Vaclova
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Victoria Fernández
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Paloma Martín
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Spanish Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Lucia Inglada-Perez
- Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Spanish Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Miguel Urioste
- Familial Cancer Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Spanish Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Ana Osorio
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Spanish Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Javier Benítez
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Spanish Network on Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
480
|
Abstract
Small RNAs generated at DNA break sites are implicated in mammalian DNA repair. Now, a study shows that following the formation of DNA double-strand breaks, bidirectional transcription events adjacent to the break generate small RNAs that trigger the DNA damage response by local RNA:RNA interactions.
Collapse
Affiliation(s)
- Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ailone E Tichon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
481
|
Lee AJ, Sharma R, Hobbs JK, Wälti C. Cooperative RecA clustering: the key to efficient homology searching. Nucleic Acids Res 2017; 45:11743-11751. [PMID: 28977583 PMCID: PMC5714135 DOI: 10.1093/nar/gkx769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/25/2017] [Indexed: 01/17/2023] Open
Abstract
The mechanism by which pre-synaptic RecA nucleoprotein filaments efficiently locate sequence homology across genomic DNA remains unclear. Here, using atomic force microscopy, we directly investigate the intermediates of the RecA-mediated homologous recombination process and find it to be highly cooperative, involving multiple phases. Initially, the process is dominated by a rapid ‘association’ phase, where multiple filaments interact on the same dsDNA simultaneously. This cooperative nature is reconciled by the observation of localized dense clusters of pre-synaptic filaments interacting with the observed dsDNA molecules. This confinement of reactive species within the vicinity of the dsDNA, is likely to play an important role in ensuring that a high interaction rate between the nucleoprotein filaments and the dsDNA can be achieved. This is followed by a slower ‘resolution’ phase, where the synaptic joints either locate sequence homology and progress to a post-synaptic joint, or dissociate from the dsDNA. Surprisingly, the number of simultaneous synaptic joints decreases rapidly after saturation of the dsDNA population, suggesting a reduction in interaction activity of the RecA filaments. We find that the time-scale of this decay is in line with the time-scale of the dispersion of the RecA filament clusters, further emphasising the important role this cooperative phenomena may play in the RecA-facilitated homology search.
Collapse
Affiliation(s)
- Andrew J Lee
- Bioelectronics Group, School of Electronic & Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK
| | - Rajan Sharma
- Bioelectronics Group, School of Electronic & Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK.,The Krebs Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Christoph Wälti
- Bioelectronics Group, School of Electronic & Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
482
|
Chen G, Magis AT, Xu K, Park D, Yu DS, Owonikoko TK, Sica GL, Satola SW, Ramalingam SS, Curran WJ, Doetsch PW, Deng X. Targeting Mcl-1 enhances DNA replication stress sensitivity to cancer therapy. J Clin Invest 2017; 128:500-516. [PMID: 29227281 DOI: 10.1172/jci92742] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022] Open
Abstract
DNA double-strand breaks (DSBs) are mainly repaired either by homologous recombination (HR) or by nonhomologous end-joining (NHEJ) pathways. Here, we showed that myeloid cell leukemia sequence 1 (Mcl-1) acts as a functional switch in selecting between HR and NHEJ pathways. Mcl-1 was cell cycle-regulated during HR, with its expression peaking in S/G2 phase. While endogenous Mcl-1 depletion reduced HR and enhanced NHEJ, Mcl-1 overexpression resulted in a net increase in HR over NHEJ. Mcl-1 directly interacted with the dimeric Ku protein complex via its Bcl-2 homology 1 and 3 (BH1 and BH3) domains, which are required for Mcl-1 to inhibit Ku-mediated NHEJ. Mcl-1 also promoted DNA resection mediated by the Mre11 complex and HR-dependent DSB repair. Using the Mcl-1 BH1 domain as a docking site, we identified a small molecule, MI-223, that directly bound to BH1 and blocked Mcl-1-stimulated HR DNA repair, leading to sensitization of cancer cells to hydroxyurea- or olaparib-induced DNA replication stress. Combined treatment with MI-223 and hydroxyurea or olaparib exhibited a strong synergy against lung cancer in vivo. This mechanism-driven combination of agents provides a highly attractive therapeutic strategy to improve lung cancer outcomes.
Collapse
Affiliation(s)
- Guo Chen
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | | | - Ke Xu
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Dongkyoo Park
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - David S Yu
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | | | | | | | | | - Walter J Curran
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Paul W Doetsch
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia, USA.,Department of Biochemistry, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| |
Collapse
|
483
|
The fourth annual BRDS on genome editing and silencing for precision medicines. Drug Deliv Transl Res 2017; 8:266-272. [PMID: 29209906 DOI: 10.1007/s13346-017-0457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Precision medicine is promising for treating human diseases, as it focuses on tailoring drugs to a patient's genes, environment, and lifestyle. The need for personalized medicines has opened the doors for turning nucleic acids into therapeutics. Although gene therapy has the potential to treat and cure genetic and acquired diseases, it needs to overcome certain obstacles before creating the overall prescription drugs. Recent advancement in the life science has helped to understand the effective manipulation and delivery of genome-engineering tools better. The use of sequence-specific nucleases allows genetic changes in human cells to be easily made with higher efficiency and precision than before. Nanotechnology has made rapid advancement in the field of drug delivery, but the delivery of nucleic acids presents unique challenges. Also, designing efficient and short time-consuming genome-editing tools with negligible off-target effects are in high demand for precision medicine. In the fourth annual Biopharmaceutical Research and Development Symposium (BRDS) held at the University of Nebraska Medical Center (UNMC) on September 7-8, 2017, we covered different facets of developing tools for precision medicine for therapeutic and diagnosis of genetic disorders.
Collapse
|
484
|
Smolarz B, Bryś M, Forma E, Zadrożny M, Bieńkiewicz J, Romanowicz H. Data on Single Nucleotide Polymorphism of DNA Repair Genes and Breast Cancer Risk from Poland. Pathol Oncol Res 2017; 25:1311-1317. [PMID: 29209986 DOI: 10.1007/s12253-017-0370-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/29/2017] [Indexed: 12/29/2022]
Abstract
Single nucleotide polymorphisms (SNPs) may modify the risk of cancer. They may be then regarded as potential markers of carcinogenesis. The aim of this study was to analyze the frequency of genotypes and alleles of SNPs in DNA repair genes and to investigate the influence this genetic variation exerts on breast cancer in Polish females. The test group comprised 600 females with breast cancer and 600 healthy controls. Genomic DNA was isolated and the SNPs in DNA repair genes were determined by High-Resolution Melter (HRM) technique. Following polymorphisms were analysed: Arg399Gln (rs25487) of the XRCC1, Gly322Asp (rs4987188) of the hMSH2, Lys751Gln (rs13181) of the XPD, Arg188His (rs3218536) of the XRCC2, P871L (rs799917) of the BRCA1 and N372H (rs144848) of the BRCA2 gene. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for each genotype and allele. Statistically significant correlations were identified between 4 single nucleotide polymorphisms and the breast cancer risk: rs25487 rs4987188 rs13181 and rs799917. The alleles XRCC1-Gln (OR 5.11; 95% CI 5.68-11.64, p < .0001), hMSH2-Asp (OR 4.66; 95% CI 3.90-5.56, p < .0001), XPD-Gln (OR 2.65; 95% CI 2.24-3.14, p < .0001) and BRCA1-L (OR 1.45; 95% CI 1.24-1.71, p < .0001) genes were strongly correlated with this malignancy. No correlation was found between the studied SNPs and tumor grading nor the lymph node status. Further research on larger groups is warranted to determine the influence of above-mentioned genetic variants on breast cancer risk.
Collapse
Affiliation(s)
- Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Institute of Polish Mother's Memorial Hospital, Rzgowska 281/289, 93-338, Lodz, Poland.
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237, Lodz, Poland
| | - Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237, Lodz, Poland
| | - Marek Zadrożny
- Department of Oncological Surgery and Breast Diseases, Polish Mother's Memorial Hospital - Research Institute, Rzgowska 281/289, 93-338, Lodz, Poland
| | - Jan Bieńkiewicz
- Department of Surgical and Endoscopic Gynecology and Gynecologic Oncology, Polish Mothers' Memorial Hospital-Research Institute, Rzgowska 281/289, 93-338, Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Institute of Polish Mother's Memorial Hospital, Rzgowska 281/289, 93-338, Lodz, Poland
| |
Collapse
|
485
|
Vierstraete J, Willaert A, Vermassen P, Coucke PJ, Vral A, Claes KBM. Accurate quantification of homologous recombination in zebrafish: brca2 deficiency as a paradigm. Sci Rep 2017; 7:16518. [PMID: 29184099 PMCID: PMC5705637 DOI: 10.1038/s41598-017-16725-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022] Open
Abstract
Homologous Recombination (HR) repair is essential for repairing DNA double strand breaks (DSB) in dividing cells and preventing tumorigenesis. BRCA2 plays an important role in HR by recruiting the DNA recombinase RAD51 to the DSB. Despite being a popular model organism in genetic and cancer research, knowledge on the conservation of the HR pathway and function of zebrafish Brca2 is limited. To evaluate this, we developed a Rad51 foci assay in zebrafish embryos. We identified the zebrafish embryonic intestinal tissue as an ideal target for Rad51 immunostaining. After inducing DSB through irradiation, Rad51 foci were present in irradiated embryos but not in unirradiated controls. We present a method for accurate quantification of HR. Both morpholino-induced knockdown and knockout of Brca2 lead to almost complete absence of Rad51 foci in irradiated embryos. These findings indicate conserved function of Brca2 in zebrafish. Interestingly, a statistically significant decrease in Rad51 foci was observed in Brca2 heterozygous carriers compared to wild types, indicative of haploinsufficiency, a hypothesised cause of some tumours in patients with a germline BRCA2 mutation. In conclusion, we demonstrated the suitability of zebrafish as an excellent in vivo model system for studying the HR pathway and its functionality.
Collapse
Affiliation(s)
- Jeroen Vierstraete
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department for Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Andy Willaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Petra Vermassen
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Paul J Coucke
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Anne Vral
- Department for Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Kathleen B M Claes
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
486
|
Mueck K, Rebholz S, Harati MD, Rodemann HP, Toulany M. Akt1 Stimulates Homologous Recombination Repair of DNA Double-Strand Breaks in a Rad51-Dependent Manner. Int J Mol Sci 2017; 18:E2473. [PMID: 29156644 PMCID: PMC5713439 DOI: 10.3390/ijms18112473] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022] Open
Abstract
Akt1 is known to promote non-homologous end-joining (NHEJ)-mediated DNA double-strand break (DSB) repair by stimulation of DNA-PKcs. In the present study, we investigated the effect of Akt1 on homologous recombination (HR)-dependent repair of radiation-induced DSBs in non-small cell lung cancer (NSCLC) cells A549 and H460. Akt1-knockdown (Akt1-KD) significantly reduced Rad51 protein level, Rad51 foci formation and its colocalization with γH2AX foci after irradiation. Moreover, Akt1-KD decreased clonogenicity after treatment with Mitomycin C and HR repair, as tested by an HR-reporter assay. Double knockdown of Akt1 and Rad51 did not lead to a further decrease in HR compared to the single knockdown of Rad51. Consequently, Akt1-KD significantly increased the number of residual DSBs after irradiation partially independent of the kinase activity of DNA-PKcs. Likewise, the number of residual BRCA1 foci, indicating unsuccessful HR events, also significantly increased in the irradiated cells after Akt1-KD. Together, the results of the study indicate that Akt1 seems to be a regulatory component in the HR repair of DSBs in a Rad51-dependent manner. Thus, based on this novel role of Akt1 in HR and the previously described role of Akt1 in NHEJ, we propose that targeting Akt1 could be an effective approach to selectively improve the killing of tumor cells by DSB-inducing cytotoxic agents, such as ionizing radiation.
Collapse
Affiliation(s)
- Katharina Mueck
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany.
- German Cancer Consortium (DKTK), Partner site Tuebingen, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Simone Rebholz
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany.
- German Cancer Consortium (DKTK), Partner site Tuebingen, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Mozhgan Dehghan Harati
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany.
- German Cancer Consortium (DKTK), Partner site Tuebingen, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - H Peter Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany.
- German Cancer Consortium (DKTK), Partner site Tuebingen, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany.
- German Cancer Consortium (DKTK), Partner site Tuebingen, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
487
|
Diagnosis of Fanconi Anaemia by ionising radiation- or mitomycin C-induced micronuclei. DNA Repair (Amst) 2017; 61:17-24. [PMID: 29154021 DOI: 10.1016/j.dnarep.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/25/2017] [Accepted: 11/03/2017] [Indexed: 11/22/2022]
Abstract
Fanconi Anaemia (FA) is an autosomal recessive disorder characterised by defects in DNA repair, associated with chromosomal instability and cellular hypersensitivity to DNA cross-linking agents such as mitomycin C (MMC). The FA repair pathway involves complex DNA repair mechanisms crucial for genomic stability. Deficiencies in DNA repair genes give rise to chromosomal radiosensitivity. FA patients have shown increased clinical radiosensitivity by exhibiting adverse normal tissue side-effects. The study aimed to investigate chromosomal radiosensitivity of homozygous and heterozygous carriers of FA mutations using three micronucleus (MN) assays. The G0 and S/G2MN assays are cytogenetic assays to evaluate DNA damage induced by ionising radiation in different phases of the cell cycle. The MMC MN assay detects DNA damage induced by a crosslinking agent in the G0 phase. Patients with a clinical diagnosis of FA and their parents were screened for the complete coding region of 20 FA genes. Blood samples of all FA patients and parents were exposed to ionising radiation of 2 and 4Gy. Chromosomal radiosensitivity was evaluated in the G0 and S/G2 phase. Most of our patients were homozygous for the founder mutation FANCG c.637_643delTACCGCC; p.(Tyr213Lysfs*6) while one patient was compound heterozygous for FANCG c.637_643delTACCGCC and FANCG c.1379G > A, p.(Gly460Asp), a novel missense mutation. Another patient was compound heterozygous for two deleterious FANCA mutations. In FA patients, the G0- and S/G2-MN assays show significantly increased chromosomal radiosensitivity and genomic instability. Moreover, chromosomal damage was significantly elevated in MMC treated FA cells. We also observed an increase in chromosomal radiosensitivity and genomic instability in the parents using 3 assays. The effect was significant using the MMC MN assay. The MMC MN assay is advantageous as it is less labour intense, time effective and has potential as a reliable alternative method for detecting FA patients from parents and controls.
Collapse
|
488
|
Liu HX, Tao LL, Zhang J, Zhu YG, Zheng Y, Liu D, Zhou M, Ke H, Shi MM, Qu JM. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int J Cancer 2017; 142:769-778. [PMID: 29023689 DOI: 10.1002/ijc.31098] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
The functional role of respiratory microbiota has attracted an accumulating attention recently. However, the role of respiratory microbiome in lung carcinogenesis is mostly unknown. Our study aimed to characterize and compare bilateral lower airway microbiome of lung cancer patients with unilateral lobar masses and control subjects. Protected bronchial specimen brushing samples were collected from 24 lung cancer patients with unilateral lobar masses (paired samples from cancerous site and the contralateral noncancerous site) and 18 healthy controls undergoing bronchoscopies and further analyzed by 16S rRNA amplicon sequencing. As results, significant decreases in microbial diversity were observed in patients with lung cancer in comparison to the controls, alpha diversity steadily declined from healthy site to noncancerous to cancerous site. Genus Streptococcus was significantly more abundant in cancer cases than the controls, while Staphylococcus was more abundant in the controls. The area under the curve of genus Streptococcus used to predict lung cancer was 0.693 (sensitivity = 87.5%, specificity = 55.6%). The abundance of genus Streptococcus and Neisseria displayed an increasing trend whereas Staphylococcus and Dialister gradually declined from healthy to noncancerous to cancerous site. Collectively, lung cancer-associated microbiota profile is distinct from that found in healthy controls, and the altered cancer-associated microbiota is not restricted to tumor tissue. The genus Streptococcus was abundant in lung cancer patients and exhibited moderate classification potential. The gradual microbiota profile shift from healthy site to noncancerous to paired cancerous site suggested a change of the microenvironment associated with the development of lung cancer.
Collapse
Affiliation(s)
- Hai-Xia Liu
- Huadong Hospital Affiliated to Fudan University, No. 221, West Yan An Road, Shanghai, 200040, China
| | - Li-Li Tao
- UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX
| | - Jing Zhang
- Zhongshan Hospital Affiliated to Fudan University, No. 180, Feng Lin Road, Shanghai, 200032, China
| | - Ying-Gang Zhu
- Huadong Hospital Affiliated to Fudan University, No. 221, West Yan An Road, Shanghai, 200040, China
| | - Yu Zheng
- Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, No. 2000, Jiangyue Road, Shanghai, 200112, China
| | - Dong Liu
- Huadong Hospital Affiliated to Fudan University, No. 221, West Yan An Road, Shanghai, 200040, China
| | - Min Zhou
- Rui Jin Hospital, School of Medicine, Shanghai Jiaotong University, No. 197, Rui Jin Er Road, Shanghai, 200025, China
| | - Hui Ke
- Shanghai Pulmonary Hospital Affiliated to Tongji University, No. 507, Yangpu District, Zheng Min Road, Shanghai, 200433, China
| | - Meng-Meng Shi
- Rui Jin Hospital, School of Medicine, Shanghai Jiaotong University, No. 197, Rui Jin Er Road, Shanghai, 200025, China
| | - Jie-Ming Qu
- Huadong Hospital Affiliated to Fudan University, No. 221, West Yan An Road, Shanghai, 200040, China.,Rui Jin Hospital, School of Medicine, Shanghai Jiaotong University, No. 197, Rui Jin Er Road, Shanghai, 200025, China
| |
Collapse
|
489
|
Dicks N, Bohrer RC, Gutierrez K, Michalak M, Agellon LB, Bordignon V. Relief of endoplasmic reticulum stress enhances DNA damage repair and improves development of pre-implantation embryos. PLoS One 2017; 12:e0187717. [PMID: 29099865 PMCID: PMC5669469 DOI: 10.1371/journal.pone.0187717] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022] Open
Abstract
Early-cleaving embryos are known to have better capacity to reach the blastocyst stage and produce better quality embryos compared to late-cleaving embryos. To investigate the significance of endoplasmic reticulum (ER) stress on early embryo cleavage kinetics and development, porcine embryos produced in vitro were separated into early- and late-cleaving groups and then cultured in the absence or presence of the ER stress inhibitor tauroursodeoxycholic acid (TUDCA). Developing embryos were collected at days 3 to 7 of culture for assessment of ER stress status, incidence of DNA double-strand breaks (DSBs), development and total cell number. In the absence of TUDCA treatment, late-cleaving embryos exhibited ER stress, higher incidence of DNA DSBs, as well as reductions in development to the blastocyst stage and total embryo cell numbers. Treatment of late-cleaving embryos with TUDCA mitigated these effects and markedly improved embryo quality and development. These results demonstrate the importance of stress coping responses in early developing embryos, and that reduction of ER stress is a potential means to improve embryo quality and developmental competence.
Collapse
Affiliation(s)
- Naomi Dicks
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Rodrigo C. Bohrer
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Luis B. Agellon
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
- * E-mail: (VB); (LBA)
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
- * E-mail: (VB); (LBA)
| |
Collapse
|
490
|
Hall SR, Toulany J, Bennett LG, Martinez-Farina CF, Robertson AW, Jakeman DL, Goralski KB. Jadomycins Inhibit Type II Topoisomerases and Promote DNA Damage and Apoptosis in Multidrug-Resistant Triple-Negative Breast Cancer Cells. J Pharmacol Exp Ther 2017; 363:196-210. [PMID: 28904004 DOI: 10.1124/jpet.117.241125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/07/2017] [Indexed: 12/24/2022] Open
Abstract
Jadomycins are natural products that kill drug-sensitive and multidrug-resistant (MDR) breast cancer cells. To date, the cytotoxic activity of jadomycins has never been tested in MDR breast cancer cells that are also triple negative. Additionally, there is only a rudimentary understanding of how jadomycins cause cancer cell death, which includes the induction of intracellular reactive oxygen species (ROS). We first created a paclitaxel-resistant, triple-negative breast cancer cell line [paclitaxel-resistant MDA-MB-231 breast cancer cells (231-TXL)] from drug-sensitive control MDA-MB-231 cells (231-CON). Using thiazolyl blue methyltetrazolium bromide cell viability-measuring assays, jadomycins B, S, and F were found to be equipotent in drug-sensitive 231-CON and MDR 231-TXL cells; and using ROS-detecting assays, these jadomycins were determined to increase ROS activity in both cell lines by up to 7.3-fold. Jadomycins caused DNA double-strand breaks in 231-CON and 231-TXL cells as measured by γH2AX Western blotting. Coincubation with the antioxidant N-acetyl cysteine or pro-oxidant auranofin did not affect jadomycin-mediated DNA damage. Jadomycins induced apoptosis in 231-CON and 231-TXL cells as measured by annexin V affinity assays, a process that was retained when ROS were inhibited. This indicated that jadomycins are capable of inducing MDA-MB-231 apoptotic cell death independently of ROS activity. Using quantitative polymerase chain reaction, Western blotting, and direct topoisomerase inhibition assays, it was determined that jadomycins inhibit type II topoisomerases and that jadomycins B and F selectively poison topoisomerase IIβ We therefore propose novel mechanisms through which jadomycins induce breast cancer cell death independently of ROS activity, through inhibition or poisoning of type II topoisomerases and the induction of DNA damage and apoptosis.
Collapse
Affiliation(s)
- Steven R Hall
- Department of Pharmacology, Faculty of Medicine (S.R.H., K.B.G.), College of Pharmacy, Faculty of Health (J.T., L.G.B, D.L.J., K.B.G.), and Department of Chemistry, Faculty of Sciences (C.F.M.-F., A.W.R., D.L.J.), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jay Toulany
- Department of Pharmacology, Faculty of Medicine (S.R.H., K.B.G.), College of Pharmacy, Faculty of Health (J.T., L.G.B, D.L.J., K.B.G.), and Department of Chemistry, Faculty of Sciences (C.F.M.-F., A.W.R., D.L.J.), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Leah G Bennett
- Department of Pharmacology, Faculty of Medicine (S.R.H., K.B.G.), College of Pharmacy, Faculty of Health (J.T., L.G.B, D.L.J., K.B.G.), and Department of Chemistry, Faculty of Sciences (C.F.M.-F., A.W.R., D.L.J.), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Camilo F Martinez-Farina
- Department of Pharmacology, Faculty of Medicine (S.R.H., K.B.G.), College of Pharmacy, Faculty of Health (J.T., L.G.B, D.L.J., K.B.G.), and Department of Chemistry, Faculty of Sciences (C.F.M.-F., A.W.R., D.L.J.), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew W Robertson
- Department of Pharmacology, Faculty of Medicine (S.R.H., K.B.G.), College of Pharmacy, Faculty of Health (J.T., L.G.B, D.L.J., K.B.G.), and Department of Chemistry, Faculty of Sciences (C.F.M.-F., A.W.R., D.L.J.), Dalhousie University, Halifax, Nova Scotia, Canada
| | - David L Jakeman
- Department of Pharmacology, Faculty of Medicine (S.R.H., K.B.G.), College of Pharmacy, Faculty of Health (J.T., L.G.B, D.L.J., K.B.G.), and Department of Chemistry, Faculty of Sciences (C.F.M.-F., A.W.R., D.L.J.), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kerry B Goralski
- Department of Pharmacology, Faculty of Medicine (S.R.H., K.B.G.), College of Pharmacy, Faculty of Health (J.T., L.G.B, D.L.J., K.B.G.), and Department of Chemistry, Faculty of Sciences (C.F.M.-F., A.W.R., D.L.J.), Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
491
|
Khan FA, Ali SO. Physiological Roles of DNA Double-Strand Breaks. J Nucleic Acids 2017; 2017:6439169. [PMID: 29181194 PMCID: PMC5664317 DOI: 10.1155/2017/6439169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/24/2017] [Indexed: 12/20/2022] Open
Abstract
Genomic integrity is constantly threatened by sources of DNA damage, internal and external alike. Among the most cytotoxic lesions is the DNA double-strand break (DSB) which arises from the cleavage of both strands of the double helix. Cells boast a considerable set of defences to both prevent and repair these breaks and drugs which derail these processes represent an important category of anticancer therapeutics. And yet, bizarrely, cells deploy this very machinery for the intentional and calculated disruption of genomic integrity, harnessing potentially destructive DSBs in delicate genetic transactions. Under tight spatiotemporal regulation, DSBs serve as a tool for genetic modification, widely used across cellular biology to generate diverse functionalities, ranging from the fundamental upkeep of DNA replication, transcription, and the chromatin landscape to the diversification of immunity and the germline. Growing evidence points to a role of aberrant DSB physiology in human disease and an understanding of these processes may both inform the design of new therapeutic strategies and reduce off-target effects of existing drugs. Here, we review the wide-ranging roles of physiological DSBs and the emerging network of their multilateral regulation to consider how the cell is able to harness DNA breaks as a critical biochemical tool.
Collapse
Affiliation(s)
- Farhaan A. Khan
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| | - Syed O. Ali
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| |
Collapse
|
492
|
Haplotype analysis of XRCC2 gene polymorphisms and association with increased risk of head and neck cancer. Sci Rep 2017; 7:13210. [PMID: 29038438 PMCID: PMC5643489 DOI: 10.1038/s41598-017-13461-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 09/15/2017] [Indexed: 12/14/2022] Open
Abstract
We aimed to investigate the effect of hotspot variations of XRCC2 gene on the risk of head and neck cancer (HNC) in 400 patients and 400 controls. Five polymorphisms of XRCC2 gene G4234C (rs3218384), G4088T (rs3218373), G3063A (rs2040639), R188H (rs3218536) and rs7802034 were analyzed using Allele- specific polymerase chain reaction (ARMS-PCR) followed by sequence analysis. For rs3218373, the GG genotype indicated a statistically significant 3-fold increased risk of HNC (P < 0.001) after multivariate adjustment. For rs7802034, the GG genotype suggested statistically significant 2-fold increased risk of HNC (P < 0.001). For SNP of rs3218536, the AA genotype indicated a significant 3-fold increased risk of HNC (P < 0.001). Additionally, haplotype analysis revealed that TACAG, TGGAG, TACGG and TAGGA haplotypes of XRCC2 polymorphisms are associated with HNC risk. Two SNPs in XRCC2 (rs2040639 and rs3218384) were found increased in strong linkage disequilibrium. Furthermore, joint effect model showed 20 fold (OR = 19.89; 95% CI = 2.65–149.36, P = 0.003) increased HNC risk in patients carrying four homozygous risk alleles of selected polymorphisms. These results show that allele distributions and genotypes of XRCC2 SNPs are significantly associated with increased HNC risk and could be a genetic adjuster for the said disease.
Collapse
|
493
|
DNA-dependent protein kinase modulates the anti-cancer properties of silver nanoparticles in human cancer cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 824:32-41. [PMID: 29150048 DOI: 10.1016/j.mrgentox.2017.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
Abstract
Silver nanoparticles (Ag-np) were reported to be toxic to eukaryotic cells. These potentially detrimental effects of Ag-np can be advantageous in experimental therapeutics. They are currently being employed to enhance the therapeutic efficacy of cancer drugs. In this study, we demonstrate that Ag-np treatment trigger the activation of DNA-PKcs and JNK pathway at selected doses, presumably as a physiologic response to DNA damage and repair in normal and malignant cells. Ag-np altered the telomere dynamics by disrupting the shelterin complex located at the telomeres and telomere lengths. The genotoxic effect of Ag-np was not restricted to telomeres but the entire genome as Ag-np induced γ-H2AX foci formation, an indicator of global DNA damage. Inhibition of DNA-PKcs activity sensitised the cancer cells towards the cytotoxicity of Ag-np and substantiated the damaging effect of Ag-np at telomeres in human cancer cells. Abrogation of JNK mediated DNA repair and extensive damage of telomeres led to greater cell death following Ag-np treatment in DNA-PKcs inhibited cancer cells. Collectively, this study suggests that improved anti-proliferative and cytotoxic effects of Ag-np treatment in cancer cells can be achieved by the inhibition of DNA-PKcs.
Collapse
|
494
|
Holm KL, Syljuåsen RG, Hasvold G, Alsøe L, Nilsen H, Ivanauskiene K, Collas P, Shaposhnikov S, Collins A, Indrevær RL, Aukrust P, Fevang B, Blomhoff HK. TLR9 stimulation of B-cells induces transcription of p53 and prevents spontaneous and irradiation-induced cell death independent of DNA damage responses. Implications for Common variable immunodeficiency. PLoS One 2017; 12:e0185708. [PMID: 28973009 PMCID: PMC5626471 DOI: 10.1371/journal.pone.0185708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022] Open
Abstract
In the present study, we address the important issue of whether B-cells protected from irradiation-induced cell death, may survive with elevated levels of DNA damage. If so, such cells would be at higher risk of gaining mutations and undergoing malignant transformation. We show that stimulation of B-cells with the TLR9 ligands CpG-oligodeoxynucleotides (CpG-ODN) prevents spontaneous and irradiation-induced death of normal peripheral blood B-cells, and of B-cells from patients diagnosed with Common variable immunodeficiency (CVID). The TLR9-mediated survival is enhanced by the vitamin A metabolite retinoic acid (RA). Importantly, neither stimulation of B-cells via TLR9 alone or with RA increases irradiation-induced DNA strand breaks and DNA damage responses such as activation of ATM and DNA-PKcs. We prove that elevated levels of γH2AX imposed by irradiation of stimulated B-cells is not due to induction of DNA double strand breaks, but merely reflects increased levels of total H2AX upon stimulation. Interestingly however, we unexpectedly find that TLR9 stimulation of B-cells induces low amounts of inactive p53, explained by transcriptional induction of TP53. Taken together, we show that enhanced survival of irradiated B-cells is not accompanied by elevated levels of DNA damage. Our results imply that TLR9-mediated activation of B-cells not only promotes cell survival, but may via p53 provide cells with a barrier against harmful consequences of enhanced activation and proliferation. As CVID-derived B-cells are more radiosensitive and prone to undergo apoptosis than normal B-cells, our data support treatment of CVID patients with CpG-ODN and RA.
Collapse
Affiliation(s)
- Kristine Lillebø Holm
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Randi Gussgard Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Grete Hasvold
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Lene Alsøe
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Kristina Ivanauskiene
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sergey Shaposhnikov
- Comet Biotech AS, Norgenotech AS, Oslo, Norway
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Andrew Collins
- Comet Biotech AS, Norgenotech AS, Oslo, Norway
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Randi Larsen Indrevær
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Børre Fevang
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Heidi Kiil Blomhoff
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
495
|
Asselin-Labat ML, Rampersad R, Xu X, Ritchie ME, Michalski J, Huang L, Onaitis MW. High-LET Radiation Increases Tumor Progression in a K-Ras-Driven Model of Lung Adenocarcinoma. Radiat Res 2017; 188:562-570. [PMID: 28952911 DOI: 10.1667/rr14794.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
High-linear energy transfer (LET) radiation encountered by astronauts in space generates clustered DNA damage that is potentially oncogenic. Analysis of the impact of exposure to space radiation on cancer formation is necessary to determine the best ways to prepare astronauts for space travel so they are protected for the duration of the space mission. A mouse model of lung adenocarcinoma driven by oncogenic K-Ras was used to ascertain the effect of low- and high-LET radiation on tumor formation. We observed increased tumor progression and tumor cell proliferation after single dose or fractionated high-LET doses, which was not observed in mice exposed to low-LET radiation. Location of the tumor nodules was not affected by radiation, indicating that the cell of origin of K-Ras-driven tumors was the same in irradiated or nonirradiated mice. Gene expression analysis revealed an upregulation of genes involved in cell proliferation and DNA damage repair. This study provides evidence that exposure to a single dose or fractionated doses of high-LET radiation induces molecular and cellular changes that accelerate lung tumor growth.
Collapse
Affiliation(s)
- Marie-Liesse Asselin-Labat
- a University California San Diego, Moores Cancer Center, La Jolla, California.,b ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,d Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Rishi Rampersad
- f Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Xia Xu
- f Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Matthew E Ritchie
- c Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,e School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Jacob Michalski
- f Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Lingling Huang
- f Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Mark W Onaitis
- a University California San Diego, Moores Cancer Center, La Jolla, California.,f Department of Surgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
496
|
Alessio N, Esposito G, Galano G, De Rosa R, Anello P, Peluso G, Tabocchini MA, Galderisi U. Irradiation of Mesenchymal Stromal Cells With Low and High Doses of Alpha Particles Induces Senescence and/or Apoptosis. J Cell Biochem 2017; 118:2993-3002. [PMID: 28252222 DOI: 10.1002/jcb.25961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/28/2017] [Indexed: 12/25/2022]
Abstract
The use of high-linear energy transfer charged particles is gaining attention as a medical tool because of the emission of radiations with an efficient cell-killing ability. Considerable interest has developed in the use of targeted alpha-particle therapy for the treatment of micrometastases. Moreover, the use of helium beams is gaining momentum, especially for treating pediatric tumors. We analyzed the effects of alpha particles on bone marrow mesenchymal stromal cells (MSCs), which have a subpopulation of stem cells capable of generating adipocytes, chondrocytes, and osteocytes. Further, these cells contribute toward maintenance of homeostasis in the body. MSCs were irradiated with low and high doses of alpha particles or X-rays and a comparative biological analysis was performed. At a low dose (40 mGy), alpha particles exhibited a limited negative effect on the biology of MSCs compared with X-rays. No significant perturbation of cell cycle was observed, and a minimal increase in apoptosis or senescence was detected. Self-renewal was preserved as revealed by the CFU assay. On the contrary, with 2000 mGy alpha particles, we observed adverse effects on the vitality, functionality, and stemness of MSCs. These results are the consequence of different proportion of cells targeted by alpha particles or X-rays and the quality of induced DNA damage. The present study suggests that radiotherapy with alpha particles may spare healthy stem cells more efficaciously than X-ray treatments, an observation that should be taken into consideration by physicians while planning irradiation of tumor areas close to stem cell niches, such as bone marrow. J. Cell. Biochem. 118: 2993-3002, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Esposito
- Technology and Health Department, National Institute of Health, Rome, Italy
- National Institute of Nuclear Physics, Section Roma 1, Rome, Italy
| | - Giovanni Galano
- PSI Napoli Est - Laboratory UO, ASL Napoli 1 Centro, Naples, Italy
| | - Roberto De Rosa
- PSI Napoli Est - Radiology UO, ASL Napoli 1 Centro, Naples, Italy
| | - Pasquale Anello
- Technology and Health Department, National Institute of Health, Rome, Italy
| | - Gianfranco Peluso
- Institute of Agro-Environmental Biology and Forestry (IBAF), CNR, Naples, Italy
| | - Maria Antonella Tabocchini
- Technology and Health Department, National Institute of Health, Rome, Italy
- National Institute of Nuclear Physics, Section Roma 1, Rome, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
- Institute of Agro-Environmental Biology and Forestry (IBAF), CNR, Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
497
|
Mao M, Liu Y, Gao X. Feedback autophagy activation as a key resistance factor of Ku-0060648 in colorectal cancer cells. Biochem Biophys Res Commun 2017; 490:1244-1249. [DOI: 10.1016/j.bbrc.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/01/2017] [Indexed: 01/04/2023]
|
498
|
CDCA2 promotes lung adenocarcinoma cell proliferation and predicts poor survival in lung adenocarcinoma patients. Oncotarget 2017; 8:19768-19779. [PMID: 28423619 PMCID: PMC5386720 DOI: 10.18632/oncotarget.15519] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 01/10/2017] [Indexed: 12/01/2022] Open
Abstract
Cell division cycle associated 2(CDCA2) is overexpressed in neuroblastoma and oral squamous cell carcinoma, and its overexpression positively correlates to tumor progression. However, the biological and clinical significance of CDCA2 in lung adenocarcinoma(LAC) has never been investigated. We determined the expression profile and clinical significance of CDCA2 using The Cancer Genome Atlas(TCGA) and tissue microarray(TMA). Furthermore, we explored the biological function of CDCA2 both in vitro and in vivo. A great upregulation of CDCA2 was observed in LAC tissues compared with adjacent normal tissues. Importantly, Cox regression analysis indicated that high level of CDCA2 was an independent risk factor for overall survival(OS) in LAC patients (TCGA: HR = 1.720, p = 0.004; TMA: HR = 1.971, p = 0.023). Inhibition of CDCA2 suppressed the proliferation of LAC cells via G1 phase arrest by downregulating cyclin E1(CCNE1), while overexpression of CDCA2 promoted LAC cells proliferation by upregulating CCNE1. Moreover, the oncogenic activity of CDCA2 was also confirmed in vivo. In conclusion, CDCA2 promotes proliferation of LAC cells and predicts poor prognosis in LAC patients. CDCA2 might play a significant role in LAC progression.
Collapse
|
499
|
Hershman JM, France B, Hon K, Damoiseaux R. Direct quantification of gamma H2AX by cell-based high throughput screening for evaluation of genotoxicity of pesticides in a human thyroid cell lines. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:522-528. [PMID: 28640454 PMCID: PMC6550478 DOI: 10.1002/em.22103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 06/01/2023]
Abstract
Genotoxicity is thought to be the cause of many cancers. Genotoxicity due to environmental toxins may be partly responsible for the dramatic increase in the incidence of papillary thyroid cancer over the past two decades. Here, we present a fully automatable assay platform that directly quantifies the phosphorylation of nuclear histone gamma H2AX (γH2AX), a specific cellular marker for DNA double strand breaks (DSBs) via immunohistochemistry and laser scanning cytometry. It multiplexes γH2AX with total cell number measured as propidium iodide and calculates the percentage of cells with DSBs. Validation of this assay using NTHY-ori-3-1 human thyroid cells and etoposide showed that it was an excellent choice for high throughput applications. We used the assay to test the genotoxic effects of the EPA Toxcast Phase 1 pesticide library of 309 compounds. Compounds were evaluated in dose response and the DSB was quantified. We found that 19 pesticides induce DSB in vitro, highlighting a need to further assess these pesticides for their long-term oncogenic effects on the thyroid gland. Environ. Mol. Mutagen. 58:522-528, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jerome M. Hershman
- West Los Angeles VA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Bryan France
- University of California Los Angeles, California NanoSystems Institute, Los Angeles, California
| | - Kevin Hon
- West Los Angeles VA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Robert Damoiseaux
- Department of Medicinal and Molecular Pharmacology, California Nano Systems Institute, Los Angeles, California
| |
Collapse
|
500
|
Safari-Alighiarloo N, Taghizadeh M, Tabatabaei SM, Shahsavari S, Namaki S, Khodakarim S, Rezaei-Tavirani M. Identification of new key genes for type 1 diabetes through construction and analysis of protein-protein interaction networks based on blood and pancreatic islet transcriptomes. J Diabetes 2017; 9:764-777. [PMID: 27625010 DOI: 10.1111/1753-0407.12483] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/17/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic β-cells are destroyed by infiltrating immune cells. Bilateral cooperation of pancreatic β-cells and immune cells has been proposed in the progression of T1D, but as yet no systems study has investigated this possibility. The aims of the study were to elucidate the underlying molecular mechanisms and identify key genes associated with T1D risk using a network biology approach. METHODS Interactome (protein-protein interaction [PPI]) and transcriptome data were integrated to construct networks of differentially expressed genes in peripheral blood mononuclear cells (PBMCs) and pancreatic β-cells. Centrality, modularity, and clique analyses of networks were used to get more meaningful biological information. RESULTS Analysis of genes expression profiles revealed several cytokines and chemokines in β-cells and their receptors in PBMCs, which is supports the dialogue between these two tissues in terms of PPIs. Functional modules and complexes analysis unraveled most significant biological pathways such as immune response, apoptosis, spliceosome, proteasome, and pathways of protein synthesis in the tissues. Finally, Y-box binding protein 1 (YBX1), SRSF protein kinase 1 (SRPK1), proteasome subunit alpha1/ 3, (PSMA1/3), X-ray repair cross complementing 6 (XRCC6), Cbl proto-oncogene (CBL), SRC proto-oncogene, non-receptor tyrosine kinase (SRC), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), phospholipase C gamma 1 (PLCG1), SHC adaptor protein1 (SHC1) and ubiquitin conjugating enzyme E2 N (UBE2N) were identified as key markers that were hub-bottleneck genes involved in functional modules and complexes. CONCLUSIONS This study provide new insights into network biomarkers that may be considered potential therapeutic targets.
Collapse
Affiliation(s)
- Nahid Safari-Alighiarloo
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadeh
- Bioinformatics Department, Institute of Biochemistry and Biophysics, Tehran University, Tehran, Iran
| | - Seyyed Mohammad Tabatabaei
- Medical Informatics Department, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soodeh Shahsavari
- Biostatistics Department, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Namaki
- Department of Immunology, Faculty of Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Khodakarim
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|