451
|
Du Y, Cai T, Li T, Xue P, Zhou B, He X, Wei P, Liu P, Yang F, Wei T. Lysine malonylation is elevated in type 2 diabetic mouse models and enriched in metabolic associated proteins. Mol Cell Proteomics 2014; 14:227-36. [PMID: 25418362 DOI: 10.1074/mcp.m114.041947] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protein lysine malonylation, a newly identified protein post-translational modification (PTM), has been proved to be evolutionarily conserved and is present in both eukaryotic and prokaryotic cells. However, its potential roles associated with human diseases remain largely unknown. In the present study, we observed an elevated lysine malonylation in a screening of seven lysine acylations in liver tissues of db/db mice, which is a typical model of type 2 diabetes. We also detected an elevated lysine malonylation in ob/ob mice, which is another model of type 2 diabetes. We then performed affinity enrichment coupled with proteomic analysis on liver tissues of both wild-type (wt) and db/db mice and identified a total of 573 malonylated lysine sites from 268 proteins. There were more malonylated lysine sites and proteins in db/db than in wt mice. Five proteins with elevated malonylation were verified by immunoprecipitation coupled with Western blot analysis. Bioinformatic analysis of the proteomic results revealed the enrichment of malonylated proteins in metabolic pathways, especially those involved in glucose and fatty acid metabolism. In addition, the biological role of lysine malonylation was validated in an enzyme of the glycolysis pathway. Together, our findings support a potential role of protein lysine malonylation in type 2 diabetes with possible implications for its therapy in the future.
Collapse
Affiliation(s)
- Yipeng Du
- From the ‡National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tanxi Cai
- §Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; ‖University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Li
- ¶Department of Biomedical Informatics, Peking University Health Science Center, Beijing 100191, China
| | - Peng Xue
- §Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Zhou
- From the ‡National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; ‖University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong He
- From the ‡National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; ‖University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Wei
- From the ‡National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; ‖University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingsheng Liu
- From the ‡National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuquan Yang
- §Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Taotao Wei
- From the ‡National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
452
|
Kebede AF, Schneider R, Daujat S. Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest. FEBS J 2014; 282:1658-74. [DOI: 10.1111/febs.13047] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Adam F. Kebede
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; CNRS UMR 7104 - Inserm U964; Université de Strasbourg; Illkirch France
| | - Robert Schneider
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; CNRS UMR 7104 - Inserm U964; Université de Strasbourg; Illkirch France
| | - Sylvain Daujat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; CNRS UMR 7104 - Inserm U964; Université de Strasbourg; Illkirch France
| |
Collapse
|
453
|
The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 2014; 15:536-50. [PMID: 25053359 DOI: 10.1038/nrm3841] [Citation(s) in RCA: 1028] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation, implicating it in many biological processes through the regulation of protein interactions, activity and localization. In addition, proteins are frequently modified by other types of acylations, such as formylation, butyrylation, propionylation, succinylation, malonylation, myristoylation, glutarylation and crotonylation. The intricate link between lysine acylation and cellular metabolism has been clarified by the occurrence of several such metabolite-sensitive acylations and their selective removal by sirtuin deacylases. These emerging findings point to new functions for different lysine acylations and deacylating enzymes and also highlight the mechanisms by which acetylation regulates various cellular processes.
Collapse
|
454
|
Xu G, Wang J, Wu Z, Qian L, Dai L, Wan X, Tan M, Zhao Y, Wu Y. SAHA regulates histone acetylation, Butyrylation, and protein expression in neuroblastoma. J Proteome Res 2014; 13:4211-9. [PMID: 25160476 DOI: 10.1021/pr500497e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Emerging evidence suggests that suberoylanilide hydroxamic acid (SAHA), a clinically approved HDAC inhibitor for cutaneous T-cell lymphoma, shows promising clinical benefits in neuroblastoma, the most common extra cranial solid neoplasm with limited choice of therapeutic intervention. However, the molecular mechanism under which the compound exerts its antitumor effect remains elusive. Here we report a quantitative proteomics study that determines changes of protein expression, histone lysine acetylation, and butyrylation in response to SAHA treatment. We detected and quantified 28 histone lysine acetylation and 18 histone lysine butyrylation marks, most of which are dramatically induced by SAHA. Importantly, we identified 11 histone Kbu sites as novel histone marks in human cells. Furthermore, quantitative proteomic analysis identified 5426 proteins, among which 510 proteins were up-regulated and 508 proteins were down-regulated (significant p value <0.05). The subsequent bioinformatics analysis identified distinct SAHA-response gene ontology (GO) categories and signaling pathways, including cellular metabolism and DNA-dependent pathways. Our study therefore reveals new histone epigenetic marks and offers key insights into the molecular mechanism by which SAHA regulates proteomic changes in neuroblastoma cells and identifies biomarker candidates for SAHA.
Collapse
Affiliation(s)
- Guofeng Xu
- Pediatric Surgery Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , 1650 Kongjiang Road, Shanghai 200092, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
455
|
Papanicolaou KN, O'Rourke B, Foster DB. Metabolism leaves its mark on the powerhouse: recent progress in post-translational modifications of lysine in mitochondria. Front Physiol 2014; 5:301. [PMID: 25228883 PMCID: PMC4151196 DOI: 10.3389/fphys.2014.00301] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/23/2014] [Indexed: 12/31/2022] Open
Abstract
Lysine modifications have been studied extensively in the nucleus, where they play pivotal roles in gene regulation and constitute one of the pillars of epigenetics. In the cytoplasm, they are critical to proteostasis. However, in the last decade we have also witnessed the emergence of mitochondria as a prime locus for post-translational modification (PTM) of lysine thanks, in large measure, to evolving proteomic techniques. Here, we review recent work on evolving set of PTM that arise from the direct reaction of lysine residues with energized metabolic thioester-coenzyme A intermediates, including acetylation, succinylation, malonylation, and glutarylation. We highlight the evolutionary conservation, kinetics, stoichiometry, and cross-talk between members of this emerging family of PTMs. We examine the impact on target protein function and regulation by mitochondrial sirtuins. Finally, we spotlight work in the heart and cardiac mitochondria, and consider the roles acetylation and other newly-found modifications may play in heart disease.
Collapse
Affiliation(s)
- Kyriakos N Papanicolaou
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
456
|
Xu YM, Du JY, Lau ATY. Posttranslational modifications of human histone H3: an update. Proteomics 2014; 14:2047-60. [PMID: 25044606 DOI: 10.1002/pmic.201300435] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 05/30/2014] [Accepted: 07/04/2014] [Indexed: 02/05/2023]
Abstract
Histone proteins, the fundamental components of chromatin, are highly conserved proteins that present in eukaryotic nuclei. They organize genomic DNA to form nucleosomes, the basic units of chromatin. PTMs of histones play essential roles in many biological processes, such as chromatin condensation, gene expression, cell differentiation, and apoptosis. With the advancement of proteomic technology, a growing number of histone PTMs have been identified, including ADP-ribosylation, biotinylation, citrullination, crotonylation, O-GlcNAcylation, glutathionylation, succinylation, and so on. Because of the fast growing list of these PTMs in just a few years, the functions of these marks are being studied intensively. As histone H3 has the most number of PTMs among the histone members, in this review, we would like to present the overall concepts of the more familiar PTMs as well as discussing all the recently identified yet less well-known PTMs on human histone H3.
Collapse
Affiliation(s)
- Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, P. R. China
| | | | | |
Collapse
|
457
|
Pougovkina O, Te Brinke H, Wanders RJA, Houten SM, de Boer VCJ. Aberrant protein acylation is a common observation in inborn errors of acyl-CoA metabolism. J Inherit Metab Dis 2014; 37:709-14. [PMID: 24531926 DOI: 10.1007/s10545-014-9684-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
Abstract
Inherited disorders of acyl-CoA metabolism, such as defects in amino acid metabolism and fatty acid oxidation can present with severe clinical symptoms either neonatally or later in life, but the pathophysiological mechanisms are often incompletely understood. We now report the discovery of a novel biochemical mechanism that could contribute to the pathophysiology of these disorders. We identified increased protein lysine butyrylation in short-chain acyl-CoA dehydrogenase (SCAD) deficient mice as a result of the accumulation of butyryl-CoA. Similarly, in SCAD deficient fibroblasts, lysine butyrylation was increased. Furthermore, malonyl-CoA decarboxylase (MCD) deficient patient cells had increased levels of malonylated lysines and propionyl-CoA carboxylase (PCC) deficient patient cells had increased propionylation of lysines. Since lysine acylation can greatly impact protein function, aberrant lysine acylation in inherited disorders associated with acyl-CoA accumulation may well play a role in their disease pathophysiology.
Collapse
Affiliation(s)
- Olga Pougovkina
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
458
|
Sidoli S, Schwämmle V, Ruminowicz C, Hansen TA, Wu X, Helin K, Jensen ON. Middle-down hybrid chromatography/tandem mass spectrometry workflow for characterization of combinatorial post-translational modifications in histones. Proteomics 2014; 14:2200-11. [DOI: 10.1002/pmic.201400084] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/19/2014] [Accepted: 07/24/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Simone Sidoli
- Department of Biochemistry and Molecular Biology; Centre for Epigenetics, University of Southern Denmark; Odense M Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology; Centre for Epigenetics, University of Southern Denmark; Odense M Denmark
| | - Chrystian Ruminowicz
- Department of Biochemistry and Molecular Biology; Centre for Epigenetics, University of Southern Denmark; Odense M Denmark
| | - Thomas A. Hansen
- Department of Biochemistry and Molecular Biology; Centre for Epigenetics, University of Southern Denmark; Odense M Denmark
| | - Xudong Wu
- Biotech Research and Innovation Centre; Centre for Epigenetics, University of Copenhagen; Copenhagen Denmark
- Department of Cell Biology; Tianjin Medical University; Tianjin P. R. China
| | - Kristian Helin
- Biotech Research and Innovation Centre; Centre for Epigenetics, University of Copenhagen; Copenhagen Denmark
| | - Ole N. Jensen
- Department of Biochemistry and Molecular Biology; Centre for Epigenetics, University of Southern Denmark; Odense M Denmark
- Biotech Research and Innovation Centre; Centre for Epigenetics, University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
459
|
Roessler C, Nowak T, Pannek M, Gertz M, Nguyen GTT, Scharfe M, Born I, Sippl W, Steegborn C, Schutkowski M. Chemical probing of the human sirtuin 5 active site reveals its substrate acyl specificity and peptide-based inhibitors. Angew Chem Int Ed Engl 2014; 53:10728-32. [PMID: 25111069 DOI: 10.1002/anie.201402679] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 11/12/2022]
Abstract
Sirtuins are NAD(+)-dependent deacetylases acting as sensors in metabolic pathways and stress response. In mammals there are seven isoforms. The mitochondrial sirtuin 5 is a weak deacetylase but a very efficient demalonylase and desuccinylase; however, its substrate acyl specificity has not been systematically analyzed. Herein, we investigated a carbamoyl phosphate synthetase 1 derived peptide substrate and modified the lysine side chain systematically to determine the acyl specificity of Sirt5. From that point we designed six potent peptide-based inhibitors that interact with the NAD(+) binding pocket. To characterize the interaction details causing the different substrate and inhibition properties we report several X-ray crystal structures of Sirt5 complexed with these peptides. Our results reveal the Sirt5 acyl selectivity and its molecular basis and enable the design of inhibitors for Sirt5.
Collapse
Affiliation(s)
- Claudia Roessler
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle/Saale (Germany)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
460
|
Roessler C, Nowak T, Pannek M, Gertz M, Nguyen GTT, Scharfe M, Born I, Sippl W, Steegborn C, Schutkowski M. Chemical Probing of the Human Sirtuin 5 Active Site Reveals Its Substrate Acyl Specificity and Peptide-Based Inhibitors. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
461
|
Marmorstein R, Zhou MM. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 2014; 6:a018762. [PMID: 24984779 DOI: 10.1101/cshperspect.a018762] [Citation(s) in RCA: 427] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone acetylation marks are written by histone acetyltransferases (HATs) and read by bromodomains (BrDs), and less commonly by other protein modules. These proteins regulate many transcription-mediated biological processes, and their aberrant activities are correlated with several human diseases. Consequently, small molecule HAT and BrD inhibitors with therapeutic potential have been developed. Structural and biochemical studies of HATs and BrDs have revealed that HATs fall into distinct subfamilies containing a structurally related core for cofactor binding, but divergent flanking regions for substrate-specific binding, catalysis, and autoregulation. BrDs adopt a conserved left-handed four-helix bundle to recognize acetyllysine; divergent loop residues contribute to substrate-specific acetyllysine recognition.
Collapse
Affiliation(s)
- Ronen Marmorstein
- Program in Gene Expression and Regulation, Wistar Institute, and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10065
| |
Collapse
|
462
|
Okanishi H, Kim K, Masui R, Kuramitsu S. Lysine propionylation is a prevalent post-translational modification in Thermus thermophilus. Mol Cell Proteomics 2014; 13:2382-98. [PMID: 24938286 DOI: 10.1074/mcp.m113.035659] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies of protein post-translational modifications revealed that various types of lysine acylation occur in eukaryotic and bacterial proteins. Lysine propionylation, a newly discovered type of acylation, occurs in several proteins, including some histones. In this study, we identified 361 propionylation sites in 183 mid-exponential phase and late stationary phase proteins from Thermus thermophilus HB8, an extremely thermophilic eubacterium. Functional classification of the propionylproteins revealed that the number of propionylation sites in metabolic enzymes increased in late stationary phase, irrespective of protein abundance. The propionylation sites on proteins expressed in mid-exponential and late stationary phases partially overlapped. Furthermore, amino acid frequencies in the vicinity of propionylation sites differed, not only between the two growth phases but also relative to acetylation sites. In addition, 33.8% of mid-exponential phase-specific and 80.0% of late stationary phase-specific propionylations (n ≥ 2) implied that specific mechanisms regulate propionylation in the cell. Moreover, the limited degree of overlap between lysine propionylation (36.8%) and acetylation (49.2%) sites in 67 proteins that were both acetylated and propionylated strongly suggested that the two acylation reactions are regulated separately by specific enzymes and may serve different functions. Finally, we also found that eight propionylation sites overlapped with acetylation sites critical for protein functions such as Schiff-base formation and ligand binding.
Collapse
Affiliation(s)
- Hiroki Okanishi
- From the *Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Kwang Kim
- From the *Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ryoji Masui
- From the *Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Seiki Kuramitsu
- From the *Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
463
|
Tang H, Fang H, Yin E, Brasier AR, Sowers LC, Zhang K. Multiplexed parallel reaction monitoring targeting histone modifications on the QExactive mass spectrometer. Anal Chem 2014; 86:5526-34. [PMID: 24823915 DOI: 10.1021/ac500972x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Histone acetylation and methylation play an important role in the regulation of gene expression. Irregular patterns of histone global acetylation and methylation have frequently been seen in various diseases. Quantitative analysis of these patterns is of high value for the evaluation of disease development and of outcomes from therapeutic treatment. Targeting histone acetylation and methylation by selected reaction monitoring (SRM) is one of the current quantitative methods. Here, we reported the use of the multiplexed parallel reaction monitoring (PRM) method on the QExactive mass spectrometer to target previously known lysine acetylation and methylation sites of histone H3 and H4 for the purpose of establishing precursor-product pairs for SRM. 55 modified peptides among which 29 were H3 K27/K36 modified peptides were detected from 24 targeted precursor ions included in the inclusion list. The identification was carried out directly from the trypsin digests of core histones that were separated without derivatization on a homemade capillary column packed with Waters YMC ODS-AQ reversed phase materials. Besides documenting the higher-energy c-trap dissociation (HCD) MS(2) spectra of previously known histone H3/H4 acetylated and methylated tryptic peptides, we identified novel H3 K18 methylation, H3 K27 monomethyl/acetyl duel modifications, H2B K23 acetylation, and H4 K20 acetylation in mammalian histones. The information gained from these experiments sets the foundation for quantification of histone modifications by targeted mass spectrometry methods directly from core histone samples.
Collapse
Affiliation(s)
- Hui Tang
- Department of Pharmacology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | | | | | | | | | | |
Collapse
|
464
|
Structural basis for the site-specific incorporation of lysine derivatives into proteins. PLoS One 2014; 9:e96198. [PMID: 24760130 PMCID: PMC3997565 DOI: 10.1371/journal.pone.0096198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/03/2014] [Indexed: 01/05/2023] Open
Abstract
Posttranslational modifications (PTMs) of proteins determine their structure-function relationships, interaction partners, as well as their fate in the cell and are crucial for many cellular key processes. For instance chromatin structure and hence gene expression is epigenetically regulated by acetylation or methylation of lysine residues in histones, a phenomenon known as the ‘histone code’. Recently it was shown that these lysine residues can furthermore be malonylated, succinylated, butyrylated, propionylated and crotonylated, resulting in significant alteration of gene expression patterns. However the functional implications of these PTMs, which only differ marginally in their chemical structure, is not yet understood. Therefore generation of proteins containing these modified amino acids site specifically is an important tool. In the last decade methods for the translational incorporation of non-natural amino acids using orthogonal aminoacyl-tRNA synthetase (aaRS):tRNAaaCUA pairs were developed. A number of studies show that aaRS can be evolved to use non-natural amino acids and expand the genetic code. Nevertheless the wild type pyrrolysyl-tRNA synthetase (PylRS) from Methanosarcina mazei readily accepts a number of lysine derivatives as substrates. This enzyme can further be engineered by mutagenesis to utilize a range of non-natural amino acids. Here we present structural data on the wild type enzyme in complex with adenylated ε-N-alkynyl-, ε-N-butyryl-, ε-N-crotonyl- and ε-N-propionyl-lysine providing insights into the plasticity of the PylRS active site. This shows that given certain key features in the non-natural amino acid to be incorporated, directed evolution of this enzyme is not necessary for substrate tolerance.
Collapse
|
465
|
Gray VE, Liu L, Nirankari R, Hornbeck PV, Kumar S. Signatures of natural selection on mutations of residues with multiple posttranslational modifications. Mol Biol Evol 2014; 31:1641-5. [PMID: 24739307 DOI: 10.1093/molbev/msu137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Posttranslational modifications (PTMs) regulate molecular structures and functions of proteins by covalently binding to amino acids. Hundreds of thousands of PTMs have been reported for the human proteome, with multiple PTMs known to affect tens of thousands of lysine (K) residues. Our molecular evolutionary analyses show that K residues with multiple PTMs exhibit greater conservation than those with a single PTM, but the difference is rather small. In contrast, short-term evolutionary trends revealed in an analysis of human population variation exhibited a much larger difference. Lysine residues with three PTMs show 1.8-fold enrichment of Mendelian disease-associated variants when compared with K residues with two PTMs, with the latter showing 1.7-fold enrichment of these variants when compared with the K residues with one PTM. Rare polymorphisms in humans show a similar trend, which suggests much greater negative selection against mutations of K residues with multiple PTMs within population. Conversely, common polymorphisms are overabundant at unmodified K residues and at K residues with fewer PTMs. The observed difference between inter- and intraspecies patterns of purifying selection on residues with PTMs suggests extensive species-specific drifting of PTM positions. These results suggest that the functionality of a protein is likely conserved, without necessarily conserving the PTM positions over evolutionary time.
Collapse
Affiliation(s)
- Vanessa E Gray
- Center for Evolutionary Medicine and Informatics, Biodesign Institute, Arizona State University
| | - Li Liu
- Center for Evolutionary Medicine and Informatics, Biodesign Institute, Arizona State University
| | - Ronika Nirankari
- Center for Evolutionary Medicine and Informatics, Biodesign Institute, Arizona State University
| | | | - Sudhir Kumar
- Center for Evolutionary Medicine and Informatics, Biodesign Institute, Arizona State UniversitySchool of Life Sciences, Arizona State UniversityCenter for Genomic Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
466
|
Lanouette S, Mongeon V, Figeys D, Couture JF. The functional diversity of protein lysine methylation. Mol Syst Biol 2014; 10:724. [PMID: 24714364 PMCID: PMC4023394 DOI: 10.1002/msb.134974] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Large‐scale characterization of post‐translational modifications (PTMs), such as phosphorylation, acetylation and ubiquitination, has highlighted their importance in the regulation of a myriad of signaling events. While high‐throughput technologies have tremendously helped cataloguing the proteins modified by these PTMs, the identification of lysine‐methylated proteins, a PTM involving the transfer of one, two or three methyl groups to the ε‐amine of a lysine side chain, has lagged behind. While the initial findings were focused on the methylation of histone proteins, several studies have recently identified novel non‐histone lysine‐methylated proteins. This review provides a compilation of all lysine methylation sites reported to date. We also present key examples showing the impact of lysine methylation and discuss the circuitries wired by this important PTM.
Collapse
Affiliation(s)
- Sylvain Lanouette
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | | | | | | |
Collapse
|
467
|
Tan M, Peng C, Anderson KA, Chhoy P, Xie Z, Dai L, Park J, Chen Y, Huang H, Zhang Y, Ro J, Wagner GR, Green MF, Madsen AS, Schmiesing J, Peterson BS, Xu G, Ilkayeva OR, Muehlbauer MJ, Braulke T, Mühlhausen C, Backos DS, Olsen CA, McGuire PJ, Pletcher SD, Lombard DB, Hirschey MD, Zhao Y. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab 2014; 19:605-17. [PMID: 24703693 PMCID: PMC4108075 DOI: 10.1016/j.cmet.2014.03.014] [Citation(s) in RCA: 612] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 11/17/2013] [Accepted: 01/27/2014] [Indexed: 01/20/2023]
Abstract
We report the identification and characterization of a five-carbon protein posttranslational modification (PTM) called lysine glutarylation (Kglu). This protein modification was detected by immunoblot and mass spectrometry (MS), and then comprehensively validated by chemical and biochemical methods. We demonstrated that the previously annotated deacetylase, sirtuin 5 (SIRT5), is a lysine deglutarylase. Proteome-wide analysis identified 683 Kglu sites in 191 proteins and showed that Kglu is highly enriched on metabolic enzymes and mitochondrial proteins. We validated carbamoyl phosphate synthase 1 (CPS1), the rate-limiting enzyme in urea cycle, as a glutarylated protein and demonstrated that CPS1 is targeted by SIRT5 for deglutarylation. We further showed that glutarylation suppresses CPS1 enzymatic activity in cell lines, mice, and a model of glutaric acidemia type I disease, the last of which has elevated glutaric acid and glutaryl-CoA. This study expands the landscape of lysine acyl modifications and increases our understanding of the deacylase SIRT5.
Collapse
Affiliation(s)
- Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Chao Peng
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Kristin A Anderson
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Medicine, Duke University Medical Center, Durham, NC 27704, USA
| | - Peter Chhoy
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Medicine, Duke University Medical Center, Durham, NC 27704, USA
| | - Zhongyu Xie
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Lunzhi Dai
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Jeongsoon Park
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Chen
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - He Huang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Yi Zhang
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Jennifer Ro
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gregory R Wagner
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Medicine, Duke University Medical Center, Durham, NC 27704, USA
| | - Michelle F Green
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Medicine, Duke University Medical Center, Durham, NC 27704, USA
| | - Andreas S Madsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Jessica Schmiesing
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Brett S Peterson
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Medicine, Duke University Medical Center, Durham, NC 27704, USA
| | - Guofeng Xu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Medicine, Duke University Medical Center, Durham, NC 27704, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Medicine, Duke University Medical Center, Durham, NC 27704, USA
| | - Thomas Braulke
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Chris Mühlhausen
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Donald S Backos
- Computational Chemistry and Biology Core Facility, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christian A Olsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Peter J McGuire
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - David B Lombard
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew D Hirschey
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Medicine, Duke University Medical Center, Durham, NC 27704, USA.
| | - Yingming Zhao
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
468
|
Dai L, Peng C, Montellier E, Lu Z, Chen Y, Ishii H, Debernardi A, Buchou T, Rousseaux S, Jin F, Sabari BR, Deng Z, Allis CD, Ren B, Khochbin S, Zhao Y. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nat Chem Biol 2014; 10:365-70. [PMID: 24681537 DOI: 10.1038/nchembio.1497] [Citation(s) in RCA: 336] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 03/05/2014] [Indexed: 12/15/2022]
Abstract
We report the identification of a new type of histone mark, lysine 2-hydroxyisobutyrylation (Khib), and identify the mark at 63 human and mouse histone Khib sites, including 27 unique lysine sites that are not known to be modified by lysine acetylation (Kac) and lysine crotonylation (Kcr). This histone mark was initially identified by MS and then validated by chemical and biochemical methods. Histone Khib shows distinct genomic distributions from histone Kac or histone Kcr during male germ cell differentiation. Using chromatin immunoprecipitation sequencing, gene expression analysis and immunodetection, we show that in male germ cells, H4K8hib is associated with active gene transcription in meiotic and post-meiotic cells. In addition, H4K8ac-associated genes are included in and constitute only a subfraction of H4K8hib-labeled genes. The histone Khib mark is conserved and widely distributed, has high stoichiometry and induces a large structural change. These findings suggest its critical role on the regulation of chromatin functions.
Collapse
Affiliation(s)
- Lunzhi Dai
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Chao Peng
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Emilie Montellier
- INSERM, U823, Université Joseph Fourier-Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche, France
| | - Zhike Lu
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Yue Chen
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Haruhiko Ishii
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California-San Diego School of Medicine, La Jolla, California, USA
| | - Alexandra Debernardi
- INSERM, U823, Université Joseph Fourier-Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche, France
| | - Thierry Buchou
- INSERM, U823, Université Joseph Fourier-Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche, France
| | - Sophie Rousseaux
- INSERM, U823, Université Joseph Fourier-Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche, France
| | - Fulai Jin
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California-San Diego School of Medicine, La Jolla, California, USA
| | - Benjamin R Sabari
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York, USA
| | - Zhiyou Deng
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California-San Diego School of Medicine, La Jolla, California, USA
| | - Saadi Khochbin
- INSERM, U823, Université Joseph Fourier-Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche, France
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
469
|
Soldi M, Bremang M, Bonaldi T. Biochemical systems approaches for the analysis of histone modification readout. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:657-68. [PMID: 24681439 DOI: 10.1016/j.bbagrm.2014.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/06/2014] [Accepted: 03/18/2014] [Indexed: 11/28/2022]
Abstract
Chromatin is the macromolecular nucleoprotein complex that governs the organization of genetic material in the nucleus of eukaryotic cells. In chromatin, DNA is packed with histone proteins into nucleosomes. Core histones are prototypes of hyper-modified proteins, being decorated by a large number of site-specific reversible and irreversible post-translational modifications (PTMs), which contribute to the maintenance and modulation of chromatin plasticity, gene activation, and a variety of other biological processes and disease states. The observations of the variety, frequency and co-occurrence of histone modifications in distinct patterns at specific genomic loci have led to the idea that hPTMs can create a molecular barcode, read by effector proteins that translate it into a specific transcriptional state, or process, on the underlying DNA. However, despite the fact that this histone-code hypothesis was proposed more than 10 years ago, the molecular details of its working mechanisms are only partially characterized. In particular, two questions deserve specific investigation: how the different modifications associate and synergize into patterns and how these PTM configurations are read and translated by multi-protein complexes into a specific functional outcome on the genome. Mass spectrometry (MS) has emerged as a versatile tool to investigate chromatin biology, useful for both identifying and validating hPTMs, and to dissect the molecular determinants of histone modification readout systems. We review here the MS techniques and the proteomics methods that have been developed to address these fundamental questions in epigenetics research, emphasizing approaches based on the proteomic dissection of distinct native chromatin regions, with a critical evaluation of their present challenges and future potential. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Monica Soldi
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Michael Bremang
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
470
|
Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:627-43. [PMID: 24631868 DOI: 10.1016/j.bbagrm.2014.03.001] [Citation(s) in RCA: 499] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/14/2014] [Accepted: 03/04/2014] [Indexed: 01/10/2023]
Abstract
A major mechanism regulating the accessibility and function of eukaryotic genomes are the covalent modifications to DNA and histone proteins that dependably package our genetic information inside the nucleus of every cell. Formally postulated over a decade ago, it is becoming increasingly clear that post-translational modifications (PTMs) on histones act singly and in combination to form a language or 'code' that is read by specialized proteins to facilitate downstream functions in chromatin. Underappreciated at the time was the level of complexity harbored both within histone PTMs and their combinations, as well as within the proteins that read and interpret the language. In addition to histone PTMs, newly-identified DNA modifications that can recruit specific effector proteins have raised further awareness that histone PTMs operate within a broader language of epigenetic modifications to orchestrate the dynamic functions associated with chromatin. Here, we highlight key recent advances in our understanding of the epigenetic language encompassing histone and DNA modifications and foreshadow challenges that lie ahead as we continue our quest to decipher the fundamental mechanisms of chromatin regulation. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Scott B Rothbart
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian D Strahl
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
471
|
Comparison of protein acetyltransferase action of CRTAase with the prototypes of HAT. ScientificWorldJournal 2014; 2014:578956. [PMID: 24688408 PMCID: PMC3932232 DOI: 10.1155/2014/578956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 12/04/2013] [Indexed: 12/21/2022] Open
Abstract
Our laboratory is credited for the discovery of enzymatic acetylation of protein, a phenomenon unknown till we identified an enzyme termed acetoxy drug: protein transacetylase (TAase), catalyzing the transfer of acetyl group from polyphenolic acetates to receptor proteins (RP). Later, TAase was identified as calreticulin (CR), an endoplasmic reticulum luminal protein. CR was termed calreticulin transacetylase (CRTAase). Our persistent study revealed that CR like other families of histone acetyltransferases (HATs) such as p300, Rtt109, PCAF, and ESA1, undergoes autoacetylation. The autoacetylated CR was characterized as a stable intermediate in CRTAase catalyzed protein acetylation, and similar was the case with ESA1. The autoacetylation of CR like that of HATs was found to enhance protein-protein interaction. CR like HAT-1, CBP, and p300 mediated the acylation of RP utilizing acetyl CoA and propionyl CoA as the substrates. The similarities between CRTAase and HATs in mediating protein acylation are highlighted in this review.
Collapse
|
472
|
Abstract
Post-translational modifications of histones comprise an important part of epigenetic gene regulation. Mass spectrometry and immunochemical techniques are currently the methods of choice for identification and quantitation of known and novel histone modifications. While peptide-centric mass spectrometry is a well-established tool for identification and quantification of histone modifications, recent technological advances have allowed discrete modification patterns to be assessed on intact histones. Chromatin immunoprecipitation assays (ChIP and ChIP-on-chip) are currently gaining tremendous popularity and are used to explore gene-specific patterns of histone modifications on a genomic scale. In this review, we introduce the basic concepts and recent developments of mass spectrometry, as well as immunochemical techniques and their applications in the analysis of histone modifications.
Collapse
Affiliation(s)
- Morten Beck Trelle
- University of Southern Denmark, Center for Epigenetics & Department of Molecular Biology & Biochemistry, Odense M, Denmark.
| | | |
Collapse
|
473
|
Schutkowski M, Fischer F, Roessler C, Steegborn C. New assays and approaches for discovery and design of Sirtuin modulators. Expert Opin Drug Discov 2014; 9:183-99. [DOI: 10.1517/17460441.2014.875526] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
474
|
Kato Y. The formation of lipid hydroperoxide-derived amide-type lysine adducts on proteins: a review of current knowledge. Subcell Biochem 2014; 77:21-39. [PMID: 24374915 DOI: 10.1007/978-94-007-7920-4_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lipid peroxidation is an important biological reaction. In particular, polyunsaturated fatty acid (PUFA) can be oxidized easily. Peroxidized lipids often react with other amines accompanied by the formation of various covalent adducts. Novel amide-type lipid-lysine adducts have been identified from an in vitro reaction mixture of lipid hydroperoxide with a protein, biological tissues exposed to conditions of oxidative stress and human urine from a healthy person. In this chapter, the current knowledge of amide type adducts is reviewed with a focus on the evaluation of functional foods and diseases with a history of discovery of hexanoyl-lysine (HEL). Although there is extensive research on HEL and other amide-type adducts, the mechanism of generation of the amide bond remains unclear. We have found that the decomposed aldehyde plus peroxide combined with a lysine moiety does not fully explain the formation of the amide-type lipid-lysine adduct that is generated by lipid hydroperoxide. Singlet oxygen or an excited state of the ketone generated from the lipid hydroperoxide may also contribute to the formation of the amide linkage. The amide-adducts may prove useful not only for the detection of oxidative stress induced by disease but also for the estimation of damage caused by an excess intake of PUFA.
Collapse
Affiliation(s)
- Yoji Kato
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan,
| |
Collapse
|
475
|
Beltrao P, Bork P, Krogan NJ, van Noort V. Evolution and functional cross-talk of protein post-translational modifications. Mol Syst Biol 2013; 9:714. [PMID: 24366814 PMCID: PMC4019982 DOI: 10.1002/msb.201304521] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 12/19/2022] Open
Abstract
Protein post-translational modifications (PTMs) allow the cell to regulate protein activity and play a crucial role in the response to changes in external conditions or internal states. Advances in mass spectrometry now enable proteome wide characterization of PTMs and have revealed a broad functional role for a range of different types of modifications. Here we review advances in the study of the evolution and function of PTMs that were spurred by these technological improvements. We provide an overview of studies focusing on the origin and evolution of regulatory enzymes as well as the evolutionary dynamics of modification sites. Finally, we discuss different mechanisms of altering protein activity via post-translational regulation and progress made in the large-scale functional characterization of PTM function.
Collapse
Affiliation(s)
- Pedro Beltrao
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)CambridgeUK
| | - Peer Bork
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Max‐Delbruck‐Centre for Molecular MedicineBerlin‐BuchGermany
| | - Nevan J. Krogan
- Department of Cellular and Molecular PharmacologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- California Institute for Quantitative BiosciencesSan FranciscoCaliforniaUSA
- J. David Gladstone InstitutesSan FranciscoCaliforniaUSA
| | - Vera van Noort
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
476
|
Olsen CA. An update on lysine deacylases targeting the expanding "acylome". ChemMedChem 2013; 9:434-7. [PMID: 24375937 DOI: 10.1002/cmdc.201300421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Indexed: 11/12/2022]
Abstract
Lysine ε-amino acetylation has long been recognized as an epigenetically relevant post-translational modification of multiple residues in histone proteins. However, it has become clear that lysine acetylation is not restricted to histones, and therefore, it may be involved in the regulation of a wide variety of proteins, some of which have been identified and studied in detail. More recently, post-translational modifications of lysine side chains by additional acyl groups have also been identified, and some of these appear to be regulated by histone deacetylases (HDACs) and/or sirtuins. In this Concept, new developments are discussed with emphasis on the enzymes that have been shown to catalyze the cleavage of these novel marks, including new assays and inhibitors. Ultimately, a deeper understand of these mechanisms should facilitate the development of ligands with therapeutic potential.
Collapse
Affiliation(s)
- Christian A Olsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kongens Lyngby, 2800 (Denmark).
| |
Collapse
|
477
|
Karch KR, Denizio JE, Black BE, Garcia BA. Identification and interrogation of combinatorial histone modifications. Front Genet 2013; 4:264. [PMID: 24391660 PMCID: PMC3868920 DOI: 10.3389/fgene.2013.00264] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/15/2013] [Indexed: 11/13/2022] Open
Abstract
Histone proteins are dynamically modified to mediate a variety of cellular processes including gene transcription, DNA damage repair, and apoptosis. Regulation of these processes occurs through the recruitment of non-histone proteins to chromatin by specific combinations of histone post-translational modifications (PTMs). Mass spectrometry has emerged as an essential tool to discover and quantify histone PTMs both within and between samples in an unbiased manner. Developments in mass spectrometry that allow for characterization of large histone peptides or intact protein has made it possible to determine which modifications occur simultaneously on a single histone polypeptide. A variety of techniques from biochemistry, biophysics, and chemical biology have been employed to determine the biological relevance of discovered combinatorial codes. This review first describes advancements in the field of mass spectrometry that have facilitated histone PTM analysis and then covers notable approaches to probe the biological relevance of these modifications in their nucleosomal context.
Collapse
Affiliation(s)
- Kelly R Karch
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Jamie E Denizio
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Ben E Black
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
478
|
Moradian A, Kalli A, Sweredoski MJ, Hess S. The top-down, middle-down, and bottom-up mass spectrometry approaches for characterization of histone variants and their post-translational modifications. Proteomics 2013; 14:489-97. [DOI: 10.1002/pmic.201300256] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/30/2013] [Accepted: 08/15/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Annie Moradian
- Proteome Exploration Laboratory; Beckman Institute; California Institute of Technology; Pasadena CA USA
| | - Anastasia Kalli
- Department of Pathology and Laboratory Medicine; Children's Hospital Los Angeles; Los Angeles CA USA
| | - Michael J. Sweredoski
- Proteome Exploration Laboratory; Beckman Institute; California Institute of Technology; Pasadena CA USA
| | - Sonja Hess
- Proteome Exploration Laboratory; Beckman Institute; California Institute of Technology; Pasadena CA USA
| |
Collapse
|
479
|
Zhang J, Proulx C, Tomberg A, Lubell WD. Multicomponent Diversity-Oriented Synthesis of Aza-Lysine-Peptide Mimics. Org Lett 2013; 16:298-301. [DOI: 10.1021/ol403297v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jinqiang Zhang
- Département de Chimie, Université de Montréal, C.P.
6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Caroline Proulx
- Département de Chimie, Université de Montréal, C.P.
6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Anna Tomberg
- Département de Chimie, Université de Montréal, C.P.
6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - William D. Lubell
- Département de Chimie, Université de Montréal, C.P.
6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
480
|
Nardelli SC, Che FY, Silmon de Monerri NC, Xiao H, Nieves E, Madrid-Aliste C, Angel SO, Sullivan WJ, Angeletti RH, Kim K, Weiss LM. The histone code of Toxoplasma gondii comprises conserved and unique posttranslational modifications. mBio 2013. [PMID: 24327343 DOI: 10.128/mbio.00922013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
UNLABELLED Epigenetic gene regulation has emerged as a major mechanism for gene regulation in all eukaryotes. Histones are small, basic proteins that constitute the major protein component of chromatin, and posttranslational modifications (PTM) of histones are essential for epigenetic gene regulation. The different combinations of histone PTM form the histone code for an organism, marking functional units of chromatin that recruit macromolecular complexes that govern chromatin structure and regulate gene expression. To characterize the repertoire of Toxoplasma gondii histone PTM, we enriched histones using standard acid extraction protocols and analyzed them with several complementary middle-down and bottom-up proteomic approaches with the high-resolution Orbitrap mass spectrometer using collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), and/or electron transfer dissociation (ETD) fragmentation. We identified 249 peptides with unique combinations of PTM that comprise the T. gondii histone code. T. gondii histones share a high degree of sequence conservation with human histones, and many modifications are conserved between these species. In addition, T. gondii histones have unique modifications not previously identified in other species. Finally, T. gondii histones are modified by succinylation, propionylation, and formylation, recently described histone PTM that have not previously been identified in parasitic protozoa. The characterization of the T. gondii histone code will facilitate in-depth analysis of how epigenetic regulation affects gene expression in pathogenic apicomplexan parasites and identify a new model system for elucidating the biological functions of novel histone PTM. IMPORTANCE Toxoplasma gondii is among the most common parasitic infections in humans. The transition between the different stages of the T. gondii life cycle are essential for parasite virulence and survival. These differentiation events are accompanied by significant changes in gene expression, and the control mechanisms for these transitions have not been elucidated. Important mechanisms that are involved in the control of gene expression are the epigenetic modifications that have been identified in several eukaryotes. T. gondii has a full complement of histone-modifying enzymes, histones, and variants. In this paper, we identify over a hundred PTM and a full repertoire of PTM combinations for T. gondii histones, providing the first large-scale characterization of the T. gondii histone code and an essential initial step for understanding how epigenetic modifications affect gene expression and other processes in this organism.
Collapse
Affiliation(s)
- Sheila C Nardelli
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
481
|
The histone code of Toxoplasma gondii comprises conserved and unique posttranslational modifications. mBio 2013; 4:e00922-13. [PMID: 24327343 PMCID: PMC3870261 DOI: 10.1128/mbio.00922-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epigenetic gene regulation has emerged as a major mechanism for gene regulation in all eukaryotes. Histones are small, basic proteins that constitute the major protein component of chromatin, and posttranslational modifications (PTM) of histones are essential for epigenetic gene regulation. The different combinations of histone PTM form the histone code for an organism, marking functional units of chromatin that recruit macromolecular complexes that govern chromatin structure and regulate gene expression. To characterize the repertoire of Toxoplasma gondii histone PTM, we enriched histones using standard acid extraction protocols and analyzed them with several complementary middle-down and bottom-up proteomic approaches with the high-resolution Orbitrap mass spectrometer using collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), and/or electron transfer dissociation (ETD) fragmentation. We identified 249 peptides with unique combinations of PTM that comprise the T. gondii histone code. T. gondii histones share a high degree of sequence conservation with human histones, and many modifications are conserved between these species. In addition, T. gondii histones have unique modifications not previously identified in other species. Finally, T. gondii histones are modified by succinylation, propionylation, and formylation, recently described histone PTM that have not previously been identified in parasitic protozoa. The characterization of the T. gondii histone code will facilitate in-depth analysis of how epigenetic regulation affects gene expression in pathogenic apicomplexan parasites and identify a new model system for elucidating the biological functions of novel histone PTM. Toxoplasma gondii is among the most common parasitic infections in humans. The transition between the different stages of the T. gondii life cycle are essential for parasite virulence and survival. These differentiation events are accompanied by significant changes in gene expression, and the control mechanisms for these transitions have not been elucidated. Important mechanisms that are involved in the control of gene expression are the epigenetic modifications that have been identified in several eukaryotes. T. gondii has a full complement of histone-modifying enzymes, histones, and variants. In this paper, we identify over a hundred PTM and a full repertoire of PTM combinations for T. gondii histones, providing the first large-scale characterization of the T. gondii histone code and an essential initial step for understanding how epigenetic modifications affect gene expression and other processes in this organism.
Collapse
|
482
|
Lee S. Post-translational modification of proteins in toxicological research: focus on lysine acylation. Toxicol Res 2013; 29:81-6. [PMID: 24278632 PMCID: PMC3834447 DOI: 10.5487/tr.2013.29.2.081] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/03/2013] [Accepted: 06/07/2013] [Indexed: 01/01/2023] Open
Abstract
Toxicoproteomics integrates the proteomic knowledge into toxicology by enabling protein quantification in biofluids and tissues, thus taking toxicological research to the next level. Post-translational modification (PTM) alters the three-dimensional (3D) structure of proteins by covalently binding small molecules to them and therefore represents a major protein function diversification mechanism. Because of the crucial roles PTM plays in biological systems, the identification of novel PTMs and study of the role of PTMs are gaining much attention in proteomics research. Of the 300 known PTMs, protein acylation, including lysine formylation, acetylation, propionylation, butyrylation, malonylation, succinylation, and crotonylation, regulates the crucial functions of many eukaryotic proteins involved in cellular metabolism, cell cycle, aging, growth, angiogenesis, and cancer. Here, I reviewed recent studies regarding novel types of lysine acylation, their biological functions, and their applicationsin toxicoproteomics research.
Collapse
Affiliation(s)
- Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
483
|
Liu Z, Wang Y, Gao T, Pan Z, Cheng H, Yang Q, Cheng Z, Guo A, Ren J, Xue Y. CPLM: a database of protein lysine modifications. Nucleic Acids Res 2013; 42:D531-6. [PMID: 24214993 PMCID: PMC3964993 DOI: 10.1093/nar/gkt1093] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We reported an integrated database of Compendium of Protein Lysine Modifications (CPLM; http://cplm.biocuckoo.org) for protein lysine modifications (PLMs), which occur at active ε-amino groups of specific lysine residues in proteins and are critical for orchestrating various biological processes. The CPLM database was updated from our previously developed database of Compendium of Protein Lysine Acetylation (CPLA), which contained 7151 lysine acetylation sites in 3311 proteins. Here, we manually collected experimentally identified substrates and sites for 12 types of PLMs, including acetylation, ubiquitination, sumoylation, methylation, butyrylation, crotonylation, glycation, malonylation, phosphoglycerylation, propionylation, succinylation and pupylation. In total, the CPLM database contained 203,972 modification events on 189,919 modified lysines in 45,748 proteins for 122 species. With the dataset, we totally identified 76 types of co-occurrences of various PLMs on the same lysine residues, and the most abundant PLM crosstalk is between acetylation and ubiquitination. Up to 53.5% of acetylation and 33.1% of ubiquitination events co-occur at 10 746 lysine sites. Thus, the various PLM crosstalks suggested that a considerable proportion of lysines were competitively and dynamically regulated in a complicated manner. Taken together, the CPLM database can serve as a useful resource for further research of PLMs.
Collapse
Affiliation(s)
- Zexian Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, China and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
484
|
Ethanol metabolism modifies hepatic protein acylation in mice. PLoS One 2013; 8:e75868. [PMID: 24073283 PMCID: PMC3779192 DOI: 10.1371/journal.pone.0075868] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/22/2013] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial protein acetylation increases in response to chronic ethanol ingestion in mice, and is thought to reduce mitochondrial function and contribute to the pathogenesis of alcoholic liver disease. The mitochondrial deacetylase SIRT3 regulates the acetylation status of several mitochondrial proteins, including those involved in ethanol metabolism. The newly discovered desuccinylase activity of the mitochondrial sirtuin SIRT5 suggests that protein succinylation could be an important post-translational modification regulating mitochondrial metabolism. To assess the possible role of protein succinylation in ethanol metabolism, we surveyed hepatic sub-cellular protein fractions from mice fed a control or ethanol-supplemented diet for succinyl-lysine, as well as acetyl-, propionyl-, and butyryl-lysine post-translational modifications. We found mitochondrial protein propionylation increases, similar to mitochondrial protein acetylation. In contrast, mitochondrial protein succinylation is reduced. These mitochondrial protein modifications appear to be primarily driven by ethanol metabolism, and not by changes in mitochondrial sirtuin levels. Similar trends in acyl modifications were observed in the nucleus. However, comparatively fewer acyl modifications were observed in the cytoplasmic or the microsomal compartments, and were generally unchanged by ethanol metabolism. Using a mass spectrometry proteomics approach, we identified several candidate acetylated, propionylated, and succinylated proteins, which were enriched using antibodies against each modification. Additionally, we identified several acetyl and propionyl lysine residues on the same sites for a number of proteins and supports the idea of the overlapping nature of lysine-specific acylation. Thus, we show that novel post-translational modifications are present in hepatic mitochondrial, nuclear, cytoplasmic, and microsomal compartments and ethanol ingestion, and its associated metabolism, induce specific changes in these acyl modifications. These data suggest that protein acylation, beyond protein acetylation, contributes to the overall metabolic regulatory network and could play an important role in the pathogenesis of alcoholic liver disease.
Collapse
|
485
|
Feldman JL, Baeza J, Denu JM. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem 2013; 288:31350-6. [PMID: 24052263 DOI: 10.1074/jbc.c113.511261] [Citation(s) in RCA: 517] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mammalian sirtuins (SIRT1 through SIRT7) are members of a highly conserved family of NAD(+)-dependent protein deacetylases that function in metabolism, genome maintenance, and stress responses. Emerging evidence suggests that some sirtuins display substrate specificity toward other acyl groups attached to the lysine ε-amine. SIRT6 was recently reported to preferentially hydrolyze long-chain fatty acyl groups over acetyl groups. Here we investigated the catalytic ability of all sirtuins to hydrolyze 13 different acyl groups from histone H3 peptides, ranging in carbon length, saturation, and chemical diversity. We find that long-chain deacylation is a general feature of mammalian sirtuins, that SIRT1 and SIRT2 act as efficient decrotonylases, and that SIRT1, SIRT2, SIRT3, and SIRT4 can remove lipoic acid. These results provide new insight into sirtuin function and a means for cellular removal of an expanding list of endogenous lysine modifications. Given that SIRT6 is a poor deacetylase in vitro, but binds and prefers to hydrolyze long-chain acylated peptides, we hypothesize that binding of certain free fatty acids (FFAs) could stimulate deacetylation activity. Indeed, we demonstrate that several biologically relevant FFAs (including myristic, oleic, and linoleic acids) at physiological concentrations induce up to a 35-fold increase in catalytic efficiency of SIRT6 but not SIRT1. The activation mechanism is consistent with fatty acid inducing a conformation that binds acetylated H3 with greater affinity. Binding of long-chain FFA and myristoylated H3 peptide is mutually exclusive. We discuss the implications of discovering endogenous, small-molecule activators of SIRT6.
Collapse
|
486
|
SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 2013; 50:919-30. [PMID: 23806337 DOI: 10.1016/j.molcel.2013.06.001] [Citation(s) in RCA: 751] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/19/2013] [Accepted: 06/04/2013] [Indexed: 12/31/2022]
Abstract
Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylome, identifying 2,565 succinylation sites on 779 proteins. Most of these do not overlap with acetylation sites, suggesting differential regulation of succinylation and acetylation. Our analysis reveals potential impacts of lysine succinylation on enzymes involved in mitochondrial metabolism; e.g., amino acid degradation, the tricarboxylic acid cycle (TCA) cycle, and fatty acid metabolism. Lysine succinylation is also present on cytosolic and nuclear proteins; indeed, we show that a substantial fraction of SIRT5 is extramitochondrial. SIRT5 represses biochemical activity of, and cellular respiration through, two protein complexes identified in our analysis, pyruvate dehydrogenase complex and succinate dehydrogenase. Our data reveal widespread roles for lysine succinylation in regulating metabolism and potentially other cellular functions.
Collapse
|
487
|
Lee YJ, Wu B, Raymond JE, Zeng Y, Fang X, Wooley KL, Liu WR. A genetically encoded acrylamide functionality. ACS Chem Biol 2013; 8:1664-70. [PMID: 23735044 DOI: 10.1021/cb400267m] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nε-Acryloyl-l-lysine, a noncanonical amino acid with an electron deficient olefin, is genetically encoded in Escherichia coli using a pyrrolysyl-tRNA synthetase mutant in coordination with tRNACUAPyl. The acrylamide moiety is stable in cells, whereas it is active enough to perform a diverse set of unique reactions for protein modifications in vitro. These reactions include 1,4-addition, radical polymerization, and 1,3-dipolar cycloaddition. We demonstrate that a protein incorporated with Nε-acryloyl-l-lysine is efficiently modified with thiol-containing nucleophiles at slightly alkali conditions, and the acrylamide moiety also allows rapid radical copolymerization of the same protein into a polyacrylamide hydrogel at physiological pH. At physiological conditions, the acrylamide functionality undergoes a fast 1,3-dipolar cycloaddition reaction with diaryl nitrile imine to show turn-on fluorescence. We have used this observation to demonstrate site-specific fluorescent labeling of proteins incorporated with Nε-acryloyl-l-lysine both in vitro and in living cells. This critical development allows easy access to an array of modified proteins for applications where high specificity and reaction efficiency are needed.
Collapse
Affiliation(s)
- Yan-Jiun Lee
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Bo Wu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jeffrey E. Raymond
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yu Zeng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xinqiang Fang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Karen L. Wooley
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe R. Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
488
|
Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 2013; 4:842-51. [PMID: 23954790 DOI: 10.1016/j.celrep.2013.07.024] [Citation(s) in RCA: 586] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/08/2013] [Accepted: 07/23/2013] [Indexed: 12/17/2022] Open
Abstract
Recent studies have shown that lysines can be posttranslationally modified by various types of acylations. However, except for acetylation, very little is known about their scope and cellular distribution. We mapped thousands of succinylation sites in bacteria (E. coli), yeast (S. cerevisiae), human (HeLa) cells, and mouse liver tissue, demonstrating widespread succinylation in diverse organisms. A majority of succinylation sites in bacteria, yeast, and mouse liver were acetylated at the same position. Quantitative analysis of succinylation in yeast showed that succinylation was globally altered by growth conditions and mutations that affected succinyl-coenzyme A (succinyl-CoA) metabolism in the tricarboxylic acid cycle, indicating that succinylation levels are globally affected by succinyl-CoA concentration. We preferentially detected succinylation on abundant proteins, suggesting that succinylation occurs at a low level and that many succinylation sites remain unidentified. These data provide a systems-wide view of succinylation and its dynamic regulation and show its extensive overlap with acetylation.
Collapse
|
489
|
Britton LMP, Newhart A, Bhanu NV, Sridharan R, Gonzales-Cope M, Plath K, Janicki SM, Garcia BA. Initial characterization of histone H3 serine 10 O-acetylation. Epigenetics 2013; 8:1101-13. [PMID: 23949383 DOI: 10.4161/epi.26025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In eukaryotic organisms, histone posttranslational modifications (PTMs) are indispensable for their role in maintaining cellular physiology, often through their mediation of chromatin-related processes such as transcription. Targeted investigations of this ever expanding network of chemical moieties continue to reveal genetic, biochemical, and cellular nuances of this complex landscape. In this study, we present our findings on a novel class of histone PTMs: Serine, Threonine, and Tyrosine O-acetylation. We have combined highly sensitive nano-LC-MS/MS experiments and immunodetection assays to identify and validate these unique marks found only on histone H3. Mass spectrometry experiments have determined that several of these O-acetylation marks are conserved in many species, ranging from yeast to human. Additionally, our investigations reveal that histone H3 serine 10 acetylation (H3S10ac) is potentially linked to cell cycle progression and cellular pluripotency. Here, we provide a glimpse into the functional implications of this H3-specific histone mark, which may be of high value for further studies of chromatin.
Collapse
Affiliation(s)
- Laura-Mae P Britton
- Department of Molecular Biology; Princeton University; Princeton, NJ USA; Epigenetics Program; Department of Biochemistry and Biophysics; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Alyshia Newhart
- Molecular and Cellular Oncogenesis Program; The Wistar Institute; Philadelphia, PA USA
| | - Natarajan V Bhanu
- Epigenetics Program; Department of Biochemistry and Biophysics; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Rupa Sridharan
- University of California Los Angeles; David Geffen School of Medicine; Department of Biological Chemistry; Jonsson Comprehensive Cancer Center; Molecular Biology Institute; Bioinformatics Interdepartmental Degree Program; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research; Los Angeles, CA USA; Current affiliation: Wisconsin Institute for Discovery; Department of Cell and Regenerative Biology; University of Wisconsin; Madison, WI USA
| | - Michelle Gonzales-Cope
- Department of Molecular Biology; Princeton University; Princeton, NJ USA; Epigenetics Program; Department of Biochemistry and Biophysics; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Kathrin Plath
- University of California Los Angeles; David Geffen School of Medicine; Department of Biological Chemistry; Jonsson Comprehensive Cancer Center; Molecular Biology Institute; Bioinformatics Interdepartmental Degree Program; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research; Los Angeles, CA USA
| | - Susan M Janicki
- Molecular and Cellular Oncogenesis Program; The Wistar Institute; Philadelphia, PA USA
| | - Benjamin A Garcia
- Epigenetics Program; Department of Biochemistry and Biophysics; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
490
|
Arnaudo AM, Garcia BA. Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin 2013; 6:24. [PMID: 23916056 PMCID: PMC3737111 DOI: 10.1186/1756-8935-6-24] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/01/2013] [Indexed: 11/10/2022] Open
Abstract
Histone post-translational modifications (PTMs) have been linked to a variety of biological processes and disease states, thus making their characterization a critical field of study. In the last 5 years, a number of novel sites and types of modifications have been discovered, greatly expanding the histone code. Mass spectrometric methods are essential for finding and validating histone PTMs. Additionally, novel proteomic, genomic and chemical biology tools have been developed to probe PTM function. In this snapshot review, proteomic tools for PTM identification and characterization will be discussed and an overview of PTMs found in the last 5 years will be provided.
Collapse
Affiliation(s)
- Anna M Arnaudo
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine University of Pennsylvania, 1009C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
491
|
Cao C, Yudin Y, Bikard Y, Chen W, Liu T, Li H, Jendrossek D, Cohen A, Pavlov E, Rohacs T, Zakharian E. Polyester modification of the mammalian TRPM8 channel protein: implications for structure and function. Cell Rep 2013; 4:302-315. [PMID: 23850286 DOI: 10.1016/j.celrep.2013.06.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/01/2013] [Accepted: 06/18/2013] [Indexed: 12/18/2022] Open
Abstract
The TRPM8 ion channel is expressed in sensory neurons and is responsible for sensing environmental cues, such as cold temperatures and chemical compounds, including menthol and icilin. The channel functional activity is regulated by various physical and chemical factors and is likely to be preconditioned by its molecular composition. Our studies indicate that the TRPM8 channel forms a structural-functional complex with the polyester poly-(R)-3-hydroxybutyrate (PHB). We identified by mass spectrometry a number of PHB-modified peptides in the N terminus of the TRPM8 protein and in its extracellular S3-S4 linker. Removal of PHB by enzymatic hydrolysis and site-directed mutagenesis of both the serine residues that serve as covalent anchors for PHB and adjacent hydrophobic residues that interact with the methyl groups of the polymer resulted in significant inhibition of TRPM8 channel activity. We conclude that the TRPM8 channel undergoes posttranslational modification by PHB and that this modification is required for its normal function.
Collapse
Affiliation(s)
- Chike Cao
- New Jersey Medical School, UMDNJ, Department of Pharmacology and Physiology, 185 South Orange Avenue, MSB H626, Newark NJ 07103, USA
| | - Yevgen Yudin
- New Jersey Medical School, UMDNJ, Department of Pharmacology and Physiology, 185 South Orange Avenue, MSB H626, Newark NJ 07103, USA
| | - Yann Bikard
- New Jersey Medical School, UMDNJ, Department of Pharmacology and Physiology, 185 South Orange Avenue, MSB H626, Newark NJ 07103, USA
| | - Wei Chen
- New Jersey Medical School Cancer Center - UMDNJ, Center for Advanced Proteomics Research, Building F1105, 205 South Orange Avenue, Newark, NJ 07103 USA
| | - Tong Liu
- New Jersey Medical School Cancer Center - UMDNJ, Center for Advanced Proteomics Research, Building F1105, 205 South Orange Avenue, Newark, NJ 07103 USA
| | - Hong Li
- New Jersey Medical School Cancer Center - UMDNJ, Center for Advanced Proteomics Research, Building F1105, 205 South Orange Avenue, Newark, NJ 07103 USA
| | - Dieter Jendrossek
- Universität Stuttgart Zentrum für Bioverfahrenstechnik Institut für Mikrobiologie, Allmandring 31, 70569 Stuttgart, Germany
| | - Alejandro Cohen
- Dalhousie University, Proteomics Core Facility, Clinical Research Centre, Room C-304 5849 University Avenue, PO Box 15000, Halifax, NS, B3H 4R2 Canada
| | - Evgeny Pavlov
- Dalhousie University, Department of Physiology and Biophysics Faculty of Medicine, Sir Charles Tupper Medical Building, Halifax, Room 5G, 5850 College St., Halifax, NS, B3H 4R2 Canada
| | - Tibor Rohacs
- New Jersey Medical School, UMDNJ, Department of Pharmacology and Physiology, 185 South Orange Avenue, MSB H626, Newark NJ 07103, USA
| | - Eleonora Zakharian
- New Jersey Medical School, UMDNJ, Department of Pharmacology and Physiology, 185 South Orange Avenue, MSB H626, Newark NJ 07103, USA
- University of Illinois College of Medicine, Department of Cancer Biology and Pharmacology, 1 Illini Drive, Peoria, IL 61605, USA
| |
Collapse
|
492
|
Li F, Xu W, Zhao S. Regulatory Roles of Metabolites in Cell Signaling Networks. J Genet Genomics 2013; 40:367-74. [DOI: 10.1016/j.jgg.2013.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 05/21/2013] [Accepted: 05/21/2013] [Indexed: 10/26/2022]
|
493
|
Ryšlavá H, Doubnerová V, Kavan D, Vaněk O. Effect of posttranslational modifications on enzyme function and assembly. J Proteomics 2013; 92:80-109. [PMID: 23603109 DOI: 10.1016/j.jprot.2013.03.025] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 12/22/2022]
Abstract
The detailed examination of enzyme molecules by mass spectrometry and other techniques continues to identify hundreds of distinct PTMs. Recently, global analyses of enzymes using methods of contemporary proteomics revealed widespread distribution of PTMs on many key enzymes distributed in all cellular compartments. Critically, patterns of multiple enzymatic and nonenzymatic PTMs within a single enzyme are now functionally evaluated providing a holistic picture of a macromolecule interacting with low molecular mass compounds, some of them being substrates, enzyme regulators, or activated precursors for enzymatic and nonenzymatic PTMs. Multiple PTMs within a single enzyme molecule and their mutual interplays are critical for the regulation of catalytic activity. Full understanding of this regulation will require detailed structural investigation of enzymes, their structural analogs, and their complexes. Further, proteomics is now integrated with molecular genetics, transcriptomics, and other areas leading to systems biology strategies. These allow the functional interrogation of complex enzymatic networks in their natural environment. In the future, one might envisage the use of robust high throughput analytical techniques that will be able to detect multiple PTMs on a global scale of individual proteomes from a number of carefully selected cells and cellular compartments. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12840 Prague 2, Czech Republic.
| | | | | | | |
Collapse
|
494
|
Nambi S, Gupta K, Bhattacharyya M, Ramakrishnan P, Ravikumar V, Siddiqui N, Thomas AT, Visweswariah SS. Cyclic AMP-dependent protein lysine acylation in mycobacteria regulates fatty acid and propionate metabolism. J Biol Chem 2013; 288:14114-14124. [PMID: 23553634 DOI: 10.1074/jbc.m113.463992] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acetylation of lysine residues is a posttranslational modification that is used by both eukaryotes and prokaryotes to regulate a variety of biological processes. Here we identify multiple substrates for the cAMP-dependent protein lysine acetyltransferase from Mycobacterium tuberculosis (KATmt). We demonstrate that a catalytically important lysine residue in a number of FadD (fatty acyl CoA synthetase) enzymes is acetylated by KATmt in a cAMP-dependent manner and that acetylation inhibits the activity of FadD enzymes. A sirtuin-like enzyme can deacetylate multiple FadDs, thus completing the regulatory cycle. Using a strain deleted for the KATmt ortholog in Mycobacterium bovis Bacillus Calmette-Guérin (BCG), we show for the first time that acetylation is dependent on intracellular cAMP levels. KATmt can utilize propionyl CoA as a substrate and, therefore, plays a critical role in alleviating propionyl CoA toxicity in mycobacteria by inactivating acyl CoA synthetase (ACS). The precision by which mycobacteria can regulate the metabolism of fatty acids in a cAMP-dependent manner appears to be unparalleled in other biological organisms and is ideally suited to adapt to the complex environment that pathogenic mycobacteria experience in the host.
Collapse
Affiliation(s)
- Subhalaxmi Nambi
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Kallol Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | - Parvathy Ramakrishnan
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Vaishnavi Ravikumar
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Nida Siddiqui
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Ann Terene Thomas
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
495
|
Steliou K, Boosalis MS, Perrine SP, Sangerman J, Faller DV. Butyrate histone deacetylase inhibitors. Biores Open Access 2013; 1:192-8. [PMID: 23514803 PMCID: PMC3559235 DOI: 10.1089/biores.2012.0223] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In addition to being a part of the metabolic fatty acid fuel cycle, butyrate is also capable of inducing growth arrest in a variety of normal cell types and senescence-like phenotypes in gynecological cancer cells, inhibiting DNA synthesis and cell growth in colonic tumor cell lines, suppressing hTERT mRNA expression and telomerase activity in human prostate cancer cells, and inducing stem cell differentiation and apoptosis by DNA fragmentation. It regulates gene expression by inhibiting histone deacetylases (HDACs), enhances memory recovery and formation in mice, stimulates neurogenesis in the ischemic brain, promotes osteoblast formation, selectively blocks cell replication in transformed cells (compared to healthy cells), and can prevent and treat diet-induced obesity and insulin resistance in mouse models of obesity, as well as stimulate fetal hemoglobin expression in individuals with hematologic diseases such as the thalassemias and sickle-cell disease, in addition to a multitude of other biochemical effects in vivo. However, efforts to exploit the potential of butyrate in the clinical treatment of cancer and other medical disorders are thwarted by its poor pharmacological properties (short half-life and first-pass hepatic clearance) and the multigram doses needed to achieve therapeutic concentrations in vivo. Herein, we review some of the methods used to overcome these difficulties with an emphasis on HDAC inhibition.
Collapse
Affiliation(s)
- Kosta Steliou
- PhenoMatriX, Inc. , Boston, Massachusetts. ; Cancer Research Center, Boston University School of Medicine , Boston, Massachusetts
| | | | | | | | | |
Collapse
|
496
|
2D-QSAR, Docking Studies, and In Silico ADMET Prediction of Polyphenolic Acetates as Substrates for Protein Acetyltransferase Function of
Glutamine Synthetase of Mycobacterium tuberculosis. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/373516] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel transacetylase (TAase) function of glutamine synthetase (GS) in bacterial species such as Mycobacterium smegmatis and Mycobacterium tuberculosis H37Rv was established by us, termed as mycobacterial TAase (MTAase). Several polyphenolic acetates (PAs) were found to be substrates for MTAase by inhibiting certain receptor proteins such as glutathione S-transferase by way of acetylation. The present work describes the descriptor-based 2D-QSAR studies developed for a series of PA synthesized by us and evaluated for MTAase and antimycobacterial activity using stepwise multiple linear regression method with the kinetic constants and the minimum inhibitory constant (MIC) as the dependent variables, to address the fact that TAase activity was leading to the antimycobacterial activity. Further, blind docking methods using AutoDock were carried out to study the interaction of potent PA with the crystal structure of M. tuberculosis GS. PAs were predicted to bind M. tuberculosis GS on the protein surface away from the known active site of GS. Subsequent focussed/refined docking of potent PA with GS showed that the ε-amino group of Lys4 of GS formed a cation-π interaction with the benzene ring of PA. Also, ADMET-related descriptors were calculated to predict the pharmacokinetic properties for the selection of the effective and bioavailable compounds.
Collapse
|
497
|
Bartke T, Borgel J, DiMaggio PA. Proteomics in epigenetics: new perspectives for cancer research. Brief Funct Genomics 2013; 12:205-18. [PMID: 23401080 PMCID: PMC3662889 DOI: 10.1093/bfgp/elt002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The involvement of epigenetic processes in the origin and progression of cancer is now widely appreciated. Consequently, targeting the enzymatic machinery that controls the epigenetic regulation of the genome has emerged as an attractive new strategy for therapeutic intervention. The development of epigenetic drugs requires a detailed knowledge of the processes that govern chromatin regulation. Over the recent years, mass spectrometry (MS) has become an indispensable tool in epigenetics research. In this review, we will give an overview of the applications of MS-based proteomics in studying various aspects of chromatin biology. We will focus on the use of MS in the discovery and mapping of histone modifications and how novel proteomic approaches are being utilized to identify and study chromatin-associated proteins and multi-subunit complexes. Finally, we will discuss the application of proteomic methods in the diagnosis and prognosis of cancer based on epigenetic biomarkers and comment on their future impact on cancer epigenetics.
Collapse
Affiliation(s)
- Till Bartke
- MRC Clinical Sciences Centre, Imperial College London Faculty of Medicine, Hammersmith Hospital Campus, London W12 0NN, UK.
| | | | | |
Collapse
|
498
|
Lee S, Tan M, Dai L, Kwon OK, Yang JS, Zhao Y, Chen Y. MS/MS of Synthetic Peptide Is Not Sufficient to Confirm New Types of Protein Modifications. J Proteome Res 2013; 12:1007-13. [DOI: 10.1021/pr300667e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sangkyu Lee
- College of Pharmacy, Research Institute of
Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Minjia Tan
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Lunzhi Dai
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Oh Kwang Kwon
- College of Pharmacy, Research Institute of
Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Jeong Soo Yang
- Clinical Trial Center, Samsung Medical Center, Seoul
135-710, South Korea
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yue Chen
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
499
|
Foyn H, Van Damme P, Støve SI, Glomnes N, Evjenth R, Gevaert K, Arnesen T. Protein N-terminal acetyltransferases act as N-terminal propionyltransferases in vitro and in vivo. Mol Cell Proteomics 2013; 12:42-54. [PMID: 23043182 PMCID: PMC3536908 DOI: 10.1074/mcp.m112.019299] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-terminal acetylation (Nt-acetylation) is a highly abundant protein modification in eukaryotes catalyzed by N-terminal acetyltransferases (NATs), which transfer an acetyl group from acetyl coenzyme A to the alpha amino group of a nascent polypeptide. Nt-acetylation has emerged as an important protein modifier, steering protein degradation, protein complex formation and protein localization. Very recently, it was reported that some human proteins could carry a propionyl group at their N-terminus. Here, we investigated the generality of N-terminal propionylation by analyzing its proteome-wide occurrence in yeast and we identified 10 unique in vivo Nt-propionylated N-termini. Furthermore, by performing differential N-terminome analysis of a control yeast strain (yNatA), a yeast NatA deletion strain (yNatAΔ) or a yeast NatA deletion strain expressing human NatA (hNatA), we were able to demonstrate that in vivo Nt-propionylation of several proteins, displaying a NatA type substrate specificity profile, depended on the presence of either yeast or human NatA. Furthermore, in vitro Nt-propionylation assays using synthetic peptides, propionyl coenzyme A, and either purified human NATs or immunoprecipitated human NatA, clearly demonstrated that NATs are Nt-propionyltransferases (NPTs) per se. We here demonstrate for the first time that Nt-propionylation can occur in yeast and thus is an evolutionarily conserved process, and that the NATs are multifunctional enzymes acting as NPTs in vivo and in vitro, in addition to their main role as NATs, and their potential function as lysine acetyltransferases (KATs) and noncatalytic regulators.
Collapse
Affiliation(s)
- Håvard Foyn
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
500
|
Gattner MJ, Vrabel M, Carell T. Synthesis of ε-N-propionyl-, ε-N-butyryl-, and ε-N-crotonyl-lysine containing histone H3 using the pyrrolysine system. Chem Commun (Camb) 2012. [PMID: 23192406 DOI: 10.1039/c2cc37836a] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently new lysine modifications were detected in histones and other proteins. Using the pyrrolysine amber suppression system we genetically inserted three of the new amino acids ε-N-propionyl-, ε-N-butyryl-, and ε-N-crotonyl-lysine site specifically into histone H3. The lysine at position 9 (H3 K9), which is known to be highly modified in chromatin, was replaced by these unnatural amino acids.
Collapse
Affiliation(s)
- Michael J Gattner
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität, Munich, Butenandtstrasse 5-13, D-81377, Munich, Germany
| | | | | |
Collapse
|