451
|
Reducing available soluble β-amyloid prevents progression of cerebral amyloid angiopathy in transgenic mice. J Neuropathol Exp Neurol 2013; 71:1009-17. [PMID: 23095848 DOI: 10.1097/nen.0b013e3182729845] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA), the accumulation of β-amyloid (Aβ) in the walls of leptomeningeal and cortical blood vessels of the brain, is a major cause of intracerebral hemorrhage and cognitive impairment and is commonly associated with Alzheimer disease. The progression of CAA, as measured in transgenic mice by longitudinal imaging with multiphoton microscopy, occurs in a predictable linear manner. The dynamics of Aβ deposition in and clearance from vascular walls and their relationship to the concentration of Aβ in the brain are poorly understood. We manipulated Aβ levels in the brain using 2 approaches: peripheral clearance via administration of the amyloid binding "peripheral sink" protein gelsolin and direct inhibition of its formation via administration of LY-411575, a small-molecule γ-secretase inhibitor. We found that gelsolin and LY-411575 both reduced the rate of CAA progression in Tg2576 mice from untreated rates of 0.58% ± 0.15% and 0.52% ± 0.09% to 0.11% ± 0.18% (p = 0.04) and -0.17% ± 0.09% (p < 0.001) of affected vessel per day, respectively, in the absence of an immune response. The progression of CAA was also halted when gelsolin was combined with LY-411575 (-0.004% ± 0.10%, p < 0.003). These data suggest that CAA progression can be prevented with non-immune approaches that may reduce the availability of soluble Aβ but without evidence of substantial amyloid clearance from vessels.
Collapse
|
452
|
de Vries HE, Kooij G, Frenkel D, Georgopoulos S, Monsonego A, Janigro D. Inflammatory events at blood-brain barrier in neuroinflammatory and neurodegenerative disorders: implications for clinical disease. Epilepsia 2013; 53 Suppl 6:45-52. [PMID: 23134495 DOI: 10.1111/j.1528-1167.2012.03702.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proper function of the neurovasculature is required for optimal brain function and preventing neuroinflammation and neurodegeneration. Within this review, we discuss alterations of the function of the blood-brain barrier in neurologic disorders such as multiple sclerosis, epilepsy, and Alzheimer's disease and address potential underlying mechanisms.
Collapse
Affiliation(s)
- Helga E de Vries
- Blood-Brain Barrier Research Group, Department of Molecular Cell Biology and Immunology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
453
|
Mechanisms of action of naturally occurring antibodies against β-amyloid on microglia. J Neuroinflammation 2013; 10:5. [PMID: 23317003 PMCID: PMC3599240 DOI: 10.1186/1742-2094-10-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/21/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Naturally occurring autoantibodies against amyloid-β (nAbs-Aβ) have been shown to exert beneficial effects on transgenic Alzheimer's disease (AD) animals in vivo and on primary neurons in vitro. Not much is known about their effect on microglial cells. Our aim was to investigate the effect of nAbs-Aβ on amyloid-β (Aβ)-treated microglial cells in vitro with respect to cell viability, stress pathways, cytokine production and phagocytotic abilities and whether these effects can be conveyed to neurons. METHODS Primary microglial cells isolated from Swiss Webster mouse mesencephalons on embryonic day 13.5 were pretreated with nAbs-Aβ and then treated with Aβ oligomers. After 3 hours, phagocytosis as well as western blot analysis were evaluated to measure the amount of phagocytized Aβ. Cell viability was analyzed using an MTT assay 24 hours after treatment. Pro-inflammatory cytokines in the supernatants were analyzed with ELISAs and then we treated primary neuronal cells with these conditioned microglia supernatants. Twenty-four hours later we did a MTT assay of the treated neurons. We further investigated the effect of a single nAbs-Aβ administration on Tg2576 mice in vivo. RESULTS Upon co-administration of Aβ and nAbs-Aβ no change in microglia viability was observed. However, there was an increase in phosphorylated p38 protein level, an increase in the pro-inflammatory cytokines TNF-α and IL-6 and an increase in Aβ uptake by microglial cells. Treatment of primary neurons with conditioned microglia medium led to a 10% improvement in cell viability when nAbs-Aβ were co-administered compared to Aβ-treated cells alone. We were unable to detect changes in cytokine production in brain lysates of Tg2576 mice. CONCLUSIONS We provide evidence on the mechanism of action of nAbs-Aβ on microglia in vitro. Interestingly, our in vivo data indicate that nAbs-Aβ administration should be considered as a therapeutic strategy in AD, since there is no inflammatory reaction.
Collapse
|
454
|
Abstract
Alzheimer’s disease (AD), considered the commonest neurodegenerative cause of dementia, is associated with hallmark pathologies including extracellular amyloid-β protein (Aβ) deposition in extracellular senile plaques and vessels, and intraneuronal tau deposition as neurofibrillary tangles. Although AD is usually categorized as neurodegeneration distinct from cerebrovascular disease (CVD), studies have shown strong links between AD and CVD. There is evidence that vascular risk factors and CVD may accelerate Aβ 40-42 production/ aggregation/deposition and contribute to the pathology and symptomatology of AD. Aβ deposited along vessels also causes cerebral amyloid angiopathy. Amyloid imaging allows in vivo detection of AD pathology, opening the way for prevention and early treatment, if disease-modifying therapies in the pipeline show safety and efficacy. In this review, we review the role of vascular factors and Aβ, underlining that vascular risk factor management may be important for AD prevention and treatment.
Collapse
|
455
|
Laxton AW, Lipsman N, Lozano AM. Deep brain stimulation for cognitive disorders. HANDBOOK OF CLINICAL NEUROLOGY 2013; 116:307-311. [PMID: 24112904 DOI: 10.1016/b978-0-444-53497-2.00025-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Disorders of cognition are a major societal burden. As the population grows and ages, these conditions demand urgent attention, as healthcare resources stretch to accommodate the growing number of patients. Although much is known about the neurobiology of dementia and Alzheimer's disease (AD), few treatments are available to arrest or slow down the illness. By targeting specific structures within known circuits, deep brain stimulation (DBS) can have effects across memory and cognitive networks, and is therefore a potentially promising avenue for novel dementia treatments. This chapter reviews the literature on DBS for AD and dementia associated with Parkinson's disease, and highlight some of the neuroanatomical targets that offer the most promise in modulating the underlying pathological activity in brain circuitry.
Collapse
Affiliation(s)
- Adrian W Laxton
- Department of Neurosurgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | | | | |
Collapse
|
456
|
Abstract
The brain is in many ways an immunologically and pharmacologically privileged site. The blood-brain barrier (BBB) of the cerebrovascular endothelium and its participation in the complex structure of the neurovascular unit (NVU) restrict access of immune cells and immune mediators to the central nervous system (CNS). In pathologic conditions, very well-organized immunologic responses can develop within the CNS, raising important questions about the real nature and the intrinsic and extrinsic regulation of this immune privilege. We assess the interactions of immune cells and immune mediators with the BBB and NVU in neurologic disease, cerebrovascular disease, and intracerebral tumors. The goals of this review are to outline key scientific advances and the status of the science central to both the neuroinflammation and CNS barriers fields, and highlight the opportunities and priorities in advancing brain barriers research in the context of the larger immunology and neuroscience disciplines. This review article was developed from reports presented at the 2011 Annual Blood-Brain Barrier Consortium Meeting.
Collapse
|
457
|
Klein E, Karlawish J. Ethical issues in the neurology of aging and cognitive decline. HANDBOOK OF CLINICAL NEUROLOGY 2013; 118:233-42. [DOI: 10.1016/b978-0-444-53501-6.00020-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
458
|
Noninfectious disease vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
459
|
Chakroborty S, Briggs C, Miller MB, Goussakov I, Schneider C, Kim J, Wicks J, Richardson JC, Conklin V, Cameransi BG, Stutzmann GE. Stabilizing ER Ca2+ channel function as an early preventative strategy for Alzheimer's disease. PLoS One 2012; 7:e52056. [PMID: 23284867 PMCID: PMC3528716 DOI: 10.1371/journal.pone.0052056] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/12/2012] [Indexed: 11/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative condition with no known cure. While current therapies target late-stage amyloid formation and cholinergic tone, to date, these strategies have proven ineffective at preventing disease progression. The reasons for this may be varied, and could reflect late intervention, or, that earlier pathogenic mechanisms have been overlooked and permitted to accelerate the disease process. One such example would include synaptic pathology, the disease component strongly associated with cognitive impairment. Dysregulated Ca2+ homeostasis may be one of the critical factors driving synaptic dysfunction. One of the earliest pathophysiological indicators in mutant presenilin (PS) AD mice is increased intracellular Ca2+ signaling, predominantly through the ER-localized inositol triphosphate (IP3) and ryanodine receptors (RyR). In particular, the RyR-mediated Ca2+ upregulation within synaptic compartments is associated with altered synaptic homeostasis and network depression at early (presymptomatic) AD stages. Here, we offer an alternative approach to AD therapeutics by stabilizing early pathogenic mechanisms associated with synaptic abnormalities. We targeted the RyR as a means to prevent disease progression, and sub-chronically treated AD mouse models (4-weeks) with a novel formulation of the RyR inhibitor, dantrolene. Using 2-photon Ca2+ imaging and patch clamp recordings, we demonstrate that dantrolene treatment fully normalizes ER Ca2+ signaling within somatic and dendritic compartments in early and later-stage AD mice in hippocampal slices. Additionally, the elevated RyR2 levels in AD mice are restored to control levels with dantrolene treatment, as are synaptic transmission and synaptic plasticity. Aβ deposition within the cortex and hippocampus is also reduced in dantrolene-treated AD mice. In this study, we highlight the pivotal role of Ca2+ aberrations in AD, and propose a novel strategy to preserve synaptic function, and thereby cognitive function, in early AD patients.
Collapse
Affiliation(s)
- Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois, United States of America
| | - Clark Briggs
- Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois, United States of America
| | - Megan B. Miller
- Department of Neuroscience, University of Connecticut, Farmington, Connecticut, United States of America
| | - Ivan Goussakov
- Section of Neurology, The University of Chicago, Chicago, Illinois, United States of America
| | - Corinne Schneider
- Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois, United States of America
| | - Joyce Kim
- Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois, United States of America
| | - Jaime Wicks
- Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois, United States of America
| | - Jill C. Richardson
- Research & Development China, United Kingdom Group, GlaxoSmithKline, Stevenage, United Kingdom
| | - Vincent Conklin
- Lyotropic Therapeutics, Ashland, Virginia, United States of America
| | | | - Grace E. Stutzmann
- Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
460
|
Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission. J Neurosci 2012; 32:13454-69. [PMID: 23015436 DOI: 10.1523/jneurosci.1292-12.2012] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abnormal deposition and intercellular propagation of α-synuclein plays a central role in the pathogenesis of disorders such as Parkinson's Disease (PD) and dementia with Lewy bodies (DLB). Previous studies demonstrated that immunization against α-synuclein resulted in reduced α-synuclein accumulation and synaptic loss in a transgenic (tg) mouse model, highlighting the potential for immunotherapy. However, the mechanism by which immunization prevents synucleinopathy-associated deficits remains unknown. Here, we show that antibodies against α-synuclein specifically target and aid in clearance of extracellular α-synuclein proteins by microglia, thereby preventing their actions on neighboring cells. Antibody-assisted clearance occurs mainly in microglia through the Fcγ receptor, and not in neuronal cells or astrocytes. Stereotaxic administration of antibody into the brains of α-synuclein tg mice prevented neuron-to-astroglia transmission of α-synuclein and led to increased localization of α-synuclein and the antibody in microglia. Furthermore, passive immunization with α-synuclein antibody reduced neuronal and glial accumulation of α-synuclein and ameliorated neurodegeneration and behavioral deficits associated with α-synuclein overexpression. These findings provide an underlying mechanistic basis for immunotherapy for PD/DLB and suggest extracellular forms of α-synuclein as potential therapeutic targets.
Collapse
|
461
|
Alving CR, Rao M, Steers NJ, Matyas GR, Mayorov AV. Liposomes containing lipid A: an effective, safe, generic adjuvant system for synthetic vaccines. Expert Rev Vaccines 2012; 11:733-44. [PMID: 22873129 DOI: 10.1586/erv.12.35] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liposomes containing monophosphoryl lipid A (MPLA) have previously exhibited considerable potency and safety in human trials with a variety of candidate vaccines, including vaccines to malaria, HIV-1 and several different types of cancer. The long history of research and development of MPLA and liposomal MPLA as vaccine adjuvants reveals that there are numerous opportunities for creation and development of generic (nonproprietary) adjuvant system formulations with these materials that are not only highly potent and safe, but also readily available as native materials or as synthetic compounds. They are easily manufactured as potentially inexpensive and easy to use adjuvant systems and might be effective even with synthetic peptides as antigens.
Collapse
Affiliation(s)
- Carl R Alving
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | | | | | |
Collapse
|
462
|
Nabar NR, Yuan F, Lin X, Wang L, Bai G, Mayl J, Li Y, Zhou SF, Wang J, Cai J, Cao C. Cell therapy: a safe and efficacious therapeutic treatment for Alzheimer's disease in APP+PS1 mice. PLoS One 2012; 7:e49468. [PMID: 23226497 PMCID: PMC3513317 DOI: 10.1371/journal.pone.0049468] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/09/2012] [Indexed: 01/10/2023] Open
Abstract
Previously, our lab was the first to report the use of antigen-sensitized dendritic cells as a vaccine against Alzheimer's disease (AD). In preparation of this vaccine, we sensitized the isolated dendritic cells ex vivo with Aβ peptide, and administered these sensitized dendritic cells as a therapeutic agent. This form of cell therapy has had success in preventing and/or slowing the rate of cognitive decline when administered prior to the appearance of Aβ plaques in PDAPP mice, but has not been tested in 2 × Tg models. Herein, we test the efficacy and safety of this vaccine in halting and reversing Alzheimer's pathology in 9-month-old APP + PS1 mice. The results showed that administration of this vaccine elicits a long-lasting antibody titer, which correlated well with a reduction of Aβ burden upon histological analysis. Cognitive function in transgenic responders to the vaccine was rescued to levels similar to those found in non-transgenic mice, indicating that the vaccine is capable of providing therapeutic benefit in APP+PS1 mice when administered after the onset of AD pathology. The vaccine also shows indications of circumventing past safety problems observed in AD immunotherapy, as Th1 pro-inflammatory cytokines were not elevated after long-term vaccine administration. Moreover, microhemorrhaging and T-cell infiltration into the brain are not observed in any of the treated subjects. All in all, this vaccine has many advantages over contemporary vaccines against Alzheimer's disease, and may lead to a viable treatment for the disease in the future.
Collapse
Affiliation(s)
- Neel R. Nabar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| | - Fang Yuan
- Chinese People Liberty Army General Hospital, Beijing, China
- Third Military Medical University, Chongqing, China
| | - Xiaoyang Lin
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| | - Li Wang
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| | - Ge Bai
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Jonathan Mayl
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| | - Yaqiong Li
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
| | | | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
463
|
Chang L. In search of an immunobiomarker for Parkinson's disease. J Neuroimmune Pharmacol 2012; 7:719-21. [PMID: 23138698 DOI: 10.1007/s11481-012-9415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 11/25/2022]
|
464
|
TLR4- and TRIF-dependent stimulation of B lymphocytes by peptide liposomes enables T cell-independent isotype switch in mice. Blood 2012; 121:85-94. [PMID: 23144170 DOI: 10.1182/blood-2012-02-413831] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunoglobulin class switching from IgM to IgG in response to peptides is generally T cell-dependent and vaccination in T cell-deficient individuals is inefficient. We show that a vaccine consisting of a dense array of peptides on liposomes induced peptide-specific IgG responses totally independent of T-cell help. Independency was confirmed in mice lacking T cells and in mice deficient for MHC class II, CD40L, and CD28. The IgG titers were high, long-lived, and comparable with titers obtained in wild-type animals, and the antibody response was associated with germinal center formation, expression of activation-induced cytidine deaminase, and affinity maturation. The T cell-independent (TI) IgG response was strictly dependent on ligation of TLR4 receptors on B cells, and concomitant TLR4 and cognate B-cell receptor stimulation was required on a single-cell level. Surprisingly, the IgG class switch was mediated by TIR-domain-containing adapter inducing interferon-β (TRIF), but not by MyD88. This study demonstrates that peptides can induce TI isotype switching when antigen and TLR ligand are assembled and appropriately presented directly to B lymphocytes. A TI vaccine could enable efficient prophylactic and therapeutic vaccination of patients with T-cell deficiencies and find application in diseases where induction of T-cell responses contraindicates vaccination, for example, in Alzheimer disease.
Collapse
|
465
|
Hong-Qi Y, Zhi-Kun S, Sheng-Di C. Current advances in the treatment of Alzheimer's disease: focused on considerations targeting Aβ and tau. Transl Neurodegener 2012; 1:21. [PMID: 23210837 PMCID: PMC3514124 DOI: 10.1186/2047-9158-1-21] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/23/2012] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that impairs mainly the memory and cognitive function in elderly. Extracellular beta amyloid deposition and intracellular tau hyperphosphorylation are the two pathological events that are thought to cause neuronal dysfunction in AD. Since the detailed mechanisms that underlie the pathogenesis of AD are still not clear, the current treatments are those drugs that can alleviate the symptoms of AD patients. Recent studies have indicated that these symptom-reliving drugs also have the ability of regulating amyloid precursor protein processing and tau phosphorylation. Thus the pharmacological mechanism of these drugs may be too simply-evaluated. This review summarizes the current status of AD therapy and some potential preclinical considerations that target beta amyloid and tau protein are also discussed.
Collapse
Affiliation(s)
- Yang Hong-Qi
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou , Henan Province, 450003, People's Republic of China
| | - Sun Zhi-Kun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou , Henan Province, 450003, People's Republic of China
| | - Chen Sheng-Di
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| |
Collapse
|
466
|
Lindberg H, Johansson A, Härd T, Ståhl S, Löfblom J. Staphylococcal display for combinatorial protein engineering of a head-to-tail affibody dimer binding the Alzheimer amyloid-β peptide. Biotechnol J 2012; 8:139-45. [DOI: 10.1002/biot.201200228] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/21/2012] [Accepted: 09/12/2012] [Indexed: 11/12/2022]
|
467
|
Shuai H, Zhang J, Zhang J, Xie J, Zhang M, Ma J, Zhang L, Wang X. Role of stereotaxically injected IgG from db/db mice in the phosphorylation of the microtubule-associated protein tau in hippocampus. Brain Res 2012; 1486:14-26. [PMID: 23036273 DOI: 10.1016/j.brainres.2012.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/21/2012] [Accepted: 08/25/2012] [Indexed: 11/29/2022]
Abstract
People with type 2 diabetes (T2DM) mellitus are high risk for dementia and Alzheimer's disease (AD) via several plausible pathways. However, the underlying mechanisms have been still unclear, and the relation of immune injury to the pathogenesis of T2DM-related AD is not yet completely understood. Our present study aimed to elucidate the possible role of immunoglobulin IgG in the immune process of AD associated with T2DM in db/db mice. Hippocampi of 20 db/db mice and 20 C57BL/6 mice were subjected to immunohistochemistry and immunofluorescence assays. The phosphorylation of tau, glycogen synthase kinase (GSK)-3β and AKT activity was examined by Western blot analysis. IgG purified from the sera of IgG deposit-positive db/db mice was stereotaxically injected into the hippocampi of another 12 db/db mice and 12 C57BL/6 mice. The phosphorylation of tau, Abeta, GSK-3β and AKT activity was analyzed. Compared with the C57BL/6 control, 13 of the 20 db/db mice exhibited high levels of IgG deposits in the hippocampus. Treatment with IgG triggered tau hyperphosphorylations and Abeta deposition, which are likely major factors in AD. Meanwhile, IgG inhibited AKT phosphorylation and promoted GSK-3β activity. The IgG deposits observed in some db/db mice were possibly related to the impairment of T2DM-related AD development. Some autoimmune processes may be involved in AD in type 2 diabetes mellitus development at the level of the hippocampus.
Collapse
Affiliation(s)
- Hongxia Shuai
- Department of Endocrinology, XiangYang Central Hospital, XiangYang, China
| | | | | | | | | | | | | | | |
Collapse
|
468
|
An effector-reduced anti-β-amyloid (Aβ) antibody with unique aβ binding properties promotes neuroprotection and glial engulfment of Aβ. J Neurosci 2012; 32:9677-89. [PMID: 22787053 DOI: 10.1523/jneurosci.4742-11.2012] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Passive immunization against β-amyloid (Aβ) has become an increasingly desirable strategy as a therapeutic treatment for Alzheimer's disease (AD). However, traditional passive immunization approaches carry the risk of Fcγ receptor-mediated overactivation of microglial cells, which may contribute to an inappropriate proinflammatory response leading to vasogenic edema and cerebral microhemorrhage. Here, we describe the generation of a humanized anti-Aβ monoclonal antibody of an IgG4 isotype, known as MABT5102A (MABT). An IgG4 subclass was selected to reduce the risk of Fcγ receptor-mediated overactivation of microglia. MABT bound with high affinity to multiple forms of Aβ, protected against Aβ1-42 oligomer-induced cytotoxicity, and increased uptake of neurotoxic Aβ oligomers by microglia. Furthermore, MABT-mediated amyloid plaque removal was demonstrated using in vivo live imaging in hAPP((V717I))/PS1 transgenic mice. When compared with a human IgG1 wild-type subclass, containing the same antigen-binding variable domains and with equal binding to Aβ, MABT showed reduced activation of stress-activated p38MAPK (p38 mitogen-activated protein kinase) in microglia and induced less release of the proinflammatory cytokine TNFα. We propose that a humanized IgG4 anti-Aβ antibody that takes advantage of a unique Aβ binding profile, while also possessing reduced effector function, may provide a safer therapeutic alternative for passive immunotherapy for AD. Data from a phase I clinical trial testing MABT is consistent with this hypothesis, showing no signs of vasogenic edema, even in ApoE4 carriers.
Collapse
|
469
|
Vaccine Development to Treat Alzheimer's Disease Neuropathology in APP/PS1 Transgenic Mice. Int J Alzheimers Dis 2012; 2012:376138. [PMID: 23024882 PMCID: PMC3457670 DOI: 10.1155/2012/376138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/14/2012] [Accepted: 06/28/2012] [Indexed: 11/17/2022] Open
Abstract
A novel vaccine addressing the major hallmarks of Alzheimer's disease (AD), senile plaque-like deposits of amyloid beta-protein (Aβ), neurofibrillary tangle-like structures, and glial proinflammatory cytokines, has been developed. The present vaccine takes a new approach to circumvent failures of previous ones tested in mice and humans, including the Elan-Wyeth vaccine (AN1792), which caused massive T-cell activation, resulting in a meningoencephalitis-like reaction. The EB101 vaccine consists of Aβ1-42 delivered in a novel immunogen-adjuvant composed of liposomes-containing sphingosine-1-phosphate (S1P). EB101 was administered to APPswe/PS1dE9 transgenic mice before and after AD-like pathological symptoms were detectable. Treatment with EB101 results in a marked reduction of Aβ plaque burden, decrease of neurofibrillary tangle-like structure density, and attenuation of astrocytosis. In this transgenic mouse model, EB101 reduces the basal immunological interaction between the T cells and immune activation markers in the affected hippocampal/cortical areas, consistent with decreased amyloidosis-induced inflammation. Therefore, immunization with EB101 prevents and reverses AD-like neuropathology in a significant manner by halting disease progression without developing behavioral spatial deficits in transgenic mice.
Collapse
|
470
|
Abstract
In 1906, Alois Alzheimer first characterized the disease that bears his name. Despite intensive research, which has led to a better understanding of the pathology, there is no effective treatment for this disease. Of the drugs approved by the US FDA, none are disease modifying, only symptomatic. Unfortunately, there have been a number of failed clinical trials in the past 10 years where studies show either no cognitive improvement or, worse, serious side effects associated with treatment. Hence, there is a need for the field to look at alternative approaches to therapy. In this review, we will discuss how metal dyshomeostasis occurs in aging and Alzheimer's disease. Concomitantly, we will discuss how targeting this dyshomeostasis offers an effective and novel therapeutic approach. Thus far, compounds that mediate these effects have shown great potential in both preclinical animal studies as well as in early-stage clinical trials.
Collapse
|
471
|
Götz J, Ittner A, Ittner LM. Tau-targeted treatment strategies in Alzheimer's disease. Br J Pharmacol 2012; 165:1246-59. [PMID: 22044248 DOI: 10.1111/j.1476-5381.2011.01713.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
With populations ageing worldwide, the need for treating and preventing diseases associated with high age is pertinent. Alzheimer's disease (AD) is reaching epidemic proportions, yet the currently available therapies are limited to a symptomatic relief, without halting the degenerative process that characterizes the AD brain. As in AD cholinergic neurons are lost at high numbers, the initial strategies were limited to the development of acetylcholinesterase inhibitors, and more recently the NMDA receptor antagonist memantine, in counteracting excitotoxicity. With the identification of the protein tau in intracellular neurofibrillary tangles and of the peptide amyloid-β (Aβ) in extracellular amyloid plaques in the AD brain, and a better understanding of their role in disease, newer strategies are emerging, which aim at either preventing their formation and deposition or at accelerating their clearance. Interestingly, what is well established to combat viral diseases in peripheral organs - vaccination - seems to work for the brain as well. Accordingly, immunization strategies targeting Aβ show efficacy in mice and to some degree also in humans. Even more surprising is the finding in mice that immunization strategies targeting tau, a protein that forms aggregates in nerve cells, ameliorates the tau-associated pathology. We are reviewing the literature and discuss what can be expected regarding the translation into clinical practice and how the findings can be extended to other neurodegenerative diseases with protein aggregation in brain.
Collapse
Affiliation(s)
- Jürgen Götz
- Alzheimer's and Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, Camperdown, NSW, Australia.
| | | | | |
Collapse
|
472
|
Yang J, Pattanayak A, Song M, Kou J, Taguchi H, Paul S, Ponnazhagan S, Lalonde R, Fukuchi KI. Muscle-directed anti-Aβ single-chain antibody delivery via AAV1 reduces cerebral Aβ load in an Alzheimer's disease mouse model. J Mol Neurosci 2012; 49:277-88. [PMID: 22945846 DOI: 10.1007/s12031-012-9877-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/14/2012] [Indexed: 12/30/2022]
Abstract
We previously reported that anti-amyloid-beta (Aβ) single-chain antibody (scFv59) brain delivery via recombinant adeno-associated virus (rAAV) was effective in reducing cerebral Aβ load in an Alzheimer's disease (AD) mouse model without inducing inflammation. Here, we investigated the prophylactic effects and mechanism of a muscle-directed gene therapy modality in an AD mouse model. We injected rAAV serotype 1 encoding scFv59 into the right thigh muscles of 3-month-old mice. Nine months later, high levels of scFv59 expression were confirmed in the thigh muscles by both immunoblotting and immunohistochemistry. As controls, model mice were similarly injected with rAAV1 encoding antihuman immunodeficiency virus Gag antibody (scFvGag). AAV1-mediated scFv59 gene delivery was effective in decreasing Aβ deposits in the brain. Compared with the scFvGag group, levels of Aβ in cerebrospinal fluid (CSF) decreased significantly while Aβ in serum tended to increase in the scFv59 group. AAV1-mediated scFv59 gene delivery may alter the equilibrium of Aβ between the blood and brain, resulting in an increased efflux of Aβ from the brain owing to antibody-mediated sequestration/clearance of peripheral Aβ. Our results suggest that muscle-directed scFv59 delivery via rAAV1 may be a prophylactic option for AD and that levels of CSF Aβ may be used to evaluate the efficacy of anti-Aβ immunotherapy.
Collapse
Affiliation(s)
- Junling Yang
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, P.O. Box 1649, Peoria, IL, 61656, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
473
|
HUA Q, DING HM, LIANG M. Progress on Aβ-Targeted Therapeutic Strategies for Alzheimer′s Disease*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2012.00215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
474
|
Abstract
Research progress has provided detailed understanding of the molecular pathogenesis of Alzheimer disease (AD). This knowledge has been translated into new drug candidates with putative disease-modifying effects, which are now being tested in clinical trials. The promise of effective therapy has created a great need for biomarkers able to detect AD in the predementia phase, because drugs will probably be effective only if neurodegeneration is not too advanced. In this chapter, cerebrospinal fluid (CSF) and plasma biomarkers are reviewed. The core CSF biomarkers total tau (T-tau), phosphorylated tau (P-tau) and the 42 amino acid form of β-amyloid (Aβ42) reflect AD pathology, and have high diagnostic accuracy to diagnose AD with dementia and prodromal AD in mild cognitive impairment cases. The rationale for the use of CSF biomarkers to identify and monitor the mechanism of action of new drug candidates is also outlined in this chapter.
Collapse
Affiliation(s)
- Kaj Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, Mölndal, SE-431 80 Mölndal, Sweden.
| | | | | |
Collapse
|
475
|
Schenk D, Basi GS, Pangalos MN. Treatment strategies targeting amyloid β-protein. Cold Spring Harb Perspect Med 2012; 2:a006387. [PMID: 22951439 DOI: 10.1101/cshperspect.a006387] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With the advent of the key discovery in the mid-1980s that the amyloid β-protein (Aβ) is the core constituent of the amyloid plaque pathology found in Alzheimer disease (AD), an intensive effort has been underway to attempt to mitigate its role in the hope of treating the disease. This effort fully matured when it was clarified that the Aβ is a normal product of cleavage of the amyloid precursor protein, and well-defined proteases for this process were identified. Further therapeutic options have been developed around the concept of anti-Aβ aggregation inhibitors and the surprising finding that immunization with Aβ itself leads to reduction of pathology in animal models of the disease. Here we review the progress in this field toward the goal of targeting Aβ for treatment and prevention of AD and identify some of the major challenges for the future of this area of medicine.
Collapse
Affiliation(s)
- Dale Schenk
- Netotope Biosciences Inc., San Francisco, CA 94080, USA
| | | | | |
Collapse
|
476
|
Abstract
Idiopathic Parkinson's disease (PD) is, like other neurodegenerative diseases such as Alzheimer's disease (AD) considered a proteinopathy. Thus, a disease that is driven by the accumulation and aggregation of misfolded proteins, in case of PD α-synuclein (aSyn) is incriminated. Accordingly, removal of aSyn is assumed of having the potential to modify the course of the disease. Both active and passive aSyn targeting immunotherapy were found to modify disease in mice overexpressing human aSyn and recapitulating various aspects of synucleopathies. Translating immunotherapy to humans needs to consider the issue of potential autoimmunity. PD vaccines developed by AFFiRiS integrate the safety concept as applied for the company's AD vaccine candidates. This includes the use of short antigens, precluding activation of aSyn-specific T cells and, thus, cellular autoimmunity. Moreover, the selection of AFFITOPES® for clinical development is based on the principle of exclusive aSyn reactivity of vaccine-induced Abs excluding crossreactivity to β-synuclein (bSyn), which is ensured by the AFFITOME® platform technology. PD01, the first in class aSyn vaccine developed by AFFiRiS is about to enter the clinical phase of development.
Collapse
Affiliation(s)
- A Schneeberger
- AFFiRiS AG, Karl-Farkas Gasse 22, A-1030 Vienna, Austria.
| | | | | | | |
Collapse
|
477
|
Martin SB, Dowling ALS, Head E. Therapeutic interventions targeting Beta amyloid pathogenesis in an aging dog model. Curr Neuropharmacol 2012; 9:651-61. [PMID: 22654723 PMCID: PMC3263459 DOI: 10.2174/157015911798376217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 12/15/2010] [Accepted: 01/13/2011] [Indexed: 12/24/2022] Open
Abstract
Aged dogs and humans share complex cognitive and pathological responses to aging. Specifically, dogs develop Alzheimer's Disease (AD) like beta-amyloid (Aβ) that are associated with cognitive deficits. Currently, therapeutic approaches to prevent AD are targeted towards reduced production, aggregation and increased clearance of Aβ. The current review discusses cognition and neuropathology of the aging canine model and how it has and continues to be useful in further understanding the safety and efficacy of potential AD prevention therapies targeting Aβ.
Collapse
Affiliation(s)
- Sarah B Martin
- Sanders Brown Center on Aging, University of Kentucky, Lexington KY, USA
| | | | | |
Collapse
|
478
|
Rasool S, Albay R, Martinez-Coria H, Breydo L, Wu J, Milton S, Misra S, Tran A, Pensalfini A, Laferla F, Kayed R, Glabe CG. Vaccination with a non-human random sequence amyloid oligomer mimic results in improved cognitive function and reduced plaque deposition and micro hemorrhage in Tg2576 mice. Mol Neurodegener 2012; 7:37. [PMID: 22866920 PMCID: PMC3476970 DOI: 10.1186/1750-1326-7-37] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 07/17/2012] [Indexed: 01/10/2023] Open
Abstract
Background It is well established that vaccination of humans and transgenic animals against fibrillar Aβ prevents amyloid accumulation in plaques and preserves cognitive function in transgenic mouse models. However, autoimmune side effects have halted the development of vaccines based on full length human Aβ. Further development of an effective vaccine depends on overcoming these side effects while maintaining an effective immune response. Results We have previously reported that the immune response to amyloid oligomers is largely directed against generic epitopes that are common to amyloid oligomers of many different proteins and independent of a specific amino acid sequence. Here we have examined whether we can exploit this generic immune response to develop a vaccine that targets amyloid oligomers using a non-human random sequence amyloid oligomer. In order to study the effect of vaccination against generic oligomer epitopes, a random sequence oligomer (3A) was selected as it forms oligomers that react with the oligomer specific A11 antibody. Oligomer mimics from 3A peptide, Aβ, islet amyloid polypeptide (IAPP), and Aβ fibrils were used to vaccinate Tg2576 mice, which develop a progressive accumulation of plaques and cognitive impairment. Vaccination with the 3A random sequence antigen was just as effective as vaccination with the other antigens in improving cognitive function and reducing total plaque load (Aβ burden) in the Tg2576 mouse brains, but was associated with a much lower incidence of micro hemorrhage than Aβ antigens. Conclusion These results shows that the amyloid Aβ sequence is not necessary to produce a protective immune response that specifically targets generic amyloid oligomers. Using a non-human, random sequence antigen may facilitate the development of a vaccine that avoids autoimmune side effects.
Collapse
Affiliation(s)
- Suhail Rasool
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
479
|
Li Y, Ma Y, Zong LX, Xing XN, Guo R, Jiang TZ, Sha S, Liu L, Cao YP. Intranasal inoculation with an adenovirus vaccine encoding ten repeats of Aβ3-10 reduces AD-like pathology and cognitive impairment in Tg-APPswe/PSEN1dE9 mice. J Neuroimmunol 2012; 249:16-26. [DOI: 10.1016/j.jneuroim.2012.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 04/09/2012] [Accepted: 04/15/2012] [Indexed: 10/28/2022]
|
480
|
Abstract
At this time there are no effective methods to alter the disease course in Alzheimer's disease. All FDA approved interventions are for symptomatic relief only. However, it is an exciting time as many agents in development have theorhetical potential to impact the disease course. This review discusses some of the agents that have been in clinical trials, particularly those that affect amyloid processing. Some agents have failed while others still provide hope. Since amyloid is the peptide most closely linked to disease pathogenesis, it is possible that some of the anti-amyloid agents will impact the disease progression in a meaningful way.
Collapse
Affiliation(s)
- S. N. Ozudogru
- Department of Neurology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - C. F. Lippa
- Department of Neurology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
481
|
Boutajangout A, Sigurdsson EM, Krishnamurthy PK. Tau as a therapeutic target for Alzheimer's disease. Curr Alzheimer Res 2012; 8:666-77. [PMID: 21679154 DOI: 10.2174/156720511796717195] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 04/10/2011] [Accepted: 04/15/2011] [Indexed: 01/02/2023]
Abstract
Neurofibrillary tangles (NFTs) are one of the pathological hallmarks of Alzheimer's disease (AD) and are primarily composed of aggregates of hyperphosphorylated forms of the microtubule associated protein tau. It is likely that an imbalance of kinase and phosphatase activities leads to the abnormal phosphorylation of tau and subsequent aggregation. The wide ranging therapeutic approaches that are being developed include to inhibit tau kinases, to enhance phosphatase activity, to promote microtubule stability, and to reduce tau aggregate formation and/or enhance their clearance with small molecule drugs or by immunotherapeutic means. Most of these promising approaches are still in preclinical development whilst some have progressed to Phase II clinical trials. By pursuing these lines of study, a viable therapy for AD and related tauopathies may be obtained.
Collapse
Affiliation(s)
- A Boutajangout
- Departments of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
482
|
Hamley IW. The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization. Chem Rev 2012; 112:5147-92. [DOI: 10.1021/cr3000994] [Citation(s) in RCA: 670] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- I. W. Hamley
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD,
U.K
| |
Collapse
|
483
|
Himmelstein DS, Ward SM, Lancia JK, Patterson KR, Binder LI. Tau as a therapeutic target in neurodegenerative disease. Pharmacol Ther 2012; 136:8-22. [PMID: 22790092 DOI: 10.1016/j.pharmthera.2012.07.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 06/22/2012] [Indexed: 01/16/2023]
Abstract
Tau is a microtubule-associated protein thought to help modulate the stability of neuronal microtubules. In tauopathies, including Alzheimer's disease and several frontotemporal dementias, tau is abnormally modified and misfolded resulting in its disassociation from microtubules and the generation of pathological lesions characteristic for each disease. A recent surge in the population of people with neurodegenerative tauopathies has highlighted the immense need for disease-modifying therapies for these conditions, and new attention has focused on tau as a potential target for intervention. In the current work we summarize evidence linking tau to disease pathogenesis and review recent therapeutic approaches aimed at ameliorating tau dysfunction. The primary therapeutic tactics considered include kinase inhibitors and phosphatase activators, immunotherapies, small molecule inhibitors of protein aggregation, and microtubule-stabilizing agents. Although the evidence for tau-based treatments is encouraging, additional work is undoubtedly needed to optimize each treatment strategy for the successful development of safe and effective therapeutics.
Collapse
Affiliation(s)
- Diana S Himmelstein
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Tarry 8-754, 300 E. Superior St., Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
484
|
Kitazawa M, Medeiros R, Laferla FM. Transgenic mouse models of Alzheimer disease: developing a better model as a tool for therapeutic interventions. Curr Pharm Des 2012; 18:1131-47. [PMID: 22288400 DOI: 10.2174/138161212799315786] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/19/2011] [Indexed: 12/13/2022]
Abstract
Alzheimer disease (AD) is the leading cause of dementia among elderly. Currently, no effective treatment is available for AD. Analysis of transgenic mouse models of AD has facilitated our understanding of disease mechanisms and provided valuable tools for evaluating potential therapeutic strategies. In this review, we will discuss the strengths and weaknesses of current mouse models of AD and the contribution towards understanding the pathological mechanisms and developing effective therapies.
Collapse
Affiliation(s)
- Masashi Kitazawa
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | | | | |
Collapse
|
485
|
Abstract
The aggregation and deposition of amyloid-β (Aβ) peptides are believed to be central events in the pathogenesis of Alzheimer's disease (AD). Inoculation of brain homogenates containing Aβ aggregates into susceptible transgenic mice accelerated Aβ deposition, suggesting that Aβ aggregates are capable of self-propagation and hence might be prions. Recently, we demonstrated that Aβ deposition can be monitored in live mice using bioluminescence imaging (BLI). Here, we use BLI to probe the ability of Aβ aggregates to self-propagate following inoculation into bigenic mice. We report compelling evidence that Aβ aggregates are prions by demonstrating widespread cerebral β-amyloidosis induced by inoculation of either purified Aβ aggregates derived from brain or aggregates composed of synthetic Aβ. Although synthetic Aβ aggregates were sufficient to induce Aβ deposition in vivo, they exhibited lower specific biological activity compared with brain-derived Aβ aggregates. Our results create an experimental paradigm that should lead to identification of self-propagating Aβ conformations, which could represent novel targets for interrupting the spread of Aβ deposition in AD patients.
Collapse
|
486
|
Caselli RJ. Phenotypic differences between apolipoprotein E genetic subgroups: research and clinical implications. ALZHEIMERS RESEARCH & THERAPY 2012; 4:20. [PMID: 22694803 PMCID: PMC3506934 DOI: 10.1186/alzrt123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
With the recent interest in Alzheimer's disease course modification and earlier, even preclinical, intervention, questions have arisen regarding the potentially confounding impact of apolipoprotein E (APOE) genotype on study design, therapeutic outcomes, and even clinical practice. APOE e4 carriers have a faster rate of cognitive decline both preclinically and during the mild cognitive impairment (MCI) stage, and a higher burden of cerebrovascular amyloid that may be the basis for the observed gene-dose-related increased frequency of immunomodulatory therapy-induced meningoencephalitis and cerebral microhemorrhages. To date, this has impacted study design in some research trials but not clinical practice.
Collapse
Affiliation(s)
- Richard J Caselli
- Department of Neurology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA.
| |
Collapse
|
487
|
Panza F, Frisardi V, Solfrizzi V, Imbimbo BP, Logroscino G, Santamato A, Greco A, Seripa D, Pilotto A. Immunotherapy for Alzheimer's disease: from anti-β-amyloid to tau-based immunization strategies. Immunotherapy 2012; 4:213-38. [PMID: 22339463 DOI: 10.2217/imt.11.170] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The exact mechanisms leading to Alzheimer's disease (AD) are largely unknown, limiting the identification of effective disease-modifying therapies. The two principal neuropathological hallmarks of AD are extracellular β-amyloid (Aβ), peptide deposition (senile plaques) and intracellular neurofibrillary tangles containing hyperphosphorylated tau protein. During the last decade, most of the efforts of the pharmaceutical industry were directed against the production and accumulation of Aβ. The most innovative of the pharmacological approaches was the stimulation of Aβ clearance from the brain of AD patients via the administration of Aβ antigens (active vaccination) or anti-Aβ antibodies (passive vaccination). Several active and passive anti-Aβ vaccines are under clinical investigation. Unfortunately, the first active vaccine (AN1792, consisting of preaggregate Aβ and an immune adjuvant, QS-21) was abandoned because it caused meningoencephalitis in approximately 6% of treated patients. Anti-Aβ monoclonal antibodies (bapineuzumab and solanezumab) are now being developed. The clinical results of the initial studies with bapineuzumab were equivocal in terms of cognitive benefit. The occurrence of vasogenic edema after bapineuzumab, and more rarely brain microhemorrhages (especially in Apo E ε4 carriers), has raised concerns on the safety of these antibodies directed against the N-terminus of the Aβ peptide. Solanezumab, a humanized anti-Aβ monoclonal antibody directed against the midregion of the Aβ peptide, was shown to neutralize soluble Aβ species. Phase II studies showed a good safety profile of solanezumab, while studies on cerebrospinal and plasma biomarkers documented good signals of pharmacodynamic activity. Although some studies suggested that active immunization may be effective against tau in animal models of AD, very few studies regarding passive immunization against tau protein are currently available. The results of the large, ongoing Phase III trials with bapineuzumab and solanezumab will tell us if monoclonal anti-Aβ antibodies may slow down the rate of deterioration of AD. Based on the new diagnostic criteria of AD and on recent major failures of anti-Aβ drugs in mild-to-moderate AD patients, one could argue that clinical trials on potential disease-modifying drugs, including immunological approaches, should be performed in the early stages of AD.
Collapse
Affiliation(s)
- Francesco Panza
- Geriatric Unit & Gerontology-Geriatric Research Laboratory, IRCCS Casa Sollievo della Sofferenza, Foggia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
488
|
Farlow M, Arnold SE, Dyck CH, Aisen PS, Snider BJ, Porsteinsson AP, Friedrich S, Dean RA, Gonzales C, Sethuraman G, DeMattos RB, Mohs R, Paul SM, Siemers ER. Safety and biomarker effects of solanezumab in patients with Alzheimer's disease. Alzheimers Dement 2012; 8:261-71. [DOI: 10.1016/j.jalz.2011.09.224] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 08/03/2011] [Accepted: 09/14/2011] [Indexed: 10/28/2022]
Affiliation(s)
- Martin Farlow
- Department of NeurologyIndiana University School of MedicineIndianapolisINUSA
| | - Steven E. Arnold
- Penn Memory CenterUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Christopher H. Dyck
- Department of PsychiatryYale University School of MedicineNew HavenCTUSA
- Department of NeurobiologyYale University School of MedicineNew HavenCTUSA
| | - Paul S. Aisen
- Department of NeurosciencesUniversity of California San DiegoLa JollaCAUSA
| | - B. Joy Snider
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
| | - Anton P. Porsteinsson
- Alzheimer's Disease Care, Research and Education (AD‐CARE) Program, Department of PsychiatryUniversity Rochester School of Medicine and DentistryRochesterNYUSA
| | - Stuart Friedrich
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisINUSA
| | - Robert A. Dean
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisINUSA
| | - Celedon Gonzales
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisINUSA
| | | | | | - Richard Mohs
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisINUSA
| | - Steven M. Paul
- Appel Alzheimer's Disease Research InstituteWeill Cornell Medical CollegeNew YorkNYUSA
| | - Eric R. Siemers
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisINUSA
| |
Collapse
|
489
|
Winblad B, Andreasen N, Minthon L, Floesser A, Imbert G, Dumortier T, Maguire RP, Blennow K, Lundmark J, Staufenbiel M, Orgogozo JM, Graf A. Safety, tolerability, and antibody response of active Aβ immunotherapy with CAD106 in patients with Alzheimer's disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol 2012; 11:597-604. [PMID: 22677258 DOI: 10.1016/s1474-4422(12)70140-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Immunotherapy targeting the amyloid β (Aβ) peptide is a potential strategy to slow the progression of Alzheimer's disease. We aimed to assess the safety and tolerability of CAD106, a novel active Aβ immunotherapy for patients with Alzheimer's disease, designed to induce N-terminal Aβ-specific antibodies without an Aβ-specific T-cell response. METHODS We did a phase 1, double-blind, placebo-controlled, 52-week study in two centres in Sweden. Participants, aged 50-80 years, with mild-to-moderate Alzheimer's disease were entered into one of two cohorts according to time of study entry and then randomly allocated (by use of a computer-generated randomisation sequence) to receive either CAD106 or placebo (4:1; cohort one received CAD106 50 μg or placebo, cohort two received CAD106 150 μg or placebo). Each patient received three subcutaneous injections. All patients, caregivers, and investigators were masked to treatment allocation throughout the study. Primary objectives were to assess the safety and tolerability of CAD106 and to identify the Aβ-specific antibody response. Safety assessment was done by recording of all adverse events, assessment of MRI scans, physical and neurological examinations, vital signs, electrocardiography, electroencephalography, and laboratory analysis of blood and CSF. Patients with Aβ-IgG serum titres higher than 16 units at least once during the study were classified as responders. This study is registered with ClinicalTrials.gov, number NCT00411580. FINDINGS Between August, 2005, and March, 2007, we randomly allocated 31 patients into cohort one (24 patients to CAD106 treatment and seven to placebo) and 27 patients into cohort two (22 patients to CAD106 treatment and five to placebo). 56 of 58 patients reported adverse events. In cohort one, nasopharyngitis was the most commonly reported adverse event (10 of 24 CAD106-treated patients). In cohort two, injection site erythema was the most commonly reported adverse event (14 of 22 CAD106-treated patients). Overall, nine patients reported serious adverse events--none was thought to be related to the study drug. We recorded no clinical or subclinical cases of meningoencephalitis. 16 of 24 (67%) CAD106-treated patients in cohort one and 18 of 22 (82%) in cohort two developed Aβ antibody response meeting pre-specified responder threshold. One of 12 placebo-treated patients (8%) had Aβ-IgG concentrations that qualified them as a responder. INTERPRETATION Our findings suggest that CAD106 has a favourable safety profile and acceptable antibody response in patients with Alzheimer's disease. Larger trials with additional dose investigations are needed to confirm the safety and establish the efficacy of CAD106. FUNDING Novartis Pharma AG.
Collapse
Affiliation(s)
- Bengt Winblad
- Karolinska Institutet Alzheimer Disease Research Centre and Clinical Trial Unit, Geriatric Clinic, Karolinska University Hospital, Huddinge, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
490
|
Giannini C, Salvarani C, Hunder G, Brown RD. Primary central nervous system vasculitis: pathology and mechanisms. Acta Neuropathol 2012; 123:759-72. [PMID: 22421812 DOI: 10.1007/s00401-012-0973-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 02/29/2012] [Accepted: 03/03/2012] [Indexed: 12/16/2022]
Abstract
Primary vasculitis of the central nervous system (PCNSV) is a rare and diagnostically challenging form of vasculitis limited to the brain and/or spinal cord. It is a complex and often severe disease with multifaceted clinical and pathological appearances, suggesting multiple disease subtypes and the potential existence of multiple etiologic pathways. We describe in detail the clinical, imaging, and neuropathological findings of PCNSV summarizing literature data and our observations from a cohort of 131 patients diagnosed at Mayo Clinic over a 25-year period (1983-2007). Unlike systemic vasculitis, little is known regarding PCNSV pathogenesis and the involved immunological mechanisms. Increased recognition of the disease spectrum and in-depth characterization of its histopathologic and immunological phenotype will be critical to eventually understanding the underlying derangements and mechanisms driving PCNSV. Improved understanding of the pathogenetic mechanisms of the disease may also help determine whether the different histologic patterns and clinical subsets represent more than one disease and ultimately may permit development of novel diagnostic and therapeutic strategies for it.
Collapse
Affiliation(s)
- Caterina Giannini
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street, SW, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
491
|
|
492
|
Puli L, Pomeshchik Y, Olas K, Malm T, Koistinaho J, Tanila H. Effects of human intravenous immunoglobulin on amyloid pathology and neuroinflammation in a mouse model of Alzheimer's disease. J Neuroinflammation 2012; 9:105. [PMID: 22642812 PMCID: PMC3416679 DOI: 10.1186/1742-2094-9-105] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 04/25/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Human intravenous immunoglobulin (hIVIG) preparation is indicated for treating primary immunodeficiency disorders associated with impaired humoral immunity. hIVIG is known for its anti-inflammatory properties and a decent safety profile. Therefore, by virtue of its constituent natural anti-amyloid beta antibodies and anti-inflammatory effects, hIVIG is deemed to mediate beneficial effects to patients of Alzheimer's disease (AD). Here, we set out to explore the effects of hIVIG in a mouse model of AD. METHODS We treated APP/PS1dE9 transgenic and wild-type mice with weekly injections of a high hIVIG dose (1 g/kg) or saline for 3 or 8 months. Treatment effect on brain amyloid pathology and microglial reactivity was assessed by ELISA, immunohistochemistry, RT-PCR, and confocal microscopy. RESULTS We found no evidence for reduction in Aβ pathology; instead 8 months of hIVIG treatment significantly increased soluble levels of Aβ40 and Aβ42. In addition, we noticed a significant reduction in CD45 and elevation of Iba-1 markers in specific sub-populations of microglial cells. Long-term hIVIG treatment also resulted in significant suppression of TNF-α and increase in doublecortin positive adult-born neurons in the dentate gyrus. CONCLUSIONS Our data indicate limited ability of hIVIG to impact amyloid burden but shows changes in microglia, pro-inflammatory gene expression, and neurogenic effects. Immunomodulation by hIVIG may account for its beneficial effect in AD patients.
Collapse
Affiliation(s)
- Lakshman Puli
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
493
|
Delrieu J, Ousset PJ, Vellas B. Gantenerumab for the treatment of Alzheimer's disease. Expert Opin Biol Ther 2012; 12:1077-86. [DOI: 10.1517/14712598.2012.688022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
494
|
Kofler J, Lopresti B, Janssen C, Trichel AM, Masliah E, Finn OJ, Salter RD, Murdoch GH, Mathis CA, Wiley CA. Preventive immunization of aged and juvenile non-human primates to β-amyloid. J Neuroinflammation 2012; 9:84. [PMID: 22554253 PMCID: PMC3495408 DOI: 10.1186/1742-2094-9-84] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/03/2012] [Indexed: 01/08/2023] Open
Abstract
Background Immunization against beta-amyloid (Aβ) is a promising approach for the treatment of Alzheimer’s disease, but the optimal timing for the vaccination remains to be determined. Preventive immunization approaches may be more efficacious and associated with fewer side-effects; however, there is only limited information available from primate models about the effects of preclinical vaccination on brain amyloid composition and the neuroinflammatory milieu. Methods Ten non-human primates (NHP) of advanced age (18–26 years) and eight 2-year-old juvenile NHPs were immunized at 0, 2, 6, 10 and 14 weeks with aggregated Aβ42 admixed with monophosphoryl lipid A as adjuvant, and monitored for up to 6 months. Anti-Aβ antibody levels and immune activation markers were assessed in plasma and cerebrospinal fluid samples before and at several time-points after immunization. Microglial activity was determined by [11C]PK11195 PET scans acquired before and after immunization, and by post-mortem immunohistochemical and real-time PCR evaluation. Aβ oligomer composition was assessed by immunoblot analysis in the frontal cortex of aged immunized and non-immunized control animals. Results All juvenile animals developed a strong and sustained serum anti-Aβ IgG antibody response, whereas only 80 % of aged animals developed detectable antibodies. The immune response in aged monkeys was more delayed and significantly weaker, and was also more variable between animals. Pre- and post-immunization [11C]PK11195 PET scans showed no evidence of vaccine-related microglial activation. Post-mortem brain tissue analysis indicated a low overall amyloid burden, but revealed a significant shift in oligomer size with an increase in the dimer:pentamer ratio in aged immunized animals compared with non-immunized controls (P < 0.01). No differences were seen in microglial density or expression of classical and alternative microglial activation markers between immunized and control animals. Conclusions Our results indicate that preventive Aβ immunization is a safe therapeutic approach lacking adverse CNS immune system activation or other serious side-effects in both aged and juvenile NHP cohorts. A significant shift in the composition of soluble oligomers towards smaller species might facilitate removal of toxic Aβ species from the brain.
Collapse
Affiliation(s)
- Julia Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
495
|
Yamada M. Predicting cerebral amyloid angiopathy-related intracerebral hemorrhages and other cerebrovascular disorders in Alzheimer's disease. Front Neurol 2012; 3:64. [PMID: 22539931 PMCID: PMC3336108 DOI: 10.3389/fneur.2012.00064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/05/2012] [Indexed: 12/17/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) of amyloid β-protein (Aβ) type is common in Alzheimer's disease (AD). Aβ immunotherapies have been reported to induce CAA-related intracerebral hemorrhages (ICH) or vasogenic edema. For the purpose of developing a method to predict CAA-related ICH and other cerebrovascular disorders in AD, the biomarkers, and risk factors are reviewed. The biomarkers include (1) greater occipital uptake on amyloid positron emission tomography imaging and a decrease of cerebrospinal fluid Aβ40 levels as markers suggestive of CAA, and (2) symptomatic lobar ICH, lobar microhemorrhages, focal subarachnoidal hemorrhages/superficial siderosis, cortical microinfarcts, and subacute encephalopathy (caused by CAA-related inflammation or angiitis) as imaging findings of CAA-related ICH and other disorders. The risk factors include (1) old age and AD, (2) CAA-related gene mutations and apolipoprotein E genotype as genetic factors, (3) thrombolytic, anti-coagulation, and anti-platelet therapies, hypertension, and minor head trauma as hemorrhage-inducing factors, and (4) anti-amyloid therapies. Positive findings for one or more biomarkers plus one or more risk factors would be associated with a significant risk of CAA-related ICH and other cerebrovascular disorders. To establish a method to predict future occurrence of CAA-related ICH and other cerebrovascular disorders in AD, prospective studies with a large number of AD patients are necessary, which will allow us to statistically evaluate to what extent each biomarker or risk factor would increase the risk. In addition, further studies with progress of technologies are necessary to more precisely detect CAA and CAA-related cerebrovascular disorders.
Collapse
Affiliation(s)
- Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science Kanazawa, Japan
| |
Collapse
|
496
|
Neutralization of soluble, synaptotoxic amyloid β species by antibodies is epitope specific. J Neurosci 2012; 32:2696-702. [PMID: 22357853 DOI: 10.1523/jneurosci.1676-11.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Several anti-amyloid β (Aβ) antibodies are under evaluation for the treatment of Alzheimer's disease (AD). Clinical studies using the N-terminal-directed anti-Aβ antibody bapineuzumab have demonstrated reduced brain PET-Pittsburg-B signals, suggesting the reduction of Aβ plaques, and reduced levels of total and phosphorylated tau protein in the CSF of treated AD patients. Preclinical studies using 3D6 (the murine form of bapineuzumab) have demonstrated resolution of Aβ plaque and vascular burdens, neuritic dystrophy, and preservation of synaptic density in the transgenic APP mouse models. In contrast, few studies have evaluated the direct interaction of this antibody with synaptotoxic soluble Aβ species. In the current report, we demonstrated that 3D6 binds to soluble, synaptotoxic assemblies of Aβ(1-42) and prevents multiple downstream functional consequences in rat hippocampal neurons including changes in glutamate AMPA receptor trafficking, AD-type tau phosphorylation, and loss of dendritic spines. In vivo, we further demonstrated that 3D6 prevents synaptic loss and acutely reverses the behavioral deficit in the contextual fear conditioning task in transgenic mouse models of AD, two endpoints thought to be linked to synaptotoxic soluble Aβ moieties. Importantly C-terminal anti-Aβ antibodies were ineffective on these endpoints. These results, taken with prior studies, suggest that N-terminal anti-Aβ antibodies effectively interact with both soluble and insoluble forms of Aβ and therefore appear particularly well suited for testing the Aβ hypothesis of AD.
Collapse
|
497
|
Scheffler K, Stenzel J, Krohn M, Lange C, Hofrichter J, Schumacher T, Brüning T, Plath AS, Walker L, Pahnke J. Determination of spatial and temporal distribution of microglia by 230nm-high-resolution, high-throughput automated analysis reveals different amyloid plaque populations in an APP/PS1 mouse model of Alzheimer's disease. Curr Alzheimer Res 2012; 8:781-8. [PMID: 21244350 DOI: 10.2174/156720511797633179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 10/24/2010] [Accepted: 11/10/2010] [Indexed: 12/17/2022]
Abstract
One early and prominent pathologic feature of Alzheimer's disease (AD) is the appearance of activated microglia in the vicinity of developing β-amyloid deposits. However, the precise role of microglia during the course of AD is still under discussion. Microglia have been reported to degrade and clear β-amyloid, but they also can exert deleterious effects due to overwhelming inflammatory reactions. Here, we demonstrate the occurrence of developing plaque populations with distinct amounts of associated microglia using time-dependent analyses of plaque morphology and the spatial distribution of microglia in an APP/PS1 mouse model. In addition to a population of larger plaques (>700µm(2)) that are occupied by a moderate contingent of microglial cells across the course of aging, a second type of small β-amyloid deposits develops (≤400µm(2)) in which the plaque core is enveloped by a relatively large number of microglia. Our analyses indicate that microglia are strongly activated early in the emergence of senile plaques, but that activation is diminished in the later stages of plaque evolution (>150 days). These findings support the view that microglia serve to restrict the growth of senile plaques, and do so in a way that minimizes local inflammatory damage to other components of the brain.
Collapse
Affiliation(s)
- Katja Scheffler
- University of Rostock, Department of Neurology, Neurodegeneration Research Laboratory, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
498
|
Sabbagh JJ, Kinney JW, Cummings JL. Animal systems in the development of treatments for Alzheimer's disease: challenges, methods, and implications. Neurobiol Aging 2012; 34:169-83. [PMID: 22464953 DOI: 10.1016/j.neurobiolaging.2012.02.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/25/2012] [Accepted: 02/26/2012] [Indexed: 11/18/2022]
Abstract
Substantial resources and effort have been invested into the development of therapeutic agents for Alzheimer's disease (AD) with mixed and limited success. Research into the etiology of AD with animal models mimicking aspects of the disorder has substantially contributed to the advancement of potential therapies. Although these models have shown utility in testing novel therapeutic candidates, large variability still exists in terms of methodology and how the models are utilized. No model has yet predicted a successful disease-modifying therapy for AD. This report reviews several of the widely accepted transgenic and nontransgenic animal models of AD, highlighting the pathological and behavioral characteristics of each. Methodological considerations for conducting preclinical animal research are discussed, such as which behavioral tasks and histological markers may be associated with the greatest insight into therapeutic benefit. An overview of previous and current therapeutic interventions being investigated in AD models is presented, with an emphasis on factors that may have contributed to failure in past clinical trials. Finally, we propose a multitiered approach for investigating candidate therapies for AD that may reduce the likelihood of inappropriate conclusions from models and failed trials in humans.
Collapse
Affiliation(s)
- Jonathan J Sabbagh
- Behavioral Neuroscience Laboratory, University of Nevada, Las Vegas, NV, USA
| | | | | |
Collapse
|
499
|
Tayeb HO, Yang HD, Price BH, Tarazi FI. Pharmacotherapies for Alzheimer's disease: Beyond cholinesterase inhibitors. Pharmacol Ther 2012; 134:8-25. [DOI: 10.1016/j.pharmthera.2011.12.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 12/31/2022]
|
500
|
Robert R, Wark KL. Engineered antibody approaches for Alzheimer's disease immunotherapy. Arch Biochem Biophys 2012; 526:132-8. [PMID: 22475448 DOI: 10.1016/j.abb.2012.02.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 12/15/2022]
Abstract
The accumulation of amyloid-β-peptide (Aβ or A-beta) in the brain is considered to be a key event in the pathogenesis of Alzheimer's disease (AD). Over the last decade, antibody strategies aimed at reducing high levels of Aβ in the brain and or neutralizing its toxic effects have emerged as one of the most promising treatments for AD. Early approaches using conventional antibody formats demonstrated the potential of immunotherapy, but also caused a range of undesirable side effects such meningoencephalitis, vasogenic edema or cerebral microhemorrhages in both murine and humans. This prompted the exploration of alternative approaches using engineered antibodies to avoid adverse immunological responses and provide a safer and more effective therapy. Encouraging results have been obtained using a range of recombinant antibody formats including, single chain antibodies, antibody domains, intrabodies, bispecific antibodies as well as Fc-engineered antibodies in transgenic AD mouse and primate models. This review will address recent progress using these recombinant antibodies against Aβ, highlighting their advantages over conventional monoclonal antibodies and delivery methods.
Collapse
Affiliation(s)
- Remy Robert
- Department of Immunology (Clayton), Monash University, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Services, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|