451
|
Salas-Pérez F, Codner E, Valencia E, Pizarro C, Carrasco E, Pérez-Bravo F. MicroRNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes. Immunobiology 2012; 218:733-7. [PMID: 22999472 DOI: 10.1016/j.imbio.2012.08.276] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/09/2012] [Accepted: 08/19/2012] [Indexed: 11/30/2022]
Abstract
INTRODUCTION It is well established that type 1 diabetes (T1D) is an autoimmune disease. Controversial data exists regarding the differential control of the immune system in T1D patients compared to unaffected individuals. MicroRNAs (miRNAs) are involved in the control of gene expression (by negative regulation of gene expression at post-transcriptional level, by mediating translational repression or degradation of the mRNA targets). Their potential role in T cell activation and autoimmunity is controversial. AIM We investigated the expression profile of miR-21a and miR-93 in PMC samples of 20 T1D patients and 20 healthy controls by means of qPCR in different glucose concentrations (basal, 11 nM and 25 mM), and we analyzed the possible relationship of this expression pattern with autoimmunity. RESULTS MiR-21a was significantly underexpressed in T1D samples (media values expression 0.23 ± 0.05, p < 0.01) compared to controls (values less than 1 indicate a decrease in gene expression). When the PMCs were incubated with glucose 11 mM and 25 mM, miR-21a expression decreased in controls and increased in T1D samples (0.506 ± 0.05, p < 0.04). MiR-93 was underexpressed in T1D patients (0.331 ± 0.05, p < 0.02) compared to control samples. However, when the PBMCs were incubated with glucose, no changes were observed. No association with autoimmunity was observed. CONCLUSION We demonstrated that miRNAs have a differential expression in PBMCs from T1D patients compared to controls, suggesting that these miRNAs or others could be involved in T cell regulation.
Collapse
Affiliation(s)
- Francisca Salas-Pérez
- Laboratorio de Genómica Nutricional, Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Chile
| | | | | | | | | | | |
Collapse
|
452
|
Villar AV, García R, Merino D, Llano M, Cobo M, Montalvo C, Martín-Durán R, Hurlé MA, Nistal JF. Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. Int J Cardiol 2012; 167:2875-81. [PMID: 22882958 DOI: 10.1016/j.ijcard.2012.07.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/27/2012] [Accepted: 07/21/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Various human cardiovascular pathophysiological conditions associate aberrant expression of microRNAs (miRNAs) and circulating miRNAs are emerging as promising biomarkers. In mice, myocardial miR-21 overexpression is related to cardiac fibrosis elicited by pressure overload. This study was designed to determine the role of myocardial and plasmatic miR-21 in the maladaptive remodeling of the extracellular matrix induced by pressure overload in aortic stenosis (AS) patients and the clinical value of miR-21 as a biomarker for pathological myocardial fibrosis. METHODS In left ventricular biopsies from 75 AS patients and 32 surgical controls, we quantified the myocardial transcript levels of miR-21, miR-21-targets and ECM- and TGF-β-signaling-related elements. miR-21 plasma levels were determined in 25 healthy volunteers and in AS patients. In situ hybridization of miR-21 was performed in myocardial sections. RESULTS The myocardial and plasma levels of miR-21 were significantly higher in the AS patients compared with the controls and correlated directly with the echocardiographic mean transvalvular gradients. miR-21 overexpression was confined to interstitial cells and absent in cardiomyocytes. Using bootstrap validated multiple linear regression, the variance in myocardial collagen expression was predicted by myocardial miR-21 (70% of collagen variance) or plasma miR-21 (52% of collagen variance), together with the miR-21 targets RECK and PDCD4, and effectors of TGF-ß signaling. CONCLUSIONS Our results support the role of miR-21 as a regulator of the fibrotic process that occurs in response to pressure overload in AS patients and underscore the value of circulating miR-21 as a biomarker for myocardial fibrosis.
Collapse
|
453
|
McBride D, Carré W, Sontakke SD, Hogg CO, Law A, Donadeu FX, Clinton M. Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction 2012; 144:221-33. [PMID: 22653318 DOI: 10.1530/rep-12-0025] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Little is known about the involvement of microRNAs (miRNAs) in the follicular-luteal transition. The aim of this study was to identify genome-wide changes in miRNAs associated with follicular differentiation in sheep. miRNA libraries were produced from samples collected at defined stages of the ovine oestrous cycle and representing healthy growing follicles, (diameter, 4.0-5.5 mm), pre-ovulatory follicles (6.0-7.0 mm), early corpora lutea (day 3 post-oestrus) and late corpora lutea (day 9). A total of 189 miRNAs reported in sheep or other species and an additional 23 novel miRNAs were identified by sequencing these libraries. miR-21, miR-125b, let-7a and let-7b were the most abundant miRNAs overall, accounting for 40% of all miRNAs sequenced. Examination of changes in cloning frequencies across development identified nine different miRNAs whose expression decreased in association with the follicular-luteal transition and eight miRNAs whose expression increased during this transition. Expression profiles were confirmed by northern analyses, and experimentally validated targets were identified using miRTarBase. A majority of the 29 targets identified represented genes known to be actively involved in regulating follicular differentiation in vivo. Finally, luteinisation of follicular cells in vitro resulted in changes in miRNA levels that were consistent with those identified in vivo, and these changes were temporally associated with changes in the levels of putative miRNA targets in granulosa cells. In conclusion, this is the first study to characterise genome-wide miRNA profiles during different stages of follicle and luteal development. Our data identify a subset of miRNAs that are potentially important regulators of the follicular-luteal transition.
Collapse
Affiliation(s)
- D McBride
- Division of Developmental Biology, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, UK
| | | | | | | | | | | | | |
Collapse
|
454
|
Su CH, Wu YJ, Wang HH, Yeh HI. Nonviral gene therapy targeting cardiovascular system. Am J Physiol Heart Circ Physiol 2012; 303:H629-38. [PMID: 22821991 DOI: 10.1152/ajpheart.00126.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of gene therapy is either to introduce a therapeutic gene into or replace a defective gene in an individual's cells and tissues. Gene therapy has been urged as a potential method to induce therapeutic angiogenesis in ischemic myocardium and peripheral tissues after extensive investigation in recent preclinical and clinical studies. A successful gene therapy mainly relies on the development of the gene delivery vector. Developments in viral and nonviral vector technology including cell-based gene transfer will further improve transgene delivery and expression efficiency. Nonviral approaches as alternative gene delivery vehicles to viral vectors have received significant attention. Recently, a simple and safe approach of gene delivery into target cells using naked DNA has been improved by combining several techniques. Among the physical approaches, ultrasonic microbubble gene delivery, with its high safety profile, low costs, and repeatable applicability, can increase the permeability of cell membrane to macromolecules such as plasmid DNA by its bioeffects and can provide as a feasible tool in gene delivery. On the other hand, among the promising areas for gene therapy in acquired diseases, ischemic cardiovascular diseases have been widely studied. As a result, gene therapy using advanced technology may play an important role in this regard. The aims of this review focus on understanding the cellular and in vivo barriers in gene transfer and provide an overview of currently used chemical vectors and physical tools that are applied in nonviral cardiovascular gene transfer.
Collapse
Affiliation(s)
- Cheng-Huang Su
- Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | | | | | | |
Collapse
|
455
|
Corsten MF, Papageorgiou A, Verhesen W, Carai P, Lindow M, Obad S, Summer G, Coort SLM, Hazebroek M, van Leeuwen R, Gijbels MJJ, Wijnands E, Biessen EAL, De Winther MPJ, Stassen FRM, Carmeliet P, Kauppinen S, Schroen B, Heymans S. MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circ Res 2012; 111:415-25. [PMID: 22715471 DOI: 10.1161/circresaha.112.267443] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RATIONALE Viral myocarditis results from an adverse immune response to cardiotropic viruses, which causes irreversible myocyte destruction and heart failure in previously healthy people. The involvement of microRNAs and their usefulness as therapeutic targets in this process are unknown. OBJECTIVE To identify microRNAs involved in viral myocarditis pathogenesis and susceptibility. METHODS AND RESULTS Cardiac microRNAs were profiled in both human myocarditis and in Coxsackievirus B3-injected mice, comparing myocarditis-susceptible with nonsusceptible mouse strains longitudinally. MicroRNA responses diverged depending on the susceptibility to myocarditis after viral infection in mice. MicroRNA-155, -146b, and -21 were consistently and strongly upregulated during acute myocarditis in both humans and susceptible mice. We found that microRNA-155 expression during myocarditis was localized primarily in infiltrating macrophages and T lymphocytes. Inhibition of microRNA-155 by a systemically delivered LNA-anti-miR attenuated cardiac infiltration by monocyte-macrophages, decreased T lymphocyte activation, and reduced myocardial damage during acute myocarditis in mice. These changes were accompanied by the derepression of the direct microRNA-155 target PU.1 in cardiac inflammatory cells. Beyond the acute phase, microRNA-155 inhibition reduced mortality and improved cardiac function during 7 weeks of follow-up. CONCLUSIONS Our data show that cardiac microRNA dysregulation is a characteristic of both human and mouse viral myocarditis. The inflammatory microRNA-155 is upregulated during acute myocarditis, contributes to the adverse inflammatory response to viral infection of the heart, and is a potential therapeutic target for viral myocarditis.
Collapse
Affiliation(s)
- Maarten F Corsten
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
456
|
Vettori S, Gay S, Distler O. Role of MicroRNAs in Fibrosis. Open Rheumatol J 2012; 6:130-9. [PMID: 22802911 PMCID: PMC3396185 DOI: 10.2174/1874312901206010130] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is the leading cause of organ dysfunction in diseases such as systemic sclerosis, liver cirrhosis, cardiac fibrosis, progressive kidney disease, and idiopathic pulmonary fibrosis. The hallmark of fibrosis is tissue remodeling with excess deposition of extracellular matrix components, predominantly collagens. Different cell types, cytokines, growth factors, and enzymes interact in complex pathogenic networks with myofibroblasts playing a pivotal role. MicroRNAs are small non-coding RNAs acting as negative regulators of gene expression at the post-transcriptional level. MicroRNAs have been associated with many basic cellular processes as well as with a wide spectrum of diseases, most notably cancer. This review provides a comprehensive overview of microRNAs regulating profibrotic pathways and extracellular matrix synthesis. The potential of miRNA for targeted therapeutic approaches in fibrotic disorders is also discussed.
Collapse
Affiliation(s)
- Serena Vettori
- Center of Experimental Rheumatology, ZIHP, University Hospital Zurich, Gloriastrasse 25, CH-8091 Zurich, Switzerland
| | | | | |
Collapse
|
457
|
Martino F, Lorenzen J, Schmidt J, Schmidt M, Broll M, Görzig Y, Kielstein JT, Thum T. Circulating microRNAs are not eliminated by hemodialysis. PLoS One 2012; 7:e38269. [PMID: 22715378 PMCID: PMC3371001 DOI: 10.1371/journal.pone.0038269] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/07/2012] [Indexed: 01/02/2023] Open
Abstract
Background Circulating microRNAs are stably detectable in serum/plasma and other body fluids. In patients with acute kidney injury on dialysis therapy changes of miRNA patterns had been detected. It remains unclear if and how the dialysis procedure itself affects circulating microRNA level. Methods We quantified miR-21 and miR-210 by quantitative RT-PCR in plasma of patients with acute kidney injury requiring dialysis and measured pre- and post-dialyser miRNA levels as well as their amount in the collected spent dialysate. Single treatments using the following filters were studied: F60 S (1.3 m2, Molecular Weight Cut Off (MWCO): 30 kDa, n = 8), AV 1000 S (1.8 m2, MWCO: 30 kDa, n = 6) and EMiC 2 (1.8 m2, MWCO: 40 kDa, n = 6). Results Circulating levels of miR-21 or -210 do not differ between pre- and post-dialyzer blood samples independently of the used filter surface and pore size: miR-21: F60S: p = 0.35, AV 1000 S p = 1.0, EMiC2 p = 1.0; miR-210: F60S: p = 0.91, AV 1000 S p = 0.09, EMiC2 p = 0.31. Correspondingly, only traces of both miRNAs could be found in the collected spent dialysate and ultrafiltrate. Conclusions In patients with acute kidney injury circulating microRNAs are not removed by dialysis. As only traces of miR-21 and -210 are detected in dialysate and ultrafiltrate, microRNAs in the circulation are likely to be transported by larger structures such as proteins and/or microvesicles. As miRNAs are not affected by dialysis they might be more robust biomarkers of acute kidney injury.
Collapse
Affiliation(s)
- Filippo Martino
- Institute for Molecular and Translational Treatment Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
458
|
Yang KC, Ku YC, Lovett M, Nerbonne JM. Combined deep microRNA and mRNA sequencing identifies protective transcriptomal signature of enhanced PI3Kα signaling in cardiac hypertrophy. J Mol Cell Cardiol 2012; 53:101-12. [PMID: 22580345 DOI: 10.1016/j.yjmcc.2012.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/28/2012] [Accepted: 04/16/2012] [Indexed: 01/19/2023]
Abstract
The perturbation of myocardial transcriptome homeostasis is the hallmark of pathological hypertrophy, underlying the maladaptive myocardial remodeling secondary to pathological stresses. Classic and novel therapeutics that provide beneficial effects against pathological remodeling likely impact myocardial transcriptome architecture, including miRNA and mRNA expression profiles. Microarray and PCR-based technologies, although employed extensively, cannot provide adequate sequence coverage or quantitative accuracy to test this hypothesis directly. The goal of this study was to develop and exploit next-generation sequencing approaches for comprehensive and quantitative analyses of myocardial miRNAs and mRNAs to test the hypothesis that augmented phosphoinositide-3-kinase-p110α (PI3Kα) signaling in the setting of pathological hypertrophy provides beneficial effects through remodeling of the myocardial transcriptome signature. In these studies, a molecular and bioinformatic pipeline permitting comprehensive analysis and quantification of myocardial miRNA and mRNA expression with next-generation sequencing was developed and the impact of enhanced PI3Kα signaling on the myocardial transcriptome signature of pressure overload-induced pathological hypertrophy was explored. These analyses identified multiple miRNAs and mRNAs that were abnormally expressed in pathological hypertrophy and partially or completely normalized with increased PI3Kα signaling. Additionally, several novel miRNAs potentially linked to remodeling in cardiac hypertrophy were identified. Additional experiments revealed that increased PI3Kα signaling reduces cardiac fibrosis in pathological hypertrophy through modulating TGF-β signaling and miR-21 expression. In conclusion, using the approach of combined miRNA and mRNA sequencing, we identify the protective transcriptome signature of enhanced PI3Kα signaling in the context of pathological hypertrophy, and demonstrate the regulation of TGF-β/miR-21 by which enhanced PI3Kα signaling protects against cardiac fibrosis.
Collapse
Affiliation(s)
- Kai-Chien Yang
- Department of Developmental Biology, Washington University Medical School, St Louis, MO 63110-1093, USA
| | | | | | | |
Collapse
|
459
|
Olivieri F, Antonicelli R, Lorenzi M, D'Alessandra Y, Lazzarini R, Santini G, Spazzafumo L, Lisa R, La Sala L, Galeazzi R, Recchioni R, Testa R, Pompilio G, Capogrossi MC, Procopio AD. Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol 2012; 167:531-6. [PMID: 22330002 DOI: 10.1016/j.ijcard.2012.01.075] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 12/13/2011] [Accepted: 01/22/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Geriatric patients with acute non-ST elevation myocardial infarction (NSTEMI) can frequently present atypical symptoms and non-diagnostic electrocardiogram. The detection of modest cardiac troponin T (cTnT) elevation is challenging for physicians needing to routinely triage these patients. Unfortunately, non-coronary diseases, such as acute heart failure (CHF), may cause cTnT elevation. Circulating microRNAs (miRs) have emerged as biomarkers of MI. However, their diagnostic potential needs to be determined in elderly NSTEMI patients. METHODS 92 NSTEMI patients (82.6 ± 6.9 years old; complicated by CHF in 74% of cases) and 81 patients with acute CHF without AMI (81.3 ± 6.8 years old) were enrolled at presentation. A third group comprised 99 age-matched healthy control subjects (CTR). Plasma levels of miR-1, -21, -133a, -208a, -423-5p and -499-5p were analyzed. RESULTS MiR-1, -21 -133a and -423-5p showed a 3- to 10-fold increase and miR-499-5p exhibited >80-fold increase in acute NSTEMI patient vs. CTR. MiR-499-5p and -21 showed a significantly increased expression in NSTEMI vs. CHF. Interestingly, mir-499-5p was comparable to cTnT in discriminating NSTEMI vs. CTR and CHF patients. Its diagnostic accuracy was higher than conventional and hs-cTnT in differentiating NSTEMI (n=31) vs. acute CHF (n=32) patients with modest cTnT elevation at presentation (miR-499-5p AUC=0.86 vs. cTnT AUC=0.68 and vs. hs-cTnT AUC=0.70). CONCLUSIONS Circulating miR-499-5p is a sensitive biomarker of acute NSTEMI in the elderly, exhibiting a diagnostic accuracy superior to that of cTnT in patients with modest elevation at presentation.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
460
|
Luzna P, Gregar J, Uberall I, Radova L, Prochazka V, Ehrmann J. Changes of microRNAs-192, 196a and 203 correlate with Barrett's esophagus diagnosis and its progression compared to normal healthy individuals. Diagn Pathol 2011; 6:114. [PMID: 22094011 PMCID: PMC3268741 DOI: 10.1186/1746-1596-6-114] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/17/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Barrett's esophagus (BE) is a disease with a rising prevalence in western countries probably due to the unhealthy lifestyle. In significant number of cases it develops to esophageal adenocarcinoma. Two decades ago, important gene regulators (microRNAs) were discovered and their attendance in the process of malignant transformation was demonstrated (e.g. miR-192, 196a, 203). Our aim was to select the patients with the increased risk of malignant transformation before the cancer develops. METHODS 71 patients with BE disease were selected, slides from FFPE blocks were prepared, the lesions were microdissected and a qPCR relative expression analysis for selected microRNAs (generally known to be connected with malignant transformation process) was carried out. RESULTS We demonstrated unequivocal statistically significant upregulation of two microRNAs (miR-192, 196a) and downregulation of miR-203 and positive miR-196a correlation with progression from intestinal metaplasia to adenocarcinoma compared to normal individuals. CONCLUSIONS We hypothesize that there do exist changes of selected microRNAs which can undoubtedly distinguish the patients with BE from normal healthy individuals.
Collapse
Affiliation(s)
- Pavla Luzna
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Hnevotinska 3, Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
461
|
Huang Y, Chuang AY, Ratovitski EA. Phospho-ΔNp63α/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure. Cell Cycle 2011; 10:3938-47. [PMID: 22071691 DOI: 10.4161/cc.10.22.18107] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cisplatin-induced ATM-dependent phosphorylated (p)-ΔNp63α plays an important role in transcriptional regulation of specific genes encoding mRNAs and microRNAs (miRs) implicated in cell death, cell survival, and chemoresistance. The p-ΔNp63α-induced miR-885-3p functions as a critical regulator of MDM4, ATK1, BCL2, ATG16L2, ULK2, CASP2, and CASP3 mRNAs via pairing with their respective 'recognition' sequences. Cisplatin exposure modulated the levels of target proteins (reduced BCL2, AKT1, ATG16L2, and ULK2, while activated MDM4) in cisplatin-sensitive wild type ΔNp63α cells leading to distinct changes in cell viability. Finally, miR-885-3p modulated the cisplatin-induced TP53-dependent mitochondrial apoptosis by up regulation of MDM4 levels and down regulation of BCL2 levels in mitochondria. Altogether, our results support the notion that miR-885-3p might contribute in regulation of cell viability, apoptosis and/or autophagy in squamous cell carcinoma cells upon cisplatin exposure.
Collapse
Affiliation(s)
- Yiping Huang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
462
|
Abstract
MicroRNAs (miRNAs) are highly conserved, tiny (∼22 nucleotides) non-coding RNAs that have emerged as potent regulators of mRNA translation. miRNAs exhibit fine-tuning of the control of proteins involved in cell signalling (AE) pathways and in vital cellular and developmental processes. miRNAs are expressed in cardiovascular tissues, and multiple functional aspects of miRNAs underscore their key role in cardiovascular (patho)physiology. The development and increasing use of novel molecular biology tools have contributed to the recent success in miRNA research. In the present review, we discuss current updates on important and novel miRNA techniques, including: (i) miRNA screening tools; (ii) bioanalytical target prediction tools; (iii) target validation tools; and (iv) manipulative miRNA expression tools. We also present an update about recently identified miRNA targets that play a key role in cardiovascular development and disorders.
Collapse
Affiliation(s)
- S Dangwal
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
463
|
MicroRNAs and vascular (dys)function. Vascul Pharmacol 2011; 55:92-105. [PMID: 21802526 DOI: 10.1016/j.vph.2011.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/07/2011] [Accepted: 07/14/2011] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, that control diverse cellular functions by either promoting degradation or inhibition of target messenger RNA translation. An aberrant expression profile of miRNAs has been linked to human diseases, including cardiovascular dysfunction. This review summarizes the latest insights in the identification of vascular-specific miRNAs and their targets, as well as their roles and mechanisms in the vasculature. Furthermore, we discuss how manipulation of these miRNAs could represent a novel therapeutic approach in the treatment of vascular dysfunction.
Collapse
|