501
|
O'Connell BC, Harper JW. Ubiquitin proteasome system (UPS): what can chromatin do for you? Curr Opin Cell Biol 2007; 19:206-14. [PMID: 17314036 DOI: 10.1016/j.ceb.2007.02.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Accepted: 02/09/2007] [Indexed: 11/22/2022]
Abstract
Cul4-Ddb1, a RING H2 ubiquitin ligase, plays an important role in many vital cellular processes including DNA replication, DNA repair and transcription. Recent research reveals strong links between Cul4-mediated signaling pathways and chromatin biology. Ubiquitylation of substrates by Cul4-Ddb1 occurs on chromatin and is initiated by chromatin-based signals that either recruit Cul4-Ddb1 to chromatin or alter the activity of the ligase. This includes Cul4-mediated ubiquitylation of the replication licensing factor, Cdt1; a process that requires chromatin-bound PCNA and Cdt2, a member of the recently identified family of candidate substrate receptors for Cul4 (termed Ddb1- and Cul4-associated factors: DCAFs). The activity of two other Cul4-based ubiquitin ligases, Cul4-Ddb1(Ddb2) and Cul4-Ddb1(CSA), are differentially regulated by the COP9 signalosome in response to different chromatin-based signals. Finally, examples of direct modifications to chromatin by Cul4-Ddb1 have emerged, including ubiquitylation of histones and the recruitment of enzymes involved in chromatin remodeling or histone methylation.
Collapse
Affiliation(s)
- Brenda C O'Connell
- Department of Pathology, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
502
|
Cang Y, Zhang J, Nicholas SA, Kim AL, Zhou P, Goff SP. DDB1 is essential for genomic stability in developing epidermis. Proc Natl Acad Sci U S A 2007; 104:2733-7. [PMID: 17301228 PMCID: PMC1797626 DOI: 10.1073/pnas.0611311104] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The mammalian epidermis is maintained by proliferation and differentiation of epidermal progenitor cells in a stereotyped developmental program. Here we report that tissue-specific deletion of the UV-damaged DNA-binding protein 1 (DDB1) in mouse epidermis led to dramatic accumulation of c-Jun and p21Cip1, arrest of cell cycle at G(2)/M, selective apoptosis of proliferating cells, and as a result, a nearly complete loss of the epidermis and hair follicles. Deletion of the p53 tumor suppressor gene partially rescued the epithelial progenitor cells from death and allowed for the accumulation of aneuploid cells in the epidermis. Our results suggest that DDB1 plays an important role in development by controlling levels of cell cycle regulators and thereby maintaining genomic stability.
Collapse
Affiliation(s)
- Yong Cang
- *Howard Hughes Medical Institute and
- Departments of Biochemistry and Molecular Biophysics and
| | - Jianxuan Zhang
- Department of Pathology and Laboratory Medicine, Weill Medical College, Cornell University, New York, NY 10021
| | | | - Arianna L. Kim
- Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; and
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Medical College, Cornell University, New York, NY 10021
| | - Stephen P. Goff
- *Howard Hughes Medical Institute and
- Departments of Biochemistry and Molecular Biophysics and
- To whom correspondence should be addressed at:
College of Physicians and Surgeons, Columbia University, 701 West 168th Street, Hammer Health Science Center 1310c, New York, NY 10032. E-mail:
| |
Collapse
|
503
|
Higa LA, Zhang H. Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy. Cell Div 2007; 2:5. [PMID: 17280619 PMCID: PMC1805432 DOI: 10.1186/1747-1028-2-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 02/06/2007] [Indexed: 11/28/2022] Open
Abstract
Recent investigation of Cullin 4 (CUL4) has ushered this class of multiprotein ubiquitin E3 ligases to center stage as critical regulators of diverse processes including cell cycle regulation, developmental patterning, DNA replication, DNA damage and repair, and epigenetic control of gene expression. CUL4 associates with DNA Damage Binding protein 1 (DDB1) to assemble an ubiquitin E3 ligase that targets protein substrates for ubiquitin-dependent proteolysis. CUL4 ligase activity is also regulated by the covalent attachment of the ubiquitin-like protein NEDD8 to CUL4, or neddylation, and the COP9 signalosome complex (CSN) that removes this important modification. Recently, multiple WD40-repeat proteins (WDR) were found to interact with DDB1 and serve as the substrate-recognition subunits of the CUL4-DDB1 ubiquitin ligase. As more than 150–300 WDR proteins exist in the human genome, these findings impact a wide array of biological processes through CUL4 ligase-mediated proteolysis. Here, we review the recent progress in understanding the mechanism of CUL4 ubiquitin E3 ligase and discuss the architecture of CUL4-assembled E3 ubiquitin ligase complexes by comparison to CUL1-based E3s (SCF). Then, we will review several examples to highlight the critical roles of CUL4 ubiquitin ligase in genome stability, cell cycle regulation, and histone lysine methylation. Together, these studies provide insights into the mechanism of this novel ubiquitin ligase in the regulation of important biological processes.
Collapse
Affiliation(s)
- Leigh Ann Higa
- Yale University School of Medicine, Department of Genetics, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Hui Zhang
- Yale University School of Medicine, Department of Genetics, 333 Cedar Street, New Haven, Connecticut 06520, USA
| |
Collapse
|
504
|
He YJ, McCall CM, Hu J, Zeng Y, Xiong Y. DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev 2006; 20:2949-54. [PMID: 17079684 PMCID: PMC1620025 DOI: 10.1101/gad.1483206] [Citation(s) in RCA: 271] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cullins assemble the largest family of ubiquitin ligases by binding with ROC1 and various substrate receptors. CUL4 function is linked with many cellular processes, but its substrate-recruiting mechanism remains elusive. We identified a protein motif, the DWD box (DDB1-binding WD40 protein), and demonstrated the binding of 15 DWD proteins with DDB1-CUL4A. We provide evidence supporting the critical function of the DWD box and DDB1's role as the linker mediating DWD protein association with CUL4A. A database search predicts that about one-third of WD40 proteins, 90 in humans, contain the DWD box, suggesting a potentially large number of DWD-DDB1-CUL4-ROC1 E3 ligases.
Collapse
Affiliation(s)
- Yizhou Joseph He
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
505
|
Kim Y, Kipreos ET. The Caenorhabditis elegans replication licensing factor CDT-1 is targeted for degradation by the CUL-4/DDB-1 complex. Mol Cell Biol 2006; 27:1394-406. [PMID: 17145765 PMCID: PMC1800708 DOI: 10.1128/mcb.00736-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The replication of genomic DNA is strictly regulated to occur only once per cell cycle. This regulation centers on the temporal restriction of replication licensing factor activity. Two distinct ubiquitin ligase (E3) complexes, CUL4/DDB1 and SCF(Skp2), have been reported to target the replication licensing factor Cdt1 for ubiquitin-mediated proteolysis. However, it is unclear to what extent these two distinct Cdt1 degradation pathways are conserved. Here, we show that Caenorhabditis elegans DDB-1 is required for the degradation of CDT-1 during S phase. DDB-1 interacts specifically with CUL-4 but not with other C. elegans cullins. A ddb-1 null mutant exhibits extensive DNA rereplication in postembryonic BLAST cells, similar to what is observed in cul-4(RNAi) larvae. DDB-1 physically associates with CDT-1, suggesting that CDT-1 is a direct substrate of the CUL-4/DDB-1 E3 complex. In contrast, a deletion mutant of the C. elegans Skp2 ortholog, skpt-1, appears overtly wild type with the exception of an impenetrant gonad migration defect. There is no appreciable role for SKPT-1 in the degradation of CDT-1 during S phase, even in a sensitized ddb-1 mutant background. We propose that the CUL-4/DDB-1 ubiquitin ligase is the principal E3 for regulating the extent of DNA replication in C. elegans.
Collapse
Affiliation(s)
- Youngjo Kim
- Department of Cellular Biology, University of Georgia, Athens, GA 30602-2607, USA
| | | |
Collapse
|
506
|
Sansam CL, Shepard JL, Lai K, Ianari A, Danielian PS, Amsterdam A, Hopkins N, Lees JA. DTL/CDT2 is essential for both CDT1 regulation and the early G2/M checkpoint. Genes Dev 2006; 20:3117-29. [PMID: 17085480 PMCID: PMC1635147 DOI: 10.1101/gad.1482106] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Checkpoint genes maintain genomic stability by arresting cells after DNA damage. Many of these genes also control cell cycle events in unperturbed cells. By conducting a screen for checkpoint genes in zebrafish, we found that dtl/cdt2 is an essential component of the early, radiation-induced G2/M checkpoint. We subsequently found that dtl/cdt2 is required for normal cell cycle control, primarily to prevent rereplication. Both the checkpoint and replication roles are conserved in human DTL. Our data indicate that the rereplication reflects a requirement for DTL in regulating CDT1, a protein required for prereplication complex formation. CDT1 is degraded in S phase to prevent rereplication, and following DNA damage to prevent origin firing. We show that DTL associates with the CUL4-DDB1 E3 ubiquitin ligase and is required for CDT1 down-regulation in unperturbed cells and following DNA damage. The cell cycle defects of Dtl-deficient zebrafish are suppressed by reducing Cdt1 levels. In contrast, the early G2/M checkpoint defect appears to be Cdt1-independent. Thus, DTL promotes genomic stability through two distinct mechanisms. First, it is an essential component of the CUL4-DDB1 complex that controls CDT1 levels, thereby preventing rereplication. Second, it is required for the early G2/M checkpoint.
Collapse
Affiliation(s)
- Christopher L Sansam
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
507
|
Fujita M. Cdt1 revisited: complex and tight regulation during the cell cycle and consequences of deregulation in mammalian cells. Cell Div 2006; 1:22. [PMID: 17042960 PMCID: PMC1621056 DOI: 10.1186/1747-1028-1-22] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 10/17/2006] [Indexed: 12/31/2022] Open
Abstract
In eukaryotic cells, replication of genomic DNA initiates from multiple replication origins distributed on multiple chromosomes. To ensure that each origin is activated precisely only once during each S phase, a system has evolved which features periodic assembly and disassembly of essential pre-replication complexes (pre-RCs) at replication origins. The pre-RC assembly reaction involves the loading of a presumptive replicative helicase, the MCM2-7 complexes, onto chromatin by the origin recognition complex (ORC) and two essential factors, CDC6 and Cdt1. The eukaryotic cell cycle is driven by the periodic activation and inactivation of cyclin-dependent kinases (Cdks) and assembly of pre-RCs can only occur during the low Cdk activity period from late mitosis through G1 phase, with inappropriate re-assembly suppressed during S, G2, and M phases. It was originally suggested that inhibition of Cdt1 function after S phase in vertebrate cells is due to geminin binding and that Cdt1 hyperfunction resulting from Cdt1-geminin imbalance induces re-replication. However, recent progress has revealed that Cdt1 activity is more strictly regulated by two other mechanisms in addition to geminin: (1) functional and SCFSkp2-mediated proteolytic regulation through phosphorylation by Cdks; and (2) replication-coupled proteolysis mediated by the Cullin4-DDB1Cdt2 ubiquitin ligase and PCNA, an eukaryotic sliding clamp stimulating replicative DNA polymerases. The tight regulation implies that Cdt1 control is especially critical for the regulation of DNA replication in mammalian cells. Indeed, Cdt1 overexpression evokes chromosomal damage even without re-replication. Furthermore, deregulated Cdt1 induces chromosomal instability in normal human cells. Since Cdt1 is overexpressed in cancer cells, this could be a new molecular mechanism leading to carcinogenesis. In this review, recent insights into Cdt1 function and regulation in mammalian cells are discussed.
Collapse
Affiliation(s)
- Masatoshi Fujita
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan.
| |
Collapse
|
508
|
Higa LA, Wu M, Ye T, Kobayashi R, Sun H, Zhang H. CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol 2006; 8:1277-83. [PMID: 17041588 DOI: 10.1038/ncb1490] [Citation(s) in RCA: 350] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 09/28/2006] [Indexed: 01/08/2023]
Abstract
The CUL4-DDB1-ROC1 ubiquitin E3 ligase regulates cell-cycle progression, replication and DNA damage response. However, the substrate-specific adaptors of this ligase remain uncharacterized. Here, we show that CUL4-DDB1 complexes interact with multiple WD40-repeat proteins (WDRs) including TLE1-3, WDR5, L2DTL (also known as CDT2) and the Polycomb-group protein EED (also known as ESC). WDR5 and EED are core components of histone methylation complexes that are essential for histone H3 methylation and epigenetic control at K4 or K9 and K27, respectively, whereas L2DTL regulates CDT1 proteolysis after DNA damage through CUL4-DDB1 (ref. 8). We found that CUL4A-DDB1 interacts with H3 methylated mononucleosomes and peptides. Inactivation of either CUL4 or DDB1 impairs these histone modifications. However, loss of WDR5 specifically affects histone H3 methylation at K4 but not CDT1 degradation, whereas inactivation of L2DTL prevents CDT1 degradation but not histone methylation. Our studies suggest that CUL4-DDB1 ligases use WDR proteins as molecular adaptors for substrate recognition, and modulate multiple biological processes through ubiquitin-dependent proteolysis.
Collapse
Affiliation(s)
- Leigh Ann Higa
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
509
|
Ralph E, Boye E, Kearsey SE. DNA damage induces Cdt1 proteolysis in fission yeast through a pathway dependent on Cdt2 and Ddb1. EMBO Rep 2006; 7:1134-9. [PMID: 17039252 PMCID: PMC1679788 DOI: 10.1038/sj.embor.7400827] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 09/04/2006] [Accepted: 09/07/2006] [Indexed: 11/08/2022] Open
Abstract
Cdt1 is an essential protein required for licensing of replication origins. Here, we show that in Schizosaccharomyces pombe, Cdt1 is proteolysed in M and G1 phases in response to DNA damage and that this mechanism seems to be conserved from yeast to Metazoa. This degradation does not require Rad3 and Cds1, indicating that it is independent of classic DNA damage and replication checkpoint pathways. Damage-induced degradation of Cdt1 is dependent on Cdt2 and Ddb1, which are components of a Cul4 ubiquitin ligase. We also show that Cdt2 and Ddb1 are needed for cell-cycle changes in Cdt1 levels in the absence of DNA damage. Cdt2 and Ddb1 have been shown to be involved in the degradation of the Spd1 inhibitor of ribonucleotide reductase after DNA damage, and we speculate that Cdt1 downregulation might contribute to genome stability by reducing demand on dNTP pools during DNA repair.
Collapse
Affiliation(s)
- Emma Ralph
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Erik Boye
- Department of Cell Biology, Rikshospitalet-Radiumhospitalet Medical Centre, Montebello, 0310 Oslo, Norway
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
- Tel: +44 1865 271229; Fax: +44 1865 271192; E-mail:
| |
Collapse
|