501
|
Liorni I, Parazzini M, Fiocchi S, Guadagnin V, Ravazzani P. Polynomial Chaos decomposition applied to stochastic dosimetry: study of the influence of the magnetic field orientation on the pregnant woman exposure at 50 Hz. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:342-4. [PMID: 25569967 DOI: 10.1109/embc.2014.6943599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Polynomial Chaos (PC) is a decomposition method used to build a meta-model, which approximates the unknown response of a model. In this paper the PC method is applied to the stochastic dosimetry to assess the variability of human exposure due to the change of the orientation of the B-field vector respect to the human body. In detail, the analysis of the pregnant woman exposure at 7 months of gestational age is carried out, to build-up a statistical meta-model of the induced electric field for each fetal tissue and in the fetal whole-body by means of the PC expansion as a function of the B-field orientation, considering a uniform exposure at 50 Hz.
Collapse
|
502
|
Valič B, Kos B, Gajšek P. Typical exposure of children to EMF: exposimetry and dosimetry. RADIATION PROTECTION DOSIMETRY 2015; 163:70-80. [PMID: 24723195 DOI: 10.1093/rpd/ncu057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A survey study with portable exposimeters, worn by 21 children under the age of 17, and detailed measurements in an apartment above a transformer substation were carried out to determine the typical individual exposure of children to extremely low- and radio-frequency (RF) electromagnetic field. In total, portable exposimeters were worn for >2400 h. Based on the typical individual exposure the in situ electric field and specific absorption rate (SAR) values were calculated for an 11-y-old female human model. The average exposure was determined to be low compared with ICNIRP reference levels: 0.29 μT for an extremely low-frequency (ELF) magnetic field and 0.09 V m(-1) for GSM base stations, 0.11 V m(-1) for DECT and 0.10 V m(-1) for WiFi; other contributions could be neglected. However, some of the volunteers were more exposed: the highest realistic exposure, to which children could be exposed for a prolonged period of time, was 1.35 μT for ELF magnetic field and 0.38 V m(-1) for DECT, 0.13 V m(-1) for WiFi and 0.26 V m(-1) for GSM base stations. Numerical calculations of the in situ electric field and SAR values for the typical and the worst-case situation show that, compared with ICNIRP basic restrictions, the average exposure is low. In the typical exposure scenario, the extremely low frequency exposure is <0.03 % and the RF exposure <0.001 % of the corresponding basic restriction. In the worst-case situation, the extremely low frequency exposure is <0.11 % and the RF exposure <0.007 % of the corresponding basic restrictions. Analysis of the exposures and the individual's perception of being exposed/unexposed to an ELF magnetic field showed that it is impossible to estimate the individual exposure to an ELF magnetic field based only on the information provided by the individuals, as they do not have enough knowledge and information to properly identify the sources in their vicinity.
Collapse
Affiliation(s)
- Blaž Valič
- INIS - Institute of Non-ionizing Radiation, Pohorskega bataljona 215, 1000 Ljubljana, Slovenia
| | - Bor Kos
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Peter Gajšek
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| |
Collapse
|
503
|
Tell RA, Hooper HC, Sias GG, Mezei G, Hung P, Kavet R. Electromagnetic Fields Associated with Commercial Solar Photovoltaic Electric Power Generating Facilities. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2015; 12:795-803. [PMID: 26023811 DOI: 10.1080/15459624.2015.1047021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The southwest region of the United States is expected to experience an expansion of commercial solar photovoltaic generation facilities over the next 25 years. A solar facility converts direct current generated by the solar panels to three-phase 60-Hz power that is fed to the grid. This conversion involves sequential processing of the direct current through an inverter that produces low-voltage three-phase power, which is stepped up to distribution voltage (∼12 kV) through a transformer. This study characterized magnetic and electric fields between the frequencies of 0 Hz and 3 GHz at two facilities operated by the Southern California Edison Company in Porterville, CA and San Bernardino, CA. Static magnetic fields were very small compared to exposure limits established by IEEE and ICNIRP. The highest 60-Hz magnetic fields were measured adjacent to transformers and inverters, and radiofrequency fields from 5-100 kHz were associated with the inverters. The fields measured complied in every case with IEEE controlled and ICNIRP occupational exposure limits. In all cases, electric fields were negligible compared to IEEE and ICNIRP limits across the spectrum measured and when compared to the FCC limits (≥0.3 MHz).
Collapse
Affiliation(s)
- R A Tell
- a Richard Tell Associates, Inc. , Mesquite , Nevada
| | - H C Hooper
- b Enertech Consultants , Campbell , California
| | - G G Sias
- c Southern California Edison Company , Rosemead , California
| | - G Mezei
- d Exponent, Menlo Park , California
| | - P Hung
- c Southern California Edison Company , Rosemead , California
| | - R Kavet
- e Electric Power Research Institute , Palo Alto , California
| |
Collapse
|
504
|
Shimamoto T, Laakso I, Hirata A. In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle. Phys Med Biol 2014; 60:163-73. [PMID: 25479377 DOI: 10.1088/0031-9155/60/1/163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver's seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm.
Collapse
Affiliation(s)
- Takuya Shimamoto
- Nagoya Institute of Technology Department of Computer Science and Engineering, Nagoya 466-8555, Japan
| | | | | |
Collapse
|
505
|
Findlay RP. Induced electric fields in the MAXWEL surface-based human model from exposure to external low frequency electric fields. RADIATION PROTECTION DOSIMETRY 2014; 162:244-253. [PMID: 24218644 DOI: 10.1093/rpd/nct281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This work presents calculations of internal induced electric fields in the anatomically realistic surface-based model of the male human body, MAXWEL, from exposure to external low frequency electric fields under grounded and isolated conditions. The maximum 99th percentile induced electric fields calculated in the MAXWEL central nervous system were 3.49 (grounded) and 1.54 (isolated) mV m(-1) per kV m(-1) at 50 Hz. The application of 2, 1 and 0.5 mm resolution voxel models derived from the surface-based version to the calculations of induced electric fields is described. 2 mm and 1 mm resolution maximum 99th percentile induced electric field values calculated in selected tissues of the eye at 50 Hz were within 30 % of those calculated at 0.5 mm resolution. The calculated electric field values in MAXWEL were compared with values from the male model NORMAN and female model NAOMI. The maximum 99th percentile value for NAOMI, calculated by Dimbylow in bone, was 49.4 mV m(-1) per kV m(-1) at 50 Hz under grounded conditions. The corresponding value calculated in MAXWEL was 15.7 mV m(-1) per kV m(-1), considerably lower due to anatomical differences between the male and female models.
Collapse
|
506
|
Teşneli NB, Teşneli AY. Occupational exposure to electromagnetic fields of uninterruptible power supply industry workers. RADIATION PROTECTION DOSIMETRY 2014; 162:289-298. [PMID: 24366245 DOI: 10.1093/rpd/nct340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
There is an increasing concern that exposure to extremely low-frequency (ELF) electromagnetic fields (EMFs) may cause or contribute to adverse health effects. To assess exposure to ELF EMFs, electric and magnetic field spot measurements were performed extensively at the workplace of a worldwide uninterruptible power supply (UPS) factory. The measurements were carried out in order to get the electric and magnetic field exposure results in real working situations in test areas, production lines and power substations. The electric and magnetic fields reached up to 992.0 V m(-1) and 215.6 μT in the test areas, respectively. The fields existed up to 26.7 V m(-1) and 7.6 μT in the production lines. The field levels in the vicinity of the power substations did not exceed 165.5 V m(-1) and 65 μT. The data presented are useful in determining the occupational exposure levels of UPS industry workers. The measurements are below the reference levels recommended by the guideline published in 2010 by the International Commission on Non-Ionizing Radiation Protection and action levels of the directive adopted in 2013 by European Parliament and Council.
Collapse
Affiliation(s)
- N Berna Teşneli
- Department of Electrical and Electronics Engineering, Sakarya University, Serdivan, Sakarya 54055, Turkey
| | - Ahmet Y Teşneli
- Department of Electrical and Electronics Engineering, Sakarya University, Serdivan, Sakarya 54055, Turkey
| |
Collapse
|
507
|
Huang CY, Chuang CY, Shu WY, Chang CW, Chen CR, Fan TC, Hsu IC. Distinct epidermal keratinocytes respond to extremely low-frequency electromagnetic fields differently. PLoS One 2014; 9:e113424. [PMID: 25409520 PMCID: PMC4237442 DOI: 10.1371/journal.pone.0113424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 10/28/2014] [Indexed: 01/16/2023] Open
Abstract
Following an increase in the use of electric appliances that can generate 50 or 60 Hz electromagnetic fields, concerns have intensified regarding the biological effects of extremely low-frequency electromagnetic fields (ELF-EMFs) on human health. Previous epidemiological studies have suggested the carcinogenic potential of environmental exposure to ELF-EMFs, specifically at 50 or 60 Hz. However, the biological mechanism facilitating the effects of ELF-EMFs remains unclear. Cellular studies have yielded inconsistent results regarding the biological effects of ELF-EMFs. The inconsistent results might have been due to diverse cell types. In our previous study, we indicated that 1.5 mT, 60 Hz ELF-EMFs will cause G1 arrest through the activation of the ATM-Chk2-p21 pathway in human keratinocyte HaCaT cells. The aim of the current study was to investigate whether ELF-EMFs cause similar effects in a distinct epidermal keratinocyte, primary normal human epidermal keratinocytes (NHEK), by using the same ELF-EMF exposure system and experimental design. We observed that ELF-EMFs exerted no effects on cell growth, cell proliferation, cell cycle distribution, and the activation of ATM signaling pathway in NHEK cells. We demonstrated that the 2 epidermal keratinocytes responded to ELF-EMFs differently. To further validate this finding, we simultaneously exposed the NHEK and HaCaT cells to ELF-EMFs in the same incubator for 168 h and observed the cell growths. The simultaneous exposure of the two cell types results showed that the NHEK and HaCaT cells exhibited distinct responses to ELF-EMFs. Thus, we confirmed that the biological effects of ELF-EMFs in epidermal keratinocytes are cell type specific. Our findings may partially explain the inconsistent results of previous studies when comparing results across various experimental models.
Collapse
Affiliation(s)
- Chao-Ying Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Wun-Yi Shu
- Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan
| | - Cheng-Wei Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chaang-Ray Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Tai-Ching Fan
- Magnet Group, Instrumentation Development Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Ian C. Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
508
|
Ushiyama A, Ohtani S, Suzuki Y, Wada K, Kunugita N, Ohkubo C. Effects of 21-kHz intermediate frequency magnetic fields on blood properties and immune systems of juvenile rats. Int J Radiat Biol 2014; 90:1211-7. [DOI: 10.3109/09553002.2014.930538] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
509
|
Modeling the current density generated by transcutaneous spinal direct current stimulation (tsDCS). Clin Neurophysiol 2014; 125:2260-2270. [DOI: 10.1016/j.clinph.2014.02.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/20/2014] [Accepted: 02/24/2014] [Indexed: 12/25/2022]
|
510
|
Power frequency magnetic fields induced reactive oxygen species-related autophagy in mouse embryonic fibroblasts. Int J Biochem Cell Biol 2014; 57:108-14. [PMID: 25450462 DOI: 10.1016/j.biocel.2014.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/30/2014] [Accepted: 10/08/2014] [Indexed: 11/23/2022]
Abstract
Power frequency magnetic fields (PFMF) have been reported to affect several cellular functions, such as cell proliferation and apoptosis. In this study, we investigated the effects of PFMF on mouse embryonic fibroblasts (MEF) autophagy. After cells were exposed to 50 Hz PFMF at 2 mT for 0.5 h, 2 h, 6 h, 12 h, and 24 h, we observed a significant increase in autophagic markers at 6 h, including (i) higher microtubule-associated protein 1 light chain 3-II (LC3-II), (ii) the increased formation of GFP-LC3 puncta, and (iii) increased numbers of autophagic vacuoles under transmission electron microscope. Moreover, we provide convincing evidence using chloroquine (CQ) that the increase of autophagic markers was the result of enhanced autophagic flux and not the suppression of lysosomal function. In a search for molecular mechanisms underlying PFMF-mediated autophagy, we observe that the autophagic process involved reactive oxygen species (ROS) and was independent of the mammalian target of rapamycin (mTOR) signaling pathway.
Collapse
|
511
|
Cavarretta F, Carnevale NT, Tegolo D, Migliore M. Effects of low frequency electric fields on synaptic integration in hippocampal CA1 pyramidal neurons: implications for power line emissions. Front Cell Neurosci 2014; 8:310. [PMID: 25346660 PMCID: PMC4191432 DOI: 10.3389/fncel.2014.00310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/16/2014] [Indexed: 01/06/2023] Open
Abstract
The possible cognitive effects of low frequency external electric fields (EFs), such as those generated by power lines, are poorly understood. Their functional consequences for mechanisms at the single neuron level are very difficult to study and identify experimentally, especially in vivo. The major open problem is that experimental investigations on humans have given inconsistent or contradictory results, making it difficult to estimate the possible effects of external low frequency electric fields on cognitive functions. Here we investigate this issue with realistic models of hippocampal CA1 pyramidal neurons. Our findings suggest how and why EFs, with environmentally observed frequencies and intensities far lower than what is required for direct neural activation, can perturb dendritic signal processing and somatic firing of neurons that are crucially involved in cognitive tasks such as learning and memory. These results show that individual neuronal morphology, ion channel dendritic distribution, and alignment with the electric field are major determinants of overall effects, and provide a physiologically plausible explanation of why experimental findings can appear to be small and difficult to reproduce, yet deserve serious consideration.
Collapse
Affiliation(s)
- Francesco Cavarretta
- Institute of Biophysics, National Research Council Palermo, Italy ; Department of Mathematics and Informatics, University of Palermo Palermo, Italy
| | - Nicholas T Carnevale
- Department of Neurobiology, Yale University School of Medicine New Haven, CT, USA
| | - Domenico Tegolo
- Department of Mathematics and Informatics, University of Palermo Palermo, Italy
| | - Michele Migliore
- Institute of Biophysics, National Research Council Palermo, Italy
| |
Collapse
|
512
|
Patrick Reilly J. Human exposure standards in the frequency range 1 Hz To 100 kHz: the case for adoption of the IEEE standard. HEALTH PHYSICS 2014; 107:343-350. [PMID: 25162425 DOI: 10.1097/hp.0000000000000112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Differences between IEEE C95 Standards (C95.6-2002 and C95.1-2005) in the low-frequency (1 Hz-100 kHz) and the ICNIRP-2010 guidelines appear across the frequency spectrum. Factors accounting for lack of convergence include: differences between the IEEE standards and the ICNIRP guidelines with respect to biological induction models, stated objectives, data trail from experimentally derived thresholds through physical and biological principles, selection and justification of safety/reduction factors, use of probability models, compliance standards for the limbs as distinct from the whole body, defined population categories, strategies for central nervous system protection below 20 Hz, and correspondence of environmental electric field limits with contact currents. This paper discusses these factors and makes the case for adoption of the limits in the IEEE standards.
Collapse
|
513
|
Dosimetric study of fetal exposure to uniform magnetic fields at 50 Hz. Bioelectromagnetics 2014; 35:580-97. [DOI: 10.1002/bem.21878] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 07/24/2014] [Indexed: 11/07/2022]
|
514
|
Effect of an intermediate-frequency magnetic field of 23 kHz at 2 mT on chemotaxis and phagocytosis in neutrophil-like differentiated human HL-60 cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:9649-59. [PMID: 25233011 PMCID: PMC4199041 DOI: 10.3390/ijerph110909649] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/02/2014] [Accepted: 09/10/2014] [Indexed: 01/01/2023]
Abstract
Public concerns about potential health risks of intermediate-frequency (IF) electromagnetic fields are increasing, especially as the use of induction-heating cooktops has spread extensively in Japan and Europe. In order to investigate the properties of IF electromagnetic fields, we examined the effect of exposure to a 23-kHz IF magnetic field of 2 mT for 2, 3, or 4 h on neutrophil chemotaxis and phagocytosis using differentiated human HL-60 cells. Compared with sham exposure, exposure to the IF magnetic field had no effect on neutrophil chemotaxis or phagocytosis. Previous studies demonstrated that exposure to a 23-kHz IF magnetic field of 2 mT (about 74-times the maximum value recommended by the International Commission for Nonionizing Radiation Protection guidelines) may affect the first-line immune responses in humans. To our knowledge, this is the first study to evaluate the effects of IF magnetic fields on cellular immune responses. We found that exposure to an IF magnetic field of 2 mT has minimal if any effect on either the chemotaxis or phagocytic activity of neutrophil-like human HL-60 cells.
Collapse
|
515
|
Dürrenberger G, Fröhlich J, Röösli M, Mattsson MO. EMF monitoring-concepts, activities, gaps and options. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:9460-79. [PMID: 25216256 PMCID: PMC4199029 DOI: 10.3390/ijerph110909460] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 11/16/2022]
Abstract
Exposure to electromagnetic fields (EMF) is a cause of concern for many people. The topic will likely remain for the foreseeable future on the scientific and political agenda, since emissions continue to change in characteristics and levels due to new infrastructure deployments, smart environments and novel wireless devices. Until now, systematic and coordinated efforts to monitor EMF exposure are rare. Furthermore, virtually nothing is known about personal exposure levels. This lack of knowledge is detrimental for any evidence-based risk, exposure and health policy, management and communication. The main objective of the paper is to review the current state of EMF exposure monitoring activities in Europe, to comment on the scientific challenges and deficiencies, and to describe appropriate strategies and tools for EMF exposure assessment and monitoring to be used to support epidemiological health research and to help policy makers, administrators, industry and consumer representatives to base their decisions and communication activities on facts and data.
Collapse
Affiliation(s)
- Gregor Dürrenberger
- Swiss Research Foundation for Electricity and Mobile Communication, c/o Eidgenössische Technische Hochschule Zürich (ETH Zürich), Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Jürg Fröhlich
- Institute for Electromagnetic Fields, Eidgenössische Technische Hochschule Zürich (ETH Zürich), Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Martin Röösli
- Swiss Tropical and Public Health Institute (Swiss TPH), Socinstrasse 59, Postfach, 4002 Basel, Switzerland.
| | - Mats-Olof Mattsson
- Austrian Institute of Technology (AIT), Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.
| |
Collapse
|
516
|
Shi D, Zhu C, Lu R, Mao S, Qi Y. Intermediate frequency magnetic field generated by a wireless power transmission device does not cause genotoxicity in vitro. Bioelectromagnetics 2014; 35:512-8. [PMID: 25196478 DOI: 10.1002/bem.21872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 07/17/2014] [Indexed: 01/23/2023]
Abstract
The aim of this study was to evaluate effects of intermediate frequency magnetic fields (IFMF) generated by a wireless power transmission (WPT) based on magnetic resonance from the perspective of cellular genotoxicity on cultured human lens epithelial cells (HLECs). We evaluated the effects of exposure to 90 kHz magnetic fields at 93.36 µT on cellular genotoxicity in vitro for 2 and 4 h. The magnetic flux density is approximately 3.5 times higher than the reference level recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. For assessment of genotoxicity, we studied cellular proliferation, apoptosis and DNA damage by Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis, alkaline comet assay and phosphorylated histone H2AX (γH2AX) foci formation test. We did not detect any effect of a 90 kHz IFMF generated by WPT based on magnetic resonance on cell proliferation, apoptosis, comet assay, and γH2AX foci formation test. Our results indicated that exposure to 90 kHz IFMF generated by WPT based on magnetic resonance at 93.36 µT for 2 and 4 h does not cause detectable cellular genotoxicity.
Collapse
Affiliation(s)
- Dejing Shi
- Department of Ophthalmology, Forth Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | | | | | | | | |
Collapse
|
517
|
Calvente I, Dávila-Arias C, Ocón-Hernández O, Pérez-Lobato R, Ramos R, Artacho-Cordón F, Olea N, Núñez MI, Fernández MF. Characterization of indoor extremely low frequency and low frequency electromagnetic fields in the INMA-Granada cohort. PLoS One 2014; 9:e106666. [PMID: 25192253 PMCID: PMC4156360 DOI: 10.1371/journal.pone.0106666] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/30/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To characterize the exposure to electric fields and magnetic fields of non-ionizing radiation in the electromagnetic spectrum (15 Hz to 100 kHz) in the dwellings of children from the Spanish Environment and Childhood-"INMA" population-based birth cohort. METHODOLOGY The study sample was drawn from the INMA-Granada cohort. Out of 300 boys participating in the 9-10 year follow-up, 123 families agreed to the exposure assessment at home and completed a specific ad hoc questionnaire gathering information on sources of non-ionizing radiation electric and magnetic fields inside the homes and on patterns of use. Long-term indoor measurements were carried out in the living room and bedroom. RESULTS Survey data showed a low exposure in the children's homes according to reference levels of the International Commission on Non-Ionizing Radiation Protection but with large differences among homes in mean and maximum values. Daytime electrostatic and magnetic fields were below the quantification limit in 78.6% (92 dwellings) and 92.3% (108 dwellings) of houses, with an arithmetic mean value (± standard deviation) of 7.31±9.32 V/m and 162.30±91.16 nT, respectively. Mean magnetic field values were 1.6 lower during the night than the day. Nocturnal electrostatic values were not measured. Exposure levels were influenced by the area of residence (higher values in urban/semi-urban versus rural areas), type of dwelling, age of dwelling, floor of the dwelling, and season. CONCLUSION Given the greater sensitivity to extremely low-frequency electromagnetic fields of children and following the precautionary principle, preventive measures are warranted to reduce their exposure.
Collapse
Affiliation(s)
- Irene Calvente
- University of Granada, San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Unit Research Support of the San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Cristina Dávila-Arias
- Unit Research Support of the San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Olga Ocón-Hernández
- Unit Research Support of the San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Rocío Pérez-Lobato
- University of Granada, San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Unit Research Support of the San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Rosa Ramos
- Unit Research Support of the San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Francisco Artacho-Cordón
- University of Granada, San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Department of Radiology, University of Granada, Granada, Spain
| | - Nicolás Olea
- University of Granada, San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Department of Radiology, University of Granada, Granada, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - María Isabel Núñez
- University of Granada, San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Department of Radiology, University of Granada, Granada, Spain
| | - Mariana F. Fernández
- University of Granada, San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Department of Radiology, University of Granada, Granada, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
518
|
Mattsson MO, Simkó M. Grouping of Experimental Conditions as an Approach to Evaluate Effects of Extremely Low-Frequency Magnetic Fields on Oxidative Response in in vitro Studies. Front Public Health 2014; 2:132. [PMID: 25229055 PMCID: PMC4151017 DOI: 10.3389/fpubh.2014.00132] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/19/2014] [Indexed: 11/13/2022] Open
Abstract
A large body of literature deals with biological effects of extremely low-frequency magnetic fields (ELF MFs) studied in vitro. Despite the multitude of studies, no coherent picture has evolved regarding the plausibility of effects at low-flux densities or regarding the interaction mechanisms. Here, we propose that ELF MF exposure in vitro causes changes in oxidative status as an early response. We tested this hypothesis by scrutinizing the literature and applying a grouping approach for analyzing relevant biological properties and exposure conditions. A total of 41 scientific original publications were analyzed for this purpose. The conclusion from the work is that ELF MF (modulated or unmodulated) consistently can influence the oxidative status, at or above 1 mT, in a broad range of cell types and independent of exposure duration. A response at lower flux densities is seen in certain studies, although not consistently. Further studies with stringent protocols for sham exposure, blinding, and statistical analysis as well as appropriate positive controls are needed to establish if true dose-relationships for effects on oxidative status exist.
Collapse
Affiliation(s)
- Mats-Olof Mattsson
- Environmental Resources and Technologies, Department Health and Environment, AIT Austrian Institute of Technology, Tulln, Austria
| | - Myrtill Simkó
- Environmental Resources and Technologies, Department Health and Environment, AIT Austrian Institute of Technology, Tulln, Austria
| |
Collapse
|
519
|
Exposition professionnelle aux champs électromagnétiques et dérèglement d’une valve de dérivation ventriculo-péritonéale : à propos d’un cas. ARCH MAL PROF ENVIRO 2014. [DOI: 10.1016/j.admp.2014.03.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
520
|
Zhu H, Wang J, Cui J, Fan X. Effects of extremely low frequency electromagnetic fields on human fetal scleral fibroblasts. Toxicol Ind Health 2014; 32:1042-51. [PMID: 25147305 DOI: 10.1177/0748233714545837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the effects of extremely low frequency electromagnetic fields (ELF-EMFs) on human fetal scleral fibroblasts (HFSFs). HFSFs were subjected to 50 Hz artificial ELF-EMFs generated by Helmholtz coils with 0.1, 0.2, 0.5, and 1.0 mT field intensities for 6 to 48 h. The viability and factors involved in scleral structuring of HFSFs were determined. The growth rate of HFSFs significantly decreased after only 24 h of exposure to ELF-EMFs (0.2 mT). The messenger RNA (mRNA) expression of collagen type I (COL1A1) decreased and expression of matrix metalloproteinase-2 (MMP-2) increased significantly. There was a decrease in tissue inhibitor of MMP-2 mRNA levels between treated and control cells only at the 1.0 mT intensity level. Transforming growth factor beta-2 mRNA increased in exposed cells, and, simultaneously, fibroblast growth factor-2 mRNA levels decreased. The protein expressions of COL1A1 and MMP-2 were also significantly altered subsequent to exposure (p < 0.05). This study shows that ELF-EMFs had biological effects on HFSFs and could cause abnormality in scleral collagen.
Collapse
Affiliation(s)
- Huang Zhu
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wang
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
521
|
Korpinen L, Kuisti H, Elovaara J. Current densities and total contact currents for 110 and 220 kV power line tasks. Bioelectromagnetics 2014; 35:531-5. [PMID: 25100002 DOI: 10.1002/bem.21870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 07/06/2014] [Indexed: 11/09/2022]
Abstract
The aim of this study was to analyze all values of electric current from measured periods while performing tasks on 110 and 220 kV power lines. Additionally, the objective was to study the average current densities and average total contact currents caused by electric fields in 110 and 220 kV power line tasks. One worker simulated the following tasks: (A) tested insulation voltage at a 110 kV portal tower, (B) checked the wooden towers for rot at a 110 kV portal tower, (C) tested insulation voltage at a 220 kV portal tower, and (D) checked the wooden towers for rot at a 220 kV portal tower. The highest average current density in the neck was 2.0 mA/m(2) (calculated internal electric field was 19.0-38.0 mV/m), and the highest average contact current was 234 µA. All measured values at 110 and 220 kV towers were lower than the basic restrictions (0.1 and 0.8 V/m) of the International Commission on Non-ionizing Radiation Protection.
Collapse
Affiliation(s)
- Leena Korpinen
- Environmental Health, Tampere University of Technology, Tampere, Finland
| | | | | |
Collapse
|
522
|
de Groot MWGDM, Kock MDM, Westerink RHS. Assessment of the neurotoxic potential of exposure to 50Hz extremely low frequency electromagnetic fields (ELF-EMF) in naïve and chemically stressed PC12 cells. Neurotoxicology 2014; 44:358-64. [PMID: 25111744 DOI: 10.1016/j.neuro.2014.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/14/2014] [Accepted: 07/25/2014] [Indexed: 11/18/2022]
Abstract
Increasing exposure to extremely low frequency electromagnetic fields (ELF-EMF), generated by power lines and electric appliances, raises concern about potential adverse health effects of ELF-EMF. The central nervous system is expected to be particularly vulnerable to ELF-EMF as its function strongly depends on electrical excitability. We therefore investigated effects of acute (30min) and sub-chronic (48h) exposure to 50Hz ELF-EMF on naïve and chemically stressed pheochromocytoma (PC12) cells. The latter have higher levels of iron and/or reactive oxygen species (ROS) and display increased vulnerability to environmental insults. Effects of ELF-EMF on Ca(2+)-homeostasis, ROS production and membrane integrity were assessed using Fura-2 single cell fluorescence microscopy, H2-DCFDA and CFDA assays, respectively. Our data demonstrate that acute exposure of naïve PC12 cells to 50Hz ELF-EMF up to 1000μT fails to affect basal or depolarization-evoked [Ca(2+)]i. Moreover, sub-chronic ELF-EMF exposure up to 1000μT has no consistent effects on Ca(2+)-homeostasis in naïve PC12 cells and does not affect ROS production and membrane integrity. Notably, in chemically stressed PC12 cells both acute and sub-chronic ELF-EMF exposure also failed to exert consistent effects on Ca(2+)-homeostasis, ROS production and membrane integrity. Our combined findings thus indicate that exposure to 50Hz ELF-EMF up to 1000μT, i.e. 10,000 times above background exposure, does not induce neurotoxic effects in vitro, neither in naïve nor in chemically stressed PC12 cells. Though our data require confirmation, e.g. in developing neuronal cells in vitro or (developing) animals, it appears that the neurotoxic risk of ELF-EMF exposure is limited.
Collapse
Affiliation(s)
- Martje W G D M de Groot
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL 3508 TD Utrecht, The Netherlands.
| | - Marjolijn D M Kock
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL 3508 TD Utrecht, The Netherlands.
| | - Remco H S Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
523
|
Modolo J, Thomas AW, Legros A. Mechanism-based modeling of time-varying magnetic fields effects on cortical activity. BMC Neurosci 2014. [PMCID: PMC4124994 DOI: 10.1186/1471-2202-15-s1-p116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
524
|
Israel M, Zaryabova V, Ivanova M. Electromagnetic field occupational exposure: non-thermal vs. thermal effects. Electromagn Biol Med 2014; 32:145-54. [PMID: 23675617 DOI: 10.3109/15368378.2013.776349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There are a variety of definitions for "non-thermal effects" included in different international standards. They start by the simple description that they are "effects of electromagnetic energy on a body that are not heat-related effects", passing through the very general definition related to low-level effects: "biological effects ascribed to exposure to low-level electric, magnetic and electromagnetic fields, i.e. at or below the corresponding dosimetric reference levels in the frequency range covered in this standard (0 Hz-300 GHz)", and going to the concrete definition of "the stimulation of muscles, nerves, or sensory organs, vertigo or phosfenes". Here, we discuss what kind of effect does the non-thermal one has on human body and give data of measurements in different occupations with low-frequency sources of electromagnetic field such as electric power distribution systems, transformers, MRI systems and : video display units (VDUs), whereas thermal effects should not be expected. In some of these workplaces, values above the exposure limits could be found, nevertheless that they are in the term "non-thermal effects" on human body. Examples are workplaces in MRI, also in some power plants. Here, we will not comment on non-thermal effects as a result of RF or microwave exposure because there are not proven evidence about the existance of such effects and mechanisms for them are not clear.
Collapse
Affiliation(s)
- M Israel
- National Centre of Public Health and Analysis, Sofia, Bulgaria.
| | | | | |
Collapse
|
525
|
Knopper LD, Ollson CA, McCallum LC, Whitfield Aslund ML, Berger RG, Souweine K, McDaniel M. Wind turbines and human health. Front Public Health 2014; 2:63. [PMID: 24995266 PMCID: PMC4063257 DOI: 10.3389/fpubh.2014.00063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/24/2014] [Indexed: 11/13/2022] Open
Abstract
The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health.
Collapse
Affiliation(s)
- Loren D Knopper
- Intrinsik Environmental Sciences Inc. , Mississauga, ON , Canada
| | | | | | | | - Robert G Berger
- Intrinsik Environmental Sciences Inc. , Mississauga, ON , Canada
| | | | - Mary McDaniel
- Intrinsik Environmental Sciences Inc. , Venice, CA , USA
| |
Collapse
|
526
|
Sunohara T, Hirata A, Laakso I, Onishi T. Analysis ofin situelectric field and specific absorption rate in human models for wireless power transfer system with induction coupling. Phys Med Biol 2014; 59:3721-35. [DOI: 10.1088/0031-9155/59/14/3721] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
527
|
Lee SK, Park S, Gimm YM, Kim YW. Extremely low frequency magnetic fields induce spermatogenic germ cell apoptosis: possible mechanism. BIOMED RESEARCH INTERNATIONAL 2014; 2014:567183. [PMID: 25025060 PMCID: PMC4082851 DOI: 10.1155/2014/567183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/07/2014] [Accepted: 04/22/2014] [Indexed: 11/17/2022]
Abstract
The energy generated by an extremely low frequency electromagnetic field (ELF-EMF) is too weak to directly induce genotoxicity. However, it is reported that an extremely low frequency magnetic field (ELF-MF) is related to DNA strand breakage and apoptosis. The testes that conduct spermatogenesis through a dynamic cellular process involving meiosis and mitosis seem vulnerable to external stress such as heat, MF exposure, and chemical or physical agents. Nevertheless the results regarding adverse effects of ELF-EMF on human or animal reproductive functions are inconclusive. According to the guideline of the International Commission on Non-Ionizing Radiation Protection (ICNIRP; 2010) for limiting exposure to time-varying MF (1 Hz to 100 kHz), overall conclusion of epidemiologic studies has not consistently shown an association between human adverse reproductive outcomes and maternal or paternal exposure to low frequency fields. In animal studies there is no compelling evidence of causal relationship between prenatal development and ELF-MF exposure. However there is increasing evidence that EL-EMF exposure is involved with germ cell apoptosis in testes. Biophysical mechanism by which ELF-MF induces germ cell apoptosis has not been established. This review proposes the possible mechanism of germ cell apoptosis in testes induced by ELF-MF.
Collapse
Affiliation(s)
- Sang-Kon Lee
- Department of Urology, Sacred Heart Hospital, School of Medicine, Hallym University, 153 Kyo-dong, Gangwon, Chuncheon 200-704, Republic of Korea
| | - Sungman Park
- Institute of Medical Science, School of Medicine, Hallym University, Gangwon, Chuncheon 200-702, Republic of Korea
| | - Yoon-Myoung Gimm
- School of Electronics and Electrical Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Gyeonggi, Yongin 448-701, Republic of Korea
| | - Yoon-Won Kim
- Institute of Medical Science, School of Medicine, Hallym University, Gangwon, Chuncheon 200-702, Republic of Korea
- Department of Microbiology, School of Medicine, Hallym University, Gangwon, Chuncheon 200-702, Republic of Korea
| |
Collapse
|
528
|
Chen XL, De Santis V, Umenei AE. Theoretical assessment of the maximum obtainable power in wireless power transfer constrained by human body exposure limits in a typical room scenario. Phys Med Biol 2014; 59:3453-64. [DOI: 10.1088/0031-9155/59/13/3453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
529
|
De Santis V, Chen XL. On the issues related to compliance assessment of ICNIRP 2010 basic restrictions. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2014; 34:N31-N39. [PMID: 24705441 DOI: 10.1088/0952-4746/34/2/n31] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This article discusses technical issues related to compliance assessment of ICNIRP 2010 basic restrictions. Several difficulties are identified in this study when assessing the spatial average and 99th percentile value of the electric field. These issues are mainly attributed to the lack of clarity in the guideline specifications, which leads to inadequate or irreproducible results. Effects on compliance results due to such ambiguous procedures are hereby investigated, with particular focus on technical issues rather than biological ones. Examples spanning from simple canonical test cases to realistic applications have been selected to highlight the strong variability in dosimetry results. Based on our findings, revisiting the ICNIRP 2010 guidelines is strongly recommended, and proposed alternative solutions are outlined.
Collapse
Affiliation(s)
- Valerio De Santis
- Department of Industrial and Information Engineering and Economics, University of L'Aquila, Italy
| | - Xi Lin Chen
- Laboratory of Electromagnetic and Acoustics (LEMA), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
530
|
Lv X, Wu Z, Li Y. Effect of electromagnetic radiation on the coils used in aneurysm embolization. Neuroradiol J 2014; 27:350-355. [PMID: 24976203 PMCID: PMC4202901 DOI: 10.15274/nrj-2014-10050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/10/2014] [Indexed: 02/07/2023] Open
Abstract
This study evaluated the effects of electromagnetic radiation in our daily lives on the coils used in aneurysm embolization. Faraday's electromagnetic induction principle was applied to analyze the effects of electromagnetic radiation on the coils used in aneurysm embolization. To induce a current of 0.5mA in less than 5 mm platinum coils required to stimulate peripheral nerves, the minimum magnetic field will be 0.86 μT. To induce a current of 0.5 mA in platinum coils by a hair dryer, the minimum aneurysm radius is 2.5 mm (5 mm aneurysm). To induce a current of 0.5 mA in platinum coils by a computer or TV, the minimum aneurysm radius is 8.6 mm (approximate 17 mm aneurysm). The minimum magnetic field is much larger than the flux densities produced by computer and TV, while the minimum aneurysm radius is much larger than most aneurysm sizes to levels produced by computer and TV. At present, the effects of electromagnetic radiation in our daily lives on intracranial coils do not produce a harmful reaction. Patients with coiled aneurysm are advised to avoid using hair dryers. This theory needs to be proved by further detailed complex investigations. Doctors should give patients additional instructions before the procedure, depending on this study.
Collapse
Affiliation(s)
- Xianli Lv
- /> Department of Interventional Neuroradiology, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University; Beijing, China
| | - Zhongxue Wu
- /> Department of Interventional Neuroradiology, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University; Beijing, China
| | - Youxiang Li
- /> Department of Interventional Neuroradiology, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University; Beijing, China
| |
Collapse
|
531
|
Leitgeb N. Limiting electric fields of HVDC overhead power lines. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:461-468. [PMID: 24573710 DOI: 10.1007/s00411-014-0520-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/02/2014] [Indexed: 06/03/2023]
Abstract
As a consequence of the increased use of renewable energy and the now long distances between energy generation and consumption, in Europe, electric power transfer by high-voltage (HV) direct current (DC) overhead power lines gains increasing importance. Thousands of kilometers of them are going to be built within the next years. However, existing guidelines and regulations do not yet contain recommendations to limit static electric fields, which are one of the most important criteria for HVDC overhead power lines in terms of tower design, span width and ground clearance. Based on theoretical and experimental data, in this article, static electric fields associated with adverse health effects are analysed and various criteria are derived for limiting static electric field strengths.
Collapse
Affiliation(s)
- N Leitgeb
- Institute of Health Care Engineering with European Notified Body of Medical Devices, Graz University of Technology, Kopernikusgasse 24, 8010, Graz, Austria,
| |
Collapse
|
532
|
Gherardini L, Ciuti G, Tognarelli S, Cinti C. Searching for the perfect wave: the effect of radiofrequency electromagnetic fields on cells. Int J Mol Sci 2014; 15:5366-87. [PMID: 24681584 PMCID: PMC4013569 DOI: 10.3390/ijms15045366] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/17/2014] [Accepted: 03/20/2014] [Indexed: 12/23/2022] Open
Abstract
There is a growing concern in the population about the effects that environmental exposure to any source of “uncontrolled” radiation may have on public health. Anxiety arises from the controversial knowledge about the effect of electromagnetic field (EMF) exposure to cells and organisms but most of all concerning the possible causal relation to human diseases. Here we reviewed those in vitro and in vivo and epidemiological works that gave a new insight about the effect of radio frequency (RF) exposure, relating to intracellular molecular pathways that lead to biological and functional outcomes. It appears that a thorough application of standardized protocols is the key to reliable data acquisition and interpretation that could contribute a clearer picture for scientists and lay public. Moreover, specific tuning of experimental and clinical RF exposure might lead to beneficial health effects.
Collapse
Affiliation(s)
- Lisa Gherardini
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche Siena, Strada Petriccio e Belriguardo, Siena 53100, Italy.
| | - Gastone Ciuti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pisa 56025, Italy.
| | - Selene Tognarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pisa 56025, Italy.
| | - Caterina Cinti
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche Siena, Strada Petriccio e Belriguardo, Siena 53100, Italy.
| |
Collapse
|
533
|
Guidelines for limiting exposure to electric fields induced by movement of the human body in a static magnetic field and by time-varying magnetic fields below 1 Hz. HEALTH PHYSICS 2014; 106:418-425. [PMID: 25208018 DOI: 10.1097/hp.0b013e31829e5580] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
534
|
Jin YB, Choi SH, Lee JS, Kim JK, Lee JW, Hong SC, Myung SH, Lee YS. Absence of DNA damage after 60-Hz electromagnetic field exposure combined with ionizing radiation, hydrogen peroxide, or c-Myc overexpression. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:93-101. [PMID: 24305851 DOI: 10.1007/s00411-013-0506-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 11/25/2013] [Indexed: 06/02/2023]
Abstract
The principal objective of this study was to assess the DNA damage in a normal cell line system after exposure to 60 Hz of extremely low frequency magnetic field (ELF-MF) and particularly in combination with various external factors, via comet assays. NIH3T3 mouse fibroblast cells, WI-38 human lung fibroblast cells, L132 human lung epithelial cells, and MCF10A human mammary gland epithelial cells were exposed for 4 or 16 h to a 60-Hz, 1 mT uniform magnetic field in the presence or absence of ionizing radiation (IR, 1 Gy), H(2)O(2) (50 μM), or c-Myc oncogenic activation. The results obtained showed no significant differences between the cells exposed to ELF-MF alone and the unexposed cells. Moreover, no synergistic or additive effects were observed after 4 or 16 h of pre-exposure to 1 mT ELF-MF or simultaneous exposure to ELF-MF combined with IR, H(2)O(2), or c-Myc activation.
Collapse
Affiliation(s)
- Yeung Bae Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | | | | | | | | | | | | | | |
Collapse
|
535
|
Roivainen P, Eskelinen T, Jokela K, Juutilainen J. Occupational exposure to intermediate frequency and extremely low frequency magnetic fields among personnel working near electronic article surveillance systems. Bioelectromagnetics 2014; 35:245-50. [PMID: 24615825 DOI: 10.1002/bem.21850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 01/28/2014] [Indexed: 11/10/2022]
Abstract
Cashiers are potentially exposed to intermediate frequency (IF) magnetic fields at their workplaces because of the electronic article surveillance (EAS) systems used in stores to protect merchandise against theft. This study aimed at investigating occupational exposure of cashiers to IF magnetic fields in Finnish stores. Exposure to extremely low frequency (ELF) magnetic fields was also evaluated because cashiers work near various devices operating with 50 Hz electric power. The peak magnetic flux density was measured for IF magnetic fields, and was found to vary from 0.2 to 4 µT at the cashier's seat. ELF magnetic fields from 0.03 to 4.5 µT were found at the cashier's seat. These values are much lower than exposure limits. However, according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) occupational reference levels for IF magnetic fields (141 µT for the peak field) were exceeded in some cases (maximum 189 µT) for short periods of time when cashiers walked through the EAS gates. As the ICNIRP reference levels do not define any minimum time for exposure, additional investigations are recommended to determine compliance with basic restrictions. Even if the basic restrictions are not exceeded, persons working near EAS devices represent an exceptional group of workers with respect to exposure to electromagnetic fields. This group could serve as a basis for epidemiological studies addressing possible health effects of IF magnetic fields. Compliance with the reference levels for IF fields was evaluated using both broadband measurement of peak fields and the ICNIRP summation rule for multiple frequencies. The latter was generally more conservative, and the difference between the two methods was large (>10-fold) for EAS systems using a 58 kHz signal with complex waveform. This indicates that the ICNIRP multiple frequency rule can be unnecessarily conservative when measuring complex waveforms.
Collapse
Affiliation(s)
- Päivi Roivainen
- Department of Environmental Science, University of Eastern Finland, Kuopio, Finland
| | | | | | | |
Collapse
|
536
|
Stam R. The revised electromagnetic fields directive and worker exposure in environments with high magnetic flux densities. ANNALS OF OCCUPATIONAL HYGIENE 2014; 58:529-41. [PMID: 24557933 DOI: 10.1093/annhyg/meu010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Some of the strongest electromagnetic fields (EMF) are found in the workplace. A European Directive sets limits to workers' exposure to EMF. This review summarizes its origin and contents and compares magnetic field exposure levels in high-risk workplaces with the limits set in the revised Directive. Pubmed, Scopus, grey literature databases, and websites of organizations involved in occupational exposure measurements were searched. The focus was on EMF with frequencies up to 10 MHz, which can cause stimulation of the nervous system. Selected studies had to provide individual maximum exposure levels at the workplace, either in terms of the external magnetic field strength or flux density or as induced electric field strength or current density. Indicative action levels and the corresponding exposure limit values for magnetic fields in the revised European Directive will be higher than those in the previous version. Nevertheless, magnetic flux densities in excess of the action levels for peripheral nerve stimulation are reported for workers involved in welding, induction heating, transcranial magnetic stimulation, and magnetic resonance imaging (MRI). The corresponding health effects exposure limit values for the electric fields in the worker's body can be exceeded for welding and MRI, but calculations for induction heating and transcranial magnetic stimulation are lacking. Since the revised European Directive conditionally exempts MRI-related activities from the exposure limits, measures to reduce exposure may be necessary for welding, induction heating, and transcranial nerve stimulation. Since such measures can be complicated, there is a clear need for exposure databases for different workplace scenarios with significant EMF exposure and guidance on good practices.
Collapse
Affiliation(s)
- Rianne Stam
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
537
|
Vijayalaxmi, Cao Y, Scarfi MR. Adaptive response in mammalian cells exposed to non-ionizing radiofrequency fields: A review and gaps in knowledge. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 760:S1383-5742(14)00004-0. [PMID: 24548818 DOI: 10.1016/j.mrrev.2014.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 11/19/2022]
Abstract
Adaptive response is a phenomenon in which cells which were pre-exposed to extremely low and non-toxic doses of a genotoxic agent became resistant to the damage induced by subsequent exposure to a higher and toxic dose of the same, similar (in action) or another genotoxic agent. Such response has been well documented in scientific literature in cells exposed in vitro and in vivo to low doses of physical (especially, ionizing radiation) and chemical mutagens. The existence of similar phenomenon in mammalian cells exposed in vitro and in vivo to non-ionizing radiofrequency fields has been reported in several research publications. In in vitro studies, human blood lymphocytes exposed to radiofrequency fields and then treated with a genotoxic mutagen or subjected to ionizing radiation showed significantly decreased genetic damage. Similar studies in tumor cells showed significantly increased viability, decreased apoptosis, increased mitochondrial membrane potential, decreased intracellular free Ca2+ and, increased Ca2+-Mg2+-ATPase activity. In in vivo studies, exposure of rodents to radiofrequency fields and then to lethal/sub-lethal doses of γ-radiation showed survival advantage, significantly decreased damage in hematopoietic tissues, decreased genetic damage in blood leukocytes and bone marrow cells, increased numbers of colony forming units in bone marrow, increased levels of colony stimulating factor and interleukin-3 in the serum and increased expression of genes related to cell cycle. These observations suggested the ability of radiofrequency fields to induce adaptive response and also indicated some potential mechanisms for the induction of such response. Several gaps in knowledge that need to be investigated were discussed.
Collapse
|
538
|
Wu X, Cao MP, Shen YY, Chu KP, Tao WB, Song WT, Liu LP, Wang XH, Zheng YF, Chen SD, Zeng QL, Xia RH. Weak power frequency magnetic field acting similarly to EGF stimulation, induces acute activations of the EGFR sensitive actin cytoskeleton motility in human amniotic cells. PLoS One 2014; 9:e87626. [PMID: 24505297 PMCID: PMC3914819 DOI: 10.1371/journal.pone.0087626] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/16/2013] [Indexed: 12/30/2022] Open
Abstract
In this article, we have examined the motility-related effects of weak power frequency magnetic fields (MFs) on the epidermal growth factor receptor (EGFR)-sensitive motility mechanism, including the F-actin cytoskeleton, growth of invasive protrusions and the levels of signal molecules in human amniotic epithelial (FL) cells. Without extracellular EGF stimulation, the field stimulated a large growth of new protrusions, especially filopodia and lamellipodia, an increased population of vinculin-associated focal adhesions. And, an obvious reduction of stress fiber content in cell centers was found, corresponding to larger cell surface areas and decreased efficiency of actin assembly of FL cells in vitro, which was associated with a decrease in overall F-actin content and special distributions. These effects were also associated with changes in protein content or distribution patterns of the EGFR downstream motility-related signaling molecules. All of these effects are similar to those following epidermal growth factor (EGF) stimulation of the cells and are time dependent. These results suggest that power frequency MF exposure acutely affects the migration/motility-related actin cytoskeleton reorganization that is regulated by the EGFR-cytoskeleton signaling pathway. Therefore, upon the MF exposure, cells are likely altered to be ready to transfer into a state of migration in response to the stimuli.
Collapse
Affiliation(s)
- Xia Wu
- Physics Department, East China Normal University, Shanghai, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Mei-Ping Cao
- Physics Department, East China Normal University, Shanghai, China
| | - Yun-Yun Shen
- Bioelectromagnetics Laboratory, Zhejiang University, Hangzhou, China
| | - Ke-Ping Chu
- Physics Department, East China Normal University, Shanghai, China
| | - Wu-Bin Tao
- Physics Department, East China Normal University, Shanghai, China
| | - Wei-Tao Song
- Physics Department, East China Normal University, Shanghai, China
| | - Li-Ping Liu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xiang-Hui Wang
- Physics Department, East China Normal University, Shanghai, China
| | - Yu-Fang Zheng
- School of Life Sciences, Fudan University, Shanghai, China
| | - Shu-De Chen
- Physics Department, East China Normal University, Shanghai, China
| | - Qun-Li Zeng
- Bioelectromagnetics Laboratory, Zhejiang University, Hangzhou, China
| | - Ruo-Hong Xia
- Physics Department, East China Normal University, Shanghai, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| |
Collapse
|
539
|
White MJ, Thornton JS, Hawkes DJ, Hill DL, Kitchen N, Mancini L, McEvoy AW, Razavi R, Wilson S, Yousry T, Keevil SF. Design, Operation, and Safety of Single-Room Interventional MRI Suites: Practical Experience From Two Centers. J Magn Reson Imaging 2014; 41:34-43. [DOI: 10.1002/jmri.24577] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/10/2014] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mark J. White
- National Hospital for Neurology and Neurosurgery; Queen Square, London UK
- UCL Institute of Neurology; Queen Square, London UK
| | - John S. Thornton
- National Hospital for Neurology and Neurosurgery; Queen Square, London UK
- UCL Institute of Neurology; Queen Square, London UK
| | | | | | - Neil Kitchen
- National Hospital for Neurology and Neurosurgery; Queen Square, London UK
- UCL Institute of Neurology; Queen Square, London UK
| | - Laura Mancini
- National Hospital for Neurology and Neurosurgery; Queen Square, London UK
- UCL Institute of Neurology; Queen Square, London UK
| | - Andrew W. McEvoy
- National Hospital for Neurology and Neurosurgery; Queen Square, London UK
- UCL Institute of Neurology; Queen Square, London UK
| | | | - Sally Wilson
- National Hospital for Neurology and Neurosurgery; Queen Square, London UK
| | - Tarek Yousry
- National Hospital for Neurology and Neurosurgery; Queen Square, London UK
- UCL Institute of Neurology; Queen Square, London UK
| | | |
Collapse
|
540
|
Korpinen L, Kuisti H, Tarao H, Pääkkönen R, Elovaara J. Comparison of electric field exposure measurement methods under power lines. RADIATION PROTECTION DOSIMETRY 2014; 158:221-223. [PMID: 23960243 DOI: 10.1093/rpd/nct201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The object of the study was to investigate extremely low frequency (ELF) electric field exposure measurement methods under power lines. The authors compared two different methods under power lines: in Method A, the sensor was placed on a tripod; and Method B required the measurer to hold the meter horizontally so that the distance from him/her was at least 1.5 m. The study includes 20 measurements in three places under 400 kV power lines. The authors used two commercial three-axis meters, EFA-3 and EFA-300. In statistical analyses, they did not find significant differences between Methods A and B. However, in the future, it is important to take into account that measurement methods can, in some cases, influence ELF electric field measurement results, and it is important to report the methods used so that it is possible to repeat the measurements.
Collapse
Affiliation(s)
- Leena Korpinen
- Environmental Health, Tampere University of Technology, Tampere, Finland
| | | | | | | | | |
Collapse
|
541
|
Tell RA, Kavet R, Bailey JR, Halliwell J. Very-low-frequency and low-frequency electric and magnetic fields associated with electric shuttle bus wireless charging. RADIATION PROTECTION DOSIMETRY 2014; 158:123-134. [PMID: 24043876 DOI: 10.1093/rpd/nct208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tests conducted to date at the University of Tennessee at Chattanooga (UTC) indicate that wireless charging of the Chattanooga Area Regional Transportation Authority's (CARTA) downtown shuttle bus, currently operating with off-board battery charging technology, offers significant improvements in performance and cost. The system operates at a frequency of 20 kHz and a peak power of 60 kW. Because the system's wireless charging is expected to occur during a nominal 3-min charging period with passengers on-board, the magnetic and electric fields associated with charging were characterised at UTC's Advanced Vehicle Test Facility and compared with established human exposure limits. The two most prominent exposure limits are those published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute for Electrical and Electronic Engineers (IEEE). Both organisations include limits for groups who are trained (workers in specific industries) to be aware of electromagnetic environments and their potential hazards, as well as a lower set of limits for the general public, who are assumed to lack such awareness. None of the magnetic or electric fields measured either within or outside the bus during charging exceeded either the ICNIRP or the IEEE exposure limits for the general public.
Collapse
Affiliation(s)
- R A Tell
- Richard Tell Associates, Inc, 1872 E. Hawthorne Avenue, Colville, WA 99114, USA
| | | | | | | |
Collapse
|
542
|
Carrio I, Ros P. Risks and Safety Aspects of MR-PET. PET/MRI 2014. [PMCID: PMC7122917 DOI: 10.1007/978-3-642-40692-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The introduction of MR-PET systems into medical practice not only may lead to a gain in clinical diagnosis as compared to PET-CT imaging due to the superior soft tissue contrast of the MR technology but can also substantially reduce exposure of patients to ionizing radiation. On the other hand, there are also risks and health effects associated with the use of diagnostic MR devices that have to be considered carefully. In this chapter, the biophysical and biological aspects relevant for the assessment of health effects related to the use of ionizing radiation in PET and (electro)magnetic fields in MR are summarized. On this basis, the current safety standards will be presented – which, however, do not address the possibility of synergistic effects of ionizing radiation and (electro)magnetic fields. In the light of the developing MR-PET technology, it is of utmost importance to investigate this aspect in more detail for exposure levels that will occur at MR-PET systems. Finally, some considerations concerning the justification and optimization of MR-PET examination will be made.
Collapse
Affiliation(s)
- Ignasi Carrio
- Depto. Medicina Nuclear, Autonomous University of Barcelona Hospital Sant Pau, Barcelona, Spain
| | - Pablo Ros
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, Ohio USA
| |
Collapse
|
543
|
Deng ZD, Lisanby SH, Peterchev AV. Coil design considerations for deep transcranial magnetic stimulation. Clin Neurophysiol 2013; 125:1202-12. [PMID: 24411523 DOI: 10.1016/j.clinph.2013.11.038] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 10/06/2013] [Accepted: 11/09/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To explore the field characteristics and design tradeoffs of coils for deep transcranial magnetic stimulation (dTMS). METHODS We simulated parametrically two dTMS coil designs on a spherical head model using the finite element method, and compare them with five commercial TMS coils, including two that are FDA approved for the treatment of depression (ferromagnetic-core figure-8 and H1 coil). RESULTS Smaller coils have a focality advantage over larger coils; however, this advantage diminishes with increasing target depth. Smaller coils have the disadvantage of producing stronger field in the superficial cortex and requiring more energy. When the coil dimensions are large relative to the head size, the electric field decay in depth becomes linear, indicating that, at best, the electric field attenuation is directly proportional to the depth of the target. Ferromagnetic cores improve electrical efficiency for targeting superficial brain areas; however magnetic saturation reduces the effectiveness of the core for deeper targets, especially for highly focal coils. Distancing winding segments from the head, as in the H1 coil, increases the required stimulation energy. CONCLUSIONS Among standard commercial coils, the double cone coil offers high energy efficiency and balance between stimulated volume and superficial field strength. Direct TMS of targets at depths of ~4 cm or more results in superficial stimulation strength that exceeds the upper limit in current rTMS safety guidelines. Approaching depths of ~6 cm is almost certainly unsafe considering the excessive superficial stimulation strength and activated brain volume. SIGNIFICANCE Coil design limitations and tradeoffs are important for rational and safe exploration of dTMS.
Collapse
Affiliation(s)
- Zhi-De Deng
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Sarah H Lisanby
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
544
|
Liu L, Trakic A, Sanchez-Lopez H, Liu F, Crozier S. An analysis of the gradient-induced electric fields and current densities in human models when situated in a hybrid MRI-LINAC system. Phys Med Biol 2013; 59:233-45. [DOI: 10.1088/0031-9155/59/1/233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
545
|
Zilberti L, Chiampi M. A numerical survey of motion-induced electric fields experienced by MRI operators. HEALTH PHYSICS 2013; 105:498-511. [PMID: 24162054 DOI: 10.1097/hp.0b013e31829b4aac] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper deals with the electric field generated inside the bodies of people moving in proximity to magnetic resonance scanners. Different types of scanners (tubular and open) and various kinds of movements (translation, rotation, and revolution) are analyzed, considering the homogeneous human model proposed in some technical Standards. The computations are performed through the Boundary Element Method, adopting a reference frame attached to the body, which significantly reduces the computational burden. The induced electric fields are evaluated in terms of both spatial distributions and local time evolutions. The possibility of limiting the study to the head without affecting the accuracy of the results is also investigated. Finally, a first attempt to quantify the transient effect of charge separation is proposed.
Collapse
Affiliation(s)
- Luca Zilberti
- *Istituto Nazionale di Ricerca Metrologica, Torino, Italy; †Dipartimento Energia, Politecnico di Torino, Italy
| | | |
Collapse
|
546
|
Guibelalde del Castillo E. [Patient exposure to electromagnetic fields in magnetic resonance scanners: a review]. RADIOLOGIA 2013; 55 Suppl 2:2-8. [PMID: 24246885 DOI: 10.1016/j.rx.2013.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/11/2013] [Accepted: 09/21/2013] [Indexed: 11/16/2022]
Abstract
The use of non-ionizing electromagnetic fields in the low frequency end of the electromagnetic spectrum and static fields, radiofrequencies (RF), and microwaves is fundamental both in modern communication systems and in diagnostic medical imaging techniques like magnetic resonance imaging (MRI). The proliferation of these applications in recent decades has led to intense activity in developing regulations to guarantee their safety and to the establishment of guidelines and legal recommendations for the public, workers, and patients. In April 2012 it was foreseen that the European Parliament and Council would approve and publish a directive on the minimum health and safety requirements regarding the exposure of workers to the risks arising from electromagnetic fields, which would modify Directive 2004/40/EC. New studies related to the exposure to electromagnetic radiation and its impact on health published in recent years have led to a new postponement, and it is now foreseen that the directive will come into effect in October 2013. One of the most noteworthy aspects of the new version of the directive is the exclusion of the limits of occupational exposure to electromagnetic fields in the clinical use of MRI. In exchange for this exception, physicians and experts in protection against non-ionizing radiation are asked to make additional efforts to train workers exposed to non-ionizing radiation and to establish mechanisms to guarantee the correct application of non-ionizing electromagnetic fields in patients, along similar lines to the principles of justification and optimization established for ionizing radiation. On the basis of the most recently published studies, this article reviews some safety-related aspects to take into account when examining patients with MRI with high magnetic fields.
Collapse
Affiliation(s)
- E Guibelalde del Castillo
- Departamento de Radiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España.
| |
Collapse
|
547
|
De Santis V, Chen XL, Laakso I, Hirata A. On the issues related to compliance of LF pulsed exposures with safety standards and guidelines. Phys Med Biol 2013; 58:8597-607. [DOI: 10.1088/0031-9155/58/24/8597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
548
|
Gosselin MC, Kühn S, Kuster N. Experimental and numerical assessment of low-frequency current distributions from UMTS and GSM mobile phones. Phys Med Biol 2013; 58:8339-57. [PMID: 24216774 DOI: 10.1088/0031-9155/58/23/8339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The evaluation of the exposure from mobile communication devices requires consideration of electromagnetic fields (EMFs) over a broad frequency range from dc to GHz. Mobile phones in operation have prominent spectral components in the low-frequency (LF) and radio-frequency (RF) ranges. While the exposure to RF fields from mobile phones has been comprehensively assessed in the past, the LF fields have received much less attention. In this study, LF fields from mobile phones are assessed experimentally and numerically for the global system for mobile (GSM) and universal mobile telecommunications system (UMTS) communication systems and conclusions about the global (LF and RF) EMF exposure from both systems are drawn. From the measurements of the time-domain magnetic fields, it was found that the contribution from the audio signal at a normal speech level, i.e., -16 dBm0, is the same order of magnitude as the fields induced by the current bursts generated from the implementation of the GSM communication system at maximum RF output level. The B-field induced by currents in phones using the UMTS is two orders of magnitude lower than that induced by GSM. Knowing that the RF exposure from the UMTS is also two orders of magnitude lower than from GSM, it is now possible to state that there is an overall reduction of the exposure from this communication system.
Collapse
Affiliation(s)
- Marie-Christine Gosselin
- Foundation for Research on Information Technologies in Society (IT'IS), Zeughausstrasse 43, 8004 Zurich, Switzerland. ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
549
|
Kos B, Valič B, Kotnik T, Gajšek P. Induced electric fields in workers near low-frequency induction heating machines. Bioelectromagnetics 2013; 35:222-6. [DOI: 10.1002/bem.21828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/27/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Bor Kos
- INIS - Institute of Non-Ionizing Radiation; Ljubljana Slovenia
- Faculty of Electrical Engineering; University of Ljubljana; Slovenia
| | - Blaž Valič
- INIS - Institute of Non-Ionizing Radiation; Ljubljana Slovenia
| | - Tadej Kotnik
- Faculty of Electrical Engineering; University of Ljubljana; Slovenia
| | - Peter Gajšek
- INIS - Institute of Non-Ionizing Radiation; Ljubljana Slovenia
| |
Collapse
|
550
|
Calderón C, Addison D, Mee T, Findlay R, Maslanyj M, Conil E, Kromhout H, Lee AK, Sim MR, Taki M, Varsier N, Wiart J, Cardis E. Assessment of extremely low frequency magnetic field exposure from GSM mobile phones. Bioelectromagnetics 2013; 35:210-21. [PMID: 24203762 DOI: 10.1002/bem.21827] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/20/2013] [Indexed: 11/08/2022]
Abstract
Although radio frequency (RF) electromagnetic fields emitted by mobile phones have received much attention, relatively little is known about the extremely low frequency (ELF) magnetic fields emitted by phones. This paper summarises ELF magnetic flux density measurements on global system for mobile communications (GSM) mobile phones, conducted as part of the MOBI-KIDS epidemiological study. The main challenge is to identify a small number of generic phone models that can be used to classify the ELF exposure for the different phones reported in the study. Two-dimensional magnetic flux density measurements were performed on 47 GSM mobile phones at a distance of 25 mm. Maximum resultant magnetic flux density values at 217 Hz had a geometric mean of 221 (+198/-104) nT. Taking into account harmonic data, measurements suggest that mobile phones could make a substantial contribution to ELF exposure in the general population. The maximum values and easily available variables were poorly correlated. However, three groups could be defined on the basis of field pattern indicating that manufacturers and shapes of mobile phones may be the important parameters linked to the spatial characteristics of the magnetic field, and the categorization of ELF magnetic field exposure for GSM phones in the MOBI-KIDS study may be achievable on the basis of a small number of representative phones. Such categorization would result in a twofold exposure gradient between high and low exposure based on type of phone used, although there was overlap in the grouping.
Collapse
Affiliation(s)
- Carolina Calderón
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|