501
|
Cheng MC, Pan TM. Prevention of hypertension-induced vascular dementia by Lactobacillus paracasei subsp. paracasei NTU 101-fermented products. PHARMACEUTICAL BIOLOGY 2017; 55:487-496. [PMID: 27937042 PMCID: PMC6130674 DOI: 10.1080/13880209.2016.1253109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/17/2016] [Accepted: 10/23/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Numerous etiological studies have established positive clinical association between hypertension and vascular dementia (VaD). Lactobacillus paracasei subsp. paracasei NTU 101-fermented products have been shown to decrease vascular risk factors such as hypertension, atherosclerosis, hyperlipidemia and obesity. OBJECTIVE This study investigated the effect of ethanol extract of Lactobacillus paracasei subsp. paracasei NTU 101-fermented products (NTU101F) in hypertension-induced VaD in rats. MATERIALS AND METHODS Hypertension was promoted by subcutaneous injection of deoxycorticosterone acetate (DOCA, 25 mg/kg body weight/day, twice a week) and substitution of drinking water with 1.0% NaCl and 0.2% KCl. The NTU101F groups (0.5, 1.0, and 5.0) administered NTU101F at the concentrations 11, 22, and 110 mg/kg body weight/day, respectively, starting from day 51 day of DOCA-salt treatment. Morris water maze (MWM) was used for testing learning and memory. Different biochemical estimations were used to assess oxidative stress and inflammatory response in hippocampus. RESULTS Oral administration of NTU101F in DOCA-salt hypertension-induced VaD rats resulted in a significant decrease in blood pressure by 18.3-23.2% (p < 0.001), which was regulated by increasing eNOS density (about 3-fold) in the aorta, promoting NO production, and decreasing of matrix metallopeptidase 9 activity (about 2-fold) in the hippocampus, in addition to improve the kidney function and structure, decrease escape latency and increase the times spent in the target quadrant by 23.5-27.8% (p < 0.05). CONCLUSION Overall, our findings suggest that NTU101F could exert neuroprotection in the brain and attenuate hypertension-induced VaD.
Collapse
Affiliation(s)
- Meng-Chun Cheng
- Department of Biochemical Science & Technology, National Taiwan University, Taipei, Taiwan
| | - Tzu-Ming Pan
- Department of Biochemical Science & Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
502
|
Abstract
Gut microbiomes may have a significant impact on mood and cognition, which is leading experts towards a new frontier in neuroscience. Studies have shown that increase in the amount of good bacteria in the gut can curb inflammation and cortisol level, reduces symptoms of depression and anxiety, lowers stress reactivity, improves memory and even lessens neuroticism and social anxiety. This shows that, probably the beneficial gut bacteria or probiotics function mechanistically as delivery vehicles for neuroactive compounds. Thus, a psychobiotic is a live organism, when ingested in adequate amounts, produces a health benefit in patients suffering from psychiatric illness. Study of these novel class of probiotics may open up the possibility of rearrangement of intestinal microbiota for effective management of various psychiatric disorders.
Collapse
Affiliation(s)
- Snigdha Misra
- a Department of Nutrition and Dietetics, School of Health Sciences , International Medical University , Kuala Lumpur , Malaysia
| | - Debapriya Mohanty
- b Department of Microbiology , Centre for Post Graduate Studies, Orissa University of Agriculture and Technology , Bhubaneswar , Odisha , India
| |
Collapse
|
503
|
Holzer P, Farzi A, Hassan AM, Zenz G, Jačan A, Reichmann F. Visceral Inflammation and Immune Activation Stress the Brain. Front Immunol 2017; 8:1613. [PMID: 29213271 PMCID: PMC5702648 DOI: 10.3389/fimmu.2017.01613] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut-brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut-brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience to take place. These aspects of the impact of immune stress on molecular and behavioral processes in the brain have a bearing on several disturbances of mental health and highlight novel opportunities of therapeutic intervention.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ahmed M Hassan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Geraldine Zenz
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Angela Jačan
- CBmed GmbH-Center for Biomarker Research in Medicine, Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
504
|
Cerdó T, Ruíz A, Suárez A, Campoy C. Probiotic, Prebiotic, and Brain Development. Nutrients 2017; 9:E1247. [PMID: 29135961 PMCID: PMC5707719 DOI: 10.3390/nu9111247] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/02/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023] Open
Abstract
Recently, a number of studies have demonstrated the existence of a link between the emotional and cognitive centres of the brain and peripheral functions through the bi-directional interaction between the central nervous system and the enteric nervous system. Therefore, the use of bacteria as therapeutics has attracted much interest. Recent research has found that there are a variety of mechanisms by which bacteria can signal to the brain and influence several processes in relation to neurotransmission, neurogenesis, and behaviour. Data derived from both in vitro experiments and in vivo clinical trials have supported some of these new health implications. While recent molecular advancement has provided strong indications to support and justify the role of the gut microbiota on the gut-brain axis, it is still not clear whether manipulations through probiotics and prebiotics administration could be beneficial in the treatment of neurological problems. The understanding of the gut microbiota and its activities is essential for the generation of future personalized healthcare strategies. Here, we explore and summarize the potential beneficial effects of probiotics and prebiotics in the neurodevelopmental process and in the prevention and treatment of certain neurological human diseases, highlighting current and future perspectives in this topic.
Collapse
Affiliation(s)
- Tomás Cerdó
- Department of Paediatrics, School of Medicine, University of Granada, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
| | - Alicia Ruíz
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Department of Biochemistry and Molecular Biology 2, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
| | - Antonio Suárez
- Department of Biochemistry and Molecular Biology 2, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute, 18016 Granada, Spain.
- Department of Paediatrics, Faculty of Medicine, University of Granada, Av. de la Investigación, 11, 18016 Granada, Spain.
| |
Collapse
|
505
|
Nishida K, Sawada D, Kawai T, Kuwano Y, Fujiwara S, Rokutan K. Para‐psychobiotic
Lactobacillus gasseri
CP
2305 ameliorates stress‐related symptoms and sleep quality. J Appl Microbiol 2017; 123:1561-1570. [DOI: 10.1111/jam.13594] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/27/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022]
Affiliation(s)
- K. Nishida
- Department of Pathophysiology Institute of Biomedical Sciences Tokushima University Graduate School Tokushima Japan
| | - D. Sawada
- R&D Centre Core Technology Laboratories Asahi Group Holdings, Ltd. Sagamihara‐shi Japan
| | - T. Kawai
- Department of Pathophysiology Institute of Biomedical Sciences Tokushima University Graduate School Tokushima Japan
| | - Y. Kuwano
- Department of Pathophysiology Institute of Biomedical Sciences Tokushima University Graduate School Tokushima Japan
| | - S. Fujiwara
- R&D Centre Core Technology Laboratories Asahi Group Holdings, Ltd. Sagamihara‐shi Japan
| | - K. Rokutan
- Department of Pathophysiology Institute of Biomedical Sciences Tokushima University Graduate School Tokushima Japan
| |
Collapse
|
506
|
Turna J, Patterson B, Van Ameringen M. An Update on the Relationship Between the Gut Microbiome and Obsessive-Compulsive Disorder. Psychiatr Ann 2017. [DOI: 10.3928/00485713-20171013-01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
507
|
Kobayashi Y, Sugahara H, Shimada K, Mitsuyama E, Kuhara T, Yasuoka A, Kondo T, Abe K, Xiao JZ. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer's disease. Sci Rep 2017; 7:13510. [PMID: 29044140 PMCID: PMC5647431 DOI: 10.1038/s41598-017-13368-2] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023] Open
Abstract
It has previously been shown that the consumption of probiotics may have beneficial effects not only on peripheral tissues but also on the central nervous system and behavior via the microbiota-gut-brain axis, raising the possibility that treatment with probiotics could be an effective therapeutic strategy for managing neurodegenerative disorders. In this study, we investigated the effects of oral administration of Bifidobacterium breve strain A1 (B. breve A1) on behavior and physiological processes in Alzheimer's disease (AD) model mice. We found that administration of B. breve A1 to AD mice reversed the impairment of alternation behavior in a Y maze test and the reduced latency time in a passive avoidance test, indicating that it prevented cognitive dysfunction. We also demonstrated that non-viable components of the bacterium or its metabolite acetate partially ameliorated the cognitive decline observed in AD mice. Gene profiling analysis revealed that the consumption of B. breve A1 suppressed the hippocampal expressions of inflammation and immune-reactive genes that are induced by amyloid-β. Together, these findings suggest that B. breve A1 has therapeutic potential for preventing cognitive impairment in AD.
Collapse
Affiliation(s)
- Yodai Kobayashi
- Morinaga Milk Industry Co., Ltd Next Generation Science Institute, 5-1-83 Higashihara, Zama, Kanagawa, 252-8583, Japan.
| | - Hirosuke Sugahara
- Morinaga Milk Industry Co., Ltd Next Generation Science Institute, 5-1-83 Higashihara, Zama, Kanagawa, 252-8583, Japan
| | - Kousuke Shimada
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Eri Mitsuyama
- Morinaga Milk Industry Co., Ltd Next Generation Science Institute, 5-1-83 Higashihara, Zama, Kanagawa, 252-8583, Japan
| | - Tetsuya Kuhara
- Morinaga Milk Industry Co., Ltd Next Generation Science Institute, 5-1-83 Higashihara, Zama, Kanagawa, 252-8583, Japan
| | - Akihito Yasuoka
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Takashi Kondo
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Keiko Abe
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Tokyo, Japan
| | - Jin-Zhong Xiao
- Morinaga Milk Industry Co., Ltd Next Generation Science Institute, 5-1-83 Higashihara, Zama, Kanagawa, 252-8583, Japan
| |
Collapse
|
508
|
Lerner A, Neidhöfer S, Matthias T. The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists. Microorganisms 2017; 5:66. [PMID: 29023380 PMCID: PMC5748575 DOI: 10.3390/microorganisms5040066] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023] Open
Abstract
Objectives: To comprehensively review the scientific knowledge on the gut-brain axis. Methods: Various publications on the gut-brain axis, until 31 July 2017, were screened using the Medline, Google, and Cochrane Library databases. The search was performed using the following keywords: "gut-brain axis", "gut-microbiota-brain axis", "nutrition microbiome/microbiota", "enteric nervous system", "enteric glial cells/network", "gut-brain pathways", "microbiome immune system", "microbiome neuroendocrine system" and "intestinal/gut/enteric neuropeptides". Relevant articles were selected and reviewed. Results: Tremendous progress has been made in exploring the interactions between nutrients, the microbiome, and the intestinal, epithelium-enteric nervous, endocrine and immune systems and the brain. The basis of the gut-brain axis comprises of an array of multichannel sensing and trafficking pathways that are suggested to convey the enteric signals to the brain. These are mediated by neuroanatomy (represented by the vagal and spinal afferent neurons), the neuroendocrine-hypothalamic-pituitary-adrenal (HPA) axis (represented by the gut hormones), immune routes (represented by multiple cytokines), microbially-derived neurotransmitters, and finally the gate keepers of the intestinal and brain barriers. Their mutual and harmonious but intricate interaction is essential for human life and brain performance. However, a failure in the interaction leads to a number of inflammatory-, autoimmune-, neurodegenerative-, metabolic-, mood-, behavioral-, cognitive-, autism-spectrum-, stress- and pain-related disorders. The limited availability of information on the mechanisms, pathways and cause-and-effect relationships hinders us from translating and implementing the knowledge from the bench to the clinic. Implications: Further understanding of this intricate field might potentially shed light on novel preventive and therapeutic strategies to combat these disorders. Nutritional approaches, microbiome manipulations, enteric and brain barrier reinforcement and sensing and trafficking modulation might improve physical and mental health outcomes.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 3200003, Israel.
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| | - Sandra Neidhöfer
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| | - Torsten Matthias
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| |
Collapse
|
509
|
Engevik MA, Versalovic J. Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology. Microbiol Spectr 2017; 5:10.1128/microbiolspec.BAD-0012-2016. [PMID: 28984235 PMCID: PMC5873327 DOI: 10.1128/microbiolspec.bad-0012-2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 12/15/2022] Open
Abstract
Commensal and beneficial microbes secrete myriad products which target the mammalian host and other microbes. These secreted substances aid in bacterial niche development, and select compounds beneficially modulate the host and promote health. Microbes produce unique compounds which can serve as signaling factors to the host, such as biogenic amine neuromodulators, or quorum-sensing molecules to facilitate inter-bacterial communication. Bacterial metabolites can also participate in functional enhancement of host metabolic capabilities, immunoregulation, and improvement of intestinal barrier function. Secreted products such as lactic acid, hydrogen peroxide, bacteriocins, and bacteriocin-like substances can also target the microbiome. Microbes differ greatly in their metabolic potential and subsequent host effects. As a result, knowledge about microbial metabolites will facilitate selection of next-generation probiotics and therapeutic compounds derived from the mammalian microbiome. In this article we describe prominent examples of microbial metabolites and their effects on microbial communities and the mammalian host.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| |
Collapse
|
510
|
Brenner LA, Stearns-Yoder KA, Hoffberg AS, Penzenik ME, Starosta AJ, Hernández TD, Hadidi DA, Lowry CA. Growing literature but limited evidence: A systematic review regarding prebiotic and probiotic interventions for those with traumatic brain injury and/or posttraumatic stress disorder. Brain Behav Immun 2017; 65:57-67. [PMID: 28606462 DOI: 10.1016/j.bbi.2017.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/18/2017] [Accepted: 06/07/2017] [Indexed: 01/10/2023] Open
Abstract
Traumatic brain injury (TBI) is highly prevalent among a wide range of populations, including civilians, military personnel, and Veterans. TBI sequelae may be further exacerbated by symptoms associated with frequently occurring comorbid psychiatric conditions, including posttraumatic stress disorder (PTSD). This is particularly true among the population of military personnel from recent conflicts in Iraq and Afghanistan, with a history of mild TBI (mTBI) and PTSD. The need for efficacious treatments for TBI and comorbid PTSD is significant, and evidence-based interventions for these frequently co-occurring conditions are limited. Based on findings suggesting that inflammation may be an underlying mechanism of both conditions, anti-inflammatory/immunoregulatory agents, including probiotics, may represent a novel strategy to treat TBI and/or PTSD-related symptoms. The focus of this systematic review was to identify and evaluate existing research regarding prebiotic and probiotic interventions for the populations of individuals with a history of TBI and/or PTSD. Only 4 studies were identified (3 severe TBI, 1 PTSD, 0 co-occurring TBI and PTSD). Although findings suggested some promise, work in this area is nascent and results to date do not support some claims within the extensive coverage of probiotics in the popular press.
Collapse
Affiliation(s)
- Lisa A Brenner
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver, CO, United States; Departments of Physical Medicine and Rehabilitation, Psychiatry and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, United States.
| | - Kelly A Stearns-Yoder
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver, CO, United States; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, United States
| | - Adam S Hoffberg
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver, CO, United States
| | - Molly E Penzenik
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver, CO, United States
| | - Amy J Starosta
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver, CO, United States
| | - Theresa D Hernández
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver, CO, United States; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States; Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel A Hadidi
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver, CO, United States; Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Christopher A Lowry
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver, CO, United States; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, United States; Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
511
|
Sanmiguel CP, Jacobs J, Gupta A, Ju T, Stains J, Coveleskie K, Lagishetty V, Balioukova A, Chen Y, Dutson E, Mayer EA, Labus JS. Surgically Induced Changes in Gut Microbiome and Hedonic Eating as Related to Weight Loss: Preliminary Findings in Obese Women Undergoing Bariatric Surgery. Psychosom Med 2017; 79:880-887. [PMID: 28570438 PMCID: PMC5628115 DOI: 10.1097/psy.0000000000000494] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Weight loss surgery results in significant changes in the anatomy, function, and intraluminal environment of the gastrointestinal tract affecting the gut microbiome. Although bariatric surgery results in sustained weight loss, decreased appetite, and hedonic eating, it is unknown whether the surgery-induced alterations in gut microbiota play a role in the observed changes in hedonic eating. We explored the following hypotheses: (1) laparoscopic sleeve gastrectomy (LSG) results in changes in gut microbial composition; (2) alterations in gut microbiota are related to weight loss; (3) alterations in gut microbiome are associated with changes in appetite and hedonic eating. METHODS Eight obese women underwent LSG. Their body mass index, body fat mass, food intake, hunger, hedonic eating scores, and stool samples were obtained at baseline and 1-month postsurgery. 16S ribosomal RNA gene sequencing was performed on stool samples. DESeq2 changes in microbial abundance. Multilevel-sparse partial least squares discriminant analysis was applied to genus-level abundance for discriminative microbial signatures. RESULTS LSG resulted in significant reductions in body mass index, food intake, and hedonic eating. A microbial signature composed of five bacterial genera discriminated between pre- and postsurgery status. Several bacterial genera were significantly associated with weight loss (Bilophila, q = 3E-05; Faecalibacterium q = 4E-05), lower appetite (Enterococcus, q = 3E-05), and reduced hedonic eating (Akkermansia, q = .037) after surgery. CONCLUSIONS In this preliminary analysis, changes in gut microbial abundance discriminated between pre- and postoperative status. Alterations in gut microbiome were significantly associated with weight loss and with reduced hedonic eating after surgery; however, a larger sample is needed to confirm these findings.
Collapse
Affiliation(s)
- Claudia P Sanmiguel
- From the Ingestive Behavior and Obesity Program (Sanmiguel, Gupta, Ju, Stains, Coveleskie, Mayer, Labus), Oppenheimer Center for Neurobiology of Stress & Resilience; Department of Surgery (Balioukova, Chen, Dutson), Center for Obesity and Metabolic Health; UCLA Microbiome Center (Sanmiguel, Jacobs, Lagishetty, Mayer, Labus); and David Geffen School of Medicine at UCLA (Sanmiguel, Jacobs, Gupta, Ju, Stains, Lagishetty, Balioukova, Chen, Dutson, Mayer, Labus), Los Angeles, California
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
512
|
Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci 2017; 74:3769-3787. [PMID: 28643167 PMCID: PMC11107790 DOI: 10.1007/s00018-017-2550-9] [Citation(s) in RCA: 346] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/05/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
Abstract
The gut microbiota is essential to health and has recently become a target for live bacterial cell biotherapies for various chronic diseases including metabolic syndrome, diabetes, obesity and neurodegenerative disease. Probiotic biotherapies are known to create a healthy gut environment by balancing bacterial populations and promoting their favorable metabolic action. The microbiota and its respective metabolites communicate to the host through a series of biochemical and functional links thereby affecting host homeostasis and health. In particular, the gastrointestinal tract communicates with the central nervous system through the gut-brain axis to support neuronal development and maintenance while gut dysbiosis manifests in neurological disease. There are three basic mechanisms that mediate the communication between the gut and the brain: direct neuronal communication, endocrine signaling mediators and the immune system. Together, these systems create a highly integrated molecular communication network that link systemic imbalances with the development of neurodegeneration including insulin regulation, fat metabolism, oxidative markers and immune signaling. Age is a common factor in the development of neurodegenerative disease and probiotics prevent many harmful effects of aging such as decreased neurotransmitter levels, chronic inflammation, oxidative stress and apoptosis-all factors that are proven aggravators of neurodegenerative disease. Indeed patients with Parkinson's and Alzheimer's diseases have a high rate of gastrointestinal comorbidities and it has be proposed by some the management of the gut microbiota may prevent or alleviate the symptoms of these chronic diseases.
Collapse
Affiliation(s)
- Susan Westfall
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
| | - Nikita Lomis
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
- Department of Experimental Medicine, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
| | - Imen Kahouli
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
- Department of Experimental Medicine, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
| | - Si Yuan Dia
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
| | - Surya Pratap Singh
- Department of Biochemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada.
- Department of Experimental Medicine, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada.
| |
Collapse
|
513
|
A Perspective on Brain-Gut Communication: The American Gastroenterology Association and American Psychosomatic Society Joint Symposium on Brain-Gut Interactions and the Intestinal Microenvironment. Psychosom Med 2017; 79:847-856. [PMID: 27922565 DOI: 10.1097/psy.0000000000000431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alterations in brain-gut communication and the intestinal microenvironment have been implicated in a variety of medical and neuropsychiatric diseases. Three central areas require basic and clinical research: (1) how the intestinal microenvironment interacts with the host immune system, central nervous system, and enteric nervous system; (2) the role of the intestinal microenvironment in the pathogenesis of medical and neuropsychiatric disease; and (3) the effects of diet, prebiotics, probiotics, and fecal microbiota transplantation on the intestinal microenvironment and the treatment of disease. METHODS This review article is based on a symposium convened by the American Gastroenterology Association and the American Psychosomatic Society to foster interest in the role of the intestinal microenvironment in brain-gut communication and pathogenesis of neuropsychiatric and biopsychosocial disorders. The aims were to define the state of the art of the current scientific knowledge base and to identify guidelines and future directions for new research in this area. RESULTS This review provides a characterization of the intestinal microbial composition and function. We also provide evidence for the interactions between the intestinal microbiome, the host, and the environment. The role of the intestinal microbiome in medical and neuropsychiatric diseases is reviewed as well as the treatment effects of manipulation of the intestinal microbiome. CONCLUSIONS Based on this review, opportunities and challenges for conducting research in the field are described, leading to potential avenues for future research.
Collapse
|
514
|
Chi L, Gao B, Bian X, Tu P, Ru H, Lu K. Manganese-induced sex-specific gut microbiome perturbations in C57BL/6 mice. Toxicol Appl Pharmacol 2017; 331:142-153. [PMID: 28610994 PMCID: PMC5653225 DOI: 10.1016/j.taap.2017.06.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 12/26/2022]
Abstract
Overexposure to manganese (Mn) leads to toxic effects, such as promoting the development of Parkinson's-like neurological disorders. The gut microbiome is deeply involved in immune development, host metabolism, and xenobiotics biotransformation, and significantly influences central nervous system (CNS) via the gut-brain axis, i.e. the biochemical signaling between the gastrointestinal tract and the CNS. However, it remains unclear whether Mn can affect the gut microbiome and its metabolic functions, particularly those linked to neurotoxicity. In addition, sex-specific effects of Mn have been reported, with no mechanism being identified yet. Recently, we have shown that the gut microbiome is largely different between males and females, raising the possibility that differential gut microbiome responses may contribute to sex-selective toxicity of Mn. Here, we applied high-throughput sequencing and gas chromatography-mass spectrometry (GC-MS) metabolomics to explore how Mn2+ exposure affects the gut microbiome and its metabolism in C57BL/6 mice. Mn2+ exposure perturbed the gut bacterial compositions, functional genes and fecal metabolomes in a highly sex-specific manner. In particular, bacterial genes and/or key metabolites of neurotransmitter synthesis and pro-inflammatory mediators are significantly altered by Mn2+ exposure, which can potentially affect chemical signaling of gut-brain interactions. Likewise, functional genes involved in iron homeostasis, flagellar motility, quorum sensing, and Mn transportation/oxidation are also widely changed by Mn2+ exposure. Taken together, this study has demonstrated that Mn2+ exposure perturbs the gut microbiome and its metabolic functions, which highlights the potential role of the gut microbiome in Mn2+ toxicity, particularly its sex-specific toxic effects.
Collapse
Affiliation(s)
- Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 27599, United States
| | - Bei Gao
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, United States
| | - Xiaoming Bian
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, United States
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 27599, United States
| | - Hongyu Ru
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 27599, United States.
| |
Collapse
|
515
|
Abstract
Purpose
This paper aims to summarize the available literatures, specifically in the following areas: metabolic and other side effects of aspartame; microbiota changes/dysbiosis and its effect on the gut-brain axis; changes on gut microbiota as a result of aspartame usage; metabolic effects (weight gain and glucose intolerance) of aspartame due to gut dysbiosis; and postulated effects of dysregulated microbiota-gut-brain axis on other aspartame side-effects (neurophysiological symptoms and immune dysfunction).
Design/methodology/approach
Aspartame is rapidly becoming a public health concern because of its purported side-effects especially neurophysiological symptom and immune dysregulation. It is also paradoxical that metabolic consequences including weight gain and impaired blood glucose levels have been observed in consumers. Exact mechanisms of above side-effects are unclear, and data are scarce but aspartame, and its metabolites may have caused disturbance in the microbiota-gut-brain axis.
Findings
Additional studies investigating the impact of aspartame on gut microbiota and metabolic health are needed.
Originality/value
Exact mechanism by which aspartame-induced gut dysbiosis and metabolic dysfunction requires further investigation.
Collapse
|
516
|
Felice VD, O'Mahony SM. The microbiome and disorders of the central nervous system. Pharmacol Biochem Behav 2017; 160:1-13. [PMID: 28666895 DOI: 10.1016/j.pbb.2017.06.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/12/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023]
Abstract
Alterations of the gut microbiota have been associated with stress-related disorders including depression and anxiety and irritable bowel syndrome (IBS). More recently, researchers have started investigating the implication of perturbation of the microbiota composition in neurodevelopmental disorders including autism spectrum disorders and Attention-Deficit Hypersensitivity Disorder (ADHD). In this review we will discuss how the microbiota is established and its functions in maintaining health. We also summarize both pre and post-natal factors that shape the developing neonatal microbiota and how they may impact on health outcomes with relevance to disorders of the central nervous system. Finally, we discuss potential therapeutic approaches based on the manipulation of the gut bacterial composition.
Collapse
Affiliation(s)
- Valeria D Felice
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
517
|
Bagarolli RA, Tobar N, Oliveira AG, Araújo TG, Carvalho BM, Rocha GZ, Vecina JF, Calisto K, Guadagnini D, Prada PO, Santos A, Saad STO, Saad MJA. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem 2017; 50:16-25. [PMID: 28968517 DOI: 10.1016/j.jnutbio.2017.08.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/05/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
Abstract
Obesity and type 2 diabetes are characterized by subclinical inflammatory process. Changes in composition or modulation of the gut microbiota may play an important role in the obesity-associated inflammatory process. In the current study, we evaluated the effects of probiotics (Lactobacillus rhamnosus, L. acidophilus and Bifidobacterium bifidumi) on gut microbiota, changes in permeability, and insulin sensitivity and signaling in high-fat diet and control animals. More importantly, we investigated the effects of these gut modulations on hypothalamic control of food intake, and insulin and leptin signaling. Swiss mice were submitted to a high-fat diet (HFD) with probiotics or pair-feeding for 5 weeks. Metagenome analyses were performed on DNA samples from mouse feces. Blood was drawn to determine levels of glucose, insulin, LPS, cytokines and GLP-1. Liver, muscle, ileum and hypothalamus tissue proteins were analyzed by Western blotting and real-time polymerase chain reaction. In addition, liver and adipose tissues were analyzed using histology and immunohistochemistry. The HFD induced huge alterations in gut microbiota accompanied by increased intestinal permeability, LPS translocation and systemic low-grade inflammation, resulting in decreased glucose tolerance and hyperphagic behavior. All these obesity-related features were reversed by changes in the gut microbiota profile induced by probiotics. Probiotics also induced an improvement in hypothalamic insulin and leptin resistance. Our data demonstrate that the intestinal microbiome is a key modulator of inflammatory and metabolic pathways in both peripheral and central tissues. These findings shed light on probiotics as an important tool to prevent and treat patients with obesity and insulin resistance.
Collapse
Affiliation(s)
- Renata A Bagarolli
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Natália Tobar
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Alexandre G Oliveira
- Department of Physical Education, São Paulo State University (UNESP), Bioscience Institute, Rio Claro, SP, Brazil
| | - Tiago G Araújo
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Bruno M Carvalho
- Department of Biology Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Guilherme Z Rocha
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Juliana F Vecina
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Kelly Calisto
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Patrícia O Prada
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Andrey Santos
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Sara T O Saad
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Mario J A Saad
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil.
| |
Collapse
|
518
|
Sherwin E, Dinan TG, Cryan JF. Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann N Y Acad Sci 2017; 1420:5-25. [PMID: 28768369 DOI: 10.1111/nyas.13416] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022]
Abstract
There is a growing appreciation of the role of the gut microbiota in all aspects of health and disease, including brain health. Indeed, roles for the bacterial commensals in various psychiatric and neurological conditions, such as depression, autism, stroke, Parkinson's disease, and Alzheimer's disease, are emerging. Microbiota dysregulation has been documented in all of these conditions or in animal models thereof. Moreover, depletion or modulation of the gut microbiota can affect the severity of the central pathology or behavioral deficits observed in a variety of brain disorders. However, the mechanisms underlying such effects are only slowly being unraveled. Additionally, recent preclinical and clinical evidence suggest that targeting the microbiota through prebiotic, probiotic, or dietary interventions may be an effective "psychobiotic" strategy for treating symptoms in mood, neurodevelopmental disorders, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Eoin Sherwin
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
519
|
Langgartner D, Peterlik D, Foertsch S, Füchsl AM, Brokmann P, Flor PJ, Shen Z, Fox JG, Uschold-Schmidt N, Lowry CA, Reber SO. Individual differences in stress vulnerability: The role of gut pathobionts in stress-induced colitis. Brain Behav Immun 2017; 64:23-32. [PMID: 28012830 DOI: 10.1016/j.bbi.2016.12.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022] Open
Abstract
Chronic subordinate colony housing (CSC), an established mouse model for chronic psychosocial stress, promotes a microbial signature of gut inflammation, characterized by expansion of Proteobacteria, specifically Helicobacter spp., in association with colitis development. However, whether the presence of Helicobacter spp. during CSC is critically required for colitis development is unknown. Notably, during previous CSC studies performed at Regensburg University (University 1), male specific-pathogen-free (SPF) CSC mice lived in continuous subordination to a physically present and Helicobacter spp.-positive resident. Therefore, it is likely that CSC mice were colonized, during the CSC procedure, with Helicobacter spp. originating from the dominant resident. In the present study we show that employing SPF CSC mice and Helicobacter spp.-free SPF residents at Ulm University (University 2), results in physiological responses that are typical of chronic psychosocial stress, including increased adrenal and decreased thymus weights, decreased adrenal in vitro adrenocorticotropic hormone (ACTH) responsiveness, and increased anxiety-related behavior. However, in contrast to previous studies that used Helicobacter spp.-positive resident mice, use of Helicobacter spp.-negative resident mice failed to induce spontaneous colitis in SPF CSC mice. Consistent with the hypothesis that the latter is due to a lack of Helicobacter spp. transmission from dominant residents to subordinate mice during the CSC procedure, colonization of SPF residents with Helicobacter typhlonius at University 2, prior to the start of the CSC model, rescued the colitis-inducing potential of CSC exposure. Furthermore, using SPF CSC mice and H. typhlonius-free SPF residents at University 1 prevented CSC-induced colitis. In summary, our data support the hypothesis that the presence or absence of exposure to certain pathobionts contributes to individual variability in susceptibility to stress-/trauma-associated pathologies and to reproducibility of stress-related outcomes between laboratories.
Collapse
Affiliation(s)
- Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany
| | - Daniel Peterlik
- Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Sandra Foertsch
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany
| | - Andrea M Füchsl
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany
| | - Petra Brokmann
- Animal Research Facility, University of Ulm, 89081 Ulm, Germany
| | - Peter J Flor
- Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Zeli Shen
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James G Fox
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicole Uschold-Schmidt
- Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO 80220, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany.
| |
Collapse
|
520
|
Pinto-Sanchez MI, Hall GB, Ghajar K, Nardelli A, Bolino C, Lau JT, Martin FP, Cominetti O, Welsh C, Rieder A, Traynor J, Gregory C, De Palma G, Pigrau M, Ford AC, Macri J, Berger B, Bergonzelli G, Surette MG, Collins SM, Moayyedi P, Bercik P. Probiotic Bifidobacterium longum NCC3001 Reduces Depression Scores and Alters Brain Activity: A Pilot Study in Patients With Irritable Bowel Syndrome. Gastroenterology 2017; 153:448-459.e8. [PMID: 28483500 DOI: 10.1053/j.gastro.2017.05.003] [Citation(s) in RCA: 541] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Probiotics can reduce symptoms of irritable bowel syndrome (IBS), but little is known about their effects on psychiatric comorbidities. We performed a prospective study to evaluate the effects of Bifidobacterium longum NCC3001 (BL) on anxiety and depression in patients with IBS. METHODS We performed a randomized, double-blind, placebo-controlled study of 44 adults with IBS and diarrhea or a mixed-stool pattern (based on Rome III criteria) and mild to moderate anxiety and/or depression (based on the Hospital Anxiety and Depression scale) at McMaster University in Canada, from March 2011 to May 2014. At the screening visit, clinical history and symptoms were assessed and blood samples were collected. Patients were then randomly assigned to groups and given daily BL (n = 22) or placebo (n = 22) for 6 weeks. At weeks 0, 6, and 10, we determined patients' levels of anxiety and depression, IBS symptoms, quality of life, and somatization using validated questionnaires. At weeks 0 and 6, stool, urine and blood samples were collected, and functional magnetic resonance imaging (fMRI) test was performed. We assessed brain activation patterns, fecal microbiota, urine metabolome profiles, serum markers of inflammation, neurotransmitters, and neurotrophin levels. RESULTS At week 6, 14 of 22 patients in the BL group had reduction in depression scores of 2 points or more on the Hospital Anxiety and Depression scale, vs 7 of 22 patients in the placebo group (P = .04). BL had no significant effect on anxiety or IBS symptoms. Patients in the BL group had a mean increase in quality of life score compared with the placebo group. The fMRI analysis showed that BL reduced responses to negative emotional stimuli in multiple brain areas, including amygdala and fronto-limbic regions, compared with placebo. The groups had similar fecal microbiota profiles, serum markers of inflammation, and levels of neurotrophins and neurotransmitters, but the BL group had reduced urine levels of methylamines and aromatic amino acids metabolites. At week 10, depression scores were reduced in patients given BL vs placebo. CONCLUSION In a placebo-controlled trial, we found that the probiotic BL reduces depression but not anxiety scores and increases quality of life in patients with IBS. These improvements were associated with changes in brain activation patterns that indicate that this probiotic reduces limbic reactivity. ClinicalTrials.gov no. NCT01276626.
Collapse
Affiliation(s)
- Maria Ines Pinto-Sanchez
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Geoffrey B Hall
- Department of Psychology, Neuroscience, and Behavior, McMaster University, Hamilton, ON, Canada
| | - Kathy Ghajar
- Department of Psychology, Neuroscience, and Behavior, McMaster University, Hamilton, ON, Canada
| | - Andrea Nardelli
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Carolina Bolino
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jennifer T Lau
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | | | | | - Christopher Welsh
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Amber Rieder
- Department of Psychology, Neuroscience, and Behavior, McMaster University, Hamilton, ON, Canada
| | - Jenna Traynor
- Department of Psychology, Neuroscience, and Behavior, McMaster University, Hamilton, ON, Canada
| | - Caitlin Gregory
- Department of Psychology, Neuroscience, and Behavior, McMaster University, Hamilton, ON, Canada
| | - Giada De Palma
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Marc Pigrau
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Alexander C Ford
- Leeds Gastroenterology Institute, St. James's University Hospital, and Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Joseph Macri
- Department of Pathology, McMaster University, Hamilton, ON, Canada
| | - Bernard Berger
- Nestlé Research Center, Nutrition Institute, Lausanne, Switzerland
| | | | - Michael G Surette
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Stephen M Collins
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Paul Moayyedi
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Premysl Bercik
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
521
|
Vanhaecke T, Aubert P, Grohard PA, Durand T, Hulin P, Paul-Gilloteaux P, Fournier A, Docagne F, Ligneul A, Fressange-Mazda C, Naveilhan P, Boudin H, Le Ruyet P, Neunlist M. L. fermentum CECT 5716 prevents stress-induced intestinal barrier dysfunction in newborn rats. Neurogastroenterol Motil 2017; 29. [PMID: 28370715 DOI: 10.1111/nmo.13069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/21/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Intestinal epithelial barrier (IEB) dysfunction plays a critical role in various intestinal disorders affecting infants and children, including the development of food allergies and colitis. Recent studies highlighted the role of probiotics in regulating IEB functions and behavior in adults, but their effects in the newborn remain largely unknown. We therefore characterized in rat pups, the impact of Lactobacillus fermentum CECT 5716 (L. fermentum) on stress-induced IEB dysfunction, systemic immune response and exploratory behavior. METHODS Newborn rats received daily by gavage either L. fermentum or water. Intestinal permeability to fluorescein sulfonic acid (FSA) and horseradish peroxidase (HRP) was measured following maternal separation (MS) and water avoidance stress (WAS). Immunohistochemical, transcriptomic, and Western blot analysis of zonula occludens-1 (ZO-1) distribution and expression were performed. Anxiety-like and exploratory behavior was assessed using the elevated plus maze test. Cytokine secretion of activated splenocytes was also evaluated. KEY RESULTS L. fermentum prevented MS and WAS-induced IEB dysfunction in vivo. L. fermentum reduced permeability to both FSA and HRP in the small intestine but not in the colon. L. fermentum increased expression of ZO-1 and prevented WAS-induced ZO-1 disorganization in ileal epithelial cells. L. fermentum also significantly reduced stress-induced increase in plasma corticosteronemia. In activated splenocytes, L. fermentum enhanced IFNγ secretion while it prevented IL-4 secretion. Finally, L. fermentum increased exploratory behavior. CONCLUSIONS & INFERENCES These results suggest that L. fermentum could provide a novel tool for the prevention and/or treatment of gastrointestinal disorders associated with altered IEB functions in the newborn.
Collapse
Affiliation(s)
- T Vanhaecke
- INSERM U1235, Nantes, France.,Université de Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, Nantes, France.,Lactalis Recherche et Développement, Retiers, France
| | - P Aubert
- INSERM U1235, Nantes, France.,Université de Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - P-A Grohard
- INSERM U1235, Nantes, France.,Université de Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - T Durand
- INSERM U1235, Nantes, France.,Université de Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - P Hulin
- Université de Nantes, Nantes, France.,MicroPICell - Cellular and Tissular Imaging Core Facility of Nantes, SFR Santé F. Bonamy-FED 4203/Inserm UMS016/CNRS UMS3556, Nantes, France
| | - P Paul-Gilloteaux
- Université de Nantes, Nantes, France.,MicroPICell - Cellular and Tissular Imaging Core Facility of Nantes, SFR Santé F. Bonamy-FED 4203/Inserm UMS016/CNRS UMS3556, Nantes, France
| | - A Fournier
- Normandie Univ, UNICAEN, INSERM, Physiopathology and Imaging of Neurological Disorders (PhIND), Centre Cyceron, Caen, France
| | - F Docagne
- Normandie Univ, UNICAEN, INSERM, Physiopathology and Imaging of Neurological Disorders (PhIND), Centre Cyceron, Caen, France
| | - A Ligneul
- Lactalis Recherche et Développement, Retiers, France
| | | | - P Naveilhan
- INSERM U1235, Nantes, France.,Université de Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - H Boudin
- INSERM U1235, Nantes, France.,Université de Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - P Le Ruyet
- Lactalis Recherche et Développement, Retiers, France
| | - M Neunlist
- INSERM U1235, Nantes, France.,Université de Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, Nantes, France
| |
Collapse
|
522
|
Tse JKY. Gut Microbiota, Nitric Oxide, and Microglia as Prerequisites for Neurodegenerative Disorders. ACS Chem Neurosci 2017. [PMID: 28640632 DOI: 10.1021/acschemneuro.7b00176] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regulating fluctuating endogenous nitric oxide (NO) levels is necessary for proper physiological functions. Aberrant NO pathways are implicated in a number of neurological disorders, including Alzheimer's disease (AD) and Parkinson's disease. The mechanism of NO in oxidative and nitrosative stress with pathological consequences involves reactions with reactive oxygen species (e.g., superoxide) to form the highly reactive peroxynitrite, hydrogen peroxide, hypochloride ions and hydroxyl radical. NO levels are typically regulated by endogenous nitric oxide synthases (NOS), and inflammatory iNOS is implicated in the pathogenesis of neurodegenerative diseases, in which elevated NO mediates axonal degeneration and activates cyclooxygenases to provoke neuroinflammation. NO also instigates a down-regulated secretion of brain-derived neurotrophic factor, which is essential for neuronal survival, development and differentiation, synaptogenesis, and learning and memory. The gut-brain axis denotes communication between the enteric nervous system (ENS) of the GI tract and the central nervous system (CNS) of the brain, and the modes of communication include the vagus nerve, passive diffusion and carrier by oxyhemoglobin. Amyloid precursor protein that forms amyloid beta plaques in AD is normally expressed in the ENS by gut bacteria, but when amyloid beta accumulates, it compromises CNS functions. Escherichia coli and Salmonella enterica are among the many bacterial strains that express and secrete amyloid proteins and contribute to AD pathogenesis. Gut microbiota is essential for regulating microglia maturation and activation, and activated microglia secrete significant amounts of iNOS. Pharmacological interventions and lifestyle modifications to rectify aberrant NO signaling in AD include NOS inhibitors, NMDA receptor antagonists, potassium channel modulators, probiotics, diet, and exercise.
Collapse
Affiliation(s)
- Joyce K. Y. Tse
- University Research Facility in Chemical
and Environmental Analysis, and Department of Civil and Environmental
Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
523
|
Fleck AK, Schuppan D, Wiendl H, Klotz L. Gut-CNS-Axis as Possibility to Modulate Inflammatory Disease Activity-Implications for Multiple Sclerosis. Int J Mol Sci 2017; 18:E1526. [PMID: 28708108 PMCID: PMC5536015 DOI: 10.3390/ijms18071526] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022] Open
Abstract
In the last decade the role of environmental factors as modulators of disease activity and progression has received increasing attention. In contrast to classical environmental modulators such as exposure to sun-light or fine dust pollution, nutrition is an ideal tool for a personalized human intervention. Various studies demonstrate a key role of dietary factors in autoimmune diseases including Inflammatory Bowel Disease (IBD), rheumatoid arthritis or inflammatory central nervous system (CNS) diseases such as Multiple Sclerosis (MS). In this review we discuss the connection between diet and inflammatory processes via the gut-CNS-axis. This axis describes a bi-directional communication system and comprises neuronal signaling, neuroendocrine pathways and modulation of immune responses. Therefore, the gut-CNS-axis represents an emerging target to modify CNS inflammatory activity ultimately opening new avenues for complementary and adjunctive treatment of autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Ann-Katrin Fleck
- Department of Neurology, University Hospital Muenster, 48149 Muenster, Germany.
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Heinz Wiendl
- Department of Neurology, University Hospital Muenster, 48149 Muenster, Germany.
| | - Luisa Klotz
- Department of Neurology, University Hospital Muenster, 48149 Muenster, Germany.
| |
Collapse
|
524
|
Cognitive effects of subdiaphragmatic vagal deafferentation in rats. Neurobiol Learn Mem 2017; 142:190-199. [DOI: 10.1016/j.nlm.2017.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/22/2017] [Accepted: 05/07/2017] [Indexed: 12/26/2022]
|
525
|
Parois S, Calandreau L, Kraimi N, Gabriel I, Leterrier C. The influence of a probiotic supplementation on memory in quail suggests a role of gut microbiota on cognitive abilities in birds. Behav Brain Res 2017; 331:47-53. [DOI: 10.1016/j.bbr.2017.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022]
|
526
|
De Lorenzo A, Costacurta M, Merra G, Gualtieri P, Cioccoloni G, Marchetti M, Varvaras D, Docimo R, Di Renzo L. Can psychobiotics intake modulate psychological profile and body composition of women affected by normal weight obese syndrome and obesity? A double blind randomized clinical trial. J Transl Med 2017; 15:135. [PMID: 28601084 PMCID: PMC5466767 DOI: 10.1186/s12967-017-1236-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
Background Evidence of probiotics effects on gut function, brain activity and emotional behaviour were provided. Probiotics can have dramatic effects on behaviour through the microbiome–gut–brain axis, through vagus nerve. We investigated whether chronic probiotic intake could modulate psychological state, eating behaviour and body composition of normal weight obese (NWO) and preobese–obese (PreOB/OB) compared to normal weight lean women (NWL). Methods 60 women were enrolled. At baseline and after a 3-week probiotic oral suspension (POS) intake, all subjects underwent evaluation of body composition by anthropometry and dual X-ray absorptiometry, and psychological profile assessment by self-report questionnaires (i.e. EDI-2, SCL90R and BUT). Statistical analysis was carried out using paired t test or a non-parametric Wilcoxon test to evaluate differences between baseline and after POS intake, one-way ANOVA to compare all three groups and, where applicable, Chi square or t test were used to assess symptoms. Results Of the 48 women that concluded the study, 24% were NWO, 26% were NWL and 50% were PreOB/OB. Significant differences in body composition were highlighted among groups both at baseline and after a POS (p < 0.05). After POS intake, a significant reduction of BMI, resistance, FM (kg and %) (p < 0.05), and a significant increase of FFM (kg and %) (p < 0.05) were observed in all subjects in NOW and PreOB/OB. After POS intake, reduction of bacterial overgrowth syndrome (p < 0.05) and lower psychopathological scores (p < 0.05) were observed in NWO and PreOB/OB women. At baseline and after POS intake, all subjects tested were negative to SCL90R_GSI scale, but after treatment subjects positive to BUT_GSI scale were significantly reduced (8.33%) (p < 0.05) compared to the baseline (33.30%). In NWO and PreOB/OB groups significant differences (p < 0.05) in response to the subscales of the EDI-2 were observed. Significant improvement of the orocecal transit time was observed (p < 0.05) after POS intake. Furthermore, significant differences were observed for meteorism (p < 0.05) and defecation frequency (p < 0.05). Conclusions A 3-week intake of selected psychobiotics modulated body composition, bacterial contamination, psychopathological scores of NWO and PreOB/OB women. Further research is needed on a larger population and for a longer period of treatment before definitive conclusions can be made. Trial registration ClinicalTrials.gov Id: NCT01890070
Collapse
Affiliation(s)
- Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy. .,Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00136, Rome, Italy.
| | - Micaela Costacurta
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Merra
- Emergency Department, "A. Gemelli" General Hospital Foundation, Catholic University of Sacred Heart, 00168, Rome, Italy
| | - Paola Gualtieri
- PhD School of Applied Medical-Surgical Sciences, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Giorgia Cioccoloni
- PhD School of Applied Medical-Surgical Sciences, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Massimiliano Marchetti
- USL 1 UmbriaCastiglione del Lago, 06061, Perugia, Italy.,Department of Surgical Sciences, University Hospital "Umberto I", "Sapienza" University of Rome, 00161, Rome, Italy
| | - Dimitrios Varvaras
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Raffaella Docimo
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
527
|
Zhu X, Han Y, Du J, Liu R, Jin K, Yi W. Microbiota-gut-brain axis and the central nervous system. Oncotarget 2017; 8:53829-53838. [PMID: 28881854 PMCID: PMC5581153 DOI: 10.18632/oncotarget.17754] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.
Collapse
Affiliation(s)
- Xiqun Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yong Han
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, P.R. China
| | - Jing Du
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, P.R. China
| | - Renzhong Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ketao Jin
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang, P.R. China
| | - Wei Yi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| |
Collapse
|
528
|
Ota A, Yamamoto A, Kimura S, Mori Y, Mizushige T, Nagashima Y, Sato M, Suzuki H, Odagiri S, Yamada D, Sekiguchi M, Wada K, Kanamoto R, Ohinata K. Rational identification of a novel soy-derived anxiolytic-like undecapeptide acting via gut-brain axis after oral administration. Neurochem Int 2017; 105:51-57. [PMID: 28065795 DOI: 10.1016/j.neuint.2016.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 12/25/2022]
Abstract
Here we found that the chymotryptic digest of soy β-conglycinin, a major storage protein, exhibited anxiolytic-like effects in mice. We then searched for anxiolytic-like peptides in the digest. Based on a comprehensive peptide analysis of the chymotryptic digest by high performance liquid chromatograph connected to an LTQ Orbitrap mass spectrometer and the structure-activity relationship of known peptides, we explored anxiolytic-like peptides present in the digest. FLSSTEAQQSY, which corresponds to 323-333 of the β-conglycinin α subunit [βCGα(323-333)] emerged as a candidate. Oral administration of synthetic βCGα(323-333) exhibited anxiolytic-like effects in the elevated plus-maze and open-field test in male mice. Orally administered βCGα(323-333) exhibited anxiolytic-like effects in sham-operated control mice but not in vagotomized mice. In addition, oral administration of βCGα(323-333) increased the expression of c-Fos, a marker of neuronal activity, in the nucleus of the solitary tract, which receives inputs from the vagus nerve. These results suggest that the anxiolytic-like effects were mediated by the vagus nerve. The anxiolytic-like effects of βCGα(323-333) were also blocked by antagonists of the serotonin 5-HT1A, dopamine D1 and GABAA receptors. However βCGα(323-333) had no affinity for these receptors, suggesting it stimulates the release of endogenous neurotransmitters to activate the receptors. Taken together, a soy-derived undecapeptide, βCGα(323-333), may exhibit anxiolytic-like effects after oral administration via the vagus nerve and 5-HT1A, D1 and GABAA systems.
Collapse
Affiliation(s)
- Ami Ota
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Fuji, Kyoto 611-0011, Japan
| | - Akane Yamamoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Fuji, Kyoto 611-0011, Japan
| | - Saeko Kimura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Fuji, Kyoto 611-0011, Japan
| | - Yukiha Mori
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Fuji, Kyoto 611-0011, Japan
| | - Takafumi Mizushige
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Fuji, Kyoto 611-0011, Japan; Research Unit for Physiological Chemistry, C-PIER, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshiki Nagashima
- Department of Research & Development, Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Masaru Sato
- Department of Research & Development, Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hideyuki Suzuki
- Department of Research & Development, Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Saori Odagiri
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | - Daisuke Yamada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | - Masayuki Sekiguchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | - Ryuhei Kanamoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Fuji, Kyoto 611-0011, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Fuji, Kyoto 611-0011, Japan.
| |
Collapse
|
529
|
The Central Nervous System and the Gut Microbiome. Cell 2017; 167:915-932. [PMID: 27814521 DOI: 10.1016/j.cell.2016.10.027] [Citation(s) in RCA: 965] [Impact Index Per Article: 120.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/14/2016] [Accepted: 10/16/2016] [Indexed: 12/11/2022]
Abstract
Neurodevelopment is a complex process governed by both intrinsic and extrinsic signals. While historically studied by researching the brain, inputs from the periphery impact many neurological conditions. Indeed, emerging data suggest communication between the gut and the brain in anxiety, depression, cognition, and autism spectrum disorder (ASD). The development of a healthy, functional brain depends on key pre- and post-natal events that integrate environmental cues, such as molecular signals from the gut. These cues largely originate from the microbiome, the consortium of symbiotic bacteria that reside within all animals. Research over the past few years reveals that the gut microbiome plays a role in basic neurogenerative processes such as the formation of the blood-brain barrier, myelination, neurogenesis, and microglia maturation and also modulates many aspects of animal behavior. Herein, we discuss the biological intersection of neurodevelopment and the microbiome and explore the hypothesis that gut bacteria are integral contributors to development and function of the nervous system and to the balance between mental health and disease.
Collapse
|
530
|
Daily intake of Lactobacillus gasseri CP2305 improves mental, physical, and sleep quality among Japanese medical students enrolled in a cadaver dissection course. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
531
|
Moya-Pérez A, Luczynski P, Renes IB, Wang S, Borre Y, Anthony Ryan C, Knol J, Stanton C, Dinan TG, Cryan JF. Intervention strategies for cesarean section-induced alterations in the microbiota-gut-brain axis. Nutr Rev 2017; 75:225-240. [PMID: 28379454 PMCID: PMC5410982 DOI: 10.1093/nutrit/nuw069] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbial colonization of the gastrointestinal tract is an essential process that modulates host physiology and immunity. Recently, researchers have begun to understand how and when these microorganisms colonize the gut and the early-life factors that impact their natural ecological establishment. The vertical transmission of maternal microbes to the offspring is a critical factor for host immune and metabolic development. Increasing evidence also points to a role in the wiring of the gut-brain axis. This process may be altered by various factors such as mode of delivery, gestational age at birth, the use of antibiotics in early life, infant feeding, and hygiene practices. In fact, these early exposures that impact the intestinal microbiota have been associated with the development of diseases such as obesity, type 1 diabetes, asthma, allergies, and even neurodevelopmental disorders. The present review summarizes the impact of cesarean birth on the gut microbiome and the health status of the developing infant and discusses possible preventative and restorative strategies to compensate for early-life microbial perturbations.
Collapse
Affiliation(s)
- Angela Moya-Pérez
- A. Moya-Pérez, P. Luczynski, Y. Borre, C.A. Ryan, C. Stanton, T.G. Dinan, and J.F. Cryan are with the APC Microbiome Institute; C.A. Ryan is with the Department of Paediatrics and Child Health; T.G. Dinan is with the Department of Psychiatry and Neurobehavioural Science; and J.F. Cryan is with the Department of Anatomy and Neuroscience; University College Cork, Cork, Ireland. I.B. Renes and J. Knol are with Nutricia Research, Utrecht, the Netherlands. S. Wang is with Nutricia Research, Singapore. J. Knol is with the Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands. C. Stanton is with the Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland
| | - Pauline Luczynski
- A. Moya-Pérez, P. Luczynski, Y. Borre, C.A. Ryan, C. Stanton, T.G. Dinan, and J.F. Cryan are with the APC Microbiome Institute; C.A. Ryan is with the Department of Paediatrics and Child Health; T.G. Dinan is with the Department of Psychiatry and Neurobehavioural Science; and J.F. Cryan is with the Department of Anatomy and Neuroscience; University College Cork, Cork, Ireland. I.B. Renes and J. Knol are with Nutricia Research, Utrecht, the Netherlands. S. Wang is with Nutricia Research, Singapore. J. Knol is with the Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands. C. Stanton is with the Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland
| | - Ingrid B. Renes
- A. Moya-Pérez, P. Luczynski, Y. Borre, C.A. Ryan, C. Stanton, T.G. Dinan, and J.F. Cryan are with the APC Microbiome Institute; C.A. Ryan is with the Department of Paediatrics and Child Health; T.G. Dinan is with the Department of Psychiatry and Neurobehavioural Science; and J.F. Cryan is with the Department of Anatomy and Neuroscience; University College Cork, Cork, Ireland. I.B. Renes and J. Knol are with Nutricia Research, Utrecht, the Netherlands. S. Wang is with Nutricia Research, Singapore. J. Knol is with the Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands. C. Stanton is with the Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland
| | - Shugui Wang
- A. Moya-Pérez, P. Luczynski, Y. Borre, C.A. Ryan, C. Stanton, T.G. Dinan, and J.F. Cryan are with the APC Microbiome Institute; C.A. Ryan is with the Department of Paediatrics and Child Health; T.G. Dinan is with the Department of Psychiatry and Neurobehavioural Science; and J.F. Cryan is with the Department of Anatomy and Neuroscience; University College Cork, Cork, Ireland. I.B. Renes and J. Knol are with Nutricia Research, Utrecht, the Netherlands. S. Wang is with Nutricia Research, Singapore. J. Knol is with the Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands. C. Stanton is with the Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland
| | - Yuliya Borre
- A. Moya-Pérez, P. Luczynski, Y. Borre, C.A. Ryan, C. Stanton, T.G. Dinan, and J.F. Cryan are with the APC Microbiome Institute; C.A. Ryan is with the Department of Paediatrics and Child Health; T.G. Dinan is with the Department of Psychiatry and Neurobehavioural Science; and J.F. Cryan is with the Department of Anatomy and Neuroscience; University College Cork, Cork, Ireland. I.B. Renes and J. Knol are with Nutricia Research, Utrecht, the Netherlands. S. Wang is with Nutricia Research, Singapore. J. Knol is with the Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands. C. Stanton is with the Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland
| | - C. Anthony Ryan
- A. Moya-Pérez, P. Luczynski, Y. Borre, C.A. Ryan, C. Stanton, T.G. Dinan, and J.F. Cryan are with the APC Microbiome Institute; C.A. Ryan is with the Department of Paediatrics and Child Health; T.G. Dinan is with the Department of Psychiatry and Neurobehavioural Science; and J.F. Cryan is with the Department of Anatomy and Neuroscience; University College Cork, Cork, Ireland. I.B. Renes and J. Knol are with Nutricia Research, Utrecht, the Netherlands. S. Wang is with Nutricia Research, Singapore. J. Knol is with the Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands. C. Stanton is with the Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland
| | - Jan Knol
- A. Moya-Pérez, P. Luczynski, Y. Borre, C.A. Ryan, C. Stanton, T.G. Dinan, and J.F. Cryan are with the APC Microbiome Institute; C.A. Ryan is with the Department of Paediatrics and Child Health; T.G. Dinan is with the Department of Psychiatry and Neurobehavioural Science; and J.F. Cryan is with the Department of Anatomy and Neuroscience; University College Cork, Cork, Ireland. I.B. Renes and J. Knol are with Nutricia Research, Utrecht, the Netherlands. S. Wang is with Nutricia Research, Singapore. J. Knol is with the Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands. C. Stanton is with the Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland
| | - Catherine Stanton
- A. Moya-Pérez, P. Luczynski, Y. Borre, C.A. Ryan, C. Stanton, T.G. Dinan, and J.F. Cryan are with the APC Microbiome Institute; C.A. Ryan is with the Department of Paediatrics and Child Health; T.G. Dinan is with the Department of Psychiatry and Neurobehavioural Science; and J.F. Cryan is with the Department of Anatomy and Neuroscience; University College Cork, Cork, Ireland. I.B. Renes and J. Knol are with Nutricia Research, Utrecht, the Netherlands. S. Wang is with Nutricia Research, Singapore. J. Knol is with the Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands. C. Stanton is with the Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland
| | - Timothy G. Dinan
- A. Moya-Pérez, P. Luczynski, Y. Borre, C.A. Ryan, C. Stanton, T.G. Dinan, and J.F. Cryan are with the APC Microbiome Institute; C.A. Ryan is with the Department of Paediatrics and Child Health; T.G. Dinan is with the Department of Psychiatry and Neurobehavioural Science; and J.F. Cryan is with the Department of Anatomy and Neuroscience; University College Cork, Cork, Ireland. I.B. Renes and J. Knol are with Nutricia Research, Utrecht, the Netherlands. S. Wang is with Nutricia Research, Singapore. J. Knol is with the Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands. C. Stanton is with the Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland
| | - John F. Cryan
- A. Moya-Pérez, P. Luczynski, Y. Borre, C.A. Ryan, C. Stanton, T.G. Dinan, and J.F. Cryan are with the APC Microbiome Institute; C.A. Ryan is with the Department of Paediatrics and Child Health; T.G. Dinan is with the Department of Psychiatry and Neurobehavioural Science; and J.F. Cryan is with the Department of Anatomy and Neuroscience; University College Cork, Cork, Ireland. I.B. Renes and J. Knol are with Nutricia Research, Utrecht, the Netherlands. S. Wang is with Nutricia Research, Singapore. J. Knol is with the Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands. C. Stanton is with the Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland
| |
Collapse
|
532
|
Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol Stress 2017; 7:124-136. [PMID: 29276734 PMCID: PMC5736941 DOI: 10.1016/j.ynstr.2017.03.001] [Citation(s) in RCA: 686] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/16/2017] [Accepted: 03/02/2017] [Indexed: 12/11/2022] Open
Abstract
The importance of the gut–brain axis in regulating stress-related responses has long been appreciated. More recently, the microbiota has emerged as a key player in the control of this axis, especially during conditions of stress provoked by real or perceived homeostatic challenge. Diet is one of the most important modifying factors of the microbiota-gut-brain axis. The routes of communication between the microbiota and brain are slowly being unravelled, and include the vagus nerve, gut hormone signaling, the immune system, tryptophan metabolism, and microbial metabolites such as short chain fatty acids. The importance of the early life gut microbiota in shaping later health outcomes also is emerging. Results from preclinical studies indicate that alterations of the early microbial composition by way of antibiotic exposure, lack of breastfeeding, birth by Caesarean section, infection, stress exposure, and other environmental influences - coupled with the influence of host genetics - can result in long-term modulation of stress-related physiology and behaviour. The gut microbiota has been implicated in a variety of stress-related conditions including anxiety, depression and irritable bowel syndrome, although this is largely based on animal studies or correlative analysis in patient populations. Additional research in humans is sorely needed to reveal the relative impact and causal contribution of the microbiome to stress-related disorders. In this regard, the concept of psychobiotics is being developed and refined to encompass methods of targeting the microbiota in order to positively impact mental health outcomes. At the 2016 Neurobiology of Stress Workshop in Newport Beach, CA, a group of experts presented the symposium “The Microbiome: Development, Stress, and Disease”. This report summarizes and builds upon some of the key concepts in that symposium within the context of how microbiota might influence the neurobiology of stress.
Collapse
Affiliation(s)
- Jane A Foster
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
533
|
Affiliation(s)
- Glenda MacQueen
- Correspondence to: G. MacQueen, Room 7D14, TRW Building, 3280 University Dr. NW, Calgary AB T2N 4Z6;
| | | | | |
Collapse
|
534
|
Ikeda H, Nagasawa M, Yamaguchi T, Minaminaka K, Goda R, Chowdhury VS, Yasuo S, Furuse M. Disparities in activity levels and learning ability between Djungarian hamster ( Phodopus sungorus) and Roborovskii hamster ( Phodopus roborovskii). Anim Sci J 2017; 88:533-545. [DOI: 10.1111/asj.12659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Hiromi Ikeda
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Mao Nagasawa
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Takeshi Yamaguchi
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Kimie Minaminaka
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Ryosei Goda
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Vishwajit S. Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science; Kyushu University; Fukuoka Japan
| | - Shinobu Yasuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| |
Collapse
|
535
|
Vuong HE, Hsiao EY. Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. Biol Psychiatry 2017; 81:411-423. [PMID: 27773355 PMCID: PMC5285286 DOI: 10.1016/j.biopsych.2016.08.024] [Citation(s) in RCA: 357] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/28/2016] [Accepted: 08/18/2016] [Indexed: 01/16/2023]
Abstract
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder that affects one in 45 children in the United States, with a similarly striking prevalence in countries around the world. However, mechanisms underlying its etiology and manifestations remain poorly understood. Although ASD is diagnosed based on the presence and severity of impaired social communication and repetitive behavior, immune dysregulation and gastrointestinal issues are common comorbidities. The microbiome is an integral part of human physiology; recent studies show that changes in the gut microbiota can modulate gastrointestinal physiology, immune function, and even behavior. Links between particular bacteria from the indigenous gut microbiota and phenotypes relevant to ASD raise the important question of whether microbial dysbiosis plays a role in the development or presentation of ASD symptoms. Here we review reports of microbial dysbiosis in ASD. We further discuss potential effects of the microbiota on ASD-associated symptoms, drawing on signaling mechanisms for reciprocal interactions among the microbiota, immunity, gut function, and behavior. In addition, we discuss recent findings supporting a role for the microbiome as an interface between environmental and genetic risk factors that are associated with ASD. These studies highlight the integration of pathways across multiple body systems that together can impact brain and behavior and suggest that changes in the microbiome may contribute to symptoms of neurodevelopmental disease.
Collapse
Affiliation(s)
- Helen E. Vuong
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elaine Y. Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA,Correspondence to: ; 610 Charles E. Young Drive MSB 3825A; Los Angeles CA 90095; 310-825-0228
| |
Collapse
|
536
|
Browning KN, Verheijden S, Boeckxstaens GE. The Vagus Nerve in Appetite Regulation, Mood, and Intestinal Inflammation. Gastroenterology 2017; 152:730-744. [PMID: 27988382 PMCID: PMC5337130 DOI: 10.1053/j.gastro.2016.10.046] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/27/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023]
Abstract
Although the gastrointestinal tract contains intrinsic neural plexuses that allow a significant degree of independent control over gastrointestinal functions, the central nervous system provides extrinsic neural inputs that modulate, regulate, and integrate these functions. In particular, the vagus nerve provides the parasympathetic innervation to the gastrointestinal tract, coordinating the complex interactions between central and peripheral neural control mechanisms. This review discusses the physiological roles of the afferent (sensory) and motor (efferent) vagus in regulation of appetite, mood, and the immune system, as well as the pathophysiological outcomes of vagus nerve dysfunction resulting in obesity, mood disorders, and inflammation. The therapeutic potential of vagus nerve modulation to attenuate or reverse these pathophysiological outcomes and restore autonomic homeostasis is also discussed.
Collapse
Affiliation(s)
- Kirsteen N. Browning
- Department of Neural and Behavioral Science Penn State College of Medicine 500 University Drive MC H109 Hershey, PA 17033
| | - Simon Verheijden
- Translational Research Center of Gastrointestinal Disorders (TARGID) KU Leuven Herestraat 49 3000 Leuven, Belgium
| | - Guy E. Boeckxstaens
- Translational Research Center of Gastrointestinal Disorders (TARGID) KU Leuven Herestraat 49 3000 Leuven, Belgium,Division of Gastroenterology & Hepatology University Hospital Leuven Herestraat 49 3000 Leuven, Belgium,Address of correspondence: Prof. dr. Guy Boeckxstaens,
| |
Collapse
|
537
|
Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 2017; 20:145-155. [PMID: 28092661 PMCID: PMC6960010 DOI: 10.1038/nn.4476] [Citation(s) in RCA: 1257] [Impact Index Per Article: 157.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/09/2016] [Indexed: 01/16/2023]
Abstract
The diverse collection of microorganisms that inhabit the gastrointestinal tract, collectively called the gut microbiota, profoundly influences many aspects of host physiology, including nutrient metabolism, resistance to infection and immune system development. Studies investigating the gut-brain axis demonstrate a critical role for the gut microbiota in orchestrating brain development and behavior, and the immune system is emerging as an important regulator of these interactions. Intestinal microbes modulate the maturation and function of tissue-resident immune cells in the CNS. Microbes also influence the activation of peripheral immune cells, which regulate responses to neuroinflammation, brain injury, autoimmunity and neurogenesis. Accordingly, both the gut microbiota and immune system are implicated in the etiopathogenesis or manifestation of neurodevelopmental, psychiatric and neurodegenerative diseases, such as autism spectrum disorder, depression and Alzheimer's disease. In this review, we discuss the role of CNS-resident and peripheral immune pathways in microbiota-gut-brain communication during health and neurological disease.
Collapse
|
538
|
Proctor C, Thiennimitr P, Chattipakorn N, Chattipakorn SC. Diet, gut microbiota and cognition. Metab Brain Dis 2017; 32:1-17. [PMID: 27709426 DOI: 10.1007/s11011-016-9917-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022]
Abstract
The consumption of a diet high in fat and sugar can lead to the development of obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease and cognitive decline. In the human gut, the trillions of harmless microorganisms harboured in the host's gastrointestinal tract are called the 'gut microbiota'. Consumption of a diet high in fat and sugar changes the healthy microbiota composition which leads to an imbalanced microbial population in the gut, a phenomenon known as "gut dysbiosis". It has been shown that certain types of gut microbiota are linked to the pathogenesis of obesity. In addition, long-term consumption of a high fat diet is associated with cognitive decline. It has recently been proposed that the gut microbiota is part of a mechanistic link between the consumption of a high fat diet and the impaired cognition of an individual, termed "microbiota-gut-brain axis". In this complex relationship between the gut, the brain and the gut microbiota, there are several types of gut microbiota and host mechanisms involved. Most of these mechanisms are still poorly understood. Therefore, this review comprehensively summarizes the current evidence from mainly in vivo (rodent and human) studies of the relationship between diet, gut microbiota and cognition. The possible mechanisms that the diet and the gut microbiota have on cognition are also presented and discussed.
Collapse
Affiliation(s)
- Cicely Proctor
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
539
|
The link between inflammation, bugs, the intestine and the brain in alcohol dependence. Transl Psychiatry 2017; 7:e1048. [PMID: 28244981 PMCID: PMC5545644 DOI: 10.1038/tp.2017.15] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 02/08/2023] Open
Abstract
In recent years, some new processes have been proposed to explain how alcohol may influence behavior, psychological symptoms and alcohol seeking in alcohol-dependent subjects. In addition to its important effect on brain and neurotransmitters equilibrium, alcohol abuse also affects peripheral organs including the gut. By yet incompletely understood mechanisms, chronic alcohol abuse increases intestinal permeability and alters the composition of the gut microbiota, allowing bacterial components from the gut lumen to reach the systemic circulation. These gut-derived bacterial products are recognized by immune cells circulating in the blood or residing in target organs, which consequently synthesize and release pro-inflammatory cytokines. Circulating cytokines are considered important mediators of the gut-brain communication, as they can reach the central nervous system and induce neuroinflammation that is associated with change in mood, cognition and drinking behavior. These observations support the possibility that targeting the gut microbiota, by the use of probiotics or prebiotics, could restore the gut barrier function, reduce systemic inflammation and may have beneficial effect in treating alcohol dependence and in reducing alcohol relapse.
Collapse
|
540
|
Vlainić JV, Šuran J, Vlainić T, Vukorep AL. Probiotics as an Adjuvant Therapy in Major Depressive Disorder. Curr Neuropharmacol 2017; 14:952-958. [PMID: 27226112 PMCID: PMC5333591 DOI: 10.2174/1570159x14666160526120928] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/27/2015] [Accepted: 05/17/2016] [Indexed: 02/08/2023] Open
Abstract
Background Major depressive disorder is a common, debilitating psychiatric disorder, which originates from the interaction of susceptibility genes and noxious environmental events, in particular stressful events. It has been shown that dysregulation of hypothalamus-pituitary-adrenal (HPA) axis, imbalance between anti- and pro-inflammatory cytokines, depletion of neurotransmitters (serotonin, norepinephrine and/or dopamine) in the central nervous system, altered glutamatergic and GABAergic transmission have an important role in the pathogenesis of depression. Due to numerous diverse biological events included in the pathophysiology of depression a large number of antidepressant drugs exerting distinct pharmacological effects have been developed. Nevertheless, clinical needs are still not solved. Results Relatively new research strategies advanced the understanding of psychiatric illness and their connections with disturbances in gastrointestinal tract. The existence of bidirectional communication between the brain and the gut has been proven, and an increasing body of evidence supports the hypothesis that cognitive and emotional processes are influenced through the brain-gut axis. On the other hand, microbiome may influence brain function and even behavior giving to the specific microorganisms a psychobiotic potential. Conclusions In this review we discuss the possibilities of classical antidepressant drug treatment being supported with the psychobiotics/probiotic bacteria in patients suffering from major depressive disorder.
Collapse
|
541
|
Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 2017; 595:489-503. [PMID: 27641441 PMCID: PMC5233671 DOI: 10.1113/jp273106] [Citation(s) in RCA: 505] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/13/2016] [Indexed: 12/16/2022] Open
Abstract
There is a growing realisation that the gut-brain axis and its regulation by the microbiota may play a key role in the biological and physiological basis of neurodevelopmental, age-related and neurodegenerative disorders. The routes of communication between the microbiota and brain are being unravelled and include the vagus nerve, gut hormone signalling, the immune system, tryptophan metabolism or by way of microbial metabolites such as short chain fatty acids. The importance of early life gut microbiota in shaping future health outcomes is also emerging. Disturbances of this composition by way of antibiotic exposure, lack of breastfeeding, infection, stress and the environmental influences coupled with the influence of host genetics can result in long-term effects on physiology and behaviour, at least in animal models. It is also worth noting that mode of delivery at birth influences microbiota composition with those born by Caesarean section having a distinctly different microbiota in early life to those born per vaginum. At the other extreme of life, ageing is associated with a narrowing in microbial diversity and healthy ageing correlates with a diverse microbiome. Recently, the gut microbiota has been implicated in a variety of conditions including depression, autism, schizophrenia and Parkinson's disease. There is still considerable debate as to whether or not the gut microbiota changes are core to the pathophysiology of such conditions or are merely epiphenomenal. It is plausible that such neuropsychiatric disorders might be treated in the future by targeting the microbiota either by microbiota transplantation, antibiotics or psychobiotics.
Collapse
Affiliation(s)
- Timothy G. Dinan
- APC Microbiome InstituteUniversity College CorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkIreland
| | - John F. Cryan
- APC Microbiome InstituteUniversity College CorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkIreland
| |
Collapse
|
542
|
Abstract
In the last 5 years, interest in the interactions among the gut microbiome, brain, and behavior has exploded. Preclinical evidence supports a role of the gut microbiome in behavioral responses associated with pain, emotion, social interactions, and food intake. Limited, but growing, clinical evidence comes primarily from associations of gut microbial composition and function to behavioral and clinical features and brain structure and function. Converging evidence suggests that the brain and the gut microbiota are in bidirectional communication. Observed dysbiotic states in depression, chronic stress, and autism may reflect altered brain signaling to the gut, while altered gut microbial signaling to the brain may play a role in reinforcing brain alterations. On the other hand, primary dysbiotic states due to Western diets may signal to the brain, altering ingestive behavior. While studies performed in patients with depression and rodent models generated by fecal microbial transfer from such patients suggest causation, evidence for an influence of acute gut microbial alterations on human behavioral and clinical parameters is lacking. Only recently has an open-label microbial transfer therapy in children with autism tentatively validated the gut microbiota as a therapeutic target. The translational potential of preclinical findings remains unclear without further clinical investigation.
Collapse
|
543
|
D'Mello C, Swain MG. Immune-to-Brain Communication Pathways in Inflammation-Associated Sickness and Depression. Curr Top Behav Neurosci 2017; 31:73-94. [PMID: 27677781 DOI: 10.1007/7854_2016_37] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
A growing body of evidence now highlights a key role for inflammation in mediating sickness behaviors and depression. Systemic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and chronic liver disease have high comorbidity with depression. How the periphery communicates with the brain to mediate changes in neurotransmission and thereby behavior is not completely understood. Traditional routes of communication between the periphery and the brain involve neural and humoral pathways with TNFα, IL-1β, and IL-6 being the three main cytokines that have primarily been implicated in mediating signaling via these pathways. However, in recent years communication via peripheral immune-cell-to-brain and the gut-microbiota-to-brain routes have received increasing attention for their ability to modulate brain function. In this chapter we discuss periphery-to-brain communication pathways and their potential role in mediating inflammation-associated sickness behaviors and depression.
Collapse
Affiliation(s)
- Charlotte D'Mello
- Immunology Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, Canada, T2N 4N1
| | - Mark G Swain
- Immunology Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, Canada, T2N 4N1.
| |
Collapse
|
544
|
Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res 2017; 179:223-244. [PMID: 27832936 DOI: 10.1016/j.trsl.2016.10.002] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 02/07/2023]
Abstract
The microbial population residing within the human gut represents one of the most densely populated microbial niche in the human body with growing evidence showing it playing a key role in the regulation of behavior and brain function. The bidirectional communication between the gut microbiota and the brain, the microbiota-gut-brain axis, occurs through various pathways including the vagus nerve, the immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and the behavior that are often associated with neuropsychiatric conditions. Therefore, research targeting the modulation of this gut microbiota as a novel therapy for the treatment of various neuropsychiatric conditions is gaining interest. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth, and environment. However, it is diet composition and nutritional status that has repeatedly been shown to be one of the most critical modifiable factors regulating the gut microbiota at different time points across the lifespan and under various health conditions. Thus the microbiota is poised to play a key role in nutritional interventions for maintaining brain health.
Collapse
Affiliation(s)
- Kiran V Sandhu
- APC Microbiome institute, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome institute, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome institute, University College Cork, Cork, Ireland; Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy, Co, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome institute, University College Cork, Cork, Ireland; Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
545
|
Hoban A, Moloney R, Golubeva A, McVey Neufeld K, O’Sullivan O, Patterson E, Stanton C, Dinan T, Clarke G, Cryan J. Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat. Neuroscience 2016; 339:463-477. [DOI: 10.1016/j.neuroscience.2016.10.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/05/2016] [Accepted: 10/02/2016] [Indexed: 12/22/2022]
|
546
|
Mazzoli R, Pessione E. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling. Front Microbiol 2016; 7:1934. [PMID: 27965654 PMCID: PMC5127831 DOI: 10.3389/fmicb.2016.01934] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota provides the host with multiple functions (e.g., by contributing to food digestion, vitamin supplementation, and defense against pathogenic strains) and interacts with the host organism through both direct contact (e.g., through surface antigens) and soluble molecules, which are produced by the microbial metabolism. The existence of the so-called gut–brain axis of bi-directional communication between the gastrointestinal tract and the central nervous system (CNS) also supports a communication pathway between the gut microbiota and neural circuits of the host, including the CNS. An increasing body of evidence has shown that gut microbiota is able to modulate gut and brain functions, including the mood, cognitive functions, and behavior of humans. Nonetheless, given the extreme complexity of this communication network, its comprehension is still at its early stage. The present contribution will attempt to provide a state-of-the art description of the mechanisms by which gut microbiota can affect the gut–brain axis and the multiple cellular and molecular communication circuits (i.e., neural, immune, and humoral). In this context, special attention will be paid to the microbial strains that produce bioactive compounds and display ascertained or potential probiotic activity. Several neuroactive molecules (e.g., catecholamines, histamine, serotonin, and trace amines) will be considered, with special focus on Glu and GABA circuits, receptors, and signaling. From the basic science viewpoint, “microbial endocrinology” deals with those theories in which neurochemicals, produced by both multicellular organisms and prokaryotes (e.g., serotonin, GABA, glutamate), are considered as a common shared language that enables interkingdom communication. With regards to its application, research in this area opens the way toward the possibility of the future use of neuroactive molecule-producing probiotics as therapeutic agents for the treatment of neurogastroenteric and/or psychiatric disorders.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| | - Enrica Pessione
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| |
Collapse
|
547
|
Gart EV, Suchodolski JS, Welsh TH, Alaniz RC, Randel RD, Lawhon SD. Salmonella Typhimurium and Multidirectional Communication in the Gut. Front Microbiol 2016; 7:1827. [PMID: 27920756 PMCID: PMC5118420 DOI: 10.3389/fmicb.2016.01827] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022] Open
Abstract
The mammalian digestive tract is home to trillions of microbes, including bacteria, archaea, protozoa, fungi, and viruses. In monogastric mammals the stomach and small intestine harbor diverse bacterial populations but are typically less populated than the colon. The gut bacterial community (microbiota hereafter) varies widely among different host species and individuals within a species. It is influenced by season of the year, age of the host, stress and disease. Ideally, the host and microbiota benefit each other. The host provides nutrients to the microbiota and the microbiota assists the host with digestion and nutrient metabolism. The resident microbiota competes with pathogens for space and nutrients and, through this competition, protects the host in a phenomenon called colonization resistance. The microbiota participates in development of the host immune system, particularly regulation of autoimmunity and mucosal immune response. The microbiota also shapes gut–brain communication and host responses to stress; and, indeed, the microbiota is a newly recognized endocrine organ within mammalian hosts. Salmonella enterica serovar Typhimurium (S. Typhimurium hereafter) is a food-borne pathogen which adapts to and alters the gastrointestinal (GI) environment. In the GI tract, S. Typhimurium competes with the microbiota for nutrients and overcomes colonization resistance to establish infection. To do this, S. Typhimurium uses multiple defense mechanisms to resist environmental stressors, like the acidic pH of the stomach, and virulence mechanisms which allow it to invade the intestinal epithelium and disseminate throughout the host. To coordinate gene expression and disrupt signaling within the microbiota and between host and microbiota, S. Typhimurium employs its own chemical signaling and may regulate host hormone metabolism. This review will discuss the multidirectional interaction between S. Typhimurium, host and microbiota as well as mechanisms that allow S. Typhimurium to succeed in the gut.
Collapse
Affiliation(s)
- Elena V Gart
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station TX, USA
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station TX, USA
| | - Thomas H Welsh
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station TX, USA
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station TX, USA
| | | | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station TX, USA
| |
Collapse
|
548
|
Berding K, Donovan SM. Microbiome and nutrition in autism spectrum disorder: current knowledge and research needs. Nutr Rev 2016; 74:723-736. [DOI: 10.1093/nutrit/nuw048] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
549
|
Obata Y, Pachnis V. The Effect of Microbiota and the Immune System on the Development and Organization of the Enteric Nervous System. Gastroenterology 2016; 151:836-844. [PMID: 27521479 PMCID: PMC5102499 DOI: 10.1053/j.gastro.2016.07.044] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 12/22/2022]
Abstract
The gastrointestinal (GI) tract is essential for the absorption of nutrients, induction of mucosal and systemic immune responses, and maintenance of a healthy gut microbiota. Key aspects of gastrointestinal physiology are controlled by the enteric nervous system (ENS), which is composed of neurons and glial cells. The ENS is exposed to and interacts with the outer (microbiota, metabolites, and nutrients) and inner (immune cells and stromal cells) microenvironment of the gut. Although the cellular blueprint of the ENS is mostly in place by birth, the functional maturation of intestinal neural networks is completed within the microenvironment of the postnatal gut, under the influence of gut microbiota and the mucosal immune system. Recent studies have shown the importance of molecular interactions among microbiota, enteric neurons, and immune cells for GI homeostasis. In addition to its role in GI physiology, the ENS has been associated with the pathogenesis of neurodegenerative disorders, such as Parkinson's disease, raising the possibility that microbiota-ENS interactions could offer a viable strategy for influencing the course of brain diseases. Here, we discuss recent advances on the role of microbiota and the immune system on the development and homeostasis of the ENS, a key relay station along the gut-brain axis.
Collapse
|
550
|
Sherwin E, Sandhu KV, Dinan TG, Cryan JF. May the Force Be With You: The Light and Dark Sides of the Microbiota-Gut-Brain Axis in Neuropsychiatry. CNS Drugs 2016; 30:1019-1041. [PMID: 27417321 PMCID: PMC5078156 DOI: 10.1007/s40263-016-0370-3] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The role of the gut microbiota in health and disease is becoming increasingly recognized. The microbiota-gut-brain axis is a bi-directional pathway between the brain and the gastrointestinal system. The bacterial commensals in our gut can signal to the brain through a variety of mechanisms, which are slowly being resolved. These include the vagus nerve, immune mediators and microbial metabolites, which influence central processes such as neurotransmission and behaviour. Dysregulation in the composition of the gut microbiota has been identified in several neuropsychiatric disorders, such as autism, schizophrenia and depression. Moreover, preclinical studies suggest that they may be the driving force behind the behavioural abnormalities observed in these conditions. Understanding how bacterial commensals are involved in regulating brain function may lead to novel strategies for development of microbiota-based therapies for these neuropsychiatric disorders.
Collapse
Affiliation(s)
- Eoin Sherwin
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Kiran V Sandhu
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Western Gateway Building, Cork, Ireland.
| |
Collapse
|