501
|
Taoro-González L, Pereda D, Valdés-Baizabal C, González-Gómez M, Pérez JA, Mesa-Herrera F, Canerina-Amaro A, Pérez-González H, Rodríguez C, Díaz M, Marin R. Effects of Dietary n-3 LCPUFA Supplementation on the Hippocampus of Aging Female Mice: Impact on Memory, Lipid Raft-Associated Glutamatergic Receptors and Neuroinflammation. Int J Mol Sci 2022; 23:7430. [PMID: 35806435 PMCID: PMC9267073 DOI: 10.3390/ijms23137430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022] Open
Abstract
Long-chain polyunsaturated fatty acids (LCPUFA), essential molecules whose precursors must be dietary supplied, are highly represented in the brain contributing to numerous neuronal processes. Recent findings have demonstrated that LCPUFA are represented in lipid raft microstructures, where they favor molecular interactions of signaling complexes underlying neuronal functionality. During aging, the brain lipid composition changes affecting the lipid rafts' integrity and protein signaling, which may induce memory detriment. We investigated the effect of a n-3 LCPUFA-enriched diet on the cognitive function of 6- and 15-months-old female mice. Likewise, we explored the impact of dietary n-3 LCPUFAs on hippocampal lipid rafts, and their potential correlation with aging-induced neuroinflammation. Our results demonstrate that n-3 LCPUFA supplementation improves spatial and recognition memory and restores the expression of glutamate and estrogen receptors in the hippocampal lipid rafts of aged mice to similar profiles than young ones. Additionally, the n-3 LCPUFA-enriched diet stabilized the lipid composition of the old mice's hippocampal lipid rafts to the levels of young ones and reduced the aged-induced neuroinflammatory markers. Hence, we propose that n-3 LCPUFA supplementation leads to beneficial cognitive performance by "rejuvenating" the lipid raft microenvironment that stabilizes the integrity and interactions of memory protein players embedded in these microdomains.
Collapse
Affiliation(s)
- Lucas Taoro-González
- Research Unit, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain;
- Instituto de Tecnologías Biomédicas de Canarias (ITB), University of La Laguna, 38200 Santa Cruz de Tenerife, Spain; (M.G.-G.); (C.R.)
| | - Daniel Pereda
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain; (D.P.); (C.V.-B.); (A.C.-A.)
- Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - Catalina Valdés-Baizabal
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain; (D.P.); (C.V.-B.); (A.C.-A.)
- Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - Miriam González-Gómez
- Instituto de Tecnologías Biomédicas de Canarias (ITB), University of La Laguna, 38200 Santa Cruz de Tenerife, Spain; (M.G.-G.); (C.R.)
- Department of Basic Medical Sciences, Faculty of Health Sciences, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain;
- Instituto de Neurociencia Cognitiva (NeuroCog), University of La Laguna, 38205 San Cristóbal de La Laguna, Spain
| | - José A. Pérez
- Department of Animal Biology, Edaphology and Geology, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain;
| | - Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain;
| | - Ana Canerina-Amaro
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain; (D.P.); (C.V.-B.); (A.C.-A.)
- Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - Herminia Pérez-González
- Department of Basic Medical Sciences, Faculty of Health Sciences, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain;
| | - Covadonga Rodríguez
- Instituto de Tecnologías Biomédicas de Canarias (ITB), University of La Laguna, 38200 Santa Cruz de Tenerife, Spain; (M.G.-G.); (C.R.)
- Department of Animal Biology, Edaphology and Geology, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain;
| | - Mario Díaz
- Instituto de Neurociencia Cognitiva (NeuroCog), University of La Laguna, 38205 San Cristóbal de La Laguna, Spain
- Department of Physics, Faculty of Sciences, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
- IUETSP (Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias), University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain; (D.P.); (C.V.-B.); (A.C.-A.)
- Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain
| |
Collapse
|
502
|
Müller GA, Müller TD. Biological Role of the Intercellular Transfer of Glycosylphosphatidylinositol-Anchored Proteins: Stimulation of Lipid and Glycogen Synthesis. Int J Mol Sci 2022; 23:7418. [PMID: 35806423 PMCID: PMC9267055 DOI: 10.3390/ijms23137418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs), which are anchored at the outer leaflet of plasma membranes (PM) only by a carboxy-terminal GPI glycolipid, are known to fulfill multiple enzymic and receptor functions at the cell surface. Previous studies revealed that full-length GPI-APs with the complete GPI anchor attached can be released from and inserted into PMs in vitro. Moreover, full-length GPI-APs were recovered from serum, dependent on the age and metabolic state of rats and humans. Here, the possibility of intercellular control of metabolism by the intercellular transfer of GPI-APs was studied. Mutant K562 erythroleukemia (EL) cells, mannosamine-treated human adipocytes and methyl-ß-cyclodextrin-treated rat adipocytes as acceptor cells for GPI-APs, based on their impaired PM expression of GPI-APs, were incubated with full-length GPI-APs, prepared from rat adipocytes and embedded in micelle-like complexes, or with EL cells and human adipocytes with normal expression of GPI-APs as donor cells in transwell co-cultures. Increases in the amounts of full-length GPI-APs at the PM of acceptor cells as a measure of their transfer was assayed by chip-based sensing. Both experimental setups supported both the transfer and upregulation of glycogen (EL cells) and lipid (adipocytes) synthesis. These were all diminished by serum, serum GPI-specific phospholipase D, albumin, active bacterial PI-specific phospholipase C or depletion of total GPI-APs from the culture medium. Serum inhibition of both transfer and glycogen/lipid synthesis was counteracted by synthetic phosphoinositolglycans (PIGs), which closely resemble the structure of the GPI glycan core and caused dissociation of GPI-APs from serum proteins. Finally, large, heavily lipid-loaded donor and small, slightly lipid-loaded acceptor adipocytes were most effective in stimulating transfer and lipid synthesis. In conclusion, full-length GPI-APs can be transferred between adipocytes or between blood cells as well as between these cell types. Transfer and the resulting stimulation of lipid and glycogen synthesis, respectively, are downregulated by serum proteins and upregulated by PIGs. These findings argue for the (patho)physiological relevance of the intercellular transfer of GPI-APs in general and its role in the paracrine vs. endocrine (dys)regulation of metabolism, in particular. Moreover, they raise the possibility of the use of full-length GPI-APs as therapeutics for metabolic diseases.
Collapse
Affiliation(s)
- Günter A. Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Oberschleissheim, Germany;
- German Center for Diabetes Research (DZD, Deutsches Zentrum für Diabetesforschung), International Helmholtz Research School for Diabetes, 85764 Oberschleissheim, Germany
| | - Timo D. Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Oberschleissheim, Germany;
- German Center for Diabetes Research (DZD, Deutsches Zentrum für Diabetesforschung), International Helmholtz Research School for Diabetes, 85764 Oberschleissheim, Germany
| |
Collapse
|
503
|
Videv P, Mladenova K, Andreeva TD, Park JH, Moskova-Doumanova V, Petrova SD, Doumanov JA. Cholesterol Alters the Phase Separation in Model Membranes Containing hBest1. Molecules 2022; 27:molecules27134267. [PMID: 35807512 PMCID: PMC9268032 DOI: 10.3390/molecules27134267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Human retinal pigment epithelial (RPE) cells express the transmembrane Ca2+-dependent Cl− channel bestrophin-1 (hBest1) of the plasma membrane. Mutations in the hBest1 protein are associated with the development of distinct pathological conditions known as bestrophinopathies. The interactions between hBest1 and plasma membrane lipids (cholesterol (Chol), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and sphingomyelin (SM)) determine its lateral organization and surface dynamics, i.e., their miscibility or phase separation. Using the surface pressure/mean molecular area (π/A) isotherms, hysteresis and compressibility moduli (Cs−1) of hBest1/POPC/Chol and hBest1/SM/Chol composite Langmuir monolayers, we established that the films are in an LE (liquid-expanded) or LE-LC (liquid-condensed) state, the components are well-mixed and the Ca2+ ions have a condensing effect on the surface molecular organization. Cholesterol causes a decrease in the elasticity of both films and a decrease in the ΔGmixπ values (reduction of phase separation) of hBest1/POPC/Chol films. For the hBest1/SM/Chol monolayers, the negative values of ΔGmixπ are retained and equalized with the values of ΔGmixπ in the hBest1/POPC/Chol films. Shifts in phase separation/miscibility by cholesterol can lead to changes in the structure and localization of hBest1 in the lipid rafts and its channel functions.
Collapse
Affiliation(s)
- Pavel Videv
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria; (P.V.); (K.M.); (J.H.P.); (V.M.-D.); (S.D.P.)
| | - Kirilka Mladenova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria; (P.V.); (K.M.); (J.H.P.); (V.M.-D.); (S.D.P.)
| | - Tonya D. Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
- Faculty of Applied Chemistry, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany
| | - Jong Hun Park
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria; (P.V.); (K.M.); (J.H.P.); (V.M.-D.); (S.D.P.)
| | - Veselina Moskova-Doumanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria; (P.V.); (K.M.); (J.H.P.); (V.M.-D.); (S.D.P.)
| | - Svetla D. Petrova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria; (P.V.); (K.M.); (J.H.P.); (V.M.-D.); (S.D.P.)
| | - Jordan A. Doumanov
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria; (P.V.); (K.M.); (J.H.P.); (V.M.-D.); (S.D.P.)
- Correspondence: ; Tel.: +359-2-8167-262; Fax: +359-2-8656-641
| |
Collapse
|
504
|
Wang Y, Palzhanov Y, Quaini A, Olshanskii M, Majd S. Lipid domain coarsening and fluidity in multicomponent lipid vesicles: A continuum based model and its experimental validation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183898. [PMID: 35283081 DOI: 10.1016/j.bbamem.2022.183898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022]
Abstract
Liposomes that achieve a heterogeneous and spatially organized surface through phase separation have been recognized to be a promising platform for delivery purposes. However, their design and optimization through experimentation can be expensive and time-consuming. To assist with the design and reduce the associated cost, we propose a computational platform for modeling membrane coarsening dynamics based on the principles of continuum mechanics and thermodynamics. This model couples phase separation to lateral flow and accounts for different membrane fluidity within the different phases, which is known to affect the coarsening dynamics on lipid membranes. The simulation results are in agreement with the experimental data in terms of liquid ordered domains area fraction, total domains perimeter over time, and total number of domains over time for two different membrane compositions (DOPC:DPPC with a 1:1 M ratio with 15% Chol and DOPC:DPPC with a 1:2 M ratio with 25% Chol) that yield opposite and nearly inverse phase behavior. This quantitative validation shows that the developed platform can be a valuable tool in complementing experimental practice.
Collapse
Affiliation(s)
- Y Wang
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - Y Palzhanov
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - A Quaini
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - M Olshanskii
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - S Majd
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| |
Collapse
|
505
|
Guidara W, Messedi M, Naifar M, Maalej M, Khrouf W, Grayaa S, Maalej M, Bonnefont-Rousselot D, Lamari F, Ayadi F. Plasma oxysterols in drug-free patients with schizophrenia. J Steroid Biochem Mol Biol 2022; 221:106123. [PMID: 35550868 DOI: 10.1016/j.jsbmb.2022.106123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/15/2022]
Abstract
Evidence from clinical, genetic, and medical studies has shown the neuronal developmental disorder aspect of schizophrenia (SZ). Whereas oxysterols are vital factors in neurodevelopment, it is still unknown whether they are involved in the pathophysiology of SZ. The current study aims to explore the profile of oxysterols in plasma, ratio to total cholesterol (Tchol) and the association with clinical factors in patients with SZ. Forty men diagnosed with SZ and forty healthy controls matched for age and sex were included in the study. The ratios of cholestane-3β,5α,6β-triol, 27-hydroxycholesterol (27-OHC) and Cholestanol to Tchol increased in the schizophrenic group compared to controls. However, levels of 24S-hydroxycholesterol (24-OHC) were not significantly different between patients and controls. For the SZ patients, the plasma 24-OHC levels were positively correlated with the positive and negative syndrome total scores (PANSS) but negatively correlated with the Montreal Cognitive Assessment scores (MOCA). Moreover, the ratio Cholestanol to Tchol was negatively correlated with MOCA scores and positively correlated with PANSS general. The binary logistic regression analysis revealed that the ratio Cholestane-3β,5α,6β-triol/TChol could be considered as an independent risk factor for SZ. On the other hand, the receiver's operating characteristics analysis corresponding to potential biomarkers on SZ showed Areas Under the Curve (AUCs) of 82.1%; 69.7% and 77.6% for the ratio of Cholestane-3β,5α,6β-triol/TChol, 27-OHC/TChol and Cholestanol/TChol respectively. The relevance of Cholestane-3β,5α,6β-triol, 27-OHC and Cholestanol assays as biomarkers of this disease deserves further investigation.
Collapse
Affiliation(s)
- Wassim Guidara
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia.
| | - Meriam Messedi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia
| | - Manel Naifar
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia; Biochemistry Laboratory, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Manel Maalej
- Psychiatry C-department, Hédi Chaker Hospital, Sfax, Tunisia
| | - Walid Khrouf
- Service de Biochimie Métabolique, AP-HP.Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, DMU BioGeM, F-75013 Paris, France
| | - Sahar Grayaa
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia
| | - Mohamed Maalej
- Psychiatry C-department, Hédi Chaker Hospital, Sfax, Tunisia
| | - Dominique Bonnefont-Rousselot
- Service de Biochimie Métabolique, AP-HP.Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, DMU BioGeM, F-75013 Paris, France; Université de Paris, CNRS, Inserm, UTCBS, F-75006 Paris, France
| | - Foudil Lamari
- Service de Biochimie Métabolique, AP-HP.Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, DMU BioGeM, F-75013 Paris, France
| | - Fatma Ayadi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia; Biochemistry Laboratory, Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
506
|
Sharma VK, Mamontov E. Multiscale lipid membrane dynamics as revealed by neutron spectroscopy. Prog Lipid Res 2022; 87:101179. [PMID: 35780913 DOI: 10.1016/j.plipres.2022.101179] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022]
Abstract
The plasma membrane is one of the principal structural components of the cell and, therefore, one of the key components of the cellular life. Because the membrane's dynamics links the membrane's structure and function, the complexity and the broad range of the membrane's motions are essential for the enormously diverse functionality of the cell membrane. Even for the main membrane component, the lipid bilayer, considered alone, the range and complexity of the lipid motions are remarkable. Spanning the time scale from sub-picosecond to minutes and hours, the lipid motion in a bilayer is challenging to study even when a broad array of dynamic measurement techniques is employed. Neutron scattering plays a special role among such dynamic measurement techniques, particularly, because it involves the energy transfers commensurate with the typical intra- and inter- molecular dynamics and the momentum transfers commensurate with intra- and inter-molecular distances. Thus, using neutron scattering-based techniques, the spatial and temporal information on the lipid motion can be obtained and analysed simultaneously. Protium vs. deuterium sensitivity and non-destructive character of the neutron probe add to the remarkable prowess of neutron scattering for elucidating the lipid dynamics. Herein we present an overview of the neutron scattering-based studies of lipid dynamics in model membranes, with a discussion of the direct relevance and implications to the real-life cell membranes. The latter are much more complex systems than simple model membranes, consisting of heterogeneous non-stationary domains composed of lipids, proteins, and other small molecules, such as carbohydrates. Yet many fundamental aspects of the membrane behavior and membrane interactions with other molecules can be understood from neutron scattering measurements of the model membranes. For example, such studies can provide a great deal of information on the interactions of antimicrobial compounds with the lipid matrix of a pathogen membrane, or the interactions of drug molecules with the plasma membrane. Finally, we briefly discuss the recently emerging field of neutron scattering membrane studies with a reach far beyond the model membrane systems.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - E Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
507
|
Surface Assembly of DNA Origami on a Lipid Bilayer Observed Using High-Speed Atomic Force Microscopy. Molecules 2022; 27:molecules27134224. [PMID: 35807467 PMCID: PMC9268156 DOI: 10.3390/molecules27134224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
The micrometer-scale assembly of various DNA nanostructures is one of the major challenges for further progress in DNA nanotechnology. Programmed patterns of 1D and 2D DNA origami assembly using specific DNA strands and micrometer-sized lattice assembly using cross-shaped DNA origami were performed on a lipid bilayer surface. During the diffusion of DNA origami on the membrane surface, the formation of lattices and their rearrangement in real-time were observed using high-speed atomic force microscopy (HS-AFM). The formed lattices were used to further assemble DNA origami tiles into their cavities. Various patterns of lattice–tile complexes were created by changing the interactions between the lattice and tiles. For the control of the nanostructure formation, the photo-controlled assembly and disassembly of DNA origami were performed reversibly, and dynamic assembly and disassembly were observed on a lipid bilayer surface using HS-AFM. Using a lipid bilayer for DNA origami assembly, it is possible to perform a hierarchical assembly of multiple DNA origami nanostructures, such as the integration of functional components into a frame architecture.
Collapse
|
508
|
An C, Wang X, Song F, Hu J, Li L. Insights into intercellular receptor-ligand binding kinetics in cell communication. Front Bioeng Biotechnol 2022; 10:953353. [PMID: 35837553 PMCID: PMC9273785 DOI: 10.3389/fbioe.2022.953353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 01/14/2023] Open
Abstract
Cell-cell communication is crucial for cells to sense, respond and adapt to environmental cues and stimuli. The intercellular communication process, which involves multiple length scales, is mediated by the specific binding of membrane-anchored receptors and ligands. Gaining insight into two-dimensional receptor-ligand binding kinetics is of great significance for understanding numerous physiological and pathological processes, and stimulating new strategies in drug design and discovery. To this end, extensive studies have been performed to illuminate the underlying mechanisms that control intercellular receptor-ligand binding kinetics via experiment, theoretical analysis and numerical simulation. It has been well established that the cellular microenvironment where the receptor-ligand interaction occurs plays a vital role. In this review, we focus on the advances regarding the regulatory effects of three factors including 1) protein-membrane interaction, 2) biomechanical force, and 3) bioelectric microenvironment to summarize the relevant experimental observations, underlying mechanisms, as well as their biomedical significances and applications. Meanwhile, we introduce modeling methods together with experiment technologies developed for dealing with issues at different scales. We also outline future directions to advance the field and highlight that building up systematic understandings for the coupling effects of these regulatory factors can greatly help pharmaceutical development.
Collapse
Affiliation(s)
- Chenyi An
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohuan Wang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
509
|
Enterohemorrhagic Escherichia coli and a Fresh View on Shiga Toxin-Binding Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells and Their Toxin Susceptibility. Int J Mol Sci 2022; 23:ijms23136884. [PMID: 35805890 PMCID: PMC9266556 DOI: 10.3390/ijms23136884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.
Collapse
|
510
|
Ma Z, Shi S, Ren M, Pang C, Zhan Y, An H, Sun F. Molecular Mechanism of CD44 Homodimerization Modulated by Palmitoylation and Membrane Environments. Biophys J 2022; 121:2671-2683. [PMID: 35733341 DOI: 10.1016/j.bpj.2022.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/21/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
The homodimerization of CD44 plays a key role in an intercellular-to-extracellular signal transduction and tumor progression. Acylated modification and specific membrane environments have been reported to mediate translocation and oligomerization of CD44, however, the underlying molecular mechanism remains elusive. In this study, extensive molecular dynamics simulations are performed to characterize the dimerization of palmitoylated CD44 variants in different bilayer environments. CD44 forms homodimer depending on the cysteines on the juxta-membrane domains, and the dimerization efficiency and packing configurations are defected by their palmitoylated modifications. In the phase-segregated (raft included) membrane, homodimerization of the palmitoylated CD44 is hardly observed, whereas PIP2 addition compensates to realize dimerization. However, the structure of CD44 homodimer formed in the phase-segregated bilayer turns susceptive and PIP2 addition allows for an extensive conformation of the cytoplasmic domain, a proposal prerequisite to access the cytoskeleton linker proteins. The results unravel a delicate competitive relationship between PIP2, lipid raft and palmitoylation in mediating protein homodimerization, which helps to clarify the dynamic dimer conformations and involved cellular signaling of the CD44 likewise proteins.
Collapse
Affiliation(s)
- Ziyi Ma
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Sai Shi
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China
| | - Meina Ren
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Chunli Pang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yong Zhan
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China.
| | - Fude Sun
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
511
|
Biocompatible and optically stable hydrophobic fluorescent carbon dots for isolation and imaging of lipid rafts in model membrane. Anal Bioanal Chem 2022; 414:6055-6067. [PMID: 35697813 DOI: 10.1007/s00216-022-04165-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/01/2022]
Abstract
Lateral heterogeneity in cell membranes features a variety of compositions that influence their inherent properties. One such biophysical variation is the formation of a membrane or lipid raft, which plays important roles in many cellular processes. The lipid rafts on the cell membrane are mostly identified by specific dyes and heavy metal quantum dots, which have their own drawbacks, such as cytotoxicity, photostability, and incompatibility. To this end, we synthesized special, hydrophobic, fluorescent, photostable, and non-cytotoxic carbon dots (CDs) by solvent-free thermal treatment using non-cytotoxic materials and incorporated into the lipid bilayers of giant unilamellar vesicles (GUVs) made from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) lipids. A 2:2:1 mixture of DOPC, DPPC, and cholesterol (Chol) develops lipid rafts on the membrane by phase separation. The photophysical properties of the CDs get modulated on incorporation into the lipid rafts that identifies the membrane heterogeneity. The main attempt in this work is to develop a new, simple, cost-effective, and bio-friendly lipid raft marker, which can be used in biological applications, alongside other conventional raft markers, with more advantages.
Collapse
|
512
|
Serdiuk T, Manna M, Zhang C, Mari SA, Kulig W, Pluhackova K, Kobilka BK, Vattulainen I, Müller DJ. A cholesterol analog stabilizes the human β 2-adrenergic receptor nonlinearly with temperature. Sci Signal 2022; 15:eabi7031. [PMID: 35671340 PMCID: PMC10754352 DOI: 10.1126/scisignal.abi7031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In cell membranes, G protein-coupled receptors (GPCRs) interact with cholesterol, which modulates their assembly, stability, and conformation. Previous studies have shown how cholesterol modulates the structural properties of GPCRs at ambient temperature. Here, we characterized the mechanical, kinetic, and energetic properties of the human β2-adrenergic receptor (β2AR) in the presence and absence of the cholesterol analog cholesteryl hemisuccinate (CHS) at room temperature (25°C), at physiological temperature (37°C), and at high temperature (42°C). We found that CHS stabilized various structural regions of β2AR differentially, which changed nonlinearly with temperature. Thereby, the strongest effects were observed for structural regions that are important for receptor signaling. Moreover, at 37°C, but not at 25° or 42°C, CHS caused β2AR to increase and stabilize conformational substates to adopt to basal activity. These findings indicate that the nonlinear, temperature-dependent action of CHS in modulating the structural and functional properties of this GPCR is optimized for 37°C.
Collapse
Affiliation(s)
- Tetiana Serdiuk
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Moutusi Manna
- Applied Phycology and Biotechnology Division, CSIR–Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, gujarat, india
| | - Cheng Zhang
- Department of Cellular Physiology and Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stefania A. Mari
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland
| | - Kristyna Pluhackova
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- Cluster of Excellence SimTech, Stuttgart Center for Simulation Science, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Brian K. Kobilka
- Department of Cellular Physiology and Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland
- Computational Physics Laboratory, Tampere University, P. O. Box 692, FI-33014 Tampere, Finland
| | - Daniel J. Müller
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| |
Collapse
|
513
|
Jia X, Song J, Lv W, Hill JP, Nakanishi J, Ariga K. Adaptive liquid interfaces induce neuronal differentiation of mesenchymal stem cells through lipid raft assembly. Nat Commun 2022; 13:3110. [PMID: 35661107 PMCID: PMC9166733 DOI: 10.1038/s41467-022-30622-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/06/2022] [Indexed: 01/02/2023] Open
Abstract
Stem cells and their microenvironment interact cooperatively to dictate their fates. Biomaterials are dynamically remodeled by stem cells, and stem cells sense and translate the changes into cell fate decisions. We have previously reported that adaptive biomaterials composed of fibronectin inserted into protein nanosheets at a liquid interface enhance neuronal differentiation of human mesenchymal stem cells (hMSCs). However, we could not decouple clearly the effect of ligand density from that of fibrillary structure on cellular function and fate. Here we present an adaptive biomaterial based on two-dimensional networks of protein nanofibrils at a liquid–liquid interface. Compared with flat protein nanosheets, this biomaterial enhances neuronal differentiation of hMSCs through a signaling mechanism involving focal adhesion kinase. Lipid raft microdomains in plasma membrane are found to play a central role in which hMSCs rapidly adapt to the dynamic microenvironment at the fluid interface. Our finding has substantial implications for regenerative medicine and tissue engineering. In this work the authors report how human mesenchymal stem cells rapidly adapt to dynamic microenvironment through lipid raft in membrane microdomains that direct neurogenesis.
Collapse
Affiliation(s)
- Xiaofang Jia
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jingwen Song
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Wenyan Lv
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jonathan P Hill
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jun Nakanishi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan. .,Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
514
|
Murata M, Matsumori N, Kinoshita M, London E. Molecular substructure of the liquid-ordered phase formed by sphingomyelin and cholesterol: sphingomyelin clusters forming nano-subdomains are a characteristic feature. Biophys Rev 2022; 14:655-678. [PMID: 35791389 DOI: 10.1007/s12551-022-00967-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
As a model of lipid rafts, the liquid-ordered (Lo) phase formed by sphingomyelin (SM) and cholesterol (Cho) in bilayer membranes has long attracted the attention of biophysics researchers. New approaches and methodologies have led to a better understanding of the molecular basis of the Lo domain structure. This review summarizes studies on model membrane systems consisting of SM/unsaturated phospholipid/Cho implying that the Lo phase contains SM-based nanodomains (or nano-subdomains). Some of the Lo phase properties may be attributed to these nanodomains. Several studies suggest that the nanodomains contain clustered SM molecules packed densely to form gel-phase-like subdomains of single-digit nanometer size at physiological temperatures. Cho and unsaturated lipids located in the Lo phase are likely to be concentrated at the boundaries between the subdomains. These subdomains are not readily detected in the Lo phase formed by saturated phosphatidylcholine (PC) molecules, suggesting that they are strongly stabilized by homophilic interactions specific to SM, e.g., between SM amide groups. This model for the Lo phase is supported by experiments using dihydro-SM, which is thought to have stronger homophilic interactions than SM, as well as by studies using the enantiomer of SM having opposite stereochemistry to SM at the 2 and 3 positions and by some molecular dynamics (MD) simulations of lipid bilayers containing Lo-lipids. Nanosized gel subdomains seem to play an important role in controlling membrane organization and function in biological membranes.
Collapse
Affiliation(s)
- Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan.,ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Masanao Kinoshita
- ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan.,Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215 USA
| |
Collapse
|
515
|
Ruiz-Fernández AR, Campos L, Gutierrez-Maldonado SE, Núñez G, Villanelo F, Perez-Acle T. Nanosecond Pulsed Electric Field (nsPEF): Opening the Biotechnological Pandora’s Box. Int J Mol Sci 2022; 23:ijms23116158. [PMID: 35682837 PMCID: PMC9181413 DOI: 10.3390/ijms23116158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Nanosecond Pulsed Electric Field (nsPEF) is an electrostimulation technique first developed in 1995; nsPEF requires the delivery of a series of pulses of high electric fields in the order of nanoseconds into biological tissues or cells. They primary effects in cells is the formation of membrane nanopores and the activation of ionic channels, leading to an incremental increase in cytoplasmic Ca2+ concentration, which triggers a signaling cascade producing a variety of effects: from apoptosis up to cell differentiation and proliferation. Further, nsPEF may affect organelles, making nsPEF a unique tool to manipulate and study cells. This technique is exploited in a broad spectrum of applications, such as: sterilization in the food industry, seed germination, anti-parasitic effects, wound healing, increased immune response, activation of neurons and myocites, cell proliferation, cellular phenotype manipulation, modulation of gene expression, and as a novel cancer treatment. This review thoroughly explores both nsPEF’s history and applications, with emphasis on the cellular effects from a biophysics perspective, highlighting the role of ionic channels as a mechanistic driver of the increase in cytoplasmic Ca2+ concentration.
Collapse
Affiliation(s)
- Alvaro R. Ruiz-Fernández
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
- Correspondence: (A.R.R.-F.); (T.P.-A.)
| | - Leonardo Campos
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Sebastian E. Gutierrez-Maldonado
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Gonzalo Núñez
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
| | - Felipe Villanelo
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Tomas Perez-Acle
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
- Correspondence: (A.R.R.-F.); (T.P.-A.)
| |
Collapse
|
516
|
Balbi T, Trenti F, Panevska A, Bajc G, Guella G, Ciacci C, Canonico B, Canesi L, Sepčić K. Ceramide Aminoethylphosphonate as a New Molecular Target for Pore-Forming Aegerolysin-Based Protein Complexes. Front Mol Biosci 2022; 9:902706. [PMID: 35693554 PMCID: PMC9174665 DOI: 10.3389/fmolb.2022.902706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Ostreolysin A6 (OlyA6) is a 15 kDa protein produced by the oyster mushroom (Pleurotus ostreatus). It belongs to the aegerolysin family of proteins and binds with high affinity to the insect-specific membrane sphingolipid, ceramide phosphoethanolamine (CPE). In concert with its partnering protein with the membrane-attack-complex/perforin domain, pleurotolysin B (PlyB), OlyA6 can form bicomponent 13-meric transmembrane pores in artificial and biological membranes containing the aegerolysin lipid receptor, CPE. This pore formation is the main underlying molecular mechanism of potent and selective insecticidal activity of OlyA6/PlyB complexes against two economically important coleopteran plant pests: the western corn rootworm and the Colorado potato beetle. In contrast to insects, the main sphingolipid in cell membranes of marine invertebrates (i.e., molluscs and cnidarians) is ceramide aminoethylphosphonate (CAEP), a CPE analogue built on a phosphono rather than the usual phosphate group in its polar head. Our targeted lipidomic analyses of the immune cells (hemocytes) of the marine bivalve, the mussel Mytilus galloprovincialis, confirmed the presence of 29.0 mol% CAEP followed by 36.4 mol% of phosphatidylcholine and 34.6 mol% of phosphatidylethanolamine. Further experiments showed the potent binding of OlyA6 to artificial lipid vesicles supplemented with mussel CAEP, and strong lysis of these vesicles by the OlyA6/PlyB mixture. In Mytilus haemocytes, short term exposure (max. 1 h) to the OlyA6/PlyB mixture induced lysosomal membrane destabilization, decreased phagocytic activity, increased Annexin V binding and oxyradical production, and decreased levels of reduced glutathione, indicating rapid damage of endo-lysosomal and plasma membranes and oxidative stress. Our data suggest CAEP as a novel high-affinity receptor for OlyA6 and a target for cytolytic OlyA6/PlyB complexes.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
| | - Francesco Trenti
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Bajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Graziano Guella
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
- *Correspondence: Kristina Sepčić, ; Laura Canesi,
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Kristina Sepčić, ; Laura Canesi,
| |
Collapse
|
517
|
Tortosa E, Sengupta Ghosh A, Li Q, Wong WR, Hinkle T, Sandoval W, Rose CM, Hoogenraad CC. Stress-induced vesicular assemblies of dual leucine zipper kinase are signaling hubs involved in kinase activation and neurodegeneration. EMBO J 2022; 41:e110155. [PMID: 35611591 PMCID: PMC9289706 DOI: 10.15252/embj.2021110155] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) drive key signaling cascades during neuronal survival and degeneration. The localization of kinases to specific subcellular compartments is a critical mechanism to locally control signaling activity and specificity upon stimulation. However, how MAPK signaling components tightly control their localization remains largely unknown. Here, we systematically analyzed the phosphorylation and membrane localization of all MAPKs expressed in dorsal root ganglia (DRG) neurons, under control and stress conditions. We found that MAP3K12/dual leucine zipper kinase (DLK) becomes phosphorylated and palmitoylated, and it is recruited to sphingomyelin-rich vesicles upon stress. Stress-induced DLK vesicle recruitment is essential for kinase activation; blocking DLK-membrane interaction inhibits downstream signaling, while DLK recruitment to ectopic subcellular structures is sufficient to induce kinase activation. We show that the localization of DLK to newly formed vesicles is essential for local signaling. Inhibition of membrane internalization blocks DLK activation and protects against neurodegeneration in DRG neurons. These data establish vesicular assemblies as dynamically regulated platforms for DLK signaling during neuronal stress responses.
Collapse
Affiliation(s)
- Elena Tortosa
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | | | - Qingling Li
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Weng Ruh Wong
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Trent Hinkle
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Christopher M Rose
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | | |
Collapse
|
518
|
Wu QX, Liu HQ, Wang YJ, Chen TC, Wei ZY, Chang JH, Chen TH, Seema J, Lin EC. Chemical Exchange Saturation Transfer (CEST) Signal at −1.6 ppm and Its Application for Imaging a C6 Glioma Model. Biomedicines 2022; 10:biomedicines10061220. [PMID: 35740241 PMCID: PMC9219881 DOI: 10.3390/biomedicines10061220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 02/01/2023] Open
Abstract
The chemical exchange saturation transfer (CEST) signal at −1.6 ppm is attributed to the choline methyl on phosphatidylcholines and results from the relayed nuclear Overhauser effect (rNOE), that is, rNOE(−1.6). The formation of rNOE(−1.6) involving the cholesterol hydroxyl is shown in liposome models. We aimed to confirm the correlation between cholesterol content and rNOE(−1.6) in cell cultures, tissues, and animals. C57BL/6 mice (N = 9) bearing the C6 glioma tumor were imaged in a 7 T MRI scanner, and their rNOE(−1.6) images were cross-validated through cholesterol staining with filipin. Cholesterol quantification was obtained using an 18.8-T NMR spectrometer from the lipid extracts of the brain tissues from another group of mice (N = 3). The cholesterol content in the cultured cells was manipulated using methyl-β-cyclodextrin and a complex of cholesterol and methyl-β-cyclodextrin. The rNOE(−1.6) of the cell homogenates and their cholesterol levels were measured using a 9.4-T NMR spectrometer. The rNOE(−1.6) signal is hypointense in the C6 tumors of mice, which matches the filipin staining results, suggesting that their tumor region is cholesterol deficient. The tissue extracts also indicate less cholesterol and phosphatidylcholine contents in tumors than in normal brain tissues. The amplitude of rNOE(−1.6) is positively correlated with the cholesterol concentration in the cholesterol-manipulated cell cultures. Our results indicate that the cholesterol dependence of rNOE(−1.6) occurs in cell cultures and solid tumors of C6 glioma. Furthermore, when the concentration of phosphatidylcholine is carefully considered, rNOE(−1.6) can be developed as a cholesterol-weighted imaging technique.
Collapse
Affiliation(s)
- Qi-Xuan Wu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan; (Q.-X.W.); (H.-Q.L.); (Y.-J.W.); (Z.-Y.W.); (J.-H.C.); (T.-H.C.)
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (T.-C.C.); (J.S.)
| | - Hong-Qing Liu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan; (Q.-X.W.); (H.-Q.L.); (Y.-J.W.); (Z.-Y.W.); (J.-H.C.); (T.-H.C.)
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (T.-C.C.); (J.S.)
| | - Yi-Jiun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan; (Q.-X.W.); (H.-Q.L.); (Y.-J.W.); (Z.-Y.W.); (J.-H.C.); (T.-H.C.)
| | - Tsai-Chen Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (T.-C.C.); (J.S.)
| | - Zi-Ying Wei
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan; (Q.-X.W.); (H.-Q.L.); (Y.-J.W.); (Z.-Y.W.); (J.-H.C.); (T.-H.C.)
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (T.-C.C.); (J.S.)
| | - Jung-Hsuan Chang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan; (Q.-X.W.); (H.-Q.L.); (Y.-J.W.); (Z.-Y.W.); (J.-H.C.); (T.-H.C.)
| | - Ting-Hao Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan; (Q.-X.W.); (H.-Q.L.); (Y.-J.W.); (Z.-Y.W.); (J.-H.C.); (T.-H.C.)
| | - Jaya Seema
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (T.-C.C.); (J.S.)
| | - Eugene C. Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan; (Q.-X.W.); (H.-Q.L.); (Y.-J.W.); (Z.-Y.W.); (J.-H.C.); (T.-H.C.)
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 62102, Taiwan
- Correspondence: ; Tel.: +886-5-272-0411 (ext. 66418); Fax: +886-5-272-1040
| |
Collapse
|
519
|
Freile JÁ, Ustyanovska Avtenyuk N, Corrales MG, Lourens HJ, Huls G, van Meerten T, Cendrowicz E, Bremer E. CD24 Is a Potential Immunotherapeutic Target for Mantle Cell Lymphoma. Biomedicines 2022; 10:1175. [PMID: 35625912 PMCID: PMC9138264 DOI: 10.3390/biomedicines10051175] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 01/05/2023] Open
Abstract
CD24 and its ligand Siglec-10 were described as an innate immune checkpoint in carcinoma. Here, we investigated this axis in B-cell lymphoma by assessing CD24 expression and evaluating pro-phagocytic effects of CD24 antibody treatment in comparison to hallmark immune checkpoint CD47. In mantle cell lymphoma (MCL) and follicular lymphoma patients, high mRNA expression of CD24 correlated with poor overall survival, whereas CD47 expression did not. Conversely, CD24 expression did not correlate with survival in diffuse large B-cell lymphoma (DLBCL), whereas CD47 did. CD24 was also highly expressed on MCL cell lines, where treatment with CD24 antibody clones SN3 or ML5 potently induced phagocytosis, with SN3 yielding >90% removal of MCL cells and triggering phagocytosis of primary patient-derived MCL cells by autologous macrophages. Treatment with CD24 mAb was superior to CD47 mAb in MCL and was comparable in magnitude to the effect observed in carcinoma lines. Reversely, CD24 mAb treatment was less effective than CD47 mAb treatment in DLBCL. Finally, phagocytic activity of clone SN3 appeared at least partly independent of antibody-dependent cellular phagocytosis (ADCP), suggesting CD24/Siglec-10 checkpoint activity, whereas clone ML5 solely induced ADCP. In conclusion, CD24 is an immunotherapeutic target of potential clinical relevance for MCL, but not DLBCL.
Collapse
Affiliation(s)
- Jimena Álvarez Freile
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Natasha Ustyanovska Avtenyuk
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Macarena González Corrales
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Harm Jan Lourens
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Gerwin Huls
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Tom van Meerten
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Ewa Cendrowicz
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Edwin Bremer
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| |
Collapse
|
520
|
Clinical Imaging and Dosimetry of a Pan-Cancer Targeting Alkylphosphocholine Analog, [124I]I-NM404. RADIATION 2022. [DOI: 10.3390/radiation2020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to assess organ dosimetry and clinical use of [124I]I-NM404, a radiotheranostic alkylphosphocholine (APC) analog, for accurate detection and characterization of a wide variety of solid primary and metastatic malignancies anywhere in the body. Methods: Patterns of [124I]I-NM404 uptake were quantitatively analyzed and qualitatively compared with [18F]FDG PET/CT in 14 patients (median age, 61.5 years; 7 males, 7 females) with refractory metastatic cancer who were enrolled in one of two Phase I imaging studies. Primary cancer types included bronchogenic (n = 7), colorectal (n = 1), prostate (n = 1), triple-negative breast (n = 1), head and neck (n = 2), pancreatic (n = 1) carcinoma, and melanoma (n = 1). Patients were administered [124I]I-NM404 and imaged via PET/CT at 1–2, 4–6, 24, and 48 h and at 5–10 days post injection, from top of the skull to mid-thigh. Volumes of interest were drawn over lungs, heart, liver, kidneys, and whole body for dosimetry estimation using OLINDA 1.1 Representative metastatic index lesions were chosen when applicable for each case with active sites of disease to calculate maximum and mean tumor-to-background ratios (TBRmax, TBRmean), using the adjacent normal organ parenchyma as background when possible. Results: Administrations of [124I]-NM404 were safe and well-tolerated. The organs with the highest estimated absorbed dose (mean ± SD) were the lungs (1.74 ± 0.39 mSv/MBq), heart wall (1.52 ± 0.29 mSv/MBq), liver (1.28 ± 0.21 mSv/MBq) and kidneys (1.09 ± 0.20 mSv/MBq). The effective dose was 0.77 ± 0.05 mSv/MBq. Preferential uptake within metastatic foci was observed with all cancer subtypes, TBRmax ranged from 1.95 to 15.36 and TBRmean ranged from 1.63 to 6.63. Robust sensitive imaging of lesions was enhanced by delayed timing (2–6 days after single injection of [124I]I-NM404, respectively) due to persistent tumor retention coupled with progressive washout of background activity. NM404 uptake was evident in pulmonary, nodal, skeletal, CNS, and other metastatic sites of disease. Radiation related injury or necrosis were NM404 negative, whereas certain small number of metastatic brain lesions were false negative for NM404. Conclusions: In addition to being well tolerated, selective tumor uptake of NM404 with prolonged retention was demonstrated within a broad spectrum of highly treated metastatic cancers.
Collapse
|
521
|
Vanhove K, Derveaux E, Mesotten L, Thomeer M, Criel M, Mariën H, Adriaensens P. Unraveling the Rewired Metabolism in Lung Cancer Using Quantitative NMR Metabolomics. Int J Mol Sci 2022; 23:ijms23105602. [PMID: 35628415 PMCID: PMC9146819 DOI: 10.3390/ijms23105602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer cells are well documented to rewire their metabolism and energy production networks to enable proliferation and survival in a nutrient-poor and hypoxic environment. Although metabolite profiling of blood plasma and tissue is still emerging in omics approaches, several techniques have shown potential in cancer diagnosis. In this paper, the authors describe the alterations in the metabolic phenotype of lung cancer patients. In addition, we focus on the metabolic cooperation between tumor cells and healthy tissue. Furthermore, the authors discuss how metabolomics could improve the management of lung cancer patients.
Collapse
Affiliation(s)
- Karolien Vanhove
- Applied and Analytical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan 1-Building D, B-3590 Diepenbeek, Belgium;
- Department of Respiratory Medicine, AZ Vesalius, Hazelereik 51, B-3700 Tongeren, Belgium
- Correspondence:
| | - Elien Derveaux
- Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (E.D.); (H.M.)
| | - Liesbet Mesotten
- Department of Nuclear Medicine, Ziekenhuis Oost-Limburg, Schiepse Bos 6, B-3600 Genk, Belgium;
| | - Michiel Thomeer
- Department of Respiratory Medicine, Ziekenhuis Oost-Limburg, Schiepse Bos 6, B-3600 Genk, Belgium; (M.T.); (M.C.)
| | - Maarten Criel
- Department of Respiratory Medicine, Ziekenhuis Oost-Limburg, Schiepse Bos 6, B-3600 Genk, Belgium; (M.T.); (M.C.)
| | - Hanne Mariën
- Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (E.D.); (H.M.)
| | - Peter Adriaensens
- Applied and Analytical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan 1-Building D, B-3590 Diepenbeek, Belgium;
| |
Collapse
|
522
|
Schoenmakers SMC, Spiering AJH, Herziger S, Böttcher C, Haag R, Palmans ARA, Meijer EW. Structure and Dynamics of Supramolecular Polymers: Wait and See. ACS Macro Lett 2022; 11:711-715. [PMID: 35570802 PMCID: PMC9118549 DOI: 10.1021/acsmacrolett.2c00223] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The introduction of stereogenic centers in supramolecular building blocks is used to unveil subtle changes in supramolecular structure and dynamics over time. Three stereogenic centers based on deuterium atoms were introduced in the side chains of a benzene-1,3,5-tricarboxamide (BTA) resulting in a supramolecular polymer in water that at first glance has a structure and dynamics identical to its achiral counterpart. Using three different techniques, the properties of the double helical polymers are compared after 1 day and 4 weeks. An increase in helical preference is observed over time as well as a decrease in the helical pitch and monomer exchange dynamics. It is proposed that the polymer of the chiral monomer needs time to arrive at its maximal preference in helical bias. These results indicate that the order and tight packing increase over time, while the dynamics of this supramolecular polymer decrease over time, an effect that is typically overlooked but unveiled by the isotopic chirality.
Collapse
Affiliation(s)
- Sandra M. C. Schoenmakers
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - A. J. H. Spiering
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Svenja Herziger
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christoph Böttcher
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Anja R. A. Palmans
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
523
|
Mari SA, Pluhackova K, Pipercevic J, Leipner M, Hiller S, Engel A, Müller DJ. Gasdermin-A3 pore formation propagates along variable pathways. Nat Commun 2022; 13:2609. [PMID: 35545613 PMCID: PMC9095878 DOI: 10.1038/s41467-022-30232-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 04/22/2022] [Indexed: 12/31/2022] Open
Abstract
Gasdermins are main effectors of pyroptosis, an inflammatory form of cell death. Released by proteolysis, the N-terminal gasdermin domain assembles large oligomers to punch lytic pores into the cell membrane. While the endpoint of this reaction, the fully formed pore, has been well characterized, the assembly and pore-forming mechanisms remain largely unknown. To resolve these mechanisms, we characterize mouse gasdermin-A3 by high-resolution time-lapse atomic force microscopy. We find that gasdermin-A3 oligomers assemble on the membrane surface where they remain attached and mobile. Once inserted into the membrane gasdermin-A3 grows variable oligomeric stoichiometries and shapes, each able to open transmembrane pores. Molecular dynamics simulations resolve how the membrane-inserted amphiphilic β-hairpins and the structurally adapting hydrophilic head domains stabilize variable oligomeric conformations and open the pore. The results show that without a vertical collapse gasdermin pore formation propagates along a set of multiple parallel but connected reaction pathways to ensure a robust cellular response.
Collapse
Affiliation(s)
- Stefania A Mari
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland
| | - Kristyna Pluhackova
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland.
| | | | - Matthew Leipner
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland
| | | | - Andreas Engel
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland.
| |
Collapse
|
524
|
Duan Y, Zeng S, Lu Z, Dan X, Mo Z, Xing Y, Zhang J, Li Y. Responses of lipid metabolism and lipidomics in the hepatopancreas of Pacific white shrimp Litopenaeus vannamei to microcystin-LR exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153245. [PMID: 35065121 DOI: 10.1016/j.scitotenv.2022.153245] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/25/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Microcystin-LR (MC-LR) is a toxic substance that threatens the health of aquatic animals. Hepatopancreas is the target organ of MC-LR toxicity. In this study, we investigated the effects of MC-LR on hepatopancreas lipid metabolism and lipidomic responses in Litopenaeus vannamei. After MC-LR exposure for 72 h, the hepatopancreas showed obvious tissue damage, and the activities of several lipase isoenzymes were decreased. Furthermore, the relative gene expression levels of lipolysis (CPT1, AMPKα), lipogenesis (SREBP, FAS, ACC, 6PGD), and long-chain fatty acid β-oxidation (ACDL, ACDVL, ACBP) were increased. MC-LR exposure also affected lipidomics homeostasis. Specifically, the levels of glycerophospholipids (phosphatidylcholine, phosphatidic acid, lyso-phosphatidylcholine, lyso-phosphatidylethanolamine, lyso-phosphatidylglycerol), sphingolipids (sphingomyelin and ceramides) and cholesteryl ester were increased, and those of phosphatidylinositol and triglyceride were decreased. The significantly altered lipid molecules were mainly associated with the pathways of lipid and fatty acid metabolism and autophagy. These results reveal that MC-LR exposure influences lipid metabolism and lipidomic homeostasis in the shrimp hepatopancreas.
Collapse
Affiliation(s)
- Yafei Duan
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Shimin Zeng
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China
| | - Zijun Lu
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China
| | - Xueming Dan
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China
| | - Zequan Mo
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China
| | - Yifu Xing
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| | - Yanwei Li
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China.
| |
Collapse
|
525
|
Xiao Y, Zou H, Li J, Song T, Lv W, Wang W, Wang Z, Tao S. Impact of quorum sensing signaling molecules in gram-negative bacteria on host cells: current understanding and future perspectives. Gut Microbes 2022; 14:2039048. [PMID: 35188058 PMCID: PMC8865250 DOI: 10.1080/19490976.2022.2039048] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Quorum sensing is a molecular signaling-based communication mechanism in prokaryotes. In the basic mode, signaling molecules released by certain bacteria are sensed by intracellular receptors or membrane-bound receptors of other members in the community, leading to the collective isogenic signaling molecule synthesis and synchronized activities. This regulation is important for the symbiosis of the bacterium with the host, as well as virulence and biofilm formation. Notably, quorum sensing signaling molecules are not only able to control microbial community behavior but can likewise regulate the physiological status of host cells. Here, we provide a comprehensive review of the importance of quorum sensing signaling molecules in gram-negative bacteria in regulating host cell function and gut health, and suggest possible opportunities for application in combating human and animal diseases by blocking the pathways through which quorum sensing signaling molecules exert their functions.
Collapse
Affiliation(s)
- Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huicong Zou
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tongxing Song
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wentao Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China,CONTACT Shiyu TaoCollege of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070China
| |
Collapse
|
526
|
Li X, Zhou S, Lin X. Molecular View on the Impact of DHA Molecules on the Physical Properties of a Model Cell Membrane. J Chem Inf Model 2022; 62:2421-2431. [PMID: 35513897 DOI: 10.1021/acs.jcim.2c00074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Docosahexaenoic acid (DHA) is a ω-3 polyunsaturated fatty acid, which can be uptaken by cells and is essential for proper neuronal and retinal function. However, the detailed physical impact of DHA molecules on the plasma membrane is still unclear. Hence, in this work, we carried out μs-scale coarse-grained molecular dynamics (MD) simulations to reveal the interactions between DHA molecules and a model cell membrane. As is known, the cell membrane can segregate into liquid-ordered (Lo) and liquid-disordered (Ld) membrane domains due to the differential interactions between lipids and proteins. In order to capture this feature, we adopted the three-component phase-separated lipid membranes and considered both anionic and neutral DHA molecules in the current work. Our results showed that DHA molecules can spontaneously self-assemble into nanoclusters, fuse with lipid membranes, and localize preferably in Ld membrane domains. During the membrane fusion process, DHA molecules can change the intrinsic transmembrane potential of the lipid membrane, and the effects of anionic DHA molecules are much more significant. Besides, the presence of DHA molecules mainly in the Ld membrane domains could regulate the differences in the lipid chain order, membrane thickness, cholesterol preference, and cholesterol flip-flop basically in a concentration-dependent manner, which further promote the stability of the intraleaflet dynamics and inhibit the interleaflet dynamics (or promote membrane domain registration) of the membrane domains. In short, the impact of DHA molecules on the physical properties of a model cell membrane on the molecular level revealed in our work will provide useful insights for understanding the biological functions of DHA molecules.
Collapse
Affiliation(s)
- Xiu Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shiying Zhou
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
527
|
Benedetto A, Kelley EG. Absorption of the [bmim][Cl] Ionic Liquid in DMPC Lipid Bilayers across Their Gel, Ripple, and Fluid Phases. J Phys Chem B 2022; 126:3309-3318. [PMID: 35472281 PMCID: PMC9082605 DOI: 10.1021/acs.jpcb.2c00710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/11/2022] [Indexed: 12/19/2022]
Abstract
Lipid bilayers are a key component of cell membranes and play a crucial role in life and in bio-nanotechnology. As a result, controlling their physicochemical properties holds the promise of effective therapeutic strategies. Ionic liquids (ILs)─a vast class of complex organic electrolytes─have shown a high degree of affinity with lipid bilayers and can be exploited in this context. However, the chemical physics of IL absorption and partitioning into lipid bilayers is yet to be fully understood. This work focuses on the absorption of the model IL [bmim][Cl] into 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers across their gel, ripple, and fluid phases. Here, by small-angle neutron scattering, we show that (i) the IL cations are absorbed in the lipid bilayer in all its thermodynamic phases and (ii) the amount of IL inserted into the lipid phase increased with increasing temperature, changing from three to four IL cations per 10 lipids with increasing temperature from 10 °C in the gel phase to 40 °C in the liquid phase, respectively. An explicative hypothesis, based on the entropy gain coming from the IL hydration water, is presented to explain the observed temperature trend. The ability to control IL absorption with temperature can be used as a handle to tune the effect of ILs on biomembranes and can be exploited in bio-nanotechnological applications.
Collapse
Affiliation(s)
- Antonio Benedetto
- Department
of Science, University of Roma Tre, 00146 Rome, Italy
- School
of Physics, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
- Laboratory
for Neutron Scattering, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Elizabeth G. Kelley
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
528
|
Liu Z, Xie X, Huang Z, Lin F, Liu S, Chen Z, Qin S, Fan X, Chen PR. Spatially resolved cell tagging and surfaceome labeling via targeted photocatalytic decaging. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
529
|
Liu J, Yang J. Mitochondria-associated membranes: A hub for neurodegenerative diseases. Biomed Pharmacother 2022; 149:112890. [PMID: 35367757 DOI: 10.1016/j.biopha.2022.112890] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/02/2022] Open
Abstract
In eukaryotic cells, organelles could coordinate complex mechanisms of signaling transduction metabolism and gene expression through their functional interactions. The functional domain between ER and mitochondria, called mitochondria-associated membranes (MAM), is closely associated with various physiological functions including intracellular lipid transport, Ca2+ transfer, mitochondria function maintenance, and autophagosome formation. In addition, more evidence suggests that MAM modulate cellular functions in health and disease. Studies have also demonstrated the association of MAM with numerous diseases, including neurodegenerative diseases, cancer, viral infection, obesity, and diabetes. In fact, recent evidence revealed a close relationship of MAM with Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and other neurodegenerative diseases. In this view, elucidating the role of MAM in neurodegenerative diseases is particularly important. This review will focus the main tethering protein complexes of MAM and functions of MAM. Besides, the role of MAM in the regulation of neurodegenerative diseases and the potential molecular mechanisms is introduced to provide a new understanding of the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Jinxuan Liu
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe road, Shenyang North New Area, Shenyang, 110122, People's Republic of China.
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe road, Shenyang North New Area, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
530
|
Tang CH, Shi SH, Lin CY, Wang WH. Lipid profiling differentiates the effect of ambient microenriched copper on a coral as an advanced tool for biomonitoring. MARINE POLLUTION BULLETIN 2022; 178:113650. [PMID: 35447438 DOI: 10.1016/j.marpolbul.2022.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Copper can be beneficial or harmful to coral at environmentally relevant levels, making environmental monitoring a challenging. Membrane lipids make the cell a dynamic environment according to the circumstances; thus, the lipid profile should be indicative of an environmental/physiological state. To gain more insight into the copper effect on coral health and be a basis of biomonitoring, glycerophosphocholine profiling of coral exposed to microenriched copper levels was conducted in this study. The copper microenrichments resulted in a diacritical effect of decreasing carbonic anhydrase activity, following a supplementation effect, on coral lipid metabolism. Microdifferences in copper levels are critical to determine the coral metabolic state and were therefore included in this study. In addition, an excellent quantitative model correlating the coral lipid variation with the exposed copper levels or the induced physiological effect was obtained to demonstrate its performance for biomonitoring.
Collapse
Affiliation(s)
- Chuan-Ho Tang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Shu-Han Shi
- Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Ching-Yu Lin
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taiwan
| | - Wei-Hsien Wang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
531
|
Khadka NK, Mortimer MF, Marosvari M, Timsina R, Mainali L. Membrane elasticity modulated by cholesterol in model of porcine eye lens-lipid membrane. Exp Eye Res 2022; 220:109131. [PMID: 35636489 PMCID: PMC10131281 DOI: 10.1016/j.exer.2022.109131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/08/2022] [Accepted: 05/22/2022] [Indexed: 11/29/2022]
Abstract
Experimental evidence shows that the eye lens loses its elasticity dramatically with age. It has also been reported that the cholesterol (Chol) content in the eye lens fiber cell plasma membrane increases significantly with age. High Chol content leads to the formation of cholesterol bilayer domains (CBDs) in the lens membrane. The role of high Chol associated with lens elasticity is unclear. The purpose of this research is to investigate the membrane elasticity of the model of porcine lens-lipid (MPLL) membrane with increasing Chol content to elucidate the role of high Chol in lens membrane elasticity. In this study, we used atomic force microscopy (AFM) to study the mechanical properties (breakthrough force and area compressibility modulus (KA)) of the MPLL membrane with increasing Chol content where KA is the measure of membrane elasticity. We varied Chol concentration in Chol/MPLL membrane from 0 to ∼71 mol%. Supported Chol/MPLL membranes were prepared by fusion of small unilamellar vesicles (SUVs) on top of a flat mica surface. SUVs of the Chol/MPLL lipid mixture were prepared with the rapid solvent exchange method followed by probe-tip sonication. For the Chol/MPLL mixing ratio of 0, AFM image showed the formation of two distinct phases of the membrane, i.e., liquid-disordered phase (ld) and solid-ordered phase (so) membrane. However, with Chol/MPLL mixing ratio of 0.5 and above, only liquid-ordered phase (lo) membrane was formed. Also, two distinct breakthrough forces corresponding to ld and so were observed for Chol/MPLL mixing ratio of 0, whereas only one breakthrough force was observed for membranes with Chol/MPLL mixing ratio of 0.5 and above. No significant difference in the membrane surface roughness was measured with increasing Chol content for these membranes; however, breakthrough force and KA for lo membrane increased when Chol/MPLL mixing ratio was increased from 0.5 to 1. Interestingly above the Chol/MPLL mixing ratio of 1, both breakthrough force and KA decreased, indicating the formation of CBDs. Furthermore, these results showed that membrane elasticity increases at high Chol content, suggesting that high Chol content in lens membrane might be responsible for maintaining lens membrane elasticity.
Collapse
Affiliation(s)
- Nawal K Khadka
- Department of Physics, Boise State University, Boise, ID, USA
| | | | - Mason Marosvari
- Department of Physics, Boise State University, Boise, ID, USA
| | - Raju Timsina
- Department of Physics, Boise State University, Boise, ID, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA.
| |
Collapse
|
532
|
Fullerenes’ Interactions with Plasma Membranes: Insight from the MD Simulations. Biomolecules 2022; 12:biom12050639. [PMID: 35625567 PMCID: PMC9138838 DOI: 10.3390/biom12050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Understanding the interactions between carbon nanoparticles (CNPs) and biological membranes is critically important for applications of CNPs in biomedicine and toxicology. Due to the complexity and diversity of the systems, most molecular simulation studies have focused on the interactions of CNPs and single component bilayers. In this work, we performed coarse-grained molecular dynamic (CGMD) simulations to investigate the behaviors of fullerenes in the presence of multiple lipid components in the plasma membranes with varying fullerene concentrations. Our results reveal that fullerenes can spontaneously penetrate the plasma membrane. Interestingly, fullerenes prefer to locate themselves in the region of the highly unsaturated lipids that are enriched in the inner leaflet of the plasma membrane. This causes fullerene aggregation even at low concentrations. When increasing fullerene concentrations, the fullerene clusters grow, and budding may emerge at the inner leaflet of the plasma membrane. Our findings suggest by tuning the lipid composition, fullerenes can be loaded deeply inside the plasma membrane, which can be useful for designing drug carrier liposomes. Moreover, the mechanisms of how fullerenes perturb multicomponent cell membranes and how they directly enter the cell are proposed. These insights can help to determine fullerene toxicity in living cells.
Collapse
|
533
|
Thomas FB, Omnus DJ, Bader JM, Chung GH, Kono N, Stefan CJ. Tricalbin proteins regulate plasma membrane phospholipid homeostasis. Life Sci Alliance 2022; 5:5/8/e202201430. [PMID: 35440494 PMCID: PMC9018018 DOI: 10.26508/lsa.202201430] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
The evolutionarily conserved extended synaptotagmin (E-Syt) proteins are calcium-activated lipid transfer proteins that function at contacts between the ER and plasma membrane (ER-PM contacts). However, roles of the E-Syt family members in PM lipid organisation remain incomplete. Among the E-Syt family, the yeast tricalbin (Tcb) proteins are essential for PM integrity upon heat stress, but it is not known how they contribute to PM maintenance. Using quantitative lipidomics and microscopy, we find that the Tcb proteins regulate phosphatidylserine homeostasis at the PM. Moreover, upon heat-induced membrane stress, Tcb3 co-localises with the PM protein Sfk1 that is implicated in PM phospholipid asymmetry and integrity. The Tcb proteins also control the PM targeting of the known phosphatidylserine effector Pkc1 upon heat-induced stress. Phosphatidylserine has evolutionarily conserved roles in PM organisation, integrity, and repair. We propose that phospholipid regulation is an ancient essential function of E-Syt family members required for PM integrity.
Collapse
Affiliation(s)
- Ffion B Thomas
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Deike J Omnus
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Jakob M Bader
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Gary Hc Chung
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Christopher J Stefan
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
534
|
Capability of Polyunsaturated Phosphatidylcholine for Non-raft Domain Formation in Cholesterol-containing Lipid Bilayers. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2022. [DOI: 10.1380/ejssnt.2022-015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
535
|
Ureña J, Knight A, Lee IH. Membrane Cargo Density-Dependent Interaction between Protein and Lipid Domains on the Giant Unilamellar Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4702-4712. [PMID: 35385290 DOI: 10.1021/acs.langmuir.2c00247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein cargos anchored on the lipid membrane can be segregated by fluidic domain phase separation. Lipid membranes at certain compositions may separate into lipid domains to segregate cargos, and protein cargos themselves may be involved in protein condensate domain formation with multivalent binding proteins to segregate cargos. Recent studies suggest that these two driving forces of phase separation closely interact on the lipid membranes to promote codomain formation. In this report, we studied the effect of cargo density on the outcome of the cargo phase separation on giant unilamellar vesicles. Proteins and lipids are connected only by the anchored cargos, so it was originally hypothesized that higher cargo density would increase the degree of interaction between the lipid and protein domains, promoting more phase separation. However, fluorescence image analysis on different cargo densities showed that the cooperative domain formation and steric pressure are at a tug of war opposing each other. Cooperative domain formation is dominant under lower anchor density conditions, and above a threshold density, steric pressure was dominant opposing the domain formation. The result suggests that the cargo density is a key parameter affecting the outcome of cargo organization on the lipid membranes by phase separation.
Collapse
Affiliation(s)
- Juan Ureña
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Ashlynn Knight
- Department of Biology, Montclair State University, Montclair, New Jersey 07043, United States
| | - Il-Hyung Lee
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| |
Collapse
|
536
|
Hinkle JT, Patel J, Panicker N, Karuppagounder SS, Biswas D, Belingon B, Chen R, Brahmachari S, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM. STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy. Proc Natl Acad Sci U S A 2022; 119:e2118819119. [PMID: 35394877 PMCID: PMC9169780 DOI: 10.1073/pnas.2118819119] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/06/2022] [Indexed: 12/18/2022] Open
Abstract
In idiopathic Parkinson’s disease (PD), pathologic αSyn aggregates drive oxidative and nitrative stress that may cause genomic and mitochondrial DNA damage. These events are associated with activation of the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) immune pathway, but it is not known whether STING is activated in or contributes to α-synucleinopathies. Herein, we used primary cell cultures and the intrastriatal αSyn preformed fibril (αSyn-PFF) mouse model of PD to demonstrate that αSyn pathology causes STING-dependent neuroinflammation and dopaminergic neurodegeneration. In microglia-astrocyte cultures, αSyn-PFFs induced DNA double-strand break (DSB) damage response signaling (γH2A.X), as well as TBK1 activation that was blocked by STING inhibition. In the αSyn-PFF mouse model, we similarly observed TBK1 activation and increased γH2A.X within striatal microglia prior to the onset of dopaminergic neurodegeneration. Using STING-deficient (Stinggt) mice, we demonstrated that striatal interferon activation in the α-Syn PFF model is STING-dependent. Furthermore, Stinggt mice were protected from α-Syn PFF-induced motor deficits, pathologic αSyn accumulation, and dopaminergic neuron loss. We also observed upregulation of STING protein in the substantia nigra pars compacta (SNpc) of human PD patients that correlated significantly with pathologic αSyn accumulation. STING was similarly upregulated in microglia cultures treated with αSyn-PFFs, which primed the pathway to mount stronger interferon responses when exposed to a STING agonist. Our results suggest that microglial STING activation contributes to both the neuroinflammation and neurodegeneration arising from α-synucleinopathies, including PD.
Collapse
Affiliation(s)
- Jared T. Hinkle
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jaimin Patel
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Nikhil Panicker
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Senthilkumar S. Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Devanik Biswas
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Bonn Belingon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Juan C. Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Valina L. Dawson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ted M. Dawson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
537
|
Parshenkov A, Hennet T. Glycosylation-Dependent Induction of Programmed Cell Death in Murine Adenocarcinoma Cells. Front Immunol 2022; 13:797759. [PMID: 35222379 PMCID: PMC8866831 DOI: 10.3389/fimmu.2022.797759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
Altered surface glycosylation is a major hallmark of tumor cells associated with aggressive phenotype and poor prognosis. By recognizing specific carbohydrate motifs, lectins can be applied to distinguish tumor from healthy cells based on the expression of glycosylation-dependent markers. Through their ability to bind to specific carbohydrates, lectins induce cell agglutination and cross-link surface glycoproteins, thereby mediating mitogenic and death-inducing effects in various cell types. The carbohydrate-selective cytotoxic effect of lectins also enables their possible application in therapies targeting cancer cells. To clarify the intracellular pathways mediating cell death induced by a group of plant and fungal lectins, we investigated mouse adenocarcinoma MC-38 cells harboring inactive genes involved in apoptosis, necroptosis and pyroptosis. Treatment of MC-38 cells with wheat germ agglutinin, Maackia amurensis lectin I, and Aleuria aurantia lectin induced multiple cell death pathways through reactions that relied on the autophagy machinery without depending on caspase activation. Furthermore, inhibition of de novo protein synthesis by cycloheximide strongly decreased the cytotoxic response, indicating that the lectins investigated induced cell death via effector molecules that are not expressed under normal circumstances and supporting the non-apoptotic nature of cell death. The broad cytotoxic response to lectins can be beneficial for the development of combination therapies targeting tumor cells. Given that tumors acquire resistance to various cytotoxic treatments because of mutations in cell death pathways, compounds inducing broad cytotoxic responses, such as lectins, represent potent sensitizers to promote tumor cell killing.
Collapse
Affiliation(s)
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
538
|
Wei W, Li D, Jiang C, Zhang X, Zhang X, Jin Q, Zhang X, Wang X. Phospholipid composition and fat globule structure II: Comparison of mammalian milk from five different species. Food Chem 2022; 388:132939. [PMID: 35447582 DOI: 10.1016/j.foodchem.2022.132939] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/04/2022]
Abstract
We compared phospholipids (PLs) content, their molecular species, and milk fat globules size and microstructure in the milk of five mammalian species, including human, cow, goat, yak, and donkey. The absolute quantification of major PLs was determined using 31P NMR and their fatty acid composition with GC. The molecular species of PLs were analysed using LC-MS where a total of 9 PL species, including one sphingomyelin (SM), six glycerophospholipid (GPL), and two lysoglycerophospholipids (lyso-GPLs), were identified. PLs profile shows an obvious difference among the species, with human milk showing higher SM content and more unsaturated fatty acyls than other mammalian milk. The mammalian milk show a similar core-membrane lipid structure but obvious different size distribution. These data provide a basis for better construction of infant formulas to provide PLs requirements and a similar milk fat globule structure for infants.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chenyu Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xinghe Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xue Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xi Zhang
- Collage of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
539
|
Valtierrez-Gaytan C, Barakat JM, Kohler M, Kieu K, Stottrup BL, Zasadzinski JA. Spontaneous evolution of equilibrium morphology in phospholipid-cholesterol monolayers. SCIENCE ADVANCES 2022; 8:eabl9152. [PMID: 35385307 PMCID: PMC8986108 DOI: 10.1126/sciadv.abl9152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Competition between intradomain electrostatic repulsions and interdomain line tension leads to domain shape transitions in phase-separating lipid monolayers. The question remains if these morphologies are energy minima or are kinetically trapped metastable states. We show the reversible evolution of uniform width stripe domains from polydisperse semicircular domains in monolayers of dipalmitoylphosphatidylcholine (DPPC), hexadecanol (HD) or palmitic acid (PA), and dihydrocholesterol (DChol). The initial semicircular domains grow at a fixed 2:1 DPPC:HD (or PA) stoichiometry, depleting the liquid phase of HD, leaving behind a liquid enriched in DPPC and DChol. At higher surface pressures, the remaining DPPC precipitates onto existing domains, decreasing the ratio of line tension to the square of the dipole density difference, λ/μ2. Theory predicts that, as λ/μ2 decreases, circular domains reversibly transform to uniform width stripes as the minimum energy structure. Measuring the stripe width provides the first estimates of λ/μ2 at liquid condensed-liquid expanded phase coexistence.
Collapse
Affiliation(s)
- Cain Valtierrez-Gaytan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph M. Barakat
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Mitchell Kohler
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Khanh Kieu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Joseph A. Zasadzinski
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
540
|
Quenching Efficiency of Quantum Dots Conjugated to Lipid Bilayers on Graphene Oxide Evaluated by Fluorescence Single Particle Tracking. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A single particle observation of quantum dots (QDs) was performed on lipid bilayers formed on graphene oxide (GO). The long-range fluorescence quenching of GO has been applied to biosensing for various biomolecules. We demonstrated the single particle observation of a QD on supported lipid bilayers in this study, aiming to detect the quenching efficiency of lipid and protein molecules in a lipid bilayer by fluorescence single particle tacking (SPT). A single lipid bilayer or double lipid bilayers were formed on GO flakes deposited on a thermally oxidized silicon substrate by the vesicle fusion method. The QDs were conjugated on the lipid bilayers, and single particle images of the QDs were obtained under the quenching effect of GO. The quenching efficiency of a single QD was evaluated from the fluorescence intensities on the regions with and without GO. The quenching efficiency reflecting the layer numbers of the lipid bilayers was obtained.
Collapse
|
541
|
Dai G. Neuronal KCNQ2/3 channels are recruited to lipid raft microdomains by palmitoylation of BACE1. J Gen Physiol 2022; 154:213033. [PMID: 35201266 PMCID: PMC8876601 DOI: 10.1085/jgp.202112888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
β-Secretase 1 (β-site amyloid precursor protein [APP]-cleaving enzyme 1, BACE1) plays a crucial role in the amyloidogenesis of Alzheimer’s disease (AD). BACE1 was also discovered to act like an auxiliary subunit to modulate neuronal KCNQ2/3 channels independently of its proteolytic function. BACE1 is palmitoylated at its carboxyl-terminal region, which brings BACE1 to ordered, cholesterol-rich membrane microdomains (lipid rafts). However, the physiological consequences of this specific localization of BACE1 remain elusive. Using spectral Förster resonance energy transfer (FRET), BACE1 and KCNQ2/3 channels were confirmed to form a signaling complex, a phenomenon that was relatively independent of the palmitoylation of BACE1. Nevertheless, palmitoylation of BACE1 was required for recruitment of KCNQ2/3 channels to lipid-raft domains. Two fluorescent probes, designated L10 and S15, were used to label lipid-raft and non-raft domains of the plasma membrane, respectively. Coexpressing BACE1 substantially elevated FRET between L10 and KCNQ2/3, whereas the BACE1-4C/A quadruple mutation failed to produce this effect. In contrast, BACE1 had no significant effect on FRET between S15 probes and KCNQ2/3 channels. A reduction of BACE1-dependent FRET between raft-targeting L10 probes and KCNQ2/3 channels by applying the cholesterol-extracting reagent methyl-β-cyclodextrin (MβCD), raft-disrupting general anesthetics, or pharmacological inhibitors of palmitoylation, all supported the hypothesis of the palmitoylation-dependent and raft-specific localization of KCNQ2/3 channels. Furthermore, mutating the four carboxyl-terminal cysteines (4C/A) of BACE1 abolished the BACE1-dependent increase of FRET between KCNQ2/3 and the lipid raft–specific protein caveolin 1. Taking these data collectively, we propose that the AD-related protein BACE1 underlies the localization of a neuronal potassium channel.
Collapse
Affiliation(s)
- Gucan Dai
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| |
Collapse
|
542
|
Xie J, Meng Z, Han X, Li S, Ma X, Chen X, Liang Y, Deng X, Xia K, Zhang Y, Zhu H, Fu T. Cholesterol Microdomain Enhances the Biofilm Eradication of Antibiotic Liposomes. Adv Healthc Mater 2022; 11:e2101745. [PMID: 35037424 DOI: 10.1002/adhm.202101745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/09/2022] [Indexed: 11/06/2022]
Abstract
Resistance and tolerance of biofilms to antibiotics is the greatest challenge in the treatment of bacterial infections. Therefore, developing an effective strategy against biofilms is a top priority. Liposomes are widely used as antibiotic drug carriers; however, common liposomes lack affinity for biofilms. Herein, biofilm-targeted antibiotic liposomes are created by simply adjusting their cholesterol content. The tailored liposomes exhibit significantly enhanced bacterial inhibition and biofilm eradication effects that are positively correlated with the cholesterol content of liposomes. The experiments further demonstrate that this enhanced effect can be ascribed to the effective drug release through the pores, which are formed by the combination of cholesterol microdomains in liposomal lipid bilayers with membrane-damaged toxins in biofilms. Consequently, liposome encapsulation with a high cholesterol concentration improves noticeably the pharmacodynamics and biocompatibility of antibiotics after pulmonary administration. This work may provide a new direction for the development of antibiofilm formulations that can be widely used for the treatment of infections caused by bacterial biofilms.
Collapse
Affiliation(s)
- Jianjun Xie
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Zhiping Meng
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Xingxing Han
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Sipan Li
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Xinai Ma
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Xuanyu Chen
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Yinmei Liang
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Xiaomin Deng
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Kexin Xia
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Yue Zhang
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Huaxu Zhu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Tingming Fu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| |
Collapse
|
543
|
Gu L, Duan Z, Chen X, Li X, Luo Q, Bhamra A, Pan D, Zhu H, Tian X, Chen R, Gu Z, Zhang H, Qian Z, Gong Q, Luo K. A Transformable Amphiphilic and Block Polymer-Dendron Conjugate for Enhanced Tumor Penetration and Retention with Cellular Homeostasis Perturbation via Membrane Flow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200048. [PMID: 35170102 DOI: 10.1002/adma.202200048] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Efficient penetration and retention of therapeutic agents in tumor tissues can be realized through rational design of drug delivery systems. Herein, a polymer-dendron conjugate, POEGMA-b-p(GFLG-Dendron-Ppa) (GFLG-DP), is presented, which allows a cathepsin-B-triggered stealthy-to-sticky structural transformation. The compositions and ratios are optimized through dissipative particle dynamics simulations. GFLG-DP displays tumor-specific transformation and the consequently released dendron-Ppa is found to effectively accumulate on the tumor cell membrane. The interaction between the dendron-Ppa and the tumor cell membrane results in intracellular and intercellular transport via membrane flow, thus achieving efficient deep penetration and prolonged retention of therapeutic agents in the solid tumor tissues. Meanwhile, the interaction of dendron-Ppa with the endoplasmic reticulum disrupts cell homeostasis, making tumor cells more vulnerable and susceptible to photodynamic therapy. This platform represents a versatile approach to augmenting the tumor therapeutic efficacy of a nanomedicine via manipulation of its interactions with tumor membrane systems.
Collapse
Affiliation(s)
- Lei Gu
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaoting Chen
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaoling Li
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Apanpreet Bhamra
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Rongjun Chen
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Hu Zhang
- Amgen Bioprocessing Centre Keck Graduate Institute Claremont CA 91711 USA
| | - Zhiyong Qian
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| |
Collapse
|
544
|
Li M, Zheng J, He X, Zhang X. Tiki proteins are glycosylphosphatidylinositol-anchored proteases. FEBS Lett 2022; 596:1037-1046. [PMID: 35182431 PMCID: PMC9038680 DOI: 10.1002/1873-3468.14320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/07/2022] [Indexed: 11/07/2022]
Abstract
Wnt signalling pathways play pivotal roles in development, homeostasis and human diseases, and are tightly regulated. We previously identified Tiki as a novel family of Wnt inhibitory proteases. Tiki proteins were predicted as type I transmembrane proteins and can act in both Wnt-producing and Wnt-responsive cells. Here, we characterize Tiki proteins as glycosylphosphatidylinositol (GPI)-anchored proteases. TIKI1/2 proteins are enriched on the detergent-resistant membrane microdomains and can be released from the plasma membrane by GPI-specific glycerophosphodiesterases GDE3 and GDE6, but not by GDE2. The GPI anchor determines the cellular localization of Tiki proteins and their regulation by GDEs, but not their inhibitory activity on Wnt signalling. Our study uncovered novel characteristics and potential regulations of the Tiki family proteases.
Collapse
Affiliation(s)
- Mingyi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xi He
- The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA USA
| | - Xinjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
545
|
Sharma A, Seal A, Iyer SS, Srivastava A. Enthalpic and entropic contributions to interleaflet coupling drive domain registration and antiregistration in biological membrane. Phys Rev E 2022; 105:044408. [PMID: 35590589 DOI: 10.1103/physreve.105.044408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
Biological membrane is a complex self-assembly of lipids, sterols, and proteins organized as a fluid bilayer of two closely stacked lipid leaflets. Differential molecular interactions among its diverse constituents give rise to heterogeneities in the membrane lateral organization. Under certain conditions, heterogeneities in the two leaflets can be spatially synchronized and exist as registered domains across the bilayer. Several contrasting theories behind mechanisms that induce registration of nanoscale domains have been suggested. Following a recent study showing the effect of position of lipid tail unsaturation on domain registration behavior, we decided to develop an analytical theory to elucidate the driving forces that create and maintain domain registry across leaflets. Towards this, we formulated a Hamiltonian for a stacked lattice system where site variables capture the lipid molecular properties such as the position of unsaturation and various other interactions that could drive phase separation and interleaflet coupling. We solve the Hamiltonian using Monte Carlo simulations and create a complete phase diagram that reports the presence or absence of registered domains as a function of various Hamiltonian parameters. We find that the interleaflet coupling should be described as a competing enthalpic contribution due to interaction of lipid tail termini, primarily due to saturated-saturated interactions, and an interleaflet entropic contribution from overlap of unsaturated tail termini. A higher position of unsaturation is seen to provide weaker interleaflet coupling. Thermodynamically stable nanodomains could also be observed for certain points in the parameter space in our bilayer model, which were further verified by carrying out extended Monte Carlo simulations. These persistent noncoalescing registered nanodomains close to the lower end of the accepted nanodomain size range also point towards a possible "nanoscale" emulsion description of lateral heterogeneities in biological membrane leaflets.
Collapse
Affiliation(s)
- Akshara Sharma
- Department of Physics, Indian Institute of Science-Bangalore, C. V. Raman Road, Bangalore, Karnataka 560012, India
| | - Aniruddha Seal
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, Khurda, Odisha 752050, India
| | - Sahithya S Iyer
- Molecular Biophysics Unit, Indian Institute of Science-Bangalore, C. V. Raman Road, Bangalore, Karnataka 560012, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science-Bangalore, C. V. Raman Road, Bangalore, Karnataka 560012, India
| |
Collapse
|
546
|
Galvagnion C, Marlet FR, Cerri S, Schapira AHV, Blandini F, Di Monte DA. Sphingolipid changes in Parkinson L444P GBA mutation fibroblasts promote α-synuclein aggregation. Brain 2022; 145:1038-1051. [PMID: 35362022 PMCID: PMC9050548 DOI: 10.1093/brain/awab371] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 12/30/2022] Open
Abstract
Intraneuronal accumulation of aggregated α-synuclein is a pathological hallmark of Parkinson’s disease. Therefore, mechanisms capable of promoting α-synuclein deposition bear important pathogenetic implications. Mutations of the glucocerebrosidase 1 (GBA) gene represent a prevalent Parkinson’s disease risk factor. They are associated with loss of activity of a key enzyme involved in lipid metabolism, glucocerebrosidase, supporting a mechanistic relationship between abnormal α-synuclein–lipid interactions and the development of Parkinson pathology. In this study, the lipid membrane composition of fibroblasts isolated from control subjects, patients with idiopathic Parkinson’s disease and Parkinson's disease patients carrying the L444P GBA mutation (PD-GBA) was assayed using shotgun lipidomics. The lipid profile of PD-GBA fibroblasts differed significantly from that of control and idiopathic Parkinson’s disease cells. It was characterized by an overall increase in sphingolipid levels. It also featured a significant increase in the proportion of ceramide, sphingomyelin and hexosylceramide molecules with shorter chain length and a decrease in the percentage of longer-chain sphingolipids. The extent of this shift was correlated to the degree of reduction of fibroblast glucocerebrosidase activity. Lipid extracts from control and PD-GBA fibroblasts were added to recombinant α-synuclein solutions. The kinetics of α-synuclein aggregation were significantly accelerated after addition of PD-GBA extracts as compared to control samples. Amyloid fibrils collected at the end of these incubations contained lipids, indicating α-synuclein–lipid co-assembly. Lipids extracted from α-synuclein fibrils were also analysed by shotgun lipidomics. Data revealed that the lipid content of these fibrils was significantly enriched by shorter-chain sphingolipids. In a final set of experiments, control and PD-GBA fibroblasts were incubated in the presence of the small molecule chaperone ambroxol. This treatment restored glucocerebrosidase activity and sphingolipid levels and composition of PD-GBA cells. It also reversed the pro-aggregation effect that lipid extracts from PD-GBA fibroblasts had on α-synuclein. Taken together, the findings of this study indicate that the L444P GBA mutation and consequent enzymatic loss are associated with a distinctly altered membrane lipid profile that provides a biological fingerprint of this mutation in Parkinson fibroblasts. This altered lipid profile could also be an indicator of increased risk for α-synuclein aggregate pathology.
Collapse
Affiliation(s)
- Céline Galvagnion
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Frederik Ravnkilde Marlet
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Silvia Cerri
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Fabio Blandini
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Donato A Di Monte
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
547
|
Ueda Y, Abe M, Ishiwata T, Ozawa T. Sphingomyelin localization in the intestinal crypt surface. Biochem Biophys Res Commun 2022; 611:14-18. [DOI: 10.1016/j.bbrc.2022.03.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
|
548
|
Bobkov D, Semenova S. Impact of lipid rafts on transient receptor potential channel activities. J Cell Physiol 2022; 237:2034-2044. [PMID: 35014032 DOI: 10.1002/jcp.30679] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 11/06/2022]
Abstract
Members of the transient receptor potential (TRP) superfamily are cation channels that are expressed in nearly every mammalian cell type and respond as cellular sensors to various environmental stimuli. Light, pressure, osmolarity, temperature, and other stimuli can induce TRP calcium conductivity and correspondingly trigger many signaling processes in cells. Disruption of TRP channel activity, as a rule, harms cellular function. Despite numerous studies, the mechanisms of TRP channel regulation are not yet sufficiently clear, in part, because TRP channels are regulated by a broad set of ligands having diverse physical and chemical features. It is now known that some TRP members are located in membrane microdomains termed lipid rafts. Moreover, interaction between specific raft-associated lipids with channels may be a key regulation mechanism. This review examines recent findings related to the roles of lipid rafts in regulation of TRP channel activity. The mechanistic events of channel interactions with the main lipid raft constituent, cholesterol, are being clarified. Better understanding of mechanisms behind such interactions would help establish the key elements of TRP channel regulation and hence allow control of cellular responses to environmental stimuli.
Collapse
Affiliation(s)
- Danila Bobkov
- Laboratory of Ionic Mechanisms of Cell Signaling, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Svetlana Semenova
- Laboratory of Ionic Mechanisms of Cell Signaling, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
549
|
Gupta A, Lu D, Balasubramanian H, Chi Z, Wohland T. Heptanol-mediated phase separation determines phase preference of molecules in live cell membranes. J Lipid Res 2022; 63:100220. [PMID: 35490741 PMCID: PMC9160352 DOI: 10.1016/j.jlr.2022.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
The localization of many membrane proteins within cholesterol- and sphingolipid-containing microdomains is essential for proper cell signaling and function. These membrane domains, however, are too small and dynamic to be recorded, even with modern super-resolution techniques. Therefore, the association of membrane proteins with these domains can only be detected with biochemical assays that destroy the integrity of cells require pooling of many cells and take a long time to perform. Here, we present a simple membrane fluidizer–induced clustering approach to identify the phase-preference of membrane-associated molecules in individual live cells within 10–15 min. Experiments in phase-separated bilayers and live cells on molecules with known phase preference show that heptanol hyperfluidizes the membrane and stabilizes phase separation. This results in a transition from nanosized to micronsized clusters of associated molecules allowing their identification using routine microscopy techniques. Membrane fluidizer-induced clustering is an inexpensive and easy to implement method that can be conducted at large-scale and allows easy identification of protein partitioning in live cell membranes.
Collapse
|
550
|
Kim J, Kim MK, Baek KH, Song KH, Han K, Kwon HS. Repeated Low High-Density Lipoprotein Cholesterol and the Risk of Thyroid Cancer: A Nationwide Population- Based Study in Korea. Endocrinol Metab (Seoul) 2022; 37:303-311. [PMID: 35381688 PMCID: PMC9081313 DOI: 10.3803/enm.2021.1332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND High-density lipoprotein cholesterol (HDL-C) plays an important role in the reverse cholesterol transport pathway and prevents atherosclerosis-mediated disease. It has also been suggested that HDL-C may be a protective factor against cancer. However, an inverse correlation between HDL-C and cancer has not been established, and few studies have explored thyroid cancer. METHODS The study participants received health checkups provided by the Korean National Health Insurance Service from 2009 to 2013 and were followed until 2019. Considering the variability of serum HDL-C level, low HDL-C level was analyzed by grouping based on four consecutive health checkups. The data analysis was performed using univariate and multivariate Cox proportional hazard regression models. RESULTS A total of 3,134,278 total study participants, thyroid cancer occurred in 16,129. In the crude model, the hazard ratios for the association between repeatedly measured low HDL-C levels and thyroid cancer were 1.243, 1.404, 1.486, and 1.680 (P for trend <0.01), respectively, which were significant even after adjusting for age, sex, lifestyle factors, and metabolic diseases. The subgroup analysis revealed that low HDL-C levels likely had a greater impact on the group of patients with central obesity (P for interaction= 0.062), high blood pressure (P for interaction=0.057), impaired fasting glucose (P for interaction=0.051), and hyperlipidemia (P for interaction=0.126). CONCLUSION Repeatedly measured low HDL-C levels can be considered a risk factor for cancer as well as vascular disease. Low HDL-C levels were associated with the risk of thyroid cancer, and this correlation was stronger in a metabolically unhealthy population.
Collapse
Affiliation(s)
- Jinyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mee Kyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki-Hyun Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki-Ho Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
- Corresponding authors: Kyungdo Han Department of Statistics and Actuarial Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea Tel: +82-2-820-7025, Fax: +82-2-823-1746, E-mail:
| | - Hyuk-Sang Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Hyuk-Sang Kwon Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea Tel: +82-2-3779-1039, Fax: +82-2-786-1479, E-mail:
| |
Collapse
|