501
|
Fancello L, Raoult D, Desnues C. Computational tools for viral metagenomics and their application in clinical research. Virology 2012; 434:162-74. [PMID: 23062738 PMCID: PMC7111993 DOI: 10.1016/j.virol.2012.09.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/15/2012] [Accepted: 09/23/2012] [Indexed: 02/06/2023]
Abstract
There are 100 times more virions than eukaryotic cells in a healthy human body. The characterization of human-associated viral communities in a non-pathological state and the detection of viral pathogens in cases of infection are essential for medical care and epidemic surveillance. Viral metagenomics, the sequenced-based analysis of the complete collection of viral genomes directly isolated from an organism or an ecosystem, bypasses the “single-organism-level” point of view of clinical diagnostics and thus the need to isolate and culture the targeted organism. The first part of this review is dedicated to a presentation of past research in viral metagenomics with an emphasis on human-associated viral communities (eukaryotic viruses and bacteriophages). In the second part, we review more precisely the computational challenges posed by the analysis of viral metagenomes, and we illustrate the problem of sequences that do not have homologs in public databases and the possible approaches to characterize them.
Collapse
Affiliation(s)
- L Fancello
- Aix Marseille University, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France
| | | | | |
Collapse
|
502
|
Kirkup BC, Craft DW, Palys T, Black C, Heitkamp R, Li C, Lu Y, Matlock N, McQueary C, Michels A, Peck G, Si Y, Summers AM, Thompson M, Zurawski DV. Traumatic wound microbiome workshop. MICROBIAL ECOLOGY 2012; 64:837-850. [PMID: 22622764 DOI: 10.1007/s00248-012-0070-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 04/27/2012] [Indexed: 06/01/2023]
Abstract
On May 9-10, 2011, the Walter Reed Army Institute of Research, as the Army Center of Excellence for Infectious Disease, assembled over a dozen leaders in areas related to research into the communities of microorganisms which colonize and infect traumatic wounds. The objectives of the workshop were to obtain guidance for government researchers, to spur research community involvement in the field of traumatic wound research informed by a microbiome perspective, and to spark collaborative efforts serving the Wounded Warriors and similarly wounded civilians. During the discussions, it was made clear that the complexity of these infections will only be met by developing a new art of clinical practice that engages the numerous microbes and their ecology. It requires the support of dedicated laboratories and technologists who advance research methods such as community sequencing, as well as the kinds of data analysis expertise and facilities. These strategies already appear to be bearing fruit in the clinical management of chronic wounds. There are now funding announcements and programs supporting this area of research open to extramural collaborators.
Collapse
Affiliation(s)
- B C Kirkup
- Department of Wound Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
503
|
Inhibition of Staphylococcus aureus adherence to Caco-2 cells by lactobacilli and cell surface properties that influence attachment. Anaerobe 2012; 18:508-15. [DOI: 10.1016/j.anaerobe.2012.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/15/2012] [Accepted: 08/06/2012] [Indexed: 01/16/2023]
|
504
|
Baquero F. Metagenomic epidemiology: a public health need for the control of antimicrobial resistance. Clin Microbiol Infect 2012; 18 Suppl 4:67-73. [PMID: 22647054 DOI: 10.1111/j.1469-0691.2012.03860.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intestine is an 'environment', a shared space where the interior and the exterior of the organism merge. The complexity of the intestinal microbiome modulates such interaction, and reflects the coordinated evolution of animals and intestinal microbes. The intestinal microbiome is exposed to the environmental resistome, to intestinal organisms from other hosts and also to microbiome-damaging agents, such as antibiotics. The result is a 'genetic-genomic-metagenomic reactor' where resistance genes flow among different biological units of different hierarchical levels, such as integrons, transposons, plasmids, clones, species or genetic exchange communities. Metagenomics provides the possibility to explore the presence of antibiotic resistance genes in all these biological and evolutionary units, and to identify possible 'high risk associations'. Multi-layered metagenomic epidemiology is required to understand and eventually to predict and apply interventions aiming to limit antibiotic resistance.
Collapse
Affiliation(s)
- F Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS and CIBERESP, and Joint Unit for Antimicrobial Resistance and Virulence, Ramón y Cajal Hospital-Centre for Biotechnology CSIC, Madrid, Spain
| |
Collapse
|
505
|
Garmendia L, Hernandez A, Sanchez MB, Martinez JL. Metagenomics and antibiotics. Clin Microbiol Infect 2012; 18 Suppl 4:27-31. [PMID: 22647044 DOI: 10.1111/j.1469-0691.2012.03868.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most of the bacterial species that form part of the biosphere have never been cultivated. In this situation, a comprehensive study of bacterial communities requires the utilization of non-culture-based methods, which have been named metagenomics. In this paper we review the use of different metagenomic techniques for understanding the effect of antibiotics on microbial communities, to synthesize new antimicrobial compounds and to analyse the distribution of antibiotic resistance genes in different ecosystems. These techniques include functional metagenomics, which serves to find new antibiotics or new antibiotic resistance genes, and descriptive metagenomics, which serves to analyse changes in the composition of the microbiota and to track the presence and abundance of already known antibiotic resistance genes in different ecosystems.
Collapse
Affiliation(s)
- L Garmendia
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, CIBERESP, Madrid, Spain
| | | | | | | |
Collapse
|
506
|
Cheng G, Hu Y, Yin Y, Yang X, Xiang C, Wang B, Chen Y, Yang F, Lei F, Wu N, Lu N, Li J, Chen Q, Li L, Zhu B. Functional screening of antibiotic resistance genes from human gut microbiota reveals a novel gene fusion. FEMS Microbiol Lett 2012; 336:11-6. [PMID: 22845886 DOI: 10.1111/j.1574-6968.2012.02647.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/18/2012] [Accepted: 07/26/2012] [Indexed: 12/13/2022] Open
Abstract
The human gut microbiota has a high density of bacteria that are considered a reservoir for antibiotic resistance genes (ARGs). In this study, one fosmid metagenomic library generated from the gut microbiota of four healthy humans was used to screen for ARGs against seven antibiotics. Eight new ARGs were obtained: one against amoxicillin, six against d-cycloserine, and one against kanamycin. The new amoxicillin resistance gene encodes a protein with 53% identity to a class D β-lactamase from Riemerella anatipestifer RA-GD. The six new d-cycloserine resistance genes encode proteins with 73-81% identity to known d-alanine-d-alanine ligases. The new kanamycin resistance gene encodes a protein of 274 amino acids with an N-terminus (amino acids 1-189) that has 42% identity to the 6'-aminoglycoside acetyltransferase [AAC(6')] from Enterococcus hirae and a C-terminus (amino acids 190-274) with 35% identity to a hypothetical protein from Clostridiales sp. SSC/2. A functional study on the novel kanamycin resistance gene showed that only the N-terminus conferred kanamycin resistance. Our results showed that functional metagenomics is a useful tool for the identification of new ARGs.
Collapse
Affiliation(s)
- Gong Cheng
- Microbial Genome Research Center, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
507
|
Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MOA, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012; 337:1107-11. [PMID: 22936781 DOI: 10.1126/science.1220761] [Citation(s) in RCA: 1069] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Soil microbiota represent one of the ancient evolutionary origins of antibiotic resistance and have been proposed as a reservoir of resistance genes available for exchange with clinical pathogens. Using a high-throughput functional metagenomic approach in conjunction with a pipeline for the de novo assembly of short-read sequence data from functional selections (termed PARFuMS), we provide evidence for recent exchange of antibiotic resistance genes between environmental bacteria and clinical pathogens. We describe multidrug-resistant soil bacteria containing resistance cassettes against five classes of antibiotics (β-lactams, aminoglycosides, amphenicols, sulfonamides, and tetracyclines) that have perfect nucleotide identity to genes from diverse human pathogens. This identity encompasses noncoding regions as well as multiple mobilization sequences, offering not only evidence of lateral exchange but also a mechanism by which antibiotic resistance disseminates.
Collapse
Affiliation(s)
- Kevin J Forsberg
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | | | | | | | | | | |
Collapse
|
508
|
Stoll C, Sidhu JPS, Tiehm A, Toze S. Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from Germany and Australia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9716-26. [PMID: 22846103 DOI: 10.1021/es302020s] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The prevalence and proliferation of antibiotic resistant bacteria is profoundly important to human health, but the extent to which aquatic environments contribute toward the dissemination of antibiotic resistant genes (ARGs) is poorly understood. The prevalence of 24 ARGs active against eight antibiotic classes (β-lactams, aminoglycosides, glycopeptides, chloramphenicols, tetracycline, macrolides, trimethoprim, and sulfonamides) was evaluated in surface water samples collected from Germany and Australia with culture independent methods. The ARGs most frequently detected both in Germany and Australia were sulI, sulII (77-100%), and dfrA1 (43-55%) which code for resistance to sulfonamide and trimethoprim. Macrolides resistance gene ermB was relatively more prevalent in the surface water from Germany (68%) than Australia (18%). In contrast, the chloramphenicol resistance gene catII was more frequently detected in Australia (64%) than Germany (9%). Similarly, β-lactams resistance gene ampC was more prevalent in the samples from Australia (36%) than Germany (19%). This study highlights wide distribution of ARGs for sulfonamide, trimethoprim, macroline, β-lactams and chloramphenicol in the aquatic ecosystems. Aquatic ecosystems can therefore be reservoirs of ARGs genes which could potentially be transferred from commensal microorganisms to human pathogens.
Collapse
Affiliation(s)
- C Stoll
- DVGW-Technologiezentrum Wasser (TZW), Karlsruhe, Germany
| | | | | | | |
Collapse
|
509
|
Dantas G, Sommer MOA. Context matters - the complex interplay between resistome genotypes and resistance phenotypes. Curr Opin Microbiol 2012; 15:577-82. [PMID: 22954750 DOI: 10.1016/j.mib.2012.07.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 12/13/2022]
Abstract
Application of metagenomic functional selections to study antibiotic resistance genes is revealing a highly diverse and complex network of genetic exchange between bacterial pathogens and environmental reservoirs, which likely contributes significantly to increasing resistance levels in pathogens. In some cases, clinically relevant resistance genes have been acquired from organisms where their native function is not antibiotic resistance, and which may not even confer a resistance phenotype in their native context. In this review, we attempt to distinguish the resistance phenotype from the resistome genotype, and we highlight examples of genes and their hosts where this distinction becomes important in order to understand the relevance of environmental niches that contribute most to clinical problems associated with antibiotic resistance.
Collapse
Affiliation(s)
- Gautam Dantas
- Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St Louis, MO, USA.
| | | |
Collapse
|
510
|
Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MOA, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012. [PMID: 22936781 DOI: 10.1126/science.122076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Soil microbiota represent one of the ancient evolutionary origins of antibiotic resistance and have been proposed as a reservoir of resistance genes available for exchange with clinical pathogens. Using a high-throughput functional metagenomic approach in conjunction with a pipeline for the de novo assembly of short-read sequence data from functional selections (termed PARFuMS), we provide evidence for recent exchange of antibiotic resistance genes between environmental bacteria and clinical pathogens. We describe multidrug-resistant soil bacteria containing resistance cassettes against five classes of antibiotics (β-lactams, aminoglycosides, amphenicols, sulfonamides, and tetracyclines) that have perfect nucleotide identity to genes from diverse human pathogens. This identity encompasses noncoding regions as well as multiple mobilization sequences, offering not only evidence of lateral exchange but also a mechanism by which antibiotic resistance disseminates.
Collapse
Affiliation(s)
- Kevin J Forsberg
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | | | | | | | | | | |
Collapse
|
511
|
Abstract
This review is aimed at readers seeking an introductory overview, teaching courses and interested in visionary ideas. It first describes the range of topics covered by evolutionary medicine, which include human genetic variation, mismatches to modernity, reproductive medicine, degenerative disease, host-pathogen interactions and insights from comparisons with other species. It then discusses priorities for translational research, basic research and health management. Its conclusions are that evolutionary thinking should not displace other approaches to medical science, such as molecular medicine and cell and developmental biology, but that evolutionary insights can combine with and complement established approaches to reduce suffering and save lives. Because we are on the cusp of so much new research and innovative insights, it is hard to estimate how much impact evolutionary thinking will have on medicine, but it is already clear that its potential is enormous.
Collapse
Affiliation(s)
- Stephen C Stearns
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8106, USA.
| |
Collapse
|
512
|
de Lastours V, Cambau E, Guillard T, Marcade G, Chau F, Fantin B. Diversity of individual dynamic patterns of emergence of resistance to quinolones in Escherichia coli from the fecal flora of healthy volunteers exposed to ciprofloxacin. J Infect Dis 2012; 206:1399-406. [PMID: 22930806 DOI: 10.1093/infdis/jis511] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Emergence of quinolone-resistant Escherichia coli (QREC) is an increasing clinical challenge mostly originating in fecal microbiota. The dynamics of the emergence of QREC in feces from individuals exposed to ciprofloxacin is unknown. METHODS A total of 48 healthy volunteers received oral ciprofloxacin for 14 days. Fecal specimens were collected on days 0, 8, 14, and 42. Subpopulations of QREC were detected on selective agar, genetically characterized, and compared with quinolone-susceptible E. coli (QSEC) strains collected on different days. RESULTS On day 42, 34 subjects carried QSEC, and 14 carried QREC. Of the 14 who carried QREC, 9 carried quinolone-susceptible E. coli on day 0, 1 carried E. coli with a lower level of quinolone resistance on day 0, and 4 carried E. coli with similar levels of resistance and RAPD-genotypes on days 0 and 42. No plasmid acquisition and no selection of resistant mutants from the initial microbiota was evidenced in any case. CONCLUSIONS In QREC emerging under ciprofloxacin pressure in the fecal microbiota, no proof of selection of quinolone-resistant mutants from the initial microbiota was evidenced, suggesting that QREC strains on day 42 were either present at undetectable levels in the initial microbiota or that exogenous acquisition of QREC strains occurred. Clinical Trials Registration. NCT00190151.
Collapse
|
513
|
Williams LE, Wireman J, Hilliard VC, Summers AO. Large plasmids of Escherichia coli and Salmonella encode highly diverse arrays of accessory genes on common replicon families. Plasmid 2012; 69:36-48. [PMID: 22939841 DOI: 10.1016/j.plasmid.2012.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/09/2012] [Accepted: 08/13/2012] [Indexed: 11/17/2022]
Abstract
Plasmids are important in evolution and adaptation of host bacteria, yet we lack a comprehensive picture of their own natural variation. We used replicon typing and RFLP analysis to assess diversity and distribution of plasmids in the ECOR, SARA, SARB and SARC reference collections of Escherichia coli and Salmonella. Plasmids, especially large (≥30 kb) plasmids, are abundant in these collections. Host species and genotype clearly impact plasmid prevalence; plasmids are more abundant in ECOR than SAR, but, within ECOR, subgroup B2 strains have the fewest large plasmids. The majority of large plasmids have unique RFLP patterns, suggesting high variation, even within dominant replicon families IncF and IncI1. We found only four conserved plasmid types within ECOR, none of which are widely distributed. Within SAR, conserved plasmid types are primarily serovar-specific, including a pSLT-like plasmid in 13 Typhimurium strains. Conservation of pSLT contrasts with variability of other plasmids, suggesting evolution of serovar-specific virulence plasmids is distinct from that of most enterobacterial plasmids. We sequenced a conserved serovar Heidelberg plasmid but did not detect virulence or antibiotic resistance genes. Our data illustrate the high degree of natural variation in large plasmids of E. coli and Salmonella, even among plasmids sharing backbone genes.
Collapse
Affiliation(s)
- Laura E Williams
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA.
| | | | | | | |
Collapse
|
514
|
Effect of berberine on Escherichia coli, Bacillus subtilis, and their mixtures as determined by isothermal microcalorimetry. Appl Microbiol Biotechnol 2012; 96:503-10. [DOI: 10.1007/s00253-012-4302-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/07/2012] [Accepted: 07/12/2012] [Indexed: 12/17/2022]
|
515
|
Haiser HJ, Turnbaugh PJ. Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res 2012; 69:21-31. [PMID: 22902524 DOI: 10.1016/j.phrs.2012.07.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 12/16/2022]
Abstract
The microbes residing in and on the human body influence human physiology in many ways, particularly through their impact on the metabolism of xenobiotic compounds, including therapeutic drugs, antibiotics, and diet-derived bioactive compounds. Despite the importance of these interactions and the many possibilities for intervention, microbial xenobiotic metabolism remains a largely underexplored component of pharmacology. Here, we discuss the emerging evidence for both direct and indirect effects of the human gut microbiota on xenobiotic metabolism, and the initial links that have been made between specific compounds, diverse members of this complex community, and the microbial genes responsible. Furthermore, we highlight the many parallels to the now well-established field of environmental bioremediation, and the vast potential to leverage emerging metagenomic tools to shed new light on these important microbial biotransformations.
Collapse
Affiliation(s)
- Henry J Haiser
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
516
|
Abstract
A recent study suggests that lateral gene transfer has been particularly intense among human-associated microbes. What can this tell us about our relationship with our internal microbial world?
Collapse
|
517
|
Gerber GK, Onderdonk AB, Bry L. Inferring dynamic signatures of microbes in complex host ecosystems. PLoS Comput Biol 2012; 8:e1002624. [PMID: 22876171 PMCID: PMC3410865 DOI: 10.1371/journal.pcbi.1002624] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 06/12/2012] [Indexed: 01/01/2023] Open
Abstract
The human gut microbiota comprise a complex and dynamic ecosystem that profoundly affects host development and physiology. Standard approaches for analyzing time-series data of the microbiota involve computation of measures of ecological community diversity at each time-point, or measures of dissimilarity between pairs of time-points. Although these approaches, which treat data as static snapshots of microbial communities, can identify shifts in overall community structure, they fail to capture the dynamic properties of individual members of the microbiota and their contributions to the underlying time-varying behavior of host ecosystems. To address the limitations of current methods, we present a computational framework that uses continuous-time dynamical models coupled with Bayesian dimensionality adaptation methods to identify time-dependent signatures of individual microbial taxa within a host as well as across multiple hosts. We apply our framework to a publicly available dataset of 16S rRNA gene sequences from stool samples collected over ten months from multiple human subjects, each of whom received repeated courses of oral antibiotics. Using new diversity measures enabled by our framework, we discover groups of both phylogenetically close and distant bacterial taxa that exhibit consensus responses to antibiotic exposure across multiple human subjects. These consensus responses reveal a timeline for equilibration of sub-communities of micro-organisms with distinct physiologies, yielding insights into the successive changes that occur in microbial populations in the human gut after antibiotic treatments. Additionally, our framework leverages microbial signatures shared among human subjects to automatically design optimal experiments to interrogate dynamic properties of the microbiota in new studies. Overall, our approach provides a powerful, general-purpose framework for understanding the dynamic behaviors of complex microbial ecosystems, which we believe will prove instrumental for future studies in this field. Microbes colonize the human body soon after birth and propagate to form rich ecosystems. These ecosystems play essential roles in health and disease. Recent advances in DNA sequencing technologies make possible comprehensive studies of the time-dependent behavior of microbes throughout the body. Sophisticated computer-based methods are essential for the analysis and interpretation of these complex datasets. We present a computational method that models how human microbial ecosystems respond over time to perturbations, such as when subjects in a study are treated with a drug. When applied to a large publicly available dataset, our method yields new insights into the diversity of dynamic responses to antibiotics among microbes in the human body. We find that within an individual, sub-populations of microbes that share certain physiological roles also share coordinated responses. Moreover, we find that these responses are similar across different people. We use this information to improve the experimental design of the previously conducted study, and to develop strategies for optimal design of future studies. Our work provides an integrated computer-based method for automatically discovering patterns of change over time in the microbiota, and for designing future experiments to identify changes that impact human health and disease.
Collapse
Affiliation(s)
- Georg K. Gerber
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew B. Onderdonk
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lynn Bry
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
518
|
Xin Z, Fengwei T, Gang W, Xiaoming L, Qiuxiang Z, Hao Z, Wei C. Isolation, identification and characterization of human intestinal bacteria with the ability to utilize chloramphenicol as the sole source of carbon and energy. FEMS Microbiol Ecol 2012; 82:703-12. [PMID: 22757630 DOI: 10.1111/j.1574-6941.2012.01440.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/10/2012] [Accepted: 06/26/2012] [Indexed: 11/29/2022] Open
Abstract
Five aerobic intestinal bacterial strains that utilized chloramphenicol (CAP) as sole carbon and energy source were isolated from fecal samples collected from healthy volunteers. Based on 16S rRNA gene sequence analysis, four of the five strains were identified as Klebsiella pneumoniae and one as Escherichia fergusonii. The degradation rate of strain I-10-CHL (E. fergusonii) varied with the initial concentration of CAP. The pH value also had an effect on the degradation rate of CAP and bacterial growth. A pH of 6.5 was optimal for CAP degradation and growth of strain I-10-CHL (E. fergusonii). In mixed substrate batch cultivations, where CAP was one of the components, glucose, acetamide and CAP were utilized simultaneously. The presence of glucose and acetamide increased the growth and substrate degradation rates of CAP. During incubation with E. fergusonii cells, reduction intermediates (1-p-nitrophenyl-2-amino-1,3-propanediol) were observed. The strains capable of utilizing CAP were CAP-susceptible, which indicates that the mechanism of CAP assimilation by the strains is independent on that of CAP resistance. The role of this CAP reduction pathway in the physiology of K. pneumoniae and E. fergusonii is unknown.
Collapse
Affiliation(s)
- Zhao Xin
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
519
|
Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates. Genome Biol 2012; 13:R64. [PMID: 22830599 PMCID: PMC4053731 DOI: 10.1186/gb-2012-13-7-r64] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/25/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND While Staphylococcus epidermidis is commonly isolated from healthy human skin, it is also the most frequent cause of nosocomial infections on indwelling medical devices. Despite its importance, few genome sequences existed and the most frequent hospital-associated lineage, ST2, had not been fully sequenced. RESULTS We cultivated 71 commensal S. epidermidis isolates from 15 skin sites and compared them with 28 nosocomial isolates from venous catheters and blood cultures. We produced 21 commensal and 9 nosocomial draft genomes, and annotated and compared their gene content, phylogenetic relatedness and biochemical functions. The commensal strains had an open pan-genome with 80% core genes and 20% variable genes. The variable genome was characterized by an overabundance of transposable elements, transcription factors and transporters. Biochemical diversity, as assayed by antibiotic resistance and in vitro biofilm formation, demonstrated the varied phenotypic consequences of this genomic diversity. The nosocomial isolates exhibited both large-scale rearrangements and single-nucleotide variation. We showed that S. epidermidis genomes separate into two phylogenetic groups, one consisting only of commensals. The formate dehydrogenase gene, present only in commensals, is a discriminatory marker between the two groups. CONCLUSIONS Commensal skin S. epidermidis have an open pan-genome and show considerable diversity between isolates, even when derived from a single individual or body site. For ST2, the most common nosocomial lineage, we detect variation between three independent isolates sequenced. Finally, phylogenetic analyses revealed a previously unrecognized group of S. epidermidis strains characterized by reduced virulence and formate dehydrogenase, which we propose as a clinical molecular marker.
Collapse
|
520
|
Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition. Proc Natl Acad Sci U S A 2012; 109:13082-7. [PMID: 22826229 DOI: 10.1073/pnas.1205586109] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire resistance to antagonistic molecules. Few studies have investigated the interplay of these countervailing forces in direct competition between two species. We have used an imaging mass spectrometry (IMS) approach to track metabolites exchanged between Bacillus subtilis and Streptomyces sp. Mg1 cultured together. Surfactin is a cyclic lipopeptide produced by B. subtilis that inhibits the formation of aerial hyphae by streptomycetes. IMS analysis exposed an addition of 18 mass units to surfactin in the agar proximal to Streptomyces sp. Mg1 but not other streptomycetes tested. The spatially resolved change in the mass of surfactin indicated hydrolysis of the molecule. We observed that the aerial growth of Streptomyces sp. Mg1 was resistant to inhibition by surfactin, which suggests that hydrolysis was a mechanism of resistance. To identify possible enzymes from Streptomyces sp. Mg1 with surfactin hydrolase activity, we isolated secreted proteins and identified candidates by mass spectrometry. We purified one candidate enzyme that hydrolyzed surfactin in vitro. We tested the role of this enzyme in surfactin resistance by deleting the corresponding gene from the S. Mg1 genome. We observed that aerial growth by the ΔsfhA mutant strain was now sensitive to surfactin. Our results identify an enzyme that hydrolyzes surfactin and confers resistance to aerial growth inhibition, which demonstrates the effective use of an IMS approach to track natural product modifications during interspecies competition.
Collapse
|
521
|
Abstract
Rapid advances in DNA sequencing promise to enable new diagnostics and individualized therapies. Achieving personalized medicine, however, will require extensive research on highly reidentifiable, integrated datasets of genomic and health information. To assist with this, participants in the Personal Genome Project choose to forgo privacy via our institutional review board- approved "open consent" process. The contribution of public data and samples facilitates both scientific discovery and standardization of methods. We present our findings after enrollment of more than 1,800 participants, including whole-genome sequencing of 10 pilot participant genomes (the PGP-10). We introduce the Genome-Environment-Trait Evidence (GET-Evidence) system. This tool automatically processes genomes and prioritizes both published and novel variants for interpretation. In the process of reviewing the presumed healthy PGP-10 genomes, we find numerous literature references implying serious disease. Although it is sometimes impossible to rule out a late-onset effect, stringent evidence requirements can address the high rate of incidental findings. To that end we develop a peer production system for recording and organizing variant evaluations according to standard evidence guidelines, creating a public forum for reaching consensus on interpretation of clinically relevant variants. Genome analysis becomes a two-step process: using a prioritized list to record variant evaluations, then automatically sorting reviewed variants using these annotations. Genome data, health and trait information, participant samples, and variant interpretations are all shared in the public domain-we invite others to review our results using our participant samples and contribute to our interpretations. We offer our public resource and methods to further personalized medical research.
Collapse
|
522
|
Rolain J, Canton R, Cornaglia G. Emergence of antibiotic resistance: need for a new paradigm. Clin Microbiol Infect 2012; 18:615-6. [DOI: 10.1111/j.1469-0691.2012.03902.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
523
|
Abstract
Gastrointestinal microbiomes play important roles in the health and nutrition of animals and humans. The medicinal leech, Hirudo verbana, serves as a powerful model for the study of microbial symbioses of the gut, due to its naturally limited microbiome compared with other popular models, the ability to cultivate the most abundant microbes, and genetically manipulate one of them, Aeromonas veronii. This review covers the relevance and application of leeches in modern medicine as well as recent discoveries detailing the nature of the gut microbiome. Additionally, the dual life-style of A. veronii allows one to do direct comparisons between colonization factors for beneficial and pathogenic associations, and relevant findings are detailed with respect to their role within the host and pathogenicity to other animals.
Collapse
|
524
|
Falcone-Dias MF, Vaz-Moreira I, Manaia CM. Bottled mineral water as a potential source of antibiotic resistant bacteria. WATER RESEARCH 2012; 46:3612-3622. [PMID: 22534119 DOI: 10.1016/j.watres.2012.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/26/2012] [Accepted: 04/03/2012] [Indexed: 05/31/2023]
Abstract
The antibiotic resistance phenotypes of the cultivable bacteria present in nine batches of two Portuguese and one French brands of commercially available mineral waters were examined. Most of the 238 isolates recovered on R2A, Pseudomonas Isolation agar or on these culture media supplemented with amoxicillin or ciprofloxacin, were identified (based on 16S rRNA gene sequence analysis) as Proteobacteria of the divisions Beta, Gamma and Alpha. Bacteria resistant to more than three distinct classes of antibiotics were detected in all the batches of the three water brands in counts up to 10² CFU/ml. In the whole set of isolates, it was observed resistance against all the 22 antimicrobials tested (ATB, bioMérieux and disc diffusion), with most of the bacteria showing resistance to three or more classes of antibiotics. Bacteria with the highest multi-resistance indices were members of the genera Variovorax, Bosea, Ralstonia, Curvibacter, Afipia and Pedobacter. Some of these bacteria are related with confirmed or suspected nosocomial agents. Presumable acquired resistance may be suggested by the observation of bacteria taxonomically related but isolated from different brands, exhibiting distinct antibiotic resistance profiles. Bottled mineral water was confirmed as a possible source of antibiotic resistant bacteria, with the potential to be transmitted to humans.
Collapse
Affiliation(s)
- Maria Fernanda Falcone-Dias
- CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | | | | |
Collapse
|
525
|
Guo MT, Rotem A, Heyman JA, Weitz DA. Droplet microfluidics for high-throughput biological assays. LAB ON A CHIP 2012; 12:2146-55. [PMID: 22318506 DOI: 10.1039/c2lc21147e] [Citation(s) in RCA: 662] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Droplet microfluidics offers significant advantages for performing high-throughput screens and sensitive assays. Droplets allow sample volumes to be significantly reduced, leading to concomitant reductions in cost. Manipulation and measurement at kilohertz speeds enable up to 10(8) samples to be screened in one day. Compartmentalization in droplets increases assay sensitivity by increasing the effective concentration of rare species and decreasing the time required to reach detection thresholds. Droplet microfluidics combines these powerful features to enable currently inaccessible high-throughput screening applications, including single-cell and single-molecule assays.
Collapse
Affiliation(s)
- Mira T Guo
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, USA
| | | | | | | |
Collapse
|
526
|
Suchodolski JS, Dowd SE, Wilke V, Steiner JM, Jergens AE. 16S rRNA gene pyrosequencing reveals bacterial dysbiosis in the duodenum of dogs with idiopathic inflammatory bowel disease. PLoS One 2012; 7:e39333. [PMID: 22720094 PMCID: PMC3376104 DOI: 10.1371/journal.pone.0039333] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 05/23/2012] [Indexed: 12/19/2022] Open
Abstract
Background Canine idiopathic inflammatory bowel disease (IBD) is believed to be caused by a complex interaction of genetic, immunologic, and microbial factors. While mucosa-associated bacteria have been implicated in the pathogenesis of canine IBD, detailed studies investigating the enteric microbiota using deep sequencing techniques are lacking. The objective of this study was to evaluate mucosa-adherent microbiota in the duodenum of dogs with spontaneous idiopathic IBD using 16 S rRNA gene pyrosequencing. Methodology/Principal Findings Biopsy samples of small intestinal mucosa were collected endoscopically from healthy dogs (n = 6) and dogs with moderate IBD (n = 7) or severe IBD (n = 7) as assessed by a clinical disease activity index. Total RNA was extracted from biopsy specimens and 454-pyrosequencing of the 16 S rRNA gene was performed on aliquots of cDNA from each dog. Intestinal inflammation was associated with significant differences in the composition of the intestinal microbiota when compared to healthy dogs. PCoA plots based on the unweighted UniFrac distance metric indicated clustering of samples between healthy dogs and dogs with IBD (ANOSIM, p<0.001). Proportions of Fusobacteria (p = 0.010), Bacteroidaceae (p = 0.015), Prevotellaceae (p = 0.022), and Clostridiales (p = 0.019) were significantly more abundant in healthy dogs. In contrast, specific bacterial genera within Proteobacteria, including Diaphorobacter (p = 0.044) and Acinetobacter (p = 0.040), were either more abundant or more frequently identified in IBD dogs. Conclusions/Significance In conclusion, dogs with spontaneous IBD exhibit alterations in microbial groups, which bear resemblance to dysbiosis reported in humans with chronic intestinal inflammation. These bacterial groups may serve as useful targets for monitoring intestinal inflammation.
Collapse
Affiliation(s)
- Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | | | |
Collapse
|
527
|
Abstract
The human genome has been referred to as the blueprint of human biology. In this review we consider an essential but largely ignored overlay to that blueprint, the human microbiome, which is composed of those microbes that live in and on our bodies. The human microbiome is a source of genetic diversity, a modifier of disease, an essential component of immunity, and a functional entity that influences metabolism and modulates drug interactions. Characterization and analysis of the human microbiome have been greatly catalyzed by advances in genomic technologies. We discuss how these technologies have shaped this emerging field of study and advanced our understanding of the human microbiome. We also identify future challenges, many of which are common to human genetic studies, and predict that in the future, analyzing genetic variation and risk of human disease will sometimes necessitate the integration of human and microbial genomic data sets.
Collapse
Affiliation(s)
- Elizabeth A Grice
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
528
|
Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012; 148:1258-70. [PMID: 22424233 DOI: 10.1016/j.cell.2012.01.035] [Citation(s) in RCA: 2538] [Impact Index Per Article: 195.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Indexed: 11/24/2022]
Abstract
The human gut harbors diverse microbes that play a fundamental role in the well-being of their host. The constituents of the microbiota--bacteria, viruses, and eukaryotes--have been shown to interact with one another and with the host immune system in ways that influence the development of disease. We review these interactions and suggest that a holistic approach to studying the microbiota that goes beyond characterization of community composition and encompasses dynamic interactions between all components of the microbiota and host tissue over time will be crucial for building predictive models for diagnosis and treatment of diseases linked to imbalances in our microbiota.
Collapse
Affiliation(s)
- Jose C Clemente
- Department of Chemistry & Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
529
|
Ruppé E, de Lastours V. Entérobactéries résistantes aux antibiotiques et microbiote intestinal : la face cachée de l’iceberg. MEDECINE INTENSIVE REANIMATION 2012. [DOI: 10.1007/s13546-012-0459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
530
|
Zaborin A, Gerdes S, Holbrook C, Liu DC, Zaborina OY, Alverdy JC. Pseudomonas aeruginosa overrides the virulence inducing effect of opioids when it senses an abundance of phosphate. PLoS One 2012; 7:e34883. [PMID: 22514685 PMCID: PMC3325935 DOI: 10.1371/journal.pone.0034883] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/08/2012] [Indexed: 11/19/2022] Open
Abstract
The gut during critical illness represents a complex ecology dominated by the presence of healthcare associated pathogens, nutrient scarce conditions, and compensatory host stress signals. We have previously identified key environmental cues, opioids and phosphate depletion that independently activate the virulence of Pseudomonas aeruginosa. Opioids induce quinolone signal production (PQS), whereas phosphate depletion leads to a triangulated response between MvfR-PQS, pyoverdin, and phosphosensory/phosphoregulatory systems (PstS-PhoB). Yet how P. aeruginosa manages its response to opioids during nutrient scarce conditions when growth is limited and a quorum is unlikely to be achieved is important in the context of pathogenesis in gut during stress. To mimic this environment, we created nutrient poor conditions and exposed P. aeruginosa PAO1 to the specific k-opioid receptor agonist U-50,488. Bacterial cells exposed to the k-opioid expressed a striking increase in virulence- and multi-drug resistance-related genes that correlated to a lethal phenotype in C. elegans killing assays. Under these conditions, HHQ, a precursor of PQS, rather than PQS itself, became the main inducer for pqsABCDE operon expression. P. aeruginosa virulence expression in response to k-opioids required PqsE since ΔPqsE was attenuated in its ability to activate virulence- and efflux pumps-related genes. Extracellular inorganic phosphate completely changed the transcriptional response of PAO1 to the k- opioid preventing pqsABCDE expression, the activation of multiple virulence- and efflux pumps-related genes, and the ability of P. aeruginosa to kill C. elegans. These results indicate that when P. aeruginosa senses resource abundance in the form of phosphate, it overrides its response to compensatory host signals such as opioids to express a virulent and lethal phenotype. These studies confirm a central role for phosphate in P. aeruginosa virulence that might be exploited to design novel anti- virulence strategies.
Collapse
Affiliation(s)
- Alexander Zaborin
- University of Chicago Medical Center, Department of Surgery, Chicago, Illinois, United States of America
| | - Svetlana Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois, United States of America
| | - Christopher Holbrook
- University of Chicago Medical Center, Department of Surgery, Chicago, Illinois, United States of America
| | - Donald C. Liu
- University of Chicago Medical Center, Department of Surgery, Chicago, Illinois, United States of America
| | - Olga Y. Zaborina
- University of Chicago Medical Center, Department of Surgery, Chicago, Illinois, United States of America
| | - John C. Alverdy
- University of Chicago Medical Center, Department of Surgery, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
531
|
Schmieder R, Edwards R. Insights into antibiotic resistance through metagenomic approaches. Future Microbiol 2012; 7:73-89. [PMID: 22191448 DOI: 10.2217/fmb.11.135] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The consequences of bacterial infections have been curtailed by the introduction of a wide range of antibiotics. However, infections continue to be a leading cause of mortality, in part due to the evolution and acquisition of antibiotic-resistance genes. Antibiotic misuse and overprescription have created a driving force influencing the selection of resistance. Despite the problem of antibiotic resistance in infectious bacteria, little is known about the diversity, distribution and origins of resistance genes, especially for the unculturable majority of environmental bacteria. Functional and sequence-based metagenomics have been used for the discovery of novel resistance determinants and the improved understanding of antibiotic-resistance mechanisms in clinical and natural environments. This review discusses recent findings and future challenges in the study of antibiotic resistance through metagenomic approaches.
Collapse
Affiliation(s)
- Robert Schmieder
- Computational Science Research Center & Department of Computer Science, San Diego State University, San Diego, CA 92182, USA
| | | |
Collapse
|
532
|
Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 2012; 7:e34953. [PMID: 22509370 PMCID: PMC3324550 DOI: 10.1371/journal.pone.0034953] [Citation(s) in RCA: 419] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/08/2012] [Indexed: 12/17/2022] Open
Abstract
Antibiotic resistance is a global challenge that impacts all pharmaceutically used antibiotics. The origin of the genes associated with this resistance is of significant importance to our understanding of the evolution and dissemination of antibiotic resistance in pathogens. A growing body of evidence implicates environmental organisms as reservoirs of these resistance genes; however, the role of anthropogenic use of antibiotics in the emergence of these genes is controversial. We report a screen of a sample of the culturable microbiome of Lechuguilla Cave, New Mexico, in a region of the cave that has been isolated for over 4 million years. We report that, like surface microbes, these bacteria were highly resistant to antibiotics; some strains were resistant to 14 different commercially available antibiotics. Resistance was detected to a wide range of structurally different antibiotics including daptomycin, an antibiotic of last resort in the treatment of drug resistant Gram-positive pathogens. Enzyme-mediated mechanisms of resistance were also discovered for natural and semi-synthetic macrolide antibiotics via glycosylation and through a kinase-mediated phosphorylation mechanism. Sequencing of the genome of one of the resistant bacteria identified a macrolide kinase encoding gene and characterization of its product revealed it to be related to a known family of kinases circulating in modern drug resistant pathogens. The implications of this study are significant to our understanding of the prevalence of resistance, even in microbiomes isolated from human use of antibiotics. This supports a growing understanding that antibiotic resistance is natural, ancient, and hard wired in the microbial pangenome.
Collapse
|
533
|
Thames CH, Pruden A, James RE, Ray PP, Knowlton KF. Excretion of antibiotic resistance genes by dairy calves fed milk replacers with varying doses of antibiotics. Front Microbiol 2012; 3:139. [PMID: 22514550 PMCID: PMC3322659 DOI: 10.3389/fmicb.2012.00139] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/23/2012] [Indexed: 11/13/2022] Open
Abstract
Elevated levels of antibiotic resistance genes (ARGs) in soil and water have been linked to livestock farms and in some cases feed antibiotics may select for antibiotic resistant gut microbiota. The purpose of this study was to examine the establishment of ARGs in the feces of calves receiving milk replacer containing no antibiotics versus subtherapeutic or therapeutic doses of tetracycline and neomycin. The effect of antibiotics on calf health was also of interest. Twenty-eight male and female dairy calves were assigned to one of the three antibiotic treatment groups at birth and fecal samples were collected at weeks 6, 7 (prior to weaning), and 12 (5 weeks after weaning). ARGs corresponding to the tetracycline (tetC, tetG, tetO, tetW, and tetX), macrolide (ermB, ermF), and sulfonamide (sul1, sul2) classes of antibiotics along with the class I integron gene, intI1, were monitored by quantitative polymerase chain reaction as potential indicators of direct selection, co-selection, or horizontal gene transfer of ARGs. Surprisingly, there was no significant effect of antibiotic treatment on the absolute abundance (gene copies per gram wet manure) of any of the ARGs except ermF, which was lower in the antibiotic-treated calf manure, presumably because a significant portion of host bacterial cells carrying ermF were not resistant to tetracycline or neomycin. However, relative abundance (gene copies normalized to 16S rRNA genes) of tetO was higher in calves fed the highest dose of antibiotic than in the other treatments. All genes, except tetC and intI1, were detectable in feces from 6 weeks onward, and tetW and tetG significantly increased (P < 0.10), even in control calves. Overall, the results provide new insight into the colonization of calf gut flora with ARGs in the early weeks. Although feed antibiotics exerted little effect on the ARGs monitored in this study, the fact that they also provided no health benefit suggests that the greater than conventional nutritional intake applied in this study overrides previously reported health benefits of antibiotics. The results suggest potential benefit of broader management strategies, and that cost and risk may be avoided by minimizing incorporation of antibiotics in milk replacer.
Collapse
Affiliation(s)
- Callie H Thames
- Department of Dairy Science, Virginia Tech Blacksburg, VA, USA
| | | | | | | | | |
Collapse
|
534
|
Biesbroek G, Sanders EAM, Roeselers G, Wang X, Caspers MPM, Trzciński K, Bogaert D, Keijser BJF. Deep sequencing analyses of low density microbial communities: working at the boundary of accurate microbiota detection. PLoS One 2012; 7:e32942. [PMID: 22412957 PMCID: PMC3295791 DOI: 10.1371/journal.pone.0032942] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/02/2012] [Indexed: 02/07/2023] Open
Abstract
Introduction Accurate analyses of microbiota composition of low-density communities (103–104 bacteria/sample) can be challenging. Background DNA from chemicals and consumables, extraction biases as well as differences in PCR efficiency can significantly interfere with microbiota assessment. This study was aiming to establish protocols for accurate microbiota analysis at low microbial density. Methods To examine possible effects of bacterial density on microbiota analyses we compared microbiota profiles of serial diluted saliva and low (nares, nasopharynx) and high-density (oropharynx) upper airway communities in four healthy individuals. DNA was extracted with four different extraction methods (Epicentre Masterpure, Qiagen DNeasy, Mobio Powersoil and a phenol bead-beating protocol combined with Agowa-Mag-mini). Bacterial DNA recovery was analysed by 16S qPCR and microbiota profiles through GS-FLX-Titanium-Sequencing of 16S rRNA gene amplicons spanning the V5–V7 regions. Results Lower template concentrations significantly impacted microbiota profiling results. With higher dilutions, low abundant species were overrepresented. In samples of <105 bacteria per ml, e.g. DNA <1 pg/µl, microbiota profiling deviated from the original sample and other dilutions showing a significant increase in the taxa Proteobacteria and decrease in Bacteroidetes. In similar low density samples, DNA extraction method determined if DNA levels were below or above 1 pg/µl and, together with lysis preferences per method, had profound impact on microbiota analyses in both relative abundance as well as representation of species. Conclusion This study aimed to interpret microbiota analyses of low-density communities. Bacterial density seemed to interfere with microbiota analyses at < than 106 bacteria per ml or DNA <1 pg/µl. We therefore recommend this threshold for working with low density materials. This study underlines that bias reduction is crucial for adequate profiling of especially low-density bacterial communities.
Collapse
Affiliation(s)
- Giske Biesbroek
- Department of Pediatric Infectious Diseases and Immunity UMC Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
535
|
Functional cloning and characterization of antibiotic resistance genes from the chicken gut microbiome. Appl Environ Microbiol 2012; 78:3028-32. [PMID: 22286984 DOI: 10.1128/aem.06920-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Culture-independent sampling in conjunction with a functional cloning approach identified diverse antibiotic resistance genes for different classes of antibiotics in gut microbiomes from both conventionally raised and free-range chickens. Many of the genes are phylogenetically distant from known resistance genes. Two unique genes that conferred ampicillin and spectinomycin resistance were also functional in Campylobacter, a distant relative of the Escherichia coli host used to generate the genomic libraries.
Collapse
|
536
|
In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci U S A 2012; 109:1691-6. [PMID: 22307632 DOI: 10.1073/pnas.1120238109] [Citation(s) in RCA: 756] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Antibiotics have been administered to agricultural animals for disease treatment, disease prevention, and growth promotion for over 50 y. The impact of such antibiotic use on the treatment of human diseases is hotly debated. We raised pigs in a highly controlled environment, with one portion of the littermates receiving a diet containing performance-enhancing antibiotics [chlortetracycline, sulfamethazine, and penicillin (known as ASP250)] and the other portion receiving the same diet but without the antibiotics. We used phylogenetic, metagenomic, and quantitative PCR-based approaches to address the impact of antibiotics on the swine gut microbiota. Bacterial phylotypes shifted after 14 d of antibiotic treatment, with the medicated pigs showing an increase in Proteobacteria (1-11%) compared with nonmedicated pigs at the same time point. This shift was driven by an increase in Escherichia coli populations. Analysis of the metagenomes showed that microbial functional genes relating to energy production and conversion were increased in the antibiotic-fed pigs. The results also indicate that antibiotic resistance genes increased in abundance and diversity in the medicated swine microbiome despite a high background of resistance genes in nonmedicated swine. Some enriched genes, such as aminoglycoside O-phosphotransferases, confer resistance to antibiotics that were not administered in this study, demonstrating the potential for indirect selection of resistance to classes of antibiotics not fed. The collateral effects of feeding subtherapeutic doses of antibiotics to agricultural animals are apparent and must be considered in cost-benefit analyses.
Collapse
|
537
|
Wide variation in antibiotic resistance proteins identified by functional metagenomic screening of a soil DNA library. Appl Environ Microbiol 2012; 78:1708-14. [PMID: 22247132 DOI: 10.1128/aem.06759-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most genes for antibiotic resistance present in soil microbes remain unexplored because most environmental microbes cannot be cultured. Only recently has the identification of these genes become feasible through the use of culture-independent methods. We screened a soil metagenomic DNA library in an Escherichia coli host for genes that can confer resistance to kanamycin, gentamicin, rifampin, trimethoprim, chloramphenicol, or tetracycline. The screen revealed 41 genes that encode novel protein variants of eight protein families, including aminoglycoside acetyltransferases, rifampin ADP-ribosyltransferases, dihydrofolate reductases, and transporters. Several proteins of the same protein family deviate considerably from each other yet confer comparable resistance. For example, five dihydrofolate reductases sharing at most 44% amino acid sequence identity in pairwise comparisons were equivalent in conferring trimethoprim resistance. We identified variants of aminoglycoside acetyltransferases and transporters that differ in the specificity of the drugs for which they confer resistance. We also found wide variation in protein structure. Two forms of rifampin ADP-ribosyltransferases, one twice the size of the other, were similarly effective at conferring rifampin resistance, although the short form was expressed at a much lower level. Functional metagenomic screening provides insight into the large variability in antibiotic resistance protein sequences, revealing divergent variants that preserve protein function.
Collapse
|
538
|
Martínez JL. Natural antibiotic resistance and contamination by antibiotic resistance determinants: the two ages in the evolution of resistance to antimicrobials. Front Microbiol 2012; 3:1. [PMID: 22275914 PMCID: PMC3257838 DOI: 10.3389/fmicb.2012.00001] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/02/2012] [Indexed: 11/13/2022] Open
Affiliation(s)
- José L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
539
|
Martínez JL. Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens. Front Microbiol 2012; 2:265. [PMID: 22319513 PMCID: PMC3249888 DOI: 10.3389/fmicb.2011.00265] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/12/2011] [Indexed: 11/17/2022] Open
Abstract
It is generally accepted that resistance genes acquired by human pathogens through horizontal gene transfer originated in environmental, non-pathogenic bacteria. As a consequence, there is increasing concern on the roles that natural, non-clinical ecosystems, may play in the evolution of resistance. Recent studies have shown that the variability of determinants that can provide antibiotic resistance on their expression in a heterologous host is much larger than what is actually found in human pathogens, which implies the existence of bottlenecks modulating the transfer, spread, and stability of antibiotic resistance genes. In this review, the role that different factors such as founder effects, ecological connectivity, fitness costs, or second-order selection may have on the establishment of a specific resistance determinant in a population of bacterial pathogens is analyzed.
Collapse
Affiliation(s)
- José L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Cientificas Madrid, Spain
| |
Collapse
|
540
|
Ogilvie LA, Firouzmand S, Jones BV. Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome. Bioeng Bugs 2012; 3:13-31. [PMID: 22126801 PMCID: PMC3329251 DOI: 10.4161/bbug.3.1.17883] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous mobile genetic elements (MGE) are associated with the human gut microbiota and collectively referred to as the gut mobile metagenome. The role of this flexible gene pool in development and functioning of the gut microbial community remains largely unexplored, yet recent evidence suggests that at least some MGE comprising this fraction of the gut microbiome reflect the co-evolution of host and microbe in the gastro-intestinal tract. In conjunction, the high level of novel gene content typical of MGE coupled with their predicted high diversity, suggests that the mobile metagenome constitutes an immense and largely unexplored gene-space likely to encode many novel activities with potential biotechnological or pharmaceutical value, as well as being important to the development and functioning of the gut microbiota. Of the various types of MGE that comprise the gut mobile metagenome, plasmids are of particular importance since these elements are often capable of autonomous transfer between disparate bacterial species, and are known to encode accessory functions that increase bacterial fitness in a given environment facilitating bacterial adaptation. In this article current knowledge regarding plasmids resident in the human gut mobile metagenome is reviewed, and available strategies to access and characterize this portion of the gut microbiome are described. The relative merits of these methods and their present as well as prospective impact on our understanding of the human gut microbiota is discussed.
Collapse
Affiliation(s)
- Lesley A Ogilvie
- Centre for Biomedical and Health Science Research, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | | | | |
Collapse
|
541
|
Abstract
Antibiotics remain one of our most important pharmacological tools for the control of infectious disease. However, unlike most other drugs, the use of antibiotics selects for resistant organisms and erodes their clinical utility. Resistance can emerge within populations of bacteria by mutation and be retained by subsequent selection or by the acquisition of resistance elements laterally from other organisms. The source of these resistance genes is only now being understood. The evidence supports a large bacterial resistome-the collection of all resistance genes and their precursors in both pathogenic and nonpathogenic bacteria. These genes have arisen by various means including self-protection in the case of antibiotic producers, transport of small molecules for various reasons including nutrition and detoxification of noxious chemicals, and to accomplish other goals, such as metabolism, and demonstrate serendipitous selectivity for antibiotics. Regardless of their origins, resistance genes can rapidly move through bacterial populations and emerge in pathogenic bacteria. Understanding the processes that contribute to the evolution and selection of resistance is essential to mange current stocks of antibiotics and develop new ones.
Collapse
Affiliation(s)
- Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
542
|
Hu B, Xie G, Lo CC, Starkenburg SR, Chain PSG. Pathogen comparative genomics in the next-generation sequencing era: genome alignments, pangenomics and metagenomics. Brief Funct Genomics 2011; 10:322-33. [DOI: 10.1093/bfgp/elr042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
543
|
Martiny AC, Martiny JBH, Weihe C, Field A, Ellis JC. Functional metagenomics reveals previously unrecognized diversity of antibiotic resistance genes in gulls. Front Microbiol 2011; 2:238. [PMID: 22347872 PMCID: PMC3275322 DOI: 10.3389/fmicb.2011.00238] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/11/2011] [Indexed: 11/17/2022] Open
Abstract
Wildlife may facilitate the spread of antibiotic resistance (AR) between human-dominated habitats and the surrounding environment. Here, we use functional metagenomics to survey the diversity and genomic context of AR genes in gulls. Using this approach, we found a variety of AR genes not previously detected in gulls and wildlife, including class A and C β-lactamases as well as six tetracycline resistance gene types. An analysis of the flanking sequences indicates that most of these genes are present in Enterobacteriaceae and various Gram-positive bacteria. In addition to finding known gene types, we detected 31 previously undescribed AR genes. These undescribed genes include one most similar to an uncharacterized gene in Verrucomicrobium and another to a putative DNA repair protein in Lactobacillus. Overall, the study more than doubled the number of clinically relevant AR gene types known to be carried by gulls or by wildlife in general. Together with the propensity of gulls to visit human-dominated habitats, this high diversity of AR gene types suggests that gulls could facilitate the spread of AR.
Collapse
Affiliation(s)
- Adam C Martiny
- Department of Earth System Science, University of California Irvine, CA, USA
| | | | | | | | | |
Collapse
|
544
|
Mitsou EK, Kirtzalidou E, Pramateftaki P, Kyriacou A. Antibiotic resistance in faecal microbiota of Greek healthy infants. Benef Microbes 2011; 1:297-306. [PMID: 21831766 DOI: 10.3920/bm2010.0007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Increasing use of antibiotics for the treatment of infectious diseases and also for non-therapeutic reasons (agriculture, animal husbandry and aquaculture) has led to the increasing incidence of antibiotic resistance and the ineffectiveness of antimicrobial treatment. Commensal intestinal bacteria are very often exposed to the selective pressure of antimicrobial agents and may constitute a reservoir of antibiotic resistance determinants that can be transferred to pathogens. The present study aimed to investigate the antibiotic susceptibility profile and the presence of selected resistance genes in cocci isolated from the faecal microbiota of 35 healthy, full-term infants at 4, 30 and 90 days after delivery. A total of 148 gram-positive, catalase-negative cocci were isolated and tested for susceptibility to 12 different antibiotics by disk-diffusion technique. Multiplex PCR analysis was performed for the identification of Enterococcus spp. isolates and the simultaneous detection of vancomycin-resistance genes. PCR-based methodology was used also for identification of tetracycline and erythromycin resistance determinants. Identification results indicated E. faecalis as the predominant species (81 strains), followed by E. faecium, E. casseliflavus/E. flavescens and E. gallinarum. High prevalence of resistance to tetracycline (39.9%), erythromycin (35.1%), vancomycin (19.6%) and to nucleic acid synthesis inhibitors was detected. PCR data revealed 24 out of 52 erythromycin-resistant isolates carrying the ermB gene and 32 out of 59 tetracycline-resistant strains carrying tet genes, with tet(L) determinant being the most frequently detected. Only intrinsic vancomycin resistance (vanC1 and vanC2/C3) was reported among tested isolates. In conclusion, erythromycin and tetracycline acquired resistant traits are widespread among faecal cocci isolates from Greek, healthy infants under no apparent antimicrobial selective pressure.
Collapse
Affiliation(s)
- E K Mitsou
- Department of Dietetics and Nutritional Science, Harokopio University, Kallithea, Greece
| | | | | | | |
Collapse
|
545
|
LaPara TM, Burch TR, McNamara PJ, Tan DT, Yan M, Eichmiller JJ. Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior Harbor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:9543-9. [PMID: 21981654 DOI: 10.1021/es202775r] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, the impact of tertiary-treated municipal wastewater on the quantity of several antibiotic resistance determinants in Duluth-Superior Harbor was investigated by collecting surface water and sediment samples from 13 locations in Duluth-Superior Harbor, the St. Louis River, and Lake Superior. Quantitative PCR (qPCR) was used to target three different genes encoding resistance to tetracycline (tet(A), tet(X), and tet(W)), the gene encoding the integrase of class 1 integrons (intI1), and total bacterial abundance (16S rRNA genes) as well as total and human fecal contamination levels (16S rRNA genes specific to the genus Bacteroides ). The quantities of tet(A), tet(X), tet(W), intI1, total Bacteroides , and human-specific Bacteroides were typically 20-fold higher in the tertiary-treated wastewater than in nearby surface water samples. In contrast, the quantities of these genes in the St. Louis River and Lake Superior were typically below detection. Analysis of sequences of tet(W) gene fragments from four different samples collected throughout the study site supported the conclusion that tertiary-treated municipal wastewater is a point source of resistance genes into Duluth-Superior Harbor. This study demonstrates that the discharge of exceptionally treated municipal wastewater can have a statistically significant effect on the quantities of antibiotic resistance genes in otherwise pristine surface waters.
Collapse
Affiliation(s)
- Timothy M LaPara
- Department of Civil Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States.
| | | | | | | | | | | |
Collapse
|
546
|
Li D, Qi R, Yang M, Zhang Y, Yu T. Bacterial community characteristics under long-term antibiotic selection pressures. WATER RESEARCH 2011; 45:6063-73. [PMID: 21937072 DOI: 10.1016/j.watres.2011.09.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 08/30/2011] [Accepted: 09/01/2011] [Indexed: 05/23/2023]
Abstract
To investigate bacterial community characteristics under long-term antibiotic selection pressures, water samples from the upstream and the downstream sections of two rivers individually receiving the treated penicillin G and oxytetracycline production wastewater, as well as the anaerobic and the aerobic effluent of the penicillin G production wastewater treatment plant, were taken and analyzed. Antibiotic resistance ratios of bacterial communities in water samples were estimated by culture-based analysis. The majority of bacterial colonies (approximately 55%-70%) in both downstream rivers and the aerobic effluent showed resistance to 80 μg/ml of antibiotics tested, while the resistance ratios were less than 10% and 5% respectively for both upstream rivers. Six 16S rRNA gene clone libraries were constructed with 355 sequences and 215 OTUs totally obtained representing 465 clones. The antibiotic stresses seemed not reduce the diversities of bacterial communities in antibiotic containing water samples compared to those in the two reference upstream rivers. Bacterial groups present in the two reference upstream rivers were common residents in freshwater ecosystems, with the dominant groups as the phyla Proteobacteria including Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria, as well as Actinobacteria and Bacteroidetes. The phyla Proteobacteria and Firmicutes were dominant in all antibiotic containing water samples, with the clones belonged to Deltaproteobacteria and Epsilonproteobacteria significantly abundant, as well as Gram-positive low GC bacteria in the classes Clostridia and Bacilli. It thus seemed that Deltaproteobacteria, Epsilonproteobacteria, Clostridia and Bacilli might be specifically associated with antibiotic containing environments.
Collapse
Affiliation(s)
- Dong Li
- State Key Lab of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | |
Collapse
|
547
|
Perron GG, Lee AEG, Wang Y, Huang WE, Barraclough TG. Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations. Proc Biol Sci 2011; 279:1477-84. [PMID: 22048956 DOI: 10.1098/rspb.2011.1933] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution.
Collapse
Affiliation(s)
- Gabriel G Perron
- Division of Biology, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK.
| | | | | | | | | |
Collapse
|
548
|
Zhang L, Peng J, Tang J, Yuan B, He R, Xiao Y. Description and validation of coupling high performance liquid chromatography with resonance Rayleigh scattering in aminoglycosides determination. Anal Chim Acta 2011; 706:199-204. [DOI: 10.1016/j.aca.2011.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/09/2011] [Accepted: 09/15/2011] [Indexed: 11/29/2022]
|
549
|
Moore AM, Munck C, Sommer MOA, Dantas G. Functional metagenomic investigations of the human intestinal microbiota. Front Microbiol 2011; 2:188. [PMID: 22022321 PMCID: PMC3195301 DOI: 10.3389/fmicb.2011.00188] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/23/2011] [Indexed: 12/15/2022] Open
Abstract
The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation, and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique, used for decades to study environmental microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host.
Collapse
Affiliation(s)
- Aimee M Moore
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine St. Louis, MO, USA
| | | | | | | |
Collapse
|
550
|
Zhang Q, Lambert G, Liao D, Kim H, Robin K, Tung CK, Pourmand N, Austin RH. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 2011; 333:1764-7. [PMID: 21940899 DOI: 10.1126/science.1208747] [Citation(s) in RCA: 380] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The emergence of bacterial antibiotic resistance is a growing problem, yet the variables that influence the rate of emergence of resistance are not well understood. In a microfluidic device designed to mimic naturally occurring bacterial niches, resistance of Escherichia coli to the antibiotic ciprofloxacin developed within 10 hours. Resistance emerged with as few as 100 bacteria in the initial inoculation. Whole-genome sequencing of the resistant organisms revealed that four functional single-nucleotide polymorphisms attained fixation. Knowledge about the rapid emergence of antibiotic resistance in the heterogeneous conditions within the mammalian body may be helpful in understanding the emergence of drug resistance during cancer chemotherapy.
Collapse
Affiliation(s)
- Qiucen Zhang
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | |
Collapse
|