501
|
Bernardini G, Zhao C, Wedd AG, Bond AM. Ionic Liquid-Enhanced Photooxidation of Water Using the Polyoxometalate Anion [P2W18O62]6– as the Sensitizer. Inorg Chem 2011; 50:5899-909. [DOI: 10.1021/ic1016627] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | - Anthony G. Wedd
- School of Chemistry and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
502
|
Magnuson A, Krassen H, Stensjö K, Ho FM, Styring S. Modeling Photosystem I with the alternative reaction center protein PsaB2 in the nitrogen fixing cyanobacterium Nostoc punctiforme. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1152-61. [PMID: 21605545 DOI: 10.1016/j.bbabio.2011.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/21/2011] [Accepted: 05/07/2011] [Indexed: 11/18/2022]
Abstract
Five nitrogen fixing cyanobacterial strains have been found to contain PsaB2, an additional and divergent gene copy for the Photosystem I reaction center protein PsaB. In all five species the divergent gene, psaB2, is located separately from the normal psaAB operon in the genome. The protein, PsaB2, was recently identified in heterocysts of Nostoc punctiforme sp. strain PCC 73102. 12 conserved amino acid replacements and one insertion, were identified by a multiple sequence alignment of several PsaB2 and PsaB1 sequences. Several, including an inserted glutamine, are located close to the iron-sulfur cluster F(X) in the electron transfer chain. By homology modeling, using the Photosystem I crystal structure as template, we have found that the amino acid composition in PsaB2 will introduce changes in critical parts of the Photosystem I protein structure. The changes are close to F(X) and the phylloquinone (PhQ) in the B-branch, indicating that the electron transfer properties most likely will be affected. We suggest that the divergent PsaB2 protein produces an alternative Photosystem I reaction center with different structural and electron transfer properties. Some interesting physiologcial consequences that this can have for the function of Photosystem I in heterocysts, are discussed.
Collapse
Affiliation(s)
- Ann Magnuson
- Department of Photochemistryand Molecular Science, Uppsala University, Sweden.
| | | | | | | | | |
Collapse
|
503
|
Su JH, Cox N, Ames W, Pantazis DA, Rapatskiy L, Lohmiller T, Kulik LV, Dorlet P, Rutherford AW, Neese F, Boussac A, Lubitz W, Messinger J. The electronic structures of the S(2) states of the oxygen-evolving complexes of photosystem II in plants and cyanobacteria in the presence and absence of methanol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:829-40. [PMID: 21406177 DOI: 10.1016/j.bbabio.2011.03.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/02/2011] [Accepted: 03/04/2011] [Indexed: 01/25/2023]
Abstract
The electronic properties of the Mn(4)O(x)Ca cluster in the S(2) state of the oxygen-evolving complex (OEC) were studied using X- and Q-band EPR and Q-band (55)Mn-ENDOR using photosystem II preparations isolated from the thermophilic cyanobacterium T. elongatus and higher plants (spinach). The data presented here show that there is very little difference between the two species. Specifically it is shown that: (i) only small changes are seen in the fitted isotropic hyperfine values, suggesting that there is no significant difference in the overall spin distribution (electronic coupling scheme) between the two species; (ii) the inferred fine-structure tensor of the only Mn(III) ion in the cluster is of the same magnitude and geometry for both species types, suggesting that the Mn(III) ion has the same coordination sphere in both sample preparations; and (iii) the data from both species are consistent with only one structural model available in the literature, namely the Siegbahn structure [Siegbahn, P. E. M. Accounts Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al., Phys. Chem. Chem. Phys.2009, 11, 6788-6798]. These measurements were made in the presence of methanol because it confers favorable magnetic relaxation properties to the cluster that facilitate pulse-EPR techniques. In the absence of methanol the separation of the ground state and the first excited state of the spin system is smaller. For cyanobacteria this effect is minor but in plant PS II it leads to a break-down of the S(T)=½ spin model of the S(2) state. This suggests that the methanol-OEC interaction is species dependent. It is proposed that the effect of small organic solvents on the electronic structure of the cluster is to change the coupling between the outer Mn (Mn(A)) and the other three Mn ions that form the trimeric part of the cluster (Mn(B), Mn(C), Mn(D)), by perturbing the linking bis-μ-oxo bridge. The flexibility of this bridging unit is discussed with regard to the mechanism of O-O bond formation.
Collapse
Affiliation(s)
- Ji-Hu Su
- Max-Planck-Institut für Bioanorganische Chemie, D-45470 Mülheim an der Ruhr, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
504
|
Mutwil M, Klie S, Tohge T, Giorgi FM, Wilkins O, Campbell MM, Fernie AR, Usadel B, Nikoloski Z, Persson S. PlaNet: combined sequence and expression comparisons across plant networks derived from seven species. THE PLANT CELL 2011; 23:895-910. [PMID: 21441431 PMCID: PMC3082271 DOI: 10.1105/tpc.111.083667] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 01/26/2011] [Accepted: 03/07/2011] [Indexed: 05/17/2023]
Abstract
The model organism Arabidopsis thaliana is readily used in basic research due to resource availability and relative speed of data acquisition. A major goal is to transfer acquired knowledge from Arabidopsis to crop species. However, the identification of functional equivalents of well-characterized Arabidopsis genes in other plants is a nontrivial task. It is well documented that transcriptionally coordinated genes tend to be functionally related and that such relationships may be conserved across different species and even kingdoms. To exploit such relationships, we constructed whole-genome coexpression networks for Arabidopsis and six important plant crop species. The interactive networks, clustered using the HCCA algorithm, are provided under the banner PlaNet (http://aranet.mpimp-golm.mpg.de). We implemented a comparative network algorithm that estimates similarities between network structures. Thus, the platform can be used to swiftly infer similar coexpressed network vicinities within and across species and can predict the identity of functional homologs. We exemplify this using the PSA-D and chalcone synthase-related gene networks. Finally, we assessed how ontology terms are transcriptionally connected in the seven species and provide the corresponding MapMan term coexpression networks. The data support the contention that this platform will considerably improve transfer of knowledge generated in Arabidopsis to valuable crop species.
Collapse
Affiliation(s)
- Marek Mutwil
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Sebastian Klie
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Takayuki Tohge
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Federico M. Giorgi
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Olivia Wilkins
- Centre for the Analysis of Genome Evolution and Function, Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Malcolm M. Campbell
- Centre for the Analysis of Genome Evolution and Function, Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
- Department of Biology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Alisdair R. Fernie
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Björn Usadel
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Staffan Persson
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| |
Collapse
|
505
|
Cox N, Rapatskiy L, Su JH, Pantazis DA, Sugiura M, Kulik L, Dorlet P, Rutherford AW, Neese F, Boussac A, Lubitz W, Messinger J. Effect of Ca2+/Sr2+ substitution on the electronic structure of the oxygen-evolving complex of photosystem II: a combined multifrequency EPR, 55Mn-ENDOR, and DFT study of the S2 state. J Am Chem Soc 2011; 133:3635-48. [PMID: 21341708 DOI: 10.1021/ja110145v] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structures of the native Mn(4)O(x)Ca cluster and the biosynthetically substituted Mn(4)O(x)Sr cluster of the oxygen evolving complex (OEC) of photosystem II (PSII) core complexes isolated from Thermosynechococcus elongatus, poised in the S(2) state, were studied by X- and Q-band CW-EPR and by pulsed Q-band (55)Mn-ENDOR spectroscopy. Both wild type and tyrosine D less mutants grown photoautotrophically in either CaCl(2) or SrCl(2) containing media were measured. The obtained CW-EPR spectra of the S(2) state displayed the characteristic, clearly noticeable differences in the hyperfine pattern of the multiline EPR signal [Boussac et al. J. Biol. Chem.2004, 279, 22809-22819]. In sharp contrast, the manganese ((55)Mn) ENDOR spectra of the Ca and Sr forms of the OEC were remarkably similar. Multifrequency simulations of the X- and Q-band CW-EPR and (55)Mn-pulsed ENDOR spectra using the Spin Hamiltonian formalism were performed to investigate this surprising result. It is shown that (i) all four manganese ions contribute to the (55)Mn-ENDOR spectra; (ii) only small changes are seen in the fitted isotropic hyperfine values for the Ca(2+) and Sr(2+) containing OEC, suggesting that there is no change in the overall spin distribution (electronic coupling scheme) upon Ca(2+)/Sr(2+) substitution; (iii) the changes in the CW-EPR hyperfine pattern can be explained by a small decrease in the anisotropy of at least two hyperfine tensors. It is proposed that modifications at the Ca(2+) site may modulate the fine structure tensor of the Mn(III) ion. DFT calculations support the above conclusions. Our data analysis also provides strong support for the notion that in the S(2) state the coordination of the Mn(III) ion is square-pyramidal (5-coordinate) or octahedral (6-coordinate) with tetragonal elongation. In addition, it is shown that only one of the currently published OEC models, the Siegbahn structure [Siegbahn, P. E. M. Acc. Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al. Phys. Chem. Chem. Phys.2009, 11, 6788-6798], is consistent with all data presented here. These results provide important information for the structure of the OEC and the water-splitting mechanism. In particular, the 5-coordinate Mn(III) is a potential site for substrate 'water' (H(2)O, OH(-)) binding. Its location within the cuboidal structural unit, as opposed to the external 'dangler' position, may have important consequences for the mechanism of O-O bond formation.
Collapse
Affiliation(s)
- Nicholas Cox
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
506
|
Chen G, Allahverdiyeva Y, Aro EM, Styring S, Mamedov F. Electron paramagnetic resonance study of the electron transfer reactions in photosystem II membrane preparations from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:205-15. [DOI: 10.1016/j.bbabio.2010.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
|
507
|
Berry LL, Brzezowski P, Wilson KE. Inactivation of the STT7 gene protects PsaF-deficient Chlamydomonas reinhardtii cells from oxidative stress under high light. PHYSIOLOGIA PLANTARUM 2011; 141:188-96. [PMID: 20946347 DOI: 10.1111/j.1399-3054.2010.01421.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Photosystem I (PSI) utilizes light energy to excite electrons for the reduction of NADP(+) , and like photosystem II, it is sensitive to excess light. When PSI is excited and unable to be reduced by the electron transport chain, the special pair of chlorophyll molecules, P700(+) , will take electrons from neighboring sources leading to cellular damage. A Chlamydomonas reinhardtii mutant, which is defective in the production of the PsaF subunit of PSI, provides an ideal platform for studying the processes involved in protecting PSI from excess light. This strain dies following the exposure to high light (HL) because of photo-oxidative damage. We used a second-site suppressor screen to identify genes involved in protecting PsaF-deficient PSI from excess light. In doing so, we demonstrated that the absence of the STT7 protein, which is required for LHCII phosphorylation and the process of state transitions suppresses the psaF HL-lethal phenotype. On the basis of chlorophyll fluorescence measurements, the psaF mutant has a more reduced plastoquinone pool at a given photosynthetic photon flux density than the wild-type cells. Under these conditions the process of state transitions will become active, resulting in the transfer of phosphorylated LHCII proteins to PSI, further increasing the excitation of PSI. However, in the psaF stt7 double mutant, the LHCII proteins will not be transferred to PSI, and thus the level of PSI excitation will remain lower. This study provides clear genetic evidence that the HL-lethal phenotype of the psaF mutant is because of PSI overexciation.
Collapse
Affiliation(s)
- Lindsay L Berry
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7V 1G2, Canada
| | | | | |
Collapse
|
508
|
Rumpho ME, Pelletreau KN, Moustafa A, Bhattacharya D. The making of a photosynthetic animal. J Exp Biol 2011; 214:303-11. [PMID: 21177950 PMCID: PMC3008634 DOI: 10.1242/jeb.046540] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2010] [Indexed: 11/20/2022]
Abstract
Symbiotic animals containing green photobionts challenge the common perception that only plants are capable of capturing the sun's rays and converting them into biological energy through photoautotrophic CO(2) fixation (photosynthesis). 'Solar-powered' sacoglossan molluscs, or sea slugs, have taken this type of symbiotic association one step further by solely harboring the photosynthetic organelle, the plastid (=chloroplast). One such sea slug, Elysia chlorotica, lives as a 'plant' when provided with only light and air as a result of acquiring plastids during feeding on its algal prey Vaucheria litorea. The captured plastids (kleptoplasts) are retained intracellularly in cells lining the digestive diverticula of the sea slug, a phenomenon sometimes referred to as kleptoplasty. Photosynthesis by the plastids provides E. chlorotica with energy and fixed carbon for its entire lifespan of ~10 months. The plastids are not transmitted vertically (i.e. are absent in eggs) and do not undergo division in the sea slug. However, de novo protein synthesis continues, including plastid- and nuclear-encoded plastid-targeted proteins, despite the apparent absence of algal nuclei. Here we discuss current data and provide hypotheses to explain how long-term photosynthetic activity is maintained by the kleptoplasts. This fascinating 'green animal' provides a unique model to study the evolution of photosynthesis in a multicellular heterotrophic organism.
Collapse
Affiliation(s)
- Mary E Rumpho
- Department of Molecular and Biomedical Sciences, 5735 Hitchner Hall, University of Maine, Orono, ME 04469, USA.
| | | | | | | |
Collapse
|
509
|
GREINER STEPHAN, RAUWOLF UWE, MEURER JÖRG, HERRMANN REINHOLDG. The role of plastids in plant speciation. Mol Ecol 2011; 20:671-91. [DOI: 10.1111/j.1365-294x.2010.04984.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
510
|
Yadavalli V, Malleda C, Subramanyam R. Protein–protein interactions by molecular modeling and biochemical characterization of PSI-LHCI supercomplexes from Chlamydomonas reinhardtii. MOLECULAR BIOSYSTEMS 2011; 7:3143-51. [DOI: 10.1039/c1mb05218g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
511
|
Leister D, Kleine T. Role of intercompartmental DNA transfer in producing genetic diversity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 291:73-114. [PMID: 22017974 DOI: 10.1016/b978-0-12-386035-4.00003-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, genes are found in three compartments-the nucleus, mitochondria, and plastids-and extensive gene transfer has occurred between them. Most organellar genes in the nucleus migrated there long ago, but transfer is ongoing and ubiquitous. It now generates mostly noncoding nuclear DNA, can also disrupt gene functions, and reshape genes by adding novel exons. Plastid or nuclear sequences have also contributed to the formation of mitochondrial tRNA genes. It is now clear that organelle-to-nucleus DNA transfer involves the escape of DNA molecules from the organelles at times of stress or at certain developmental stages, and their subsequent incorporation at sites of double-stranded breaks in nuclear DNA by nonhomologous recombination. Intercompartmental DNA transfer thus appears to be an inescapable phenomenon that has had a broad impact on eukaryotic evolution, affecting DNA repair, gene and genome evolution, and redirecting proteins to different target compartments.
Collapse
Affiliation(s)
- Dario Leister
- Lehrstuhl für Molekularbiologie der Pflanzen, Department Biologie I, Ludwig-Maximilians-Universität München-LMU, Planegg-Martinsried, Germany
| | | |
Collapse
|
512
|
KATO Y, TSUJII M, WATANABE T. Photoelectrochemical Behavior of Photosystem I Complex in the Presence of a Viologen as Mediator at SnO2 Electrode. ELECTROCHEMISTRY 2011. [DOI: 10.5796/electrochemistry.79.845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
513
|
Baniulis D, Zhang H, Zakharova T, Hasan SS, Cramer WA. Purification and crystallization of the cyanobacterial cytochrome b6f complex. Methods Mol Biol 2011; 684:65-77. [PMID: 20960122 DOI: 10.1007/978-1-60761-925-3_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cytochrome b6f complex from the filamentous cyanobacteria (Mastigocladus laminosus, Nostoc sp. PCC 7120) and spinach chloroplasts has been purified as a homo-dimer. Electrospray ionization mass spectroscopy showed the monomer to contain eight and nine subunits, respectively, and dimeric masses of 217.1, 214.2, and 286.5 kDa for M. laminosus, Nostoc, and the complex from spinach. The core subunits containing or interacting with redox-active prosthetic groups are petA (cytochrome f), B (cytochrome b6, C (Rieske iron-sulfur protein), D (subunit IV), with protein molecular weights of 31.8-32.3, 24.7-24.9, 18.9-19.3, and 17.3-17.5 kDa, and four small 3.2-4.2 kDa polypeptides petG, L, M, and N. A ninth polypeptide, the 35 kDa petH (FNR) polypeptide in the spinach complex, was identified as ferredoxin:NADP reductase (FNR), which binds to the complex tightly at a stoichiometry of approx 0.8/cytf. The spinach complex contains diaphorase activity diagnostic of FNR and is active in facilitating ferredoxin-dependent electron transfer from NADPH to the cytochrome b6f complex. The purified cytochrome b6f complex contains stoichiometrically bound chlorophyll a and β-carotene at a ratio of approximately one molecule of each per cytochrome f. It also contains bound lipid and detergent, indicating seven lipid-binding sites per monomer. Highly purified complexes are active for approximately 1 week after isolation, transferring 200-300 electrons/cytf s. The M. laminosus complex was shown to be subject to proteolysis and associated loss of activity if incubated for more than 1 week at room temperature. The Nostoc complex is more resistant to proteolysis. Addition of pure synthetic lipid to the cyanobacterial complex, which is mostly delipidated by the isolation procedure, allows rapid formation of large (≥0.2 mm) crystals suitable for X-ray diffraction analysis and structure determination. The crystals made from the cyanobacterial complex diffract to 3.0 Å with R values of 0.222 and 0.230 for M. laminosus and Nostoc, respectively. It has not yet been possible to obtain crystals of the b6f complex from any plant source, specifically spinach or pea, perhaps because of incomplete binding of FNR or other peripheral polypeptides. Well diffracting crystals have been obtained from the green alga, Chlamydomonas reinhardtii (ref. 10).
Collapse
Affiliation(s)
- Danas Baniulis
- Department of Biological Sciences, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN, USA
| | | | | | | | | |
Collapse
|
514
|
Kochubey SM. Changes in antenna of photosystem II induced by short-term heating. PHOTOSYNTHESIS RESEARCH 2010; 106:239-46. [PMID: 21140217 DOI: 10.1007/s11120-010-9599-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 11/12/2010] [Indexed: 05/30/2023]
Abstract
Changes in antenna of photosystem II, induced by short-term heating, were studied using characteristics of a short-wavelength band in low-temperature fluorescence spectra (77 K) of pea chloroplasts. Heating for 5 min was carried out at 25 and 45°C in the darkness or in the presence of white light with intensity of 260 or 1,400 μmol/m(2)s. Most modes of thermal treating induced a decrease in integral intensity of the band and an increase of its half-width. The changes were more prominent at high-temperature heating. The second derivative of the contour of a short-wavelength band showed its three components around 680, 685, and 693 nm, the first of which belongs to emission of the outer antenna of Photosystem II, and the other two to its inner antenna. As the fourth derivative shows, high-temperature heating in the presence of light evokes an appearance of some additional components in a short-wavelength region (654, 658, 661, 666, 672, and 675 nm) as well as of two additional components, 682 and 689 nm, in the region of 685-nm peak. Two subcomponents, 692 and 694 nm, can be detected in the 693-nm component. The results are discussed on the basis of the data concerning energy levels and pathways of energy transfer in pigment-protein complexes of the outer and the inner antennas of photosystem II. It is assumed that a protective role of low light relates to inducing of an essential disarrangement in the outer and the inner antennas and of a subsequent decrease in energy funneling to reaction centers, which, in turn, lowers the extent of photoinhibition.
Collapse
Affiliation(s)
- Svetlana M Kochubey
- Institute of Plant Physiology, National Academy of Sciences of Ukraine, Vasylkivska Str. 31/17, Kiev, Ukraine.
| |
Collapse
|
515
|
Amthor JS. From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. THE NEW PHYTOLOGIST 2010; 188:939-59. [PMID: 20977480 DOI: 10.1111/j.1469-8137.2010.03505.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The relationship between solar radiation capture and potential plant growth is of theoretical and practical importance. The key processes constraining the transduction of solar radiation into phyto-energy (i.e. free energy in phytomass) were reviewed to estimate potential solar-energy-use efficiency. Specifically, the out-put:input stoichiometries of photosynthesis and photorespiration in C(3) and C(4) systems, mobilization and translocation of photosynthate, and biosynthesis of major plant biochemical constituents were evaluated. The maintenance requirement, an area of important uncertainty, was also considered. For a hypothetical C(3) grain crop with a full canopy at 30°C and 350 ppm atmospheric [CO(2) ], theoretically potential efficiencies (based on extant plant metabolic reactions and pathways) were estimated at c. 0.041 J J(-1) incident total solar radiation, and c. 0.092 J J(-1) absorbed photosynthetically active radiation (PAR). At 20°C, the calculated potential efficiencies increased to 0.053 and 0.118 J J(-1) (incident total radiation and absorbed PAR, respectively). Estimates for a hypothetical C(4) cereal were c. 0.051 and c. 0.114 J J(-1), respectively. These values, which cannot be considered as precise, are less than some previous estimates, and the reasons for the differences are considered. Field-based data indicate that exceptional crops may attain a significant fraction of potential efficiency.
Collapse
Affiliation(s)
- Jeffrey S Amthor
- Faculty of Agriculture, Food and Natural Resources (C81), University of Sydney, NSW 2006, Australia.
| |
Collapse
|
516
|
Hirakawa H, Nagamune T. Molecular assembly of P450 with ferredoxin and ferredoxin reductase by fusion to PCNA. Chembiochem 2010; 11:1517-20. [PMID: 20607777 DOI: 10.1002/cbic.201000226] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hidehiko Hirakawa
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | |
Collapse
|
517
|
Santabarbara S, Kuprov I, Poluektov O, Casal A, Russell CA, Purton S, Evans MCW. Directionality of Electron-Transfer Reactions in Photosystem I of Prokaryotes: Universality of the Bidirectional Electron-Transfer Model. J Phys Chem B 2010; 114:15158-71. [PMID: 20977227 DOI: 10.1021/jp1044018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefano Santabarbara
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Ilya Kuprov
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Oleg Poluektov
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Antonio Casal
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Charlotte A. Russell
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Saul Purton
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Michael C. W. Evans
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| |
Collapse
|
518
|
Mukherjee D, May M, Vaughn M, Bruce BD, Khomami B. Controlling the morphology of Photosystem I assembly on thiol-activated Au substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:16048-54. [PMID: 20845944 DOI: 10.1021/la102832x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Morphological variations of Photosystem I (PS I) assembly on hydroxyl-terminated alkanethiolate self-assembled monolayer (SAM)/Au substrates with various deposition techniques is presented. Our studies indicate that deposition conditions such as PS I concentration and driving force play a central role in determining organization of immobilized PS I on thiol-activated Au surfaces. Specifically, atomic force microscopy (AFM) and ellipsometry analyses indicate that gravity-driven deposition from concentrated PS I solutions results in a large number of columnar PS I aggregates, which assemble perpendicular to the Au surface. PS I deposition yields much more uniform layers when deposited at lower concentrations, suggesting preassembly of the aggregate formation in the solution phase. Moreover, in electric field assisted deposition at high field strengths, columnar self-assembly is largely prevented, thereby allowing a uniform, monolayer-like deposition even at very high PS I concentrations. In situ dynamic light scattering (DLS) studies of solution-phase aggregation dynamics of PS I suspensions in both the presence and absence of an applied electric field support these observations and clearly demonstrate that the externally imposed electric field effectively fragments large PS I aggregates in the solution phase, thereby permitting a uniform deposition of PS I trimers on SAM/Au substrates.
Collapse
Affiliation(s)
- Dibyendu Mukherjee
- Sustainable Energy Education and Research Center (SEERC), University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | |
Collapse
|
519
|
Nelson N. Photosystems and global effects of oxygenic photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:856-63. [PMID: 20955682 DOI: 10.1016/j.bbabio.2010.10.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/10/2010] [Accepted: 10/12/2010] [Indexed: 11/19/2022]
Abstract
Because life on earth is governed by the second law of thermodynamics, it is subject to increasing entropy. Oxygenic photosynthesis, the earth's major producer of both oxygen and organic matter, is a principal player in the development and maintenance of life, and thus results in increased order. The primary steps of oxygenic photosynthesis are driven by four multi-subunit membrane protein complexes: photosystem I, photosystem II, cytochrome b(6)f complex, and F-ATPase. Photosystem II generates the most positive redox potential found in nature and thus capable of extracting electrons from water. Photosystem I generates the most negative redox potential found in nature; thus, it largely determines the global amount of enthalpy in living systems. The recent structural determination of PSII and PSI complexes from cyanobacteria and plants sheds light on the evolutionary forces that shaped oxygenic photosynthesis. This newly available structural information complements knowledge gained from genomic and proteomic data, allowing for a more precise description of the scenario in which the evolution of life systems took place. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
520
|
Busch A, Hippler M. The structure and function of eukaryotic photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:864-77. [PMID: 20920463 DOI: 10.1016/j.bbabio.2010.09.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/20/2010] [Accepted: 09/28/2010] [Indexed: 12/27/2022]
Abstract
Eukaryotic photosystem I consists of two functional moieties: the photosystem I core, harboring the components for the light-driven charge separation and the subsequent electron transfer, and the peripheral light-harvesting complex (LHCI). While the photosystem I-core remained highly conserved throughout the evolution, with the exception of the oxidizing side of photosystem I, the LHCI complex shows a high degree of variability in size, subunits composition and bound pigments, which is due to the large variety of different habitats photosynthetic organisms dwell in. Besides summarizing the most current knowledge on the photosystem I-core structure, we will discuss the composition and structure of the LHCI complex from different eukaryotic organisms, both from the red and the green clade. Furthermore, mechanistic insights into electron transfer between the donor and acceptor side of photosystem I and its soluble electron transfer carrier proteins will be given. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
Affiliation(s)
- Andreas Busch
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | | |
Collapse
|
521
|
Armbruster U, Zühlke J, Rengstl B, Kreller R, Makarenko E, Rühle T, Schünemann D, Jahns P, Weisshaar B, Nickelsen J, Leister D. The Arabidopsis thylakoid protein PAM68 is required for efficient D1 biogenesis and photosystem II assembly. THE PLANT CELL 2010; 22:3439-60. [PMID: 20923938 PMCID: PMC2990134 DOI: 10.1105/tpc.110.077453] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/04/2010] [Accepted: 09/21/2010] [Indexed: 05/20/2023]
Abstract
Photosystem II (PSII) is a multiprotein complex that functions as a light-driven water:plastoquinone oxidoreductase in photosynthesis. Assembly of PSII proceeds through a number of distinct intermediate states and requires auxiliary proteins. The photosynthesis affected mutant 68 (pam68) of Arabidopsis thaliana displays drastically altered chlorophyll fluorescence and abnormally low levels of the PSII core subunits D1, D2, CP43, and CP47. We show that these phenotypes result from a specific decrease in the stability and maturation of D1. This is associated with a marked increase in the synthesis of RC (the PSII reaction center-like assembly complex) at the expense of PSII dimers and supercomplexes. PAM68 is a conserved integral membrane protein found in cyanobacterial and eukaryotic thylakoids and interacts in split-ubiquitin assays with several PSII core proteins and known PSII assembly factors. Biochemical analyses of thylakoids from Arabidopsis and Synechocystis sp PCC 6803 suggest that, during PSII assembly, PAM68 proteins associate with an early intermediate complex that might contain D1 and the assembly factor LPA1. Inactivation of cyanobacterial PAM68 destabilizes RC but does not affect larger PSII assembly complexes. Our data imply that PAM68 proteins promote early steps in PSII biogenesis in cyanobacteria and plants, but their inactivation is differently compensated for in the two classes of organisms.
Collapse
Affiliation(s)
- Ute Armbruster
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Jessica Zühlke
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Birgit Rengstl
- Molekulare Pflanzenwissenschaften, Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Renate Kreller
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Elina Makarenko
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Thilo Rühle
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Danja Schünemann
- AG Molekularbiologie Pflanzlicher Organellen, Ruhr-Universität-Bochum, 44801 Bochum, Germany
| | - Peter Jahns
- Institute of Plant Biochemistry, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Bernd Weisshaar
- Lehrstuhl für Genomforschung, Fakultät für Biology, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Jörg Nickelsen
- Molekulare Pflanzenwissenschaften, Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Dario Leister
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
- Address correspondence to
| |
Collapse
|
522
|
Antal TK, Krendeleva TE, Rubin AB. Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production. Appl Microbiol Biotechnol 2010; 89:3-15. [DOI: 10.1007/s00253-010-2879-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 09/02/2010] [Accepted: 09/07/2010] [Indexed: 11/29/2022]
|
523
|
Havelius KGV, Su JH, Han G, Mamedov F, Ho FM, Styring S. The formation of the split EPR signal from the S(3) state of Photosystem II does not involve primary charge separation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:11-21. [PMID: 20863810 DOI: 10.1016/j.bbabio.2010.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 11/16/2022]
Abstract
Metalloradical EPR signals have been found in intact Photosystem II at cryogenic temperatures. They reflect the light-driven formation of the tyrosine Z radical (Y(Z)) in magnetic interaction with the CaMn(4) cluster in a particular S state. These so-called split EPR signals, induced at cryogenic temperatures, provide means to study the otherwise transient Y(Z) and to probe the S states with EPR spectroscopy. In the S(0) and S(1) states, the respective split signals are induced by illumination of the sample in the visible light range only. In the S(3) state the split EPR signal is induced irrespective of illumination wavelength within the entire 415-900nm range (visible and near-IR region) [Su, J. H., Havelius, K. G. V., Ho, F. M., Han, G., Mamedov, F., and Styring, S. (2007) Biochemistry 46, 10703-10712]. An important question is whether a single mechanism can explain the induction of the Split S(3) signal across the entire wavelength range or whether wavelength-dependent mechanisms are required. In this paper we confirm that the Y(Z) radical formation in the S(1) state, reflected in the Split S(1) signal, is driven by P680-centered charge separation. The situation in the S(3) state is different. In Photosystem II centers with pre-reduced quinone A (Q(A)), where the P680-centered charge separation is blocked, the Split S(3) EPR signal could still be induced in the majority of the Photosystem II centers using both visible and NIR (830nm) light. This shows that P680-centered charge separation is not involved. The amount of oxidized electron donors and reduced electron acceptors (Q(A)(-)) was well correlated after visible light illumination at cryogenic temperatures in the S(1) state. This was not the case in the S(3) state, where the Split S(3) EPR signal was formed in the majority of the centers in a pathway other than P680-centered charge separation. Instead, we propose that one mechanism exists over the entire wavelength interval to drive the formation of the Split S(3) signal. The origin for this, probably involving excitation of one of the Mn ions in the CaMn(4) cluster in Photosystem II, is discussed.
Collapse
Affiliation(s)
- Kajsa G V Havelius
- Molecular Biomimetrics, Department of Photochemistry and Molecular Sciences, Uppsala University, The Angström Laboratory, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
524
|
Cai W, Ma J, Chi W, Zou M, Guo J, Lu C, Zhang L. Cooperation of LPA3 and LPA2 is essential for photosystem II assembly in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:109-20. [PMID: 20605914 PMCID: PMC2938160 DOI: 10.1104/pp.110.159558] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 07/05/2010] [Indexed: 05/19/2023]
Abstract
Photosystem II (PSII) is a multisubunit membrane protein complex that is assembled in a sequence of steps. However, the molecular mechanisms responsible for the assembly of the individual subunits into functional PSII complexes are still largely unknown. Here, we report the identification of a chloroplast protein, Low PSII Accumulation3 (LPA3), which is required for the assembly of the CP43 subunit in PSII complexes in Arabidopsis (Arabidopsis thaliana). LPA3 interacts with LPA2, a previously identified PSII CP43 assembly factor, and a double mutation of LPA2 and LPA3 is more deleterious for assembly than either single mutation, resulting in a seedling-lethal phenotype. Our results indicate that LPA3 and LPA2 have overlapping functions in assisting CP43 assembly and that cooperation between LPA2 and LPA3 is essential for PSII assembly. In addition, we provide evidence that LPA2 and LPA3 interact with Albino3 (Alb3), which is essential for thylakoid protein biogenesis. Thus, the function of Alb3 in some PSII assembly processes is probably mediated through interactions with LPA2 and LPA3.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
525
|
Zhang S, Frankel LK, Bricker TM. The Sll0606 protein is required for photosystem II assembly/stability in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 2010; 285:32047-54. [PMID: 20724474 DOI: 10.1074/jbc.m110.166983] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An insertional transposon mutation in the sll0606 gene was found to lead to a loss of photoautotrophy but not photoheterotrophy in the cyanobacterium Synechocystis sp. PCC 6803. Complementation analysis of this mutant (Tsll0606) indicated that an intact sll0606 gene could fully restore photoautotrophic growth. Gene organization in the vicinity of sll0606 indicates that it is not contained in an operon. No electron transport activity was detected in Tsll0606 using water as an electron donor and 2,6-dichlorobenzoquinone as an electron acceptor, indicating that Photosystem II (PS II) was defective. Electron transport activity using dichlorophenol indolephenol plus ascorbate as an electron donor to methyl viologen, however, was the same as observed in the control strain. This indicated that electron flow through Photosystem I was normal. Fluorescence induction and decay parameters verified that Photosystem II was highly compromised. The quantum yield for energy trapping by Photosystem II (F(V)/F(M)) in the mutant was less than 10% of that observed in the control strain. The small variable fluorescence yield observed after a single saturating flash exhibited aberrant Q(A)(-) reoxidation kinetics that were insensitive to dichloromethylurea. Immunological analysis indicated that whereas the D2 and CP47 proteins were modestly affected, the D1 and CP43 components were dramatically reduced. Analysis of two-dimensional blue native/lithium dodecyl sulfate-polyacrylamide gels indicated that no intact PS II monomer or dimers were observed in the mutant. The CP43-less PS II monomer did accumulate to detectable levels. Our results indicate that the Sll0606 protein is required for the assembly/stability of a functionally competent Photosystem II.
Collapse
Affiliation(s)
- Shulu Zhang
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | |
Collapse
|
526
|
Popelkova H, Commet A, Yocum CF. The double mutation ΔL6MW241F in PsbO, the photosystem II manganese stabilizing protein, yields insights into the evolution of its structure and function. FEBS Lett 2010; 584:4009-14. [PMID: 20708615 DOI: 10.1016/j.febslet.2010.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/27/2010] [Accepted: 08/08/2010] [Indexed: 11/24/2022]
Abstract
The W241F mutation in spinach manganese-stabilizing protein (PsbO) decreases binding to photosystem II (PSII); its thermostability is increased and reconstituted activity is lower [Wyman et al. (2008) Biochemistry 47, 6490-6498]. The results reported here show that W241F cannot adopt a normal solution structure and fails to reconstitute efficient Cl(-) retention by PSII. An N-terminal truncation of W241F, producing the ΔL6MW241F double mutant that resembles some features of cyanobacterial PsbO, significantly repairs the defects in W241F. Our data suggest that the C-terminal F→W mutation likely evolved in higher plants and green algae in order to preserve proper PsbO folding and PSII binding and assembly, which promotes efficient Cl(-) retention in the oxygen-evolving complex.
Collapse
Affiliation(s)
- Hana Popelkova
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
527
|
El-Mohsnawy E, Kopczak MJ, Schlodder E, Nowaczyk M, Meyer HE, Warscheid B, Karapetyan NV, Rögner M. Structure and function of intact photosystem 1 monomers from the cyanobacterium Thermosynechococcus elongatus. Biochemistry 2010; 49:4740-51. [PMID: 20359245 DOI: 10.1021/bi901807p] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Until now, the functional and structural characterization of monomeric photosystem 1 (PS1) complexes from Thermosynechococcus elongatus has been hampered by the lack of a fully intact PS1 preparation; for this reason, the three-dimensional crystal structure at 2.5 A resolution was determined with the trimeric PS1 complex [Jordan, P., et al. (2001) Nature 411 (6840), 909-917]. Here we show the possibility of isolating from this cyanobacterium the intact monomeric PS1 complex which preserves all subunits and the photochemical activity of the isolated trimeric complex. Moreover, the equilibrium between these complexes in the thylakoid membrane can be shifted by a high-salt treatment in favor of monomeric PS1 which can be quantitatively extracted below the phase transition temperature. Both monomers and trimers exhibit identical posttranslational modifications of their subunits and the same reaction centers but differ in the long-wavelength antenna chlorophylls. Their chlorophyll/P700 ratio (108 for the monomer and 112 for the trimer) is slightly higher than in the crystal structure, confirming mild preparation conditions. Interaction of antenna chlorophylls of the monomers within the trimer leads to a larger amount of long-wavelength chlorophylls, resulting in a higher photochemical activity of the trimers under red or far-red illumination. The dynamic equilibrium between monomers and trimers in the thylakoid membrane may indicate a transient monomer population in the course of biogenesis and could also be the basis for short-term adaptation of the cell to changing environmental conditions.
Collapse
|
528
|
Riznichenko GY, Kovalenko IB, Abaturova AM, Diakonova AN, Ustinin DM, Grachev EA, Rubin AB. New direct dynamic models of protein interactions coupled to photosynthetic electron transport reactions. Biophys Rev 2010; 2:101-110. [PMID: 28510068 PMCID: PMC5425662 DOI: 10.1007/s12551-010-0033-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 04/22/2010] [Indexed: 11/27/2022] Open
Abstract
This review covers the methods of computer simulation of protein interactions taking part in photosynthetic electron transport reactions. A direct multiparticle simulation method that simulates reactions describing interactions of ensembles of molecules in the heterogeneous interior of a cell is developed. In the models, protein molecules move according to the laws of Brownian dynamics, mutually orient themselves in the electrical field, and form complexes in the 3D scene. The method allows us to visualize the processes of molecule interactions and to calculate the rate constants for protein complex formation reactions in the solution and in the photosynthetic membrane. Three-dimensional multiparticle computer models for simulating the complex formation kinetics for plastocyanin with photosystem I and cytochrome bf complex, and ferredoxin with photosystem I and ferredoxin:NADP+-reductase are considered. Effects of ionic strength are featured for wild type and mutant proteins. The computer multiparticle models describe nonmonotonic dependences of complex formation rates on the ionic strength as the result of long-range electrostatic interactions.
Collapse
Affiliation(s)
- Galina Yu Riznichenko
- Dept. of Biophysics, Biology Faculty, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia.
| | - Ilya B Kovalenko
- Dept. of Biophysics, Biology Faculty, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Anna M Abaturova
- Dept. of Biophysics, Biology Faculty, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Alexandra N Diakonova
- Dept. of Biophysics, Biology Faculty, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Dmitry M Ustinin
- Dept. of Biophysics, Biology Faculty, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Eugene A Grachev
- Dept. of Computer Methods in Physics, Physical Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Andrew B Rubin
- Dept. of Biophysics, Biology Faculty, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| |
Collapse
|
529
|
Facey SJ, Kuhn A. Biogenesis of bacterial inner-membrane proteins. Cell Mol Life Sci 2010; 67:2343-62. [PMID: 20204450 PMCID: PMC11115511 DOI: 10.1007/s00018-010-0303-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 11/26/2022]
Abstract
All cells must traffic proteins into and across their membranes. In bacteria, several pathways have evolved to enable protein transfer across the inner membrane, the periplasm, and the outer membrane. The major route of protein translocation in and across the cytoplasmic membrane is the general secretion pathway (Sec-pathway). The biogenesis of membrane proteins not only requires protein translocation but also coordinated targeting to the membrane beforehand and folding and assembly into their protein complexes afterwards to function properly in the cell. All these processes are responsible for the biogenesis of membrane proteins that mediate essential functions of the cell such as selective transport, energy conversion, cell division, extracellular signal sensing, and motility. This review will highlight the most recent developments on the structure and function of bacterial membrane proteins, focusing on the journey that integral membrane proteins take to find their final destination in the inner membrane.
Collapse
Affiliation(s)
- Sandra J. Facey
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Andreas Kuhn
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
530
|
Roose JL, Yocum CF, Popelkova H. Function of PsbO, the Photosystem II Manganese-Stabilizing Protein: Probing the Role of Aspartic Acid 157. Biochemistry 2010; 49:6042-51. [DOI: 10.1021/bi100303f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Johnna L. Roose
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Charles F. Yocum
- Department of Molecular, Cellular, and Developmental Biology
- Department of Chemistry
| | - Hana Popelkova
- Department of Molecular, Cellular, and Developmental Biology
| |
Collapse
|
531
|
Zhong R, Thompson J, Ottesen E, Lamppa GK. A forward genetic screen to explore chloroplast protein import in vivo identifies Moco sulfurase, pivotal for ABA and IAA biosynthesis and purine turnover. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:44-59. [PMID: 20374530 DOI: 10.1111/j.1365-313x.2010.04220.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A genetic screen in Arabidopsis was developed to explore the regulation of chloroplast protein import in vivo using two independent reporters representing housekeeping and photosynthetic pre-proteins. We first used 5-enolpyruvylshikimate 3-phosphate synthase (EPSP synthase*), a key enzyme in the shikimic acid pathway, with a mutation that confers tolerance to the herbicide glyphosate. Because the EPSP synthase* pre-protein must be imported for its function, the loss of glyphosate tolerance provided an initial indication of an import deficiency. Second, the fate of GFP fused to a ferredoxin transit peptide (FD5-GFP) was determined. A class of altered chloroplast import (aci) mutants showed both glyphosate sensitivity and FD5-GFP mislocalized to nuclei. aci2-1 was selected for further study. Yellow fluorescent protein (YFP) fused to the transit peptide of EPSP synthase* or the small subunit of Rubisco was not imported into chloroplasts, but also localized to nuclei during protoplast transient expression. Isolated aci2-1 chloroplasts showed a 50% reduction in pre-protein import efficiency in an in vitro assay. Mutants did not grow photoautotrophically on media without sucrose and were small and dark green in soil. aci2-1 and two alleles code for Moco-sulfurase, which activates the aldehyde oxidases required for the biosynthesis of the plant hormones abscisic acid (ABA) and indole-acetic acid (IAA) and controls purine nucleotide (ATP and GTP) turnover and nitrogen recycling via xanthine dehydrogenase. These enzyme activities were not detected in aci2-1. ABA, IAA and/or purine turnover may play previously unrecognized roles in the regulation of chloroplast protein import in response to developmental, metabolic and environmental cues.
Collapse
Affiliation(s)
- Rong Zhong
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
532
|
Mayzlish-Gati E, LekKala SP, Resnick N, Wininger S, Bhattacharya C, Lemcoff JH, Kapulnik Y, Koltai H. Strigolactones are positive regulators of light-harvesting genes in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3129-36. [PMID: 20501744 PMCID: PMC2892153 DOI: 10.1093/jxb/erq138] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/25/2010] [Accepted: 04/29/2010] [Indexed: 05/18/2023]
Abstract
Strigolactones are newly identified plant hormones, shown to participate in the regulation of lateral shoot branching and root development. However, little is known about their effects on biological processes, genes, and proteins. Transcription profiling of roots treated with GR24, a synthetic strigolactone with proven biological activity, and/or indole acetic acid (IAA) was combined with physiological and transcriptional analysis of a tomato mutant (Sl-ORT1) deficient in strigolactone production. GR24 treatment led to markedly induced expression of genes putatively involved in light harvesting. This was apparent in both the presence and absence of exogenously applied IAA, but not with IAA treatment alone. Following validation of the microarray results, transcriptional induction by light of the GR24-induced genes was demonstrated in leaves exposed to high or low light intensities. Sl-ORT1 contained less chlorophyll and showed reduced expression of light harvesting-associated genes than the wild type (WT). Moreover, perfusion of GR24 into WT and Sl-ORT1 leaves led to induction of most of the examined light harvesting-associated genes. Results suggest that GR24 treatment interferes with the root's response to IAA treatment and that strigolactones are potentially positive regulators of light harvesting in plants.
Collapse
Affiliation(s)
- Einav Mayzlish-Gati
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Sivarama P. LekKala
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Nathalie Resnick
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Smadar Wininger
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Chaitali Bhattacharya
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - J. Hugo Lemcoff
- Department of Environmental Physics and Irrigation, ARO, the Volcani Center, Bet Dagan 50250, Israel
| | - Yoram Kapulnik
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, PO Box 6, Bet Dagan 50250, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
533
|
Engineering of an alternative electron transfer path in photosystem II. Proc Natl Acad Sci U S A 2010; 107:9650-5. [PMID: 20457933 DOI: 10.1073/pnas.1000187107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The initial steps of oxygenic photosynthetic electron transfer occur within photosystem II, an intricate pigment/protein transmembrane complex. Light-driven electron transfer occurs within a multistep pathway that is efficiently insulated from competing electron transfer pathways. The heart of the electron transfer system, composed of six linearly coupled redox active cofactors that enable electron transfer from water to the secondary quinone acceptor Q(B), is mainly embedded within two proteins called D1 and D2. We have identified a site in silico, poised in the vicinity of the Q(A) intermediate quinone acceptor, which could serve as a potential binding site for redox active proteins. Here we show that modification of Lysine 238 of the D1 protein to glutamic acid (Glu) in the cyanobacterium Synechocystis sp. PCC 6803, results in a strain that grows photautotrophically. The Glu thylakoid membranes are able to perform light-dependent reduction of exogenous cytochrome c with water as the electron donor. Cytochrome c photoreduction by the Glu mutant was also shown to significantly protect the D1 protein from photodamage when isolated thylakoid membranes were illuminated. We have therefore engineered a novel electron transfer pathway from water to a soluble protein electron carrier without harming the normal function of photosystem II.
Collapse
|
534
|
Wei L, Guo J, Ouyang M, Sun X, Ma J, Chi W, Lu C, Zhang L. LPA19, a Psb27 homolog in Arabidopsis thaliana, facilitates D1 protein precursor processing during PSII biogenesis. J Biol Chem 2010; 285:21391-8. [PMID: 20444695 DOI: 10.1074/jbc.m110.105064] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biogenesis and assembly of photosystem II (PSII) are mainly regulated by the nuclear-encoded factors. To further identify the novel components involved in PSII biogenesis, we isolated and characterized a high chlorophyll fluorescence low psii accumulation19 (lpa19) mutant, which is defective in PSII biogenesis. LPA19 encodes a Psb27 homolog (At1g05385). Interestingly, another Psb27 homolog (At1g03600) in Arabidopsis was revealed to be required for the efficient repair of photodamaged PSII. These results suggest that the Psb27 homologs play distinct functions in PSII biogenesis and repair in Arabidopsis. Chloroplast protein labeling assays showed that the C-terminal processing of D1 in the lpa19 mutant was impaired. Protein overlay assays provided evidence that LPA19 interacts with D1, and coimmunoprecipitation analysis demonstrated that LPA19 interacts with mature D1 (mD1) and precursor D1 (pD1). Moreover, LPA19 protein was shown to specifically interact with the soluble C terminus present in the precursor and mature D1 through yeast two-hybrid analyses. Thus, these studies suggest that LPA19 is involved in facilitating the D1 precursor protein processing in Arabidopsis.
Collapse
Affiliation(s)
- Lili Wei
- Fr Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
535
|
Hsin J, Chandler DE, Gumbart J, Harrison CB, Şener M, Strumpfer J, Schulten K. Self-assembly of photosynthetic membranes. Chemphyschem 2010; 11:1154-9. [PMID: 20183845 PMCID: PMC3086839 DOI: 10.1002/cphc.200900911] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Indexed: 11/08/2022]
Abstract
Bacterial photosynthetic membranes, also known as chromatophores, are tightly packed with integral membrane proteins that work together to carry out photosynthesis. Chromatophores display a wide range of cellular morphologies; spherical, tubular, and lamellar chromatophores have all been observed in different bacterial species, or with different protein constituents. Through recent computational modeling and simulation, it has been demonstrated that the light-harvesting complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms. These protein complexes assemble to generate a global curvature and sculpt the chromatophores into various cellular-scale architectures.
Collapse
Affiliation(s)
- Jen Hsin
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Danielle E. Chandler
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - James Gumbart
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | | | - Melih Şener
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Johan Strumpfer
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Klaus Schulten
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
536
|
Ozawa SI, Onishi T, Takahashi Y. Identification and characterization of an assembly intermediate subcomplex of photosystem I in the green alga Chlamydomonas reinhardtii. J Biol Chem 2010; 285:20072-9. [PMID: 20413595 DOI: 10.1074/jbc.m109.098954] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem I (PSI) is a multiprotein complex consisting of the PSI core and peripheral light-harvesting complex I (LHCI) that together form the PSI-LHCI supercomplex in algae and higher plants. The supercomplex is synthesized in steps during which 12-15 core and 4-9 LHCI subunits are assembled. Here we report the isolation of a PSI subcomplex that separated on a sucrose density gradient from the thylakoid membranes isolated from logarithmic growth phase cells of the green alga Chlamydomonas reinhardtii. Pulse-chase labeling of total cellular proteins revealed that the subcomplex was synthesized de novo within 1 min and was converted to the mature PSI-LHCI during the 2-h chase period, indicating that the subcomplex was an assembly intermediate. The subcomplex was functional; it photo-oxidized P700 and demonstrated electron transfer activity. The subcomplex lacked PsaK and PsaG, however, and it bound PsaF and PsaJ weakly and was not associated with LHCI. It seemed likely that LHCI had been integrated into the subcomplex unstably and was dissociated during solubilization and/or fractionation. We, thus, infer that PsaK and PsaG stabilize the association between PSI core and LHCI complexes and that PsaK and PsaG bind to the PSI core complex after the integration of LHCI in one of the last steps of PSI complex assembly.
Collapse
Affiliation(s)
- Shin-Ichiro Ozawa
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kita-ku, Tsushima-naka, Okayama 700-8530, Japan
| | | | | |
Collapse
|
537
|
Iwai M, Suzuki T, Kamiyama A, Sakurai I, Dohmae N, Inoue Y, Ikeuchi M. The PsbK subunit is required for the stable assembly and stability of other small subunits in the PSII complex in the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. PLANT & CELL PHYSIOLOGY 2010; 51:554-60. [PMID: 20194360 DOI: 10.1093/pcp/pcq020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PsbK is a small membrane protein of the PSII core complex and is highly conserved from cyanobacteria to plants. Here, we studied its role in the thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1, by focusing on a psbK disruptant with hexahistidine-tagged CP47. The psbK disruptant showed photoautotrophic growth comparable with that of the wild type under a wide range of light conditions. The mutant PSII complex retained the oxygen-evolving activity with a unique modification of the acceptor Q(B) site. N-terminal sequencing revealed that Ycf12 and PsbZ proteins were lost in the PSII complex prepared from the mutant. Immunoblotting detected reduced accumulation of PsbZ in the mutant thylakoid. These results suggest that PsbK is required not only for association of PsbZ and Ycf12 with the isolated PSII complex but also for the stabilization of PsbZ in the thylakoid membrane.
Collapse
Affiliation(s)
- Masako Iwai
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba, 278-8510 Japan.
| | | | | | | | | | | | | |
Collapse
|
538
|
Hubert P, Sawma P, Duneau JP, Khao J, Hénin J, Bagnard D, Sturgis J. Single-spanning transmembrane domains in cell growth and cell-cell interactions: More than meets the eye? Cell Adh Migr 2010; 4:313-24. [PMID: 20543559 PMCID: PMC2900628 DOI: 10.4161/cam.4.2.12430] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/20/2010] [Indexed: 01/28/2023] Open
Abstract
As a whole, integral membrane proteins represent about one third of sequenced genomes, and more than 50% of currently available drugs target membrane proteins, often cell surface receptors. Some membrane protein classes, with a defined number of transmembrane (TM) helices, are receiving much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling.
Collapse
Affiliation(s)
- Pierre Hubert
- LISM UPR 9027, CNRS-Aix-Marseille University, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
539
|
Ren Y, Zhang C, Zhao J. Substitution of chloride by bromide modifies the low-temperature tyrosine Z oxidation in active photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1421-7. [PMID: 20206122 DOI: 10.1016/j.bbabio.2010.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 01/29/2010] [Accepted: 02/23/2010] [Indexed: 11/19/2022]
Abstract
Chloride is an essential cofactor for photosynthetic water oxidation. However, its location and functional roles in active photosystem II are still a matter of debate. We have investigated this issue by studying the effects of Cl- replacement by Br- in active PSII. In Br- substituted samples, Cl- is effectively replaced by Br- in the presence of 1.2 M NaBr under room light with protection of anaerobic atmosphere followed by dialysis. The following results have been obtained. i) The oxygen-evolving activities of the Br--PSII samples are significantly lower than that of the Cl--PSII samples; ii) The same S2 multiline EPR signals are observed in both Br- and Cl--PSII samples; iii) The amplitudes of the visible light induced S1TyrZ* and S2TyrZ* EPR signals are significantly decreased after Br- substitution; the S1TyrZ* EPR signal is up-shifted about 8G, whereas the S2TyrZ* signal is down-shifted about 12 G after Br- substitution. These results imply that the redox properties of TyrZ and spin interactions between TyrZ* and Mn-cluster could be significantly modified due to Br- substitution. It is suggested that Cl-/Br- probably coordinates to the Ca2+ ion of the Mn-cluster in active photosystem II.
Collapse
Affiliation(s)
- Yanan Ren
- Laboratory of Photochemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | |
Collapse
|
540
|
Sun X, Fu T, Chen N, Guo J, Ma J, Zou M, Lu C, Zhang L. The stromal chloroplast Deg7 protease participates in the repair of photosystem II after photoinhibition in Arabidopsis. PLANT PHYSIOLOGY 2010; 152:1263-73. [PMID: 20089771 PMCID: PMC2832250 DOI: 10.1104/pp.109.150722] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/15/2010] [Indexed: 05/19/2023]
Abstract
Light is the ultimate source of energy for photosynthesis; however, excessive light leads to photooxidative damage and hence reduced photosynthetic efficiency, especially when combined with other abiotic stresses. Although the photosystem II (PSII) reaction center D1 protein is the primary target of photooxidative damage, other PSII core proteins are also damaged and degraded. However, it is still largely unknown whether degradation of D1 and other PSII proteins involves previously uncharacterized proteases. Here, we show that Deg7 is peripherally associated with the stromal side of the thylakoid membranes and that Deg7 interacts directly with PSII. Our results show that Deg7 is involved in the primary cleavage of photodamaged D1, D2, CP47, and CP43 and that this activity is essential for its function in PSII repair. The double mutants deg5 deg7 and deg8 deg7 showed no obvious phenotypic differences under normal growth conditions, but additive effects were observed under high light. These results suggest that Deg proteases on both the stromal and luminal sides of the thylakoid membranes are important for the efficient PSII repair in Arabidopsis (Arabidopsis thaliana).
Collapse
|
541
|
Miura E, Kato Y, Sakamoto W. Reactive oxygen species derived from impaired quality control of photosystem II are irrelevant to plasma-membrane NADPH oxidases. PLANT SIGNALING & BEHAVIOR 2010; 5:264-6. [PMID: 20023407 PMCID: PMC2881273 DOI: 10.4161/psb.5.3.10604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Protein quality control plays an important role in the photosynthetic apparatus because its components receive excess light energy and are susceptible to photooxidative damage. In chloroplasts, photodamage is targeted to the D1 protein of Photosystem II (PSII). The coordinated PSII repair cycle (PSII disassembly, D1 degradation and synthesis, and PSII reassembly) is necessary to mitigate photoinhibition. A thylakoid protease FtsH, which is formed predominantly as a heteromeric complex with two isoforms of FtsH2 and FtsH5 in Arabidopsis, is the major protease involved in PSII repair. A mutant lacking FtsH2 (termed var2) shows compromised D1 degradation. Furthermore, var2 accumulates high levels of chloroplastic reactive oxygen species (cpROS), reflecting photooxidative stress without functional PSII repair. To examine if the cpROS produced in var2 are connected to a ROS signaling pathway mediated by plasma membrane NADPH oxidase (encoded by AtRbohD or AtRbohF), we generated mutants in which either Rboh gene was inactivated under var2 background. Lack of NADPH oxidases had little or no impact on cpROS accumulation. It seems unlikely that cpROS in var2 activate plasma membrane NADPH oxidases to enhance ROS production and the signaling pathway. Mutants that are defective in PSII repair might be valuable for investigating cpROS and their physiological roles.
Collapse
Affiliation(s)
- Eiko Miura
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama, Japan
| | | | | |
Collapse
|
542
|
Low-temperature electron transfer suggests two types of QA in intact photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:339-46. [DOI: 10.1016/j.bbabio.2009.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 12/01/2009] [Accepted: 12/03/2009] [Indexed: 11/23/2022]
|
543
|
Popelkova H, Commet A, Yocum CF. Asp157 is required for the function of PsbO, the photosystem II manganese stabilizing protein. Biochemistry 2010; 48:11920-8. [PMID: 19894760 DOI: 10.1021/bi9016999] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PsbO, the photosystem II manganese stabilizing protein, contains an aspartate residue [Asp157 (spinach numbering)], which is highly conserved in eukaryotic and prokaryotic PsbOs. The homology model of the PSII-bound conformation of spinach PsbO presented here positions Asp157 in the large flexible loop of the protein. We have characterized site-directed mutants (D157N, D157E, and D157K) of spinach PsbO that were rebound to PsbO-depleted PSII to probe the role of Asp157. Structural data revealed that PsbO Asp157 mutants exhibit near-wild-type solution structure at 25 degrees C, but functional analyses of the mutants showed that these are the first genetically modified PsbO proteins from spinach that combine wild-type PSII binding behavior with significantly impaired O(2) evolution activity; all of the mutants reconstituted approximately 30% of control O(2) evolution activity. PsbO Asp157 has been proposed to be a part of a putative H(2)O/H(+) channel that links the active site of the oxygen-evolving complex with the lumen [De Las Rivas, J., and Barber, J. (2004) Photosynth. Res. 81, 329-343]. Unsuccessful attempts to use chemical rescue to enhance the activity restored by Asp157 mutants could indicate that this residue is not involved in a proton transfer network. It is shown, however, that these mutants are deficient in restoring efficient Cl(-) retention by PSII.
Collapse
Affiliation(s)
- Hana Popelkova
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan,Ann Arbor, Michigan 48109-1048, USA.
| | | | | |
Collapse
|
544
|
Belgio E, Casazza AP, Zucchelli G, Garlaschi FM, Jennings RC. Band Shape Heterogeneity of the Low-Energy Chlorophylls of CP29: Absence of Mixed Binding Sites and Excitonic Interactions. Biochemistry 2010; 49:882-92. [DOI: 10.1021/bi901478f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Erica Belgio
- Istituto di Biofisica del CNR, sede di Milano, e Dipartimento di Biologia, Università degli Studi di Milano, via G. Celoria 26, 20133 Milano, Italy
| | - Anna Paola Casazza
- Istituto di Biofisica del CNR, sede di Milano, e Dipartimento di Biologia, Università degli Studi di Milano, via G. Celoria 26, 20133 Milano, Italy
| | - Giuseppe Zucchelli
- Istituto di Biofisica del CNR, sede di Milano, e Dipartimento di Biologia, Università degli Studi di Milano, via G. Celoria 26, 20133 Milano, Italy
| | - Flavio M. Garlaschi
- Istituto di Biofisica del CNR, sede di Milano, e Dipartimento di Biologia, Università degli Studi di Milano, via G. Celoria 26, 20133 Milano, Italy
| | - Robert C. Jennings
- Istituto di Biofisica del CNR, sede di Milano, e Dipartimento di Biologia, Università degli Studi di Milano, via G. Celoria 26, 20133 Milano, Italy
| |
Collapse
|
545
|
Enami I, Adachi H, Shen JR. Mechanisms of Acido-Tolerance and Characteristics of Photosystems in an Acidophilic and Thermophilic Red Alga, Cyanidium Caldarium. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2010. [DOI: 10.1007/978-90-481-3795-4_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
546
|
Zhu XG, Long SP, Ort DR. Improving photosynthetic efficiency for greater yield. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:235-61. [PMID: 20192734 DOI: 10.1146/annurev-arplant-042809-112206] [Citation(s) in RCA: 876] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Increasing the yield potential of the major food grain crops has contributed very significantly to a rising food supply over the past 50 years, which has until recently more than kept pace with rising global demand. Whereas improved photosynthetic efficiency has played only a minor role in the remarkable increases in productivity achieved in the last half century, further increases in yield potential will rely in large part on improved photosynthesis. Here we examine inefficiencies in photosynthetic energy transduction in crops from light interception to carbohydrate synthesis, and how classical breeding, systems biology, and synthetic biology are providing new opportunities to develop more productive germplasm. Near-term opportunities include improving the display of leaves in crop canopies to avoid light saturation of individual leaves and further investigation of a photorespiratory bypass that has already improved the productivity of model species. Longer-term opportunities include engineering into plants carboxylases that are better adapted to current and forthcoming CO(2) concentrations, and the use of modeling to guide molecular optimization of resource investment among the components of the photosynthetic apparatus, to maximize carbon gain without increasing crop inputs. Collectively, these changes have the potential to more than double the yield potential of our major crops.
Collapse
Affiliation(s)
- Xin-Guang Zhu
- CAS-MPG Partner Institute for Computational Biology, SIBS, Shanghai, China.
| | | | | |
Collapse
|
547
|
Wienkoop S, Weiß J, May P, Kempa S, Irgang S, Recuenco-Munoz L, Pietzke M, Schwemmer T, Rupprecht J, Egelhofer V, Weckwerth W. Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses. MOLECULAR BIOSYSTEMS 2010; 6:1018-31. [DOI: 10.1039/b920913a] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
548
|
Komura M, Yamagishi A, Shibata Y, Iwasaki I, Itoh S. Mechanism of strong quenching of photosystem II chlorophyll fluorescence under drought stress in a lichen, Physciella melanchla, studied by subpicosecond fluorescence spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:331-8. [PMID: 19962955 DOI: 10.1016/j.bbabio.2009.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/16/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
The mechanism of the severe quenching of chlorophyll (Chl) fluorescence under drought stress was studied in a lichen Physciella melanchla, which contains a photobiont green alga, Trebouxia sp., using a streak camera and a reflection-mode fluorescence up-conversion system. We detected a large 0.31 ps rise of fluorescence at 715 and 740 nm in the dry lichen suggesting the rapid energy influx to the 715-740 nm bands from the shorter-wavelength Chls with a small contribution from the internal conversion from Soret bands. The fluorescence, then, decayed with time constants of 23 and 112 ps, suggesting the rapid dissipation into heat through the quencher. The result confirms the accelerated 40 ps decay of fluorescence reported in another lichen (Veerman et al., 2007 [36]) and gives a direct evidence for the rapid energy transfer from bulk Chls to the longer-wavelength quencher. We simulated the entire PS II fluorescence kinetics by a global analysis and estimated the 20.2 ns(-1) or 55.0 ns(-1) energy transfer rate to the quencher that is connected either to the LHC II or to the PS II core antenna. The strong quenching with the 3-12 times higher rate compared to the reported NPQ rate, suggests the operation of a new type of quenching, such as the extreme case of Chl-aggregation in LHCII or a new type of quenching in PS II core antenna in dry lichens.
Collapse
Affiliation(s)
- Masayuki Komura
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
549
|
Landau AM, Lokstein H, Scheller HV, Lainez V, Maldonado S, Prina AR. A cytoplasmically inherited barley mutant is defective in photosystem I assembly due to a temperature-sensitive defect in ycf3 splicing. PLANT PHYSIOLOGY 2009; 151:1802-11. [PMID: 19812182 PMCID: PMC2785965 DOI: 10.1104/pp.109.147843] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/05/2009] [Indexed: 05/20/2023]
Abstract
A cytoplasmically inherited chlorophyll-deficient mutant of barley (Hordeum vulgare) termed cytoplasmic line 3 (CL3), displaying a viridis (homogeneously light-green colored) phenotype, has been previously shown to be affected by elevated temperatures. In this article, biochemical, biophysical, and molecular approaches were used to study the CL3 mutant under different temperature and light conditions. The results lead to the conclusion that an impaired assembly of photosystem I (PSI) under higher temperatures and certain light conditions is the primary cause of the CL3 phenotype. Compromised splicing of ycf3 transcripts, particularly at elevated temperature, resulting from a mutation in a noncoding region (intron 1) in the mutant ycf3 gene results in a defective synthesis of Ycf3, which is a chaperone involved in PSI assembly. The defective PSI assembly causes severe photoinhibition and degradation of PSII.
Collapse
Affiliation(s)
- Alejandra Mabel Landau
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, B1712WAA Castelar, Province of Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
550
|
Jurić S, Hazler-Pilepić K, Tomasić A, Lepedus H, Jelicić B, Puthiyaveetil S, Bionda T, Vojta L, Allen JF, Schleiff E, Fulgosi H. Tethering of ferredoxin:NADP+ oxidoreductase to thylakoid membranes is mediated by novel chloroplast protein TROL. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:783-94. [PMID: 19682289 DOI: 10.1111/j.1365-313x.2009.03999.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Working in tandem, two photosystems in the chloroplast thylakoid membranes produce a linear electron flow from H(2)O to NADP(+). Final electron transfer from ferredoxin to NADP(+) is accomplished by a flavoenzyme ferredoxin:NADP(+) oxidoreductase (FNR). Here we describe TROL (thylakoid rhodanese-like protein), a nuclear-encoded component of thylakoid membranes that is required for tethering of FNR and sustaining efficient linear electron flow (LEF) in vascular plants. TROL consists of two distinct modules; a centrally positioned rhodanese-like domain and a C-terminal hydrophobic FNR binding region. Analysis of Arabidopsis mutant lines indicates that, in the absence of TROL, relative electron transport rates at high-light intensities are severely lowered accompanied with significant increase in non-photochemical quenching (NPQ). Thus, TROL might represent a missing thylakoid membrane docking site for a complex between FNR, ferredoxin and NADP(+). Such association might be necessary for maintaining photosynthetic redox poise and enhancement of the NPQ.
Collapse
Affiliation(s)
- Snjezana Jurić
- Department of Molecular Biology, Ruder Bosković Institute, Bijenicka cesta 54, HR-10000 Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|