501
|
Exercise-Dependent Regulation of NK Cells in Cancer Protection. Trends Mol Med 2016; 22:565-577. [PMID: 27262760 DOI: 10.1016/j.molmed.2016.05.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells are the most responsive immune cells to exercise, displaying an acute mobilization to the circulation during physical exertion. Recently, exercise-dependent mobilization of NK cells was found to play a central role in exercise-mediated protection against cancer. Here, we review the link between exercise and NK cell function, focusing on circulating exercise factors and additional effects, including vascularization, hypoxia, and body temperature in mediating the effects on NK cell functionality. Exercise-dependent mobilization and activation of NK cells provides a mechanistic explanation for the protective effect of exercise on cancer, and we propose that exercise represents a potential strategy as adjuvant therapy in cancer, by improving NK cell recruitment and infiltration in solid tumors.
Collapse
|
502
|
Thaysen-Andersen M, Chertova E, Bergamaschi C, Moh ESX, Chertov O, Roser J, Sowder R, Bear J, Lifson J, Packer NH, Felber BK, Pavlakis GN. Recombinant human heterodimeric IL-15 complex displays extensive and reproducible N- and O-linked glycosylation. Glycoconj J 2016; 33:417-33. [PMID: 26563299 PMCID: PMC7537637 DOI: 10.1007/s10719-015-9627-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 09/30/2015] [Accepted: 10/11/2015] [Indexed: 01/25/2023]
Abstract
Human interleukin 15 (IL-15) circulates in blood as a stable molecular complex with the soluble IL-15 receptor alpha (sIL-15Rα). This heterodimeric IL-15:sIL-15Rα complex (hetIL-15) shows therapeutic potential by promoting the growth, mobilization and activation of lymphocytes and is currently evaluated in clinical trials. Favorable pharmacokinetic properties are associated with the heterodimeric formation and the glycosylation of hetIL-15, which, however, remains largely uncharacterized. We report the site-specific N- and O-glycosylation of two clinically relevant large-scale preparations of HEK293-derived recombinant human hetIL-15. Intact IL-15 and sIL-15Rα and derived glycans and glycopeptides were separately profiled using multiple LC-MS/MS strategies. IL-15 Asn79 and sIL-15Rα Asn107 carried the same repertoire of biosynthetically-related N-glycans covering mostly α1-6-core-fucosylated and β-GlcNAc-terminating complex-type structures. The two potential IL-15 N-glycosylation sites (Asn71 and Asn112) located at the IL-2 receptor interface were unoccupied. Mass analysis of intact IL-15 confirmed its N-glycosylation and suggested that Asn79-glycosylation partially prevents Asn77-deamidation. IL-15 contained no O-glycans, whereas sIL-15Rα was heavily O-glycosylated with partially sialylated core 1 and 2-type mono- to hexasaccharides on Thr2, Thr81, Thr86, Thr156, Ser158, and Ser160. The sialoglycans displayed α2-3- and α2-6-NeuAc-type sialylation. Non-human, potentially immunogenic glycoepitopes (e.g. N-glycolylneuraminic acid and α-galactosylation) were not displayed by hetIL-15. Highly reproducible glycosylation of IL-15 and sIL-15Rα of two batches of hetIL-15 demonstrated consistent manufacturing and purification. In conclusion, we document the heterogeneous and reproducible N- and O-glycosylation of large-scale preparations of the therapeutic candidate hetIL-15. Site-specific mapping of these molecular features is important to evaluate the consistent large-scale production and clinical efficacy of hetIL-15.
Collapse
Affiliation(s)
- M Thaysen-Andersen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - E Chertova
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - C Bergamaschi
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - E S X Moh
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - O Chertov
- Cancer Research Technology Program, Leidos Biomedical, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - J Roser
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - R Sowder
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - J Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - J Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - N H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - B K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - G N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
503
|
Liao R, Jiang N, Tang ZW, Li DW, Huang P, Luo SQ, Gong JP, Du CY. Systemic and intratumoral balances between monocytes/macrophages and lymphocytes predict prognosis in hepatocellular carcinoma patients after surgery. Oncotarget 2016; 7:30951-30961. [PMID: 27129159 PMCID: PMC5058730 DOI: 10.18632/oncotarget.9049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/31/2016] [Indexed: 12/20/2022] Open
Abstract
The peripheral neutrophil-monocyte/lymphocyte ratio (NMLR) and intratumoral CD16/CD8 ratio (iMLR) may have prognostic value in hepatocellular carcinoma (HCC) patients after curative resection. In this study, the circulating NMLR was examined 387 HCC patients who underwent curative resection between 2006 and 2009. Intratumoral levels of CD4, CD8, CD16 and CD68 and the CD16/CD8 ratio were determined immunohistologically. The prognostic values of clinicopathological parameters, including NMLR and iMLR, were evaluated. NMLR was predictive of overall survival (OS) and recurrence-free survival (RFS) when patients in the training cohort (n = 256) were separated into high (> 1.2) and low (≤ 1.2) NMLR subgroups. NMLR was also an independent predictor of low alpha-fetoprotein (AFP) expression and early recurrence. High NMLR was associated with increases in clinicopathological variables, including alanine aminotransferase (ALT), tumor number, tumor size and BCLC stage. In addition, iMLR strongly predicted risk of recurrence and patient survival, and was positively correlated with NMLR. These findings were confirmed in an independent validation patient cohort (n = 131). Peripheral NMLR and iMLR may thus be useful prognostic markers, and anti-inflammatory treatment may be beneficial in HCC patients after curative hepatectomy.
Collapse
Affiliation(s)
- Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ning Jiang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhuo-Wei Tang
- Department of General Surgery, Mianyang Central Hospital, Mianyang 621000, China
| | - De-Wei Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ping Huang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shi-Qiao Luo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jian-Ping Gong
- Chongqing Key Laboratory of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Cheng-You Du
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
504
|
Exploitation of natural killer cells for the treatment of acute leukemia. Blood 2016; 127:3341-9. [PMID: 27207791 DOI: 10.1182/blood-2015-12-629055] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells play an important role in surveillance and elimination of malignant cells. Their spontaneous cytotoxicity was first demonstrated in vitro against leukemia cell lines, and NK cells might play a crucial role in the therapy of leukemia. NK cell activity is controlled by an array of germ line-encoded activating and inhibitory receptors, as well as modulating coreceptors. This biologic feature can be exploited in allogeneic cell therapy, and the recognition of "missing-self" on target cells is crucial for promoting NK cell-mediated graft-versus-leukemia effects. In this regard, NK cells that express an inhibitory killer immunoglobulin-like receptor (iKIR) for which the respective major histocompatibility complex class I ligand is absent on leukemic target cells can exert alloreactivity in vitro and in vivo. Several models regarding potential donor-patient constellations have been described that have demonstrated the clinical benefit of such alloreactivity of the donor-derived NK cell system in patients with adult acute myeloid leukemia and pediatric B-cell precursor acute lymphoblastic leukemia after allogeneic stem cell transplantation. Moreover, adoptive transfer of mature allogeneic NK cells in the nontransplant or transplant setting has been shown to be safe and feasible, whereas its effectivity needs further evaluation. NK cell therapy can be further improved by optimal donor selection based on phenotypic and genotypic properties, by adoptive transfer of NK cells with ex vivo or in vivo cytokine stimulation, by the use of antibodies to induce antibody-dependent cellular cytotoxicity or to block iKIRs, or by transduction of chimeric antigen receptors.
Collapse
|
505
|
Renal Cancer Stem Cells: Characterization and Targeted Therapies. Stem Cells Int 2016; 2016:8342625. [PMID: 27293448 PMCID: PMC4884584 DOI: 10.1155/2016/8342625] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/24/2016] [Indexed: 02/08/2023] Open
Abstract
Renal cell carcinoma (RCC) is a major neoplasm with high incidence in western countries. Tumors are heterogeneous and are composed of differentiated cancer cells, stromal cells, and cancer stem cells (CSCs). CSCs possess two main properties: self-renewal and proliferation. Additionally, they can generate new tumors once transplanted into immunodeficient mice. Several approaches have been described to identify them, through the expression of cell markers, functional assays, or a combination of both. As CSCs are involved in the resistance mechanisms to radio- and chemotherapies, several new strategies have been proposed to directly target CSCs in RCC. One approach drives CSCs to differentiate into cancer cells sensitive to conventional treatments, while the other proposes to eradicate them selectively. A series of innovative therapies aiming at eliminating CSCs have been designed to treat other types of cancer and have not been experimented with on RCC yet, but they reveal themselves to be promising. In conclusion, CSCs are an important player in carcinogenesis and represent a valid target for therapy in RCC patients.
Collapse
|
506
|
Enhanced ADCC and NK Cell Activation of an Anticarcinoma Bispecific Antibody by Genetic Insertion of a Modified IL-15 Cross-linker. Mol Ther 2016; 24:1312-22. [PMID: 27157665 DOI: 10.1038/mt.2016.88] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022] Open
Abstract
Previously, we constructed a bispecific NK-cell-engager (BiKE) bearing single-chain variable fragments (scFv) against CD16 on NK cells and EpCAM on tumor cells. This BiKE facilitated antigen-specific antibody-dependent cell-mediated cytotoxicity (ADCC) but did not induce NK cell expansion. We incorporated a modified interleukin-15 cross-linker to create a trispecific construct (TriKE) in order to improve activation, proliferation, and survival of NK cells. Synthesis and assembly of hybrid genes encoding the TriKE was accomplished using DNA-shuffling and DNA-ligation techniques. The TriKE was tested for specificity, efficacy, proliferative capability, and cytokine profile using functional assays. The molecular modifications improved yield without compromising binding to EpCAM(+) HT-29 colorectal carcinoma cells. (51)Chromium-release and degranulation assays showed better killing rates with TriKE compared to BiKE. TriKE was more active in a variety of different carcinoma cell lines. TriKE showed the ability to stimulate expansion of CD56(+)CD3(-) NK cells. BiKE and TriKE showed enhanced but not supraphysiologic levels of cytokine secretion. 1615EpCAM TriKE drives enhanced ADCC while significantly improving proliferation, activation, and survival of NK cell effectors. The TriKE provides a selectively delivered self-sustaining signal at the NK/tumor cell synapse. Targeted cytokine stimulation, rather than systemic cytokine administration, may impact toxicity in patients rendering the TriKE a promising new off-the-shelf carcinoma therapy.
Collapse
|
507
|
Natural killer cells enhance the immune surveillance of cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2015.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
508
|
Pietra G, Vitale C, Pende D, Bertaina A, Moretta F, Falco M, Vacca P, Montaldo E, Cantoni C, Mingari MC, Moretta A, Locatelli F, Moretta L. Human natural killer cells: news in the therapy of solid tumors and high-risk leukemias. Cancer Immunol Immunother 2016; 65:465-76. [PMID: 26289090 PMCID: PMC11028670 DOI: 10.1007/s00262-015-1744-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/18/2015] [Indexed: 12/28/2022]
Abstract
It is well established that natural killer (NK) cells play an important role in the immunity against cancer, while the involvement of other recently identified, NK-related innate lymphoid cells is still poorly defined. In the haploidentical hematopoietic stem cell transplantation for the therapy of high-risk leukemias, NK cells have been shown to exert a key role in killing leukemic blasts residual after conditioning. While the clinical results in the cure of leukemias are excellent, the exploitation of NK cells in the therapy of solid tumors is still limited and unsatisfactory. In solid tumors, NK cell function may be inhibited via different mechanisms, occurring primarily at the tumor site. The cellular interactions in the tumor microenvironment involve tumor cells, stromal cells and resident or recruited leukocytes and may favor tumor evasion from the host's defenses. In this context, a number of cytokines, growth factors and enzymes synthesized by tumor cells, stromal cells, suppressive/regulatory myeloid and lymphoid cells may substantially impair the function of different tumor-reactive effector cells, including NK cells. The identification and characterization of such mechanisms may offer clues for the development of new immunotherapeutic strategies to restore effective anti-tumor responses. In order to harness NK cell-based immunotherapies, several approaches have been proposed, including reinforcement of NK cell cytotoxicity by means of specific cytokines, antibodies or drugs. These new tools may improve NK cell function and/or increase tumor susceptibility to NK-mediated killing. Hence, the integration of NK-based immunotherapies with conventional anti-tumor therapies may increase chances of successful cancer treatment.
Collapse
Affiliation(s)
- Gabriella Pietra
- IRCCS AOU San Martino-IST, Genoa, Italy
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Chiara Vitale
- IRCCS AOU San Martino-IST, Genoa, Italy
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | | | | | - Francesca Moretta
- Department of Medicine, University of Verona, Verona, Italy
- Ospedale Sacro Cuore, Negrar, Verona, Italy
| | - Michela Falco
- Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147, Genoa, Italy
| | - Paola Vacca
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Elisa Montaldo
- Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | - Maria Cristina Mingari
- IRCCS AOU San Martino-IST, Genoa, Italy
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | - Alessandro Moretta
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | | | | |
Collapse
|
509
|
Pan WJ, Li H, Xiao JJ, Horner MJ, Lebrec HN, Butz EA, Kaliyaperumal A, Cheah TC, Ortiz RC, Prokop SP, Buntich SA, Boren BM, Wolford ST, Tsuji WH, Wienkers LC, Köck K. Modeling the pharmacokinetic-pharmacodynamic relationship of the monoclonal anti-macaque-IL-15 antibody Hu714MuXHu in cynomolgus monkeys. Pharmacol Res Perspect 2016; 3:e00199. [PMID: 27022472 PMCID: PMC4777250 DOI: 10.1002/prp2.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/08/2015] [Indexed: 12/27/2022] Open
Abstract
Hu714MuXHu is a recombinant chimeric murine‐human monoclonal antibody directed against interleukin‐15 (IL‐15), a proinflammatory cytokine associated with memory CD8+ and natural killer (NK) T‐cell activation and implicated in the pathogenesis of inflammatory diseases. A pharmacokinetic‐pharmacodynamic (PK/PD) model was developed to describe the NK cell count reduction in cynomolgus monkeys after treatment with Hu714MuXHu. Cynomolgus monkeys were dosed with Hu714MuXHu in three studies: as a single dose at 0.1 or 1 mg·kg−1 i.v.; weekly for 5 weeks at 0, 30, 60, or 150 mg·kg−1 i.v. or 150 mg·kg−1 s.c.; weekly for 13 weeks at 0, 5, 30, or 150 mg·kg−1 s.c. Serum Hu714MuXHu concentration‐time data were analyzed using noncompartmental analysis and the PK/NK cell count relationship was assessed via simultaneous PK/PD modeling. Hu714MuXHu PK was approximately dose‐proportional between 0.1–150 mg·kg−1 for i.v. and 5–150 mg·kg−1 for s.c. administration with an elimination half‐life of 12.7–18 days. Hu714MuXHu administration resulted in rapid and marked reductions in NK cell counts after the first dose which recovered fully after the serum Hu714MuXHu concentrations approached 0.1 μg·mL−1 (assay limit of quantification). PK/PD modeled Hu714MuXHu effects on NK cells had an EC50 of 0.09 μg·mL−1. In summary, weekly i.v. or s.c. doses with Hu714MuXHu for up to 3 months in cynomolgus monkeys demonstrated linear PK and significant NK cell count reduction, which was described using PK/PD modeling. This approach may be used to guide investigative product dose selections for inflammatory diseases where NK cell count alterations are quantifiable.
Collapse
Affiliation(s)
- Wei J Pan
- Pharmacokinetics and Drug Metabolism Amgen Inc. Seattle Washington
| | - Hong Li
- Pharmacokinetics and Drug Metabolism Amgen Inc. Seattle Washington
| | - Jim J Xiao
- Pharmacokinetics and Drug Metabolism Amgen Inc. Thousand Oaks Washington
| | - Michelle J Horner
- Comparative Biology and Safety Sciences Amgen Inc. Thousand Oaks California
| | - Herve N Lebrec
- Comparative Biology and Safety Sciences Amgen Inc. Seattle Washington
| | - Eric A Butz
- Inflammation Discovery Research Amgen Inc. Seattle Washington
| | | | - Tsui C Cheah
- Pharmacokinetics and Drug Metabolism Amgen Inc. Thousand Oaks Washington
| | - Robert C Ortiz
- Pharmacokinetics and Drug Metabolism Amgen Inc. Thousand Oaks Washington
| | | | - Sabina A Buntich
- Comparative Biology and Safety Sciences Amgen Inc. Thousand Oaks California
| | - Babette M Boren
- Comparative Biology and Safety Sciences Amgen Inc. Seattle Washington
| | | | | | - Larry C Wienkers
- Pharmacokinetics and Drug Metabolism Amgen Inc. Seattle Washington
| | - Kathleen Köck
- Pharmacokinetics and Drug Metabolism Amgen Inc. Seattle Washington
| |
Collapse
|
510
|
Abstract
PURPOSE OF REVIEW Natural killer (NK) cells are innate lymphoid cells specialized to eliminate malignant cells via direct cytotoxicity and immunoregulatory cytokine production. As such, NK cells are ideal as cellular therapy for cancer patients, and several studies have provided proof of principle that adoptively transferred NK cells can induce remissions in patients with leukemia. A clear understanding of the mechanisms underlying NK cell antitumor responses, including target cell recognition, activation status, and negative regulatory signals will improve NK cellular therapy for cancer patients. RECENT FINDINGS Clinical studies have demonstrated the safety and preliminary efficacy of NK cell adoptive transfer, especially in hematologic malignancies. Various NK cell sources, isolation techniques, activation approaches, and ex-vivo expansion strategies are under investigation. New approaches have been developed and are being tested to optimize NK cell therapy, including ways to better target NK cells to malignant cells, increase their functional competence, facilitate expansion in patients, and limit inhibitory signals or cells. SUMMARY NK cells represent a promising cellular immunotherapy for the treatment of cancer. In addition to adoptive cellular therapy, adjunct treatments that optimize NK cell targeting and function will enhance their potency and broaden their potential use to many cancer types.
Collapse
|
511
|
Setoguchi R. IL-15 boosts the function and migration of human terminally differentiated CD8+T cells by inducing a unique gene signature. Int Immunol 2016; 28:293-305. [DOI: 10.1093/intimm/dxw004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/03/2016] [Indexed: 12/13/2022] Open
|
512
|
Trans-presentation of interleukin-15 by interleukin-15 receptor alpha is dispensable for the pathogenesis of autoimmune type 1 diabetes. Cell Mol Immunol 2016; 14:590-596. [PMID: 26853723 DOI: 10.1038/cmi.2015.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/15/2015] [Accepted: 11/15/2015] [Indexed: 02/01/2023] Open
Abstract
Interleukin-15 (IL-15) is a pro-inflammatory cytokine that is required for the survival and activation of memory CD8+T cells, natural killer (NK) cells, innate lymphoid cells, macrophages and dendritic cells. IL-15 is implicated in the pathogenesis of various autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease, psoriasis and autoimmune type 1 diabetes (T1D). IL-15 receptor (IL-15R) consists of a specific α chain, the β chain that is shared with IL-2R and the common γ chain. IL-15 is unique in the manner in which it binds and signals through its receptor subunits. IL-15 that is complexed with IL-15Rα binds to the βγ receptor complex present on the responding cell to mediate its biological effects through a process referred to as trans-presentation. The trans-presented IL-15 is essential to mediate the biological effects on T lymphocytes and NK cells. Here we show that IL-15, but not IL-15Rα, is required for the development of spontaneous and virus-induced T1D, viral clearance and for antigen cross-presentation to CD8+ T lymphocytes. Our findings provide insight into the complexities of IL-15 signalling in the initiation and maintenance of CD8+ T cell-mediated immune responses.
Collapse
|
513
|
High dose CD11c-driven IL15 is sufficient to drive NK cell maturation and anti-tumor activity in a trans-presentation independent manner. Sci Rep 2016; 6:19699. [PMID: 26822794 PMCID: PMC4731790 DOI: 10.1038/srep19699] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/17/2015] [Indexed: 11/08/2022] Open
Abstract
The common gamma (γc)-chain cytokine interleukin 15 (IL15) is a multifunctional immune-modulator which impacts the generation, maturation and activity of many cell types of the innate, as well as the adaptive immune system, including natural killer (NK) and CD8(+) T cells. Using a new series of transgenic mice, we analyzed the in vivo potential of IL15 as an immune-regulator when available at different concentrations or delivery modes, i.e. soluble monomer or complexed to its specific receptor α (Rα)-chain. We have identified distinct effects on selected IL15-responsive populations. While CD8(+) T cells required complexed forms of IL15/IL15Rα for full functionality, mature NK populations were rescued in an IL15/IL15Rα-deficient environment by high levels of CD11c-restricted IL15. These IL15-conditions were sufficient to limit tumor formation in a lung metastasis model indicating that the NK cell populations were fully functional. These data underline the potential of "free" IL15 in the absence of Rα-complex as a powerful and specific immuno-modulator, which may be beneficial where selective immune-activation is desired.
Collapse
|
514
|
Hong E, Usiskin IM, Bergamaschi C, Hanlon DJ, Edelson RL, Justesen S, Pavlakis GN, Flavell RA, Fahmy TM. Configuration-dependent Presentation of Multivalent IL-15:IL-15Rα Enhances the Antigen-specific T Cell Response and Anti-tumor Immunity. J Biol Chem 2015; 291:8931-50. [PMID: 26719339 DOI: 10.1074/jbc.m115.695304] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 01/08/2023] Open
Abstract
Here we report a "configuration-dependent" mechanism of action for IL-15:IL-15Rα (heterodimeric IL-15 or hetIL-15) where the manner by which IL-15:IL-15Rα molecules are presented to target cells significantly affects its function as a vaccine adjuvant. Although the cellular mechanism of IL-15 trans-presentation via IL-15Rα and its importance for IL-15 function have been described, the full effect of the IL-15:IL-15Rα configuration on responding cells is not yet known. We found that trans-presenting IL-15:IL-15Rα in a multivalent fashion on the surface of antigen-encapsulating nanoparticles enhanced the ability of nanoparticle-treated dendritic cells (DCs) to stimulate antigen-specific CD8(+) T cell responses. Localization of multivalent IL-15:IL-15Rα and encapsulated antigen to the same DC led to maximal T cell responses. Strikingly, DCs incubated with IL-15:IL-15Rα-coated nanoparticles displayed higher levels of functional IL-15 on the cell surface, implicating a mechanism for nanoparticle-mediated transfer of IL-15 to the DC surface. Using artificial antigen-presenting cells to highlight the effect of IL-15 configuration on DCs, we showed that artificial antigen-presenting cells presenting IL-15:IL-15Rα increased the sensitivity and magnitude of the T cell response, whereas IL-2 enhanced the T cell response only when delivered in a paracrine fashion. Therefore, the mode of cytokine presentation (configuration) is important for optimal immune responses. We tested the effect of configuration dependence in an aggressive model of murine melanoma and demonstrated significantly delayed tumor progression induced by IL-15:IL-15Rα-coated nanoparticles in comparison with monovalent IL-15:IL-15Rα. The novel mechanism of IL-15 transfer to the surface of antigen-processing DCs may explain the enhanced potency of IL-15:IL-15Rα-coated nanoparticles for antigen delivery.
Collapse
Affiliation(s)
- Enping Hong
- From the Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511
| | - Ilana M Usiskin
- From the Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511
| | - Cristina Bergamaschi
- the Vaccine Branch, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, and
| | - Douglas J Hanlon
- Dermatology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Richard L Edelson
- Dermatology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Sune Justesen
- the Department of Science, University of Copenhagen, Copenhagen 1017, Denmark
| | - George N Pavlakis
- the Vaccine Branch, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, and
| | | | - Tarek M Fahmy
- From the Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, the Departments of Immunobiology and
| |
Collapse
|
515
|
Vacchelli E, Aranda F, Bloy N, Buqué A, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Immunostimulation with cytokines in cancer therapy. Oncoimmunology 2015; 5:e1115942. [PMID: 27057468 DOI: 10.1080/2162402x.2015.1115942] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023] Open
Abstract
During the past decade, great efforts have been dedicated to the development of clinically relevant interventions that would trigger potent (and hence potentially curative) anticancer immune responses. Indeed, developing neoplasms normally establish local and systemic immunosuppressive networks that inhibit tumor-targeting immune effector cells, be them natural or elicited by (immuno)therapy. One possible approach to boost anticancer immunity consists in the (generally systemic) administration of recombinant immunostimulatory cytokines. In a limited number of oncological indications, immunostimulatory cytokines mediate clinical activity as standalone immunotherapeutic interventions. Most often, however, immunostimulatory cytokines are employed as immunological adjuvants, i.e., to unleash the immunogenic potential of other immunotherapeutic agents, like tumor-targeting vaccines and checkpoint blockers. Here, we discuss recent preclinical and clinical advances in the use of some cytokines as immunostimulatory agents in oncological indications.
Collapse
Affiliation(s)
- Erika Vacchelli
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)
| | - Norma Bloy
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic; Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic; Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
516
|
Pilipow K, Roberto A, Roederer M, Waldmann TA, Mavilio D, Lugli E. IL15 and T-cell Stemness in T-cell-Based Cancer Immunotherapy. Cancer Res 2015; 75:5187-5193. [PMID: 26627006 DOI: 10.1158/0008-5472.can-15-1498] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/27/2015] [Indexed: 12/31/2022]
Abstract
Preclinical models revealed that the immune system can mediate rejection of established tumors, but direct evidence in humans has been limited to largely immunogenic tumors, such as melanoma. The recent success of immune checkpoint inhibitors and adoptive T-cell transfer immunotherapy in clinical trials has instilled new hope for the use of T-cell immunotherapy in the treatment of cancer. IL15, a potent immunostimulatory cytokine, both potentiates host T-cells and natural killer (NK) cell immune responses and promotes the generation of long-lived memory T cells with superior functional capacity, with potential use in adoptive T-cell transfer protocols. IL15 has been recently tested in the clinic and showed dramatic effects at the level of responding NK and CD8(+) memory T cells. The recent advances in the knowledge of IL15-dependent regulation of T-cell responses, gene expression, and metabolic adaptation have important implications for the use of IL15 in T-cell-based immunotherapy of cancer.
Collapse
Affiliation(s)
- Karolina Pilipow
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Alessandra Roberto
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas A Waldmann
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
517
|
Pulliam SR, Uzhachenko RV, Adunyah SE, Shanker A. Common gamma chain cytokines in combinatorial immune strategies against cancer. Immunol Lett 2015; 169:61-72. [PMID: 26597610 DOI: 10.1016/j.imlet.2015.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/15/2015] [Accepted: 11/12/2015] [Indexed: 01/10/2023]
Abstract
Common γ chain (γC) cytokines, namely IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 are important for the proliferation, differentiation, and survival of lymphocytes that display antitumor activity, thus stimulating considerable interest for the use of cytokines in cancer immunotherapy. In this review, we will focus on the γC cytokines that demonstrate the greatest potential for immunotherapy, IL-2, IL-7, IL-15, and IL-21. We will briefly cover their biological function, potential applications in cancer therapy, and update on their use in combinatorial immune strategies for eradicating tumors and hematopoietic malignancies.
Collapse
Affiliation(s)
- Stephanie R Pulliam
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| | - Roman V Uzhachenko
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Samuel E Adunyah
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA.
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
518
|
Rezvani K, Rouce RH. The Application of Natural Killer Cell Immunotherapy for the Treatment of Cancer. Front Immunol 2015; 6:578. [PMID: 26635792 PMCID: PMC4648067 DOI: 10.3389/fimmu.2015.00578] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are essential components of the innate immune system and play a critical role in host immunity against cancer. Recent progress in our understanding of NK cell immunobiology has paved the way for novel NK cell-based therapeutic strategies for the treatment of cancer. In this review, we will focus on recent advances in the field of NK cell immunotherapy, including augmentation of antibody-dependent cellular cytotoxicity, manipulation of receptor-mediated activation, and adoptive immunotherapy with ex vivo-expanded, chimeric antigen receptor (CAR)-engineered, or engager-modified NK cells. In contrast to T lymphocytes, donor NK cells do not attack non-hematopoietic tissues, suggesting that an NK-mediated antitumor effect can be achieved in the absence of graft-vs.-host disease. Despite reports of clinical efficacy, a number of factors limit the application of NK cell immunotherapy for the treatment of cancer, such as the failure of infused NK cells to expand and persist in vivo. Therefore, efforts to enhance the therapeutic benefit of NK cell-based immunotherapy by developing strategies to manipulate the NK cell product, host factors, and tumor targets are the subject of intense research. In the preclinical setting, genetic engineering of NK cells to express CARs to redirect their antitumor specificity has shown significant promise. Given the short lifespan and potent cytolytic function of mature NK cells, they are attractive candidate effector cells to express CARs for adoptive immunotherapies. Another innovative approach to redirect NK cytotoxicity towards tumor cells is to create either bispecific or trispecific antibodies, thus augmenting cytotoxicity against tumor-associated antigens. These are exciting times for the study of NK cells; with recent advances in the field of NK cell biology and translational research, it is likely that NK cell immunotherapy will move to the forefront of cancer immunotherapy over the next few years.
Collapse
Affiliation(s)
- Katayoun Rezvani
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Rayne H Rouce
- Department of Pediatrics, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine , Houston, TX , USA ; Center for Cell and Gene Therapy, Baylor College of Medicine Houston Methodist Hospital and Texas Children's Hospital , Houston, TX , USA
| |
Collapse
|
519
|
Rhode PR, Egan JO, Xu W, Hong H, Webb GM, Chen X, Liu B, Zhu X, Wen J, You L, Kong L, Edwards AC, Han K, Shi S, Alter S, Sacha JB, Jeng EK, Cai W, Wong HC. Comparison of the Superagonist Complex, ALT-803, to IL15 as Cancer Immunotherapeutics in Animal Models. Cancer Immunol Res 2015; 4:49-60. [PMID: 26511282 DOI: 10.1158/2326-6066.cir-15-0093-t] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/03/2015] [Indexed: 02/03/2023]
Abstract
IL15, a potent stimulant of CD8(+) T cells and natural killer (NK) cells, is a promising cancer immunotherapeutic. ALT-803 is a complex of an IL15 superagonist mutant and a dimeric IL15 receptor αSu/Fc fusion protein that was found to exhibit enhanced biologic activity in vivo, with a substantially longer serum half-life than recombinant IL15. A single intravenous dose of ALT-803, but not IL15, eliminated well-established tumors and prolonged survival of mice bearing multiple myeloma. In this study, we extended these findings to demonstrate the superior antitumor activity of ALT-803 over IL15 in mice bearing subcutaneous B16F10 melanoma tumors and CT26 colon carcinoma metastases. Tissue biodistribution studies in mice also showed much greater retention of ALT-803 in the lymphoid organs compared with IL15, consistent with its highly potent immunostimulatory and antitumor activities in vivo. Weekly dosing with 1 mg/kg ALT-803 in C57BL/6 mice was well tolerated, yet capable of increasing peripheral blood lymphocyte, neutrophil, and monocyte counts by >8-fold. ALT-803 dose-dependent stimulation of immune cell infiltration into the lymphoid organs was also observed. Similarly, cynomolgus monkeys treated weekly with ALT-803 showed dose-dependent increases of peripheral blood lymphocyte counts, including NK, CD4(+), and CD8(+) memory T-cell subsets. In vitro studies demonstrated ALT-803-mediated stimulation of mouse and human immune cell proliferation and IFNγ production without inducing a broad-based release of other proinflammatory cytokines (i.e., cytokine storm). Based on these results, a weekly dosing regimen of ALT-803 has been implemented in multiple clinical studies to evaluate the dose required for effective immune cell stimulation in humans.
Collapse
Affiliation(s)
| | - Jack O Egan
- Altor BioScience Corporation, Miramar, Florida
| | - Wenxin Xu
- Altor BioScience Corporation, Miramar, Florida
| | - Hao Hong
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Gabriela M Webb
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA.,Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | | | - Bai Liu
- Altor BioScience Corporation, Miramar, Florida
| | - Xiaoyun Zhu
- Altor BioScience Corporation, Miramar, Florida
| | - Jinghai Wen
- Altor BioScience Corporation, Miramar, Florida
| | - Lijing You
- Altor BioScience Corporation, Miramar, Florida
| | - Lin Kong
- Altor BioScience Corporation, Miramar, Florida
| | | | - Kaiping Han
- Altor BioScience Corporation, Miramar, Florida
| | - Sixiang Shi
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Sarah Alter
- Altor BioScience Corporation, Miramar, Florida
| | - Jonah B Sacha
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA.,Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | | | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Hing C Wong
- Altor BioScience Corporation, Miramar, Florida
| |
Collapse
|
520
|
Trans-presentation of IL-15 modulates STAT5 activation and Bcl-6 expression in TH1 cells. Sci Rep 2015; 5:15722. [PMID: 26500048 PMCID: PMC4620557 DOI: 10.1038/srep15722] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/01/2015] [Indexed: 01/11/2023] Open
Abstract
During infection, naïve CD4+ T helper cells differentiate into specialized effector subsets based upon environmental signals propagated by the cytokine milieu. Recently, this paradigm has been complicated by the demonstration that alterations in the cytokine environment can result in varying degrees of plasticity between effector T helper cell populations. Therefore, elucidation of the mechanisms by which cytokines regulate T helper cell differentiation decisions is increasingly important. The gamma common cytokine IL-15 is currently undergoing clinical trials for the treatment of malignancies, due to its well-established role in the regulation of natural killer and CD8+ T cell immune responses. However, the effect of IL-15 signaling on CD4+ T cell activity is incompletely understood. One mechanism by which IL-15 activity is conferred is through trans-presentation via the IL-15 receptor alpha subunit. Here, we demonstrate that differentiated TH1 cells are responsive to trans-presented IL-15. Importantly, while trans-presentation of IL-15 results in STAT5 activation and maintenance of the TH1 gene program, IL-15 treatment alone allows for increased Bcl-6 expression and the upregulation of a TFH-like profile. Collectively, these findings describe a novel role for IL-15 in the modulation of CD4+ T cell responses and provide valuable insight for the use of IL-15 in immunotherapeutic approaches.
Collapse
|
521
|
Krasnova Y, Putz EM, Smyth MJ, Souza-Fonseca-Guimaraes F. Bench to bedside: NK cells and control of metastasis. Clin Immunol 2015; 177:50-59. [PMID: 26476139 DOI: 10.1016/j.clim.2015.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/08/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cells play a critical role in host immune responses against tumor growth and metastasis. The numerous mechanisms used by NK cells to regulate and control cancer metastasis include interactions with tumor cells via specific receptors and ligands as well as direct cytotoxicity and cytokine-induced effector mechanisms. NK cells also play a role in tumor immunosurveillance and inhibition of metastases formation by recognition and killing of tumor cells. In this review, we provide an overview of the molecular mechanisms of NK cell responses against tumor metastases and discuss multiple strategies by which tumors evade NK cell-mediated surveillance. With an increasing understanding of the molecular mechanisms driving NK cell activity, there is a growing potential for the development of new cancer immunotherapies. Here we provide a historical background on NK cell-based therapies and discuss the implications of recent and ongoing clinical trials using novel NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Yelena Krasnova
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; School of Medicine, University of Queensland, St Lucia, Queensland 4006, Australia
| | - Eva Maria Putz
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; School of Medicine, University of Queensland, St Lucia, Queensland 4006, Australia
| | - Fernando Souza-Fonseca-Guimaraes
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; School of Medicine, University of Queensland, St Lucia, Queensland 4006, Australia.
| |
Collapse
|
522
|
Cata JP, Conrad C, Rezvani K. Potential Use of Natural Killer Cell Transfer Therapy in the Perioperative Period to Improve Oncologic Outcomes. SCIENTIFICA 2015; 2015:732438. [PMID: 26576322 PMCID: PMC4632007 DOI: 10.1155/2015/732438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Immune suppression after oncologic surgery is a common phenomenon. Several studies have demonstrated that it is associated with poor survival owing to cancer progression. Immunotherapy, especially NK cell transfer therapy, is an attractive alternative because current methodologies to isolate, generate, and expand NK cells have shown good safety profiles in current active investigations. We believe that the use of NK cell transfer therapy in the context of postoperative minimal residual disease deserves significant investigation.
Collapse
Affiliation(s)
- Juan P. Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Anesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| | - Claudius Conrad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katy Rezvani
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
523
|
Anguille S, Smits EL, Bryant C, Van Acker HH, Goossens H, Lion E, Fromm PD, Hart DN, Van Tendeloo VF, Berneman ZN. Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacol Rev 2015; 67:731-53. [PMID: 26240218 DOI: 10.1124/pr.114.009456] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Although the earliest—rudimentary—attempts at exploiting the immune system for cancer therapy can be traced back to the late 18th Century, it was not until the past decade that cancer immunotherapeutics have truly entered mainstream clinical practice. Given their potential to stimulate both adaptive and innate antitumor immune responses, dendritic cells (DCs) have come under intense scrutiny in recent years as pharmacological tools for cancer immunotherapy. Conceptually, the clinical effectiveness of this form of active immunotherapy relies on the completion of three critical steps: 1) the DCs used as immunotherapeutic vehicles must properly activate the antitumor immune effector cells of the host, 2) these immune effector cells must be receptive to stimulation by the DCs and be competent to mediate their antitumor effects, which 3) requires overcoming the various immune-inhibitory mechanisms used by the tumor cells. In this review, following a brief overview of the pivotal milestones in the history of cancer immunotherapy, we will introduce the reader to the basic immunobiological and pharmacological principles of active cancer immunotherapy using DCs. We will then discuss how current research is trying to define the optimal parameters for each of the above steps to realize the full clinical potential of DC therapeutics. Given its high suitability for immune interventions, acute myeloid leukemia was chosen here to showcase the latest research trends driving the field of DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Sébastien Anguille
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Evelien L Smits
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Christian Bryant
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Heleen H Van Acker
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Herman Goossens
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Eva Lion
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Phillip D Fromm
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | | | - Viggo F Van Tendeloo
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Zwi N Berneman
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| |
Collapse
|
524
|
Rosario M, Liu B, Kong L, Collins LI, Schneider SE, Chen X, Han K, Jeng EK, Rhode PR, Leong JW, Schappe T, Jewell BA, Keppel CR, Shah K, Hess B, Romee R, Piwnica-Worms DR, Cashen AF, Bartlett NL, Wong HC, Fehniger TA. The IL-15-Based ALT-803 Complex Enhances FcγRIIIa-Triggered NK Cell Responses and In Vivo Clearance of B Cell Lymphomas. Clin Cancer Res 2015; 22:596-608. [PMID: 26423796 DOI: 10.1158/1078-0432.ccr-15-1419] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/15/2015] [Indexed: 12/30/2022]
Abstract
PURPOSE Anti-CD20 monoclonal antibodies (mAb) are an important immunotherapy for B-cell lymphoma, and provide evidence that the immune system may be harnessed as an effective lymphoma treatment approach. ALT-803 is a superagonist IL-15 mutant and IL-15Rα-Fc fusion complex that activates the IL-15 receptor constitutively expressed on natural killer (NK) cells. We hypothesized that ALT-803 would enhance anti-CD20 mAb-directed NK-cell responses and antibody-dependent cellular cytotoxicity (ADCC). EXPERIMENTAL DESIGN We tested this hypothesis by adding ALT-803 immunostimulation to anti-CD20 mAb triggering of NK cells in vitro and in vivo. Cell lines and primary human lymphoma cells were utilized as targets for primary human NK cells. Two complementary in vivo mouse models were used, which included human NK-cell xenografts in NOD/SCID-γc (-/-) mice. RESULTS We demonstrate that short-term ALT-803 stimulation significantly increased degranulation, IFNγ production, and ADCC by human NK cells against B-cell lymphoma cell lines or primary follicular lymphoma cells. ALT-803 augmented cytotoxicity and the expression of granzyme B and perforin, providing one potential mechanism for this enhanced functionality. Moreover, in two distinct in vivo B-cell lymphoma models, the addition of ALT-803 to anti-CD20 mAb therapy resulted in significantly reduced tumor cell burden and increased survival. Long-term ALT-803 stimulation of human NK cells induced proliferation and NK-cell subset changes with preserved ADCC. CONCLUSIONS ALT-803 represents a novel immunostimulatory drug that enhances NK-cell antilymphoma responses in vitro and in vivo, thereby supporting the clinical investigation of ALT-803 plus anti-CD20 mAbs in patients with indolent B-cell lymphoma.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cytotoxicity, Immunologic/drug effects
- Disease Models, Animal
- Drug Synergism
- Gene Expression Regulation, Neoplastic/drug effects
- Granzymes/genetics
- Granzymes/metabolism
- Humans
- Interferon-gamma/biosynthesis
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Mice
- Mice, Knockout
- Perforin/genetics
- Perforin/metabolism
- Proteins/pharmacology
- Receptors, IgG/metabolism
- Recombinant Fusion Proteins
- Rituximab/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Maximillian Rosario
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri. Department of Pathology/Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Bai Liu
- Altor BioScience Corporation, Miramar, Florida
| | - Lin Kong
- Altor BioScience Corporation, Miramar, Florida
| | - Lynne I Collins
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Stephanie E Schneider
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Kaiping Han
- Altor BioScience Corporation, Miramar, Florida
| | | | | | - Jeffrey W Leong
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Timothy Schappe
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Brea A Jewell
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Catherine R Keppel
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Keval Shah
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Brian Hess
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Rizwan Romee
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - David R Piwnica-Worms
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri. Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amanda F Cashen
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Nancy L Bartlett
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Hing C Wong
- Altor BioScience Corporation, Miramar, Florida
| | - Todd A Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
525
|
The Rapid Emergence of Novel Therapeutics in Advanced Malignant Melanoma. Dermatol Ther (Heidelb) 2015; 5:151-69. [PMID: 26387031 PMCID: PMC4580658 DOI: 10.1007/s13555-015-0080-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 02/07/2023] Open
Abstract
For decades, no cancer therapy had been shown to improve average survival in metastatic melanoma. Two critical events have occurred, the discovery of melanoma driver mutation subsets and the discovery of immune checkpoint inhibitors, which have allowed for the development of modern, effective therapies. These findings have facilitated a rapid emergence of novel therapeutics for the disease with multiple FDA approvals in the last several years. The drugs vemurafenib, trametinib, and dabrafenib, which inhibit the commonly mutated BRAF pathway, have been approved based on improvements in survival outcomes. Agents that block immune checkpoints on lymphocytes allowing for immune cell activity against melanoma have also been approved based on improved survival outcomes such as ipilimumab and nivolumab. Pembrolizumab, another immune checkpoint inhibitor, has also been approved based on the response rate and duration of response in a phase 1 trial. Further agents and combinations of approved agents are positioned to possibly further increase this tally of approved drugs. This review will discuss recently approved novel agents and select drugs in development in advanced melanoma.
Collapse
|
526
|
Pérez-Martínez A, Fernández L, Valentín J, Martínez-Romera I, Corral MD, Ramírez M, Abad L, Santamaría S, González-Vicent M, Sirvent S, Sevilla J, Vicario JL, de Prada I, Diaz MÁ. A phase I/II trial of interleukin-15--stimulated natural killer cell infusion after haplo-identical stem cell transplantation for pediatric refractory solid tumors. Cytotherapy 2015; 17:1594-603. [PMID: 26341478 DOI: 10.1016/j.jcyt.2015.07.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/16/2015] [Accepted: 07/18/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND AIMS Preliminary data suggest that T-cell-depleted haplo-identical stem cell transplantation (haplo-SCT) has a clinically beneficial allograft-versus-tumor effect associated with natural killer (NK) cell immune reconstitution. METHODS This phase I/II trial descriptively evaluates the feasibility of interleukin (IL)-15-stimulated NK cell infusion after haplo-SCT in pediatric patients with refractory solid tumors. RESULTS Six patients received an IL-15-stimulated NK cell infusion at 30 days after haplo-SCT. The mean number of infused NK cells per product was 11.3 × 10(6)/kg (range, 3-27 × 10(6)/kg). The T-cell count was <1 × 10(3)/kg in all patients (range, 0-0.75 × 10(3)/kg). No toxic effects related to IL-15--stimulated NK cell infusion were observed. Four of the six patients showed a clinical response (one achieved very good partial remission, two achieved partial remission and one had stable disease). One patient had progressive disease, and the response was not evaluated in the remaining patient. After a median follow-up period of 310 days, all patients had died: four of cancer relapse, one of cancer-associated thrombotic micro-angiopathy and one of acute graft-versus-host disease. CONCLUSIONS The adoptive transfer of allogeneic IL-15--stimulated NK cells might be feasible and safe in heavily pretreated pediatric patients with refractory solid tumors, though the advanced stage of disease and toxic effects of haplo-SCT may limit the efficacy of NK cell infusion in this population.
Collapse
Affiliation(s)
- Antonio Pérez-Martínez
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Hospital Infantil Universitario La Paz, Madrid, Spain.
| | - Lucía Fernández
- Clinical Research Program, Cancer Research National Centre, Madrid, Spain
| | | | | | | | - Manuel Ramírez
- GMP Facility, Department of Hemato-Oncology and Stem Cell Transplantation, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Department of Hemato-Oncology and Stem Cell Transplantation, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Lorea Abad
- Department of Hemato-Oncology and Stem Cell Transplantation, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Sandra Santamaría
- GMP Facility, Department of Hemato-Oncology and Stem Cell Transplantation, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Marta González-Vicent
- Department of Hemato-Oncology and Stem Cell Transplantation, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Sara Sirvent
- Department of Radiology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Julián Sevilla
- Department of Hemato-Oncology and Stem Cell Transplantation, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | - Inmaculada de Prada
- Department of Pathology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Miguel Ángel Diaz
- Department of Hemato-Oncology and Stem Cell Transplantation, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| |
Collapse
|
527
|
Cantoni C, Grauwet K, Pietra G, Parodi M, Mingari MC, Maria AD, Favoreel H, Vitale M. Role of NK cells in immunotherapy and virotherapy of solid tumors. Immunotherapy 2015; 7:861-82. [PMID: 26314197 DOI: 10.2217/imt.15.53] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although natural killer (NK) cells are endowed with powerful cytolytic activity against cancer cells, their role in different therapies against solid tumors has not yet been fully elucidated. Their interactions with various elements of the tumor microenvironment as well as their possible effects in contributing to and/or limiting oncolytic virotherapy render this potential immunotherapeutic tool still difficult to exploit at the bedside. Here, we will review the current literature with the aim of providing new hints to manage this powerful cell type in future innovative therapies, such as the use of NK cells in combination with new cytokines, specific mAbs (inducing ADCC), Tyr-Kinase inhibitors, immunomodulatory drugs and/or the design of oncolytic viruses aimed at optimizing the effect of NK cells in virotherapy.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,Istituto Giannina Gaslini, Genova, Italy
| | - Korneel Grauwet
- Laboratory of Immunology, Department of Virology, Parasitology & Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Gabriella Pietra
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy
| | - Monica Parodi
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy
| | - Andrea De Maria
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy.,Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Herman Favoreel
- Laboratory of Immunology, Department of Virology, Parasitology & Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | | |
Collapse
|
528
|
Abstract
Tumors originate from a number of genetic events that deregulate homeostatic mechanisms controlling normal cell behavior. The immune system, devoted to patrol the organism against pathogenic events, can identify transformed cells, and in several cases cause their elimination. It is however clear that several mechanisms encompassing both central and peripheral tolerance limit antitumor immunity, often resulting into progressive diseases. Adoptive T-cell therapy with either allogeneic or autologous T cells can transfer therapeutic immunity. To date, genetic engineering of T cells appears to be a powerful tool for shaping tumor immunity. In this review, we discuss the most recent achievements in the areas of suicide gene therapy, and TCR-modified T cells and chimeric antigen receptor gene-modified T cells. We provide an overview of current strategies aimed at improving the safety and efficacy of these approaches, with an outlook on prospective developments.
Collapse
Affiliation(s)
- Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
529
|
Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 2015; 3:219-27. [PMID: 25736261 DOI: 10.1158/2326-6066.cir-15-0009] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
IL2 and IL15, members of the 4α-helix bundle family of cytokines, play pivotal roles in the control of the life and death of lymphocytes. Although their heterotrimeric receptors have two receptor subunits in common, these two cytokines have contrasting roles in adaptive immune responses. The unique role of IL2 through maintenance of fitness of regulatory T cells and activation-induced cell death is the elimination of self-reactive T cells to prevent autoimmunity. In contrast with IL2, IL15 is dedicated to the prolonged maintenance of memory T-cell responses to invading pathogens. Blockade of IL2 and IL15 using monoclonal antibodies has been reported to be of value in the treatment of patients with leukemia, autoimmune disorders, and in the prevention of allograft rejection. IL2 has been approved by the FDA for the treatment of patients with malignant renal cell cancer and metastatic malignant melanoma. Clinical trials involving recombinant human IL15 given by bolus infusions have been completed, and studies assessing subcutaneous and continuous intravenous infusions are under way in patients with metastatic malignancy. Furthermore, clinical trials are being initiated that employ the combination of IL15 with IL15Rα(+/-) IgFc.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
530
|
Roberts SS, Chou AJ, Cheung NKV. Immunotherapy of Childhood Sarcomas. Front Oncol 2015; 5:181. [PMID: 26301204 PMCID: PMC4528283 DOI: 10.3389/fonc.2015.00181] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/23/2015] [Indexed: 12/29/2022] Open
Abstract
Pediatric sarcomas are a heterogeneous group of malignant tumors of bone and soft tissue origin. Although more than 100 different histologic subtypes have been described, the majority of pediatric cases belong to the Ewing’s family of tumors, rhabdomyosarcoma and osteosarcoma. Most patients that present with localized stage are curable with surgery and/or chemotherapy; however, those with metastatic disease at diagnosis or those who experience a relapse continue to have a very poor prognosis. New therapies for these patients are urgently needed. Immunotherapy is an established treatment modality for both liquid and solid tumors, and in pediatrics, most notably for neuroblastoma and osteosarcoma. In the past, immunomodulatory agents such as interferon, interleukin-2, and liposomal-muramyl tripeptide phosphatidyl-ethanolamine have been tried, with some activity seen in subsets of patients; additionally, various cancer vaccines have been studied with possible benefit. Monoclonal antibody therapies against tumor antigens such as disialoganglioside GD2 or immune checkpoint targets such as CTLA-4 and PD-1 are being actively explored in pediatric sarcomas. Building on the success of adoptive T cell therapy for EBV-related lymphoma, strategies to redirect T cells using chimeric antigen receptors and bispecific antibodies are rapidly evolving with potential for the treatment of sarcomas. This review will focus on recent preclinical and clinical developments in targeted agents for pediatric sarcomas with emphasis on the immunobiology of immune checkpoints, immunoediting, tumor microenvironment, antibody engineering, cell engineering, and tumor vaccines. The future integration of antibody-based and cell-based therapies into an overall treatment strategy of sarcoma will be discussed.
Collapse
Affiliation(s)
- Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center , New York, NY , USA
| | - Alexander J Chou
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center , New York, NY , USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center , New York, NY , USA
| |
Collapse
|
531
|
Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. Front Immunol 2015; 6:368. [PMID: 26284063 PMCID: PMC4515552 DOI: 10.3389/fimmu.2015.00368] [Citation(s) in RCA: 384] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells play a major role in cancer immunotherapies that involve tumor-antigen targeting by monoclonal antibodies (mAbs). NK cells express a variety of activating and inhibitory receptors that serve to regulate the function and activity of the cells. In the context of targeting cells, NK cells can be "specifically activated" through certain Fc receptors that are expressed on their cell surface. NK cells can express FcγRIIIA and/or FcγRIIC, which can bind to the Fc portion of immunoglobulins, transmitting activating signals within NK cells. Once activated through Fc receptors by antibodies bound to target cells, NK cells are able to lyse target cells without priming, and secrete cytokines like interferon gamma to recruit adaptive immune cells. This antibody-dependent cell-mediated cytotoxicity (ADCC) of tumor cells is utilized in the treatment of various cancers overexpressing unique antigens, such as neuroblastoma, breast cancer, B cell lymphoma, and others. NK cells also express a family of receptors called killer immunoglobulin-like receptors (KIRs), which regulate the function and response of NK cells toward target cells through their interaction with their cognate ligands that are expressed on tumor cells. Genetic polymorphisms in KIR and KIR-ligands, as well as FcγRs may influence NK cell responsiveness in conjunction with mAb immunotherapies. This review focuses on current therapeutic mAbs, different strategies to augment the anti-tumor efficacy of ADCC, and genotypic factors that may influence patient responses to antibody-dependent immunotherapies.
Collapse
Affiliation(s)
- Wei Wang
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacquelyn A. Hank
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
532
|
Guo Y, Luan L, Rabacal W, Bohannon JK, Fensterheim BA, Hernandez A, Sherwood ER. IL-15 Superagonist-Mediated Immunotoxicity: Role of NK Cells and IFN-γ. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26216888 DOI: 10.4049/jimmunol.1500300] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IL-15 is currently undergoing clinical trials to assess its efficacy for treatment of advanced cancers. The combination of IL-15 with soluble IL-15Rα generates a complex termed IL-15 superagonist (IL-15 SA) that possesses greater biological activity than IL-15 alone. IL-15 SA is considered an attractive antitumor and antiviral agent because of its ability to selectively expand NK and memory CD8(+) T (mCD8(+) T) lymphocytes. However, the adverse consequences of IL-15 SA treatment have not been defined. In this study, the effect of IL-15 SA on physiologic and immunologic functions of mice was evaluated. IL-15 SA caused dose- and time-dependent hypothermia, weight loss, liver injury, and mortality. NK (especially the proinflammatory NK subset), NKT, and mCD8(+) T cells were preferentially expanded in spleen and liver upon IL-15 SA treatment. IL-15 SA caused NK cell activation as indicated by increased CD69 expression and IFN-γ, perforin, and granzyme B production, whereas NKT and mCD8(+) T cells showed minimal, if any, activation. Cell depletion and adoptive transfer studies showed that the systemic toxicity of IL-15 SA was mediated by hyperproliferation of activated NK cells. Production of the proinflammatory cytokine IFN-γ, but not TNF-α or perforin, was essential to IL-15 SA-induced immunotoxicity. The toxicity and immunological alterations shown in this study are comparable to those reported in recent clinical trials of IL-15 in patients with refractory cancers and advance current knowledge by providing mechanistic insights into IL-15 SA-mediated immunotoxicity.
Collapse
Affiliation(s)
- Yin Guo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; and Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Whitney Rabacal
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Benjamin A Fensterheim
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Edward R Sherwood
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; and Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
533
|
Ruiz-Medina BE, Ross JA, Kirken RA. Interleukin-2 Receptor β Thr-450 Phosphorylation Is a Positive Regulator for Receptor Complex Stability and Activation of Signaling Molecules. J Biol Chem 2015; 290:20972-20983. [PMID: 26152718 DOI: 10.1074/jbc.m115.660654] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 02/02/2023] Open
Abstract
T, B, and natural killer cells are required for normal immune response and are regulated by cytokines such as IL-2. These cell signals are propagated following receptor-ligand engagement, controlling recruitment and activation of effector proteins. The IL-2 receptor β subunit (IL-2Rβ) serves in this capacity and is known to be phosphorylated. Tyrosine phosphorylation of the β chain has been studied extensively. However, the identification and putative regulatory roles for serine and threonine phosphorylation sites have yet to be fully characterized. Using LC-MS/MS and phosphospecific antibodies, a novel IL-2/IL-15 inducible IL-2Rβ phosphorylation site (Thr-450) was identified. IL-2 phosphokinetic analysis revealed that phosphorylation of IL-2Rβ Thr-450 is rapid (2.5 min), transient (peaks at 15 min), and protracted compared with receptor tyrosine phosphorylation and occurs in multiple cell types, including primary human lymphocytes. Pharmacological and siRNA-mediated inhibition of various serine/threonine kinases revealed ERK1/2 as a positive regulator, whereas purified protein phosphatase 1 (PP1), dephosphorylated Thr-450 in vitro. Reconstitution assays demonstrated that Thr-450 is important for regulating IL-2R complex formation, recruitment of JAK3, and activation of AKT and ERK1/2 and a transcriptionally active STAT5. These results provide the first evidence of the identification and functional characterization for threonine phosphorylation of an interleukin receptor.
Collapse
Affiliation(s)
- Blanca E Ruiz-Medina
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas 79968
| | - Jeremy A Ross
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas 79968
| | - Robert A Kirken
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas 79968.
| |
Collapse
|
534
|
Abstract
Given recent technological advances and advances in our understanding of cancer, immunotherapy of cancer is being used with clear clinical benefit. The immunosuppression accompanying cancer itself, as well as with current cancer treatment with radiation or chemotherapy, impairs adaptive immune effectors to a greater extent than innate effector cells. In addition to being less suppressed, innate immune cells are capable of being enhanced via immune-stimulatory regimens. Most strategies being investigated to promote innate immune responses against cancer do not require complex, patient-specific, ex vivo cellular or molecular creation of therapeutic agents; thus they can, generally, be used as "off the shelf" therapeutics that could be administered by most cancer clinics. Successful applications of innate immunotherapy in the clinic have effectively targeted components of the innate immune response. Preclinical data demonstrate how initiation of innate immune responses can lead to subsequent adaptive long-term cancer immunity. We hypothesize that integration of innate immune activation strategies into combination therapies for cancer treatment will lead to more effective and long-term clinical benefit.
Collapse
Affiliation(s)
- Jacob L Goldberg
- Department of Pediatrics, The University of Wisconsin, Madison WI
| | - Paul M Sondel
- Department of Pediatrics, The University of Wisconsin, Madison WI; Department of Human Oncology, The University of Wisconsin, Madison WI; Department of Genetics, The University of Wisconsin, Madison WI.
| |
Collapse
|
535
|
Floros T, Tarhini AA. Anticancer Cytokines: Biology and Clinical Effects of Interferon-α2, Interleukin (IL)-2, IL-15, IL-21, and IL-12. Semin Oncol 2015; 42:539-48. [PMID: 26320059 DOI: 10.1053/j.seminoncol.2015.05.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Efforts over nearly four decades have focused on ways to use cytokines to manipulate the host immune response towards cancer cell recognition and eradication. Significant advances were achieved with interleukin-2 (IL-2) and interferon-α (IFN-α), primarily in the treatment of patients with melanoma and renal cell carcinoma. However, the utility of other cytokines showing promise in the preclinical setting has not been established largely because of toxicity, the complex functionality of each cytokine and the difficulty mimicking in preclinical models the human environment. Here, we review the basic biology and the clinical experiences with IFN-α, IL-2, IL-15, IL-21, and IL-12. We will also review ongoing clinical trials and discuss future directions including potential use of cytokines in combination with other effective immunotherapy approaches that have come of age in recent years.
Collapse
Affiliation(s)
- Theofanis Floros
- University of Pittsburgh Cancer Institute, Pittsburgh, PA; Athens Naval and Veterans Hospital, Pittsburgh, PA
| | - Ahmad A Tarhini
- University of Pittsburgh Cancer Institute, Pittsburgh, PA; University of Pittsburgh School of Medicine, Pittsburgh, PA.
| |
Collapse
|
536
|
Boyerinas B, Jochems C, Fantini M, Heery CR, Gulley JL, Tsang KY, Schlom J. Antibody-Dependent Cellular Cytotoxicity Activity of a Novel Anti-PD-L1 Antibody Avelumab (MSB0010718C) on Human Tumor Cells. Cancer Immunol Res 2015; 3:1148-1157. [PMID: 26014098 DOI: 10.1158/2326-6066.cir-15-0059] [Citation(s) in RCA: 366] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/19/2015] [Indexed: 12/18/2022]
Abstract
Several anti-PD-1/PD-L1 monoclonal antibodies (mAb) are currently providing evidence of clinical benefit in subsets of cancer patients. The mode of action of these mAbs is to inhibit PD-1 on immune cells interacting with PD-L1 on tumor cells. These mAbs are either designed or engineered to eliminate antibody-dependent cell-mediated cytotoxicity (ADCC), which, however, has been implicated as an important mechanism in several highly effective mAb-mediated cancer therapies. A fully human anti-PD-L1 mAb would potentially be able to block PD-1/PD-L1 interactions and also mediate the ADCC lysis of tumor cells. MSB0010718C (designated avelumab) is a fully human IgG1 anti-PD-L1 mAb. The studies reported here demonstrate (i) the ability of avelumab to lyse a range of human tumor cells in the presence of PBMC or NK effectors; (ii) IFNγ can enhance tumor cell PD-L1 expression and, in some cases, enhance ADCC tumor cell lysis; (iii) purified NK cells are potent effectors for avelumab; (iv) similar levels of avelumab-mediated ADCC lysis of tumor cells are seen using purified NK as effectors from either healthy donors or cancer patients; (v) very low levels of avelumab-mediated lysis are seen using whole PBMCs as targets; this finding complements results seen in analyses of PBMC subsets of patients receiving avelumab; and (vi) the addition of IL12 to NK cells greatly enhances avelumab-mediated ADCC. These studies thus provide an additional mode of action for an anti-PD-L1 mAb and support the rationale for further studies to enhance avelumab-mediated ADCC activity.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Antibody-Dependent Cell Cytotoxicity/genetics
- Antibody-Dependent Cell Cytotoxicity/immunology
- Antineoplastic Agents/pharmacology
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Biomarkers, Tumor
- Cell Line, Tumor
- Cell Membrane/metabolism
- Gene Expression
- Genotype
- Humans
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Interleukin-12/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Receptors, IgG/genetics
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Benjamin Boyerinas
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Fantini
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kwong Yok Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
537
|
Croci S, Nanni P, Palladini A, Nicoletti G, Grosso V, Benegiamo G, Landuzzi L, Lamolinara A, Ianzano ML, Ranieri D, Dall'Ora M, Iezzi M, De Giovanni C, Lollini PL. Interleukin-15 is required for immunosurveillance and immunoprevention of HER2/neu-driven mammary carcinogenesis. Breast Cancer Res 2015; 17:70. [PMID: 25997501 PMCID: PMC4462012 DOI: 10.1186/s13058-015-0588-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 05/15/2015] [Indexed: 12/19/2022] Open
Abstract
Introduction We previously demonstrated that HER2/neu-driven mammary carcinogenesis can be prevented by an interleukin-12 (IL-12)-adjuvanted allogeneic HER2/neu-expressing cell vaccine. Since IL-12 can induce the release of interleukin-15 (IL-15), in the present study we investigated the role played by IL-15 in HER2/neu driven mammary carcinogenesis and in its immunoprevention. Methods HER2/neu transgenic mice with homozygous knockout of IL-15 (here referred to as IL15KO/NeuT mice) were compared to IL-15 wild-type HER2/neu transgenic mice (NeuT) regarding mammary carcinogenesis, profile of peripheral blood lymphocytes and splenocytes and humoral and cellular responses induced by the vaccine. Results IL15KO/NeuT mice showed a significantly earlier mammary cancer onset than NeuT mice, with median latency times of 16 and 20 weeks respectively, suggesting a role for IL-15 in cancer immunosurveillance. Natural killer (NK) and CD8+ lymphocytes were significantly lower in IL15KO/NeuT mice compared to mice with wild-type IL-15. The IL-12-adjuvanted allogeneic HER2/neu-expressing cell vaccine was still able to delay mammary cancer onset but efficacy in IL-15-lacking mice vanished earlier: all vaccinated IL15KO/NeuT mice developed tumors within 80 weeks of age (median latency of 53 weeks), whereas more than 70 % of vaccinated NeuT mice remained tumor-free up to 80 weeks of age. Vaccinated IL15KO/NeuT mice showed less necrotic tumors with fewer CD3+ lymphocyes and lacked perforin-positive infiltrating cells compared to NeuT mice. Concerning the anti-vaccine antibody response, antibody titer was unaffected by the lack of IL-15, but less antibodies of IgM and IgG1 isotypes were found in IL15KO/NeuT mice. A lower induction by vaccine of systemic interferon-gamma (IFN-γ) and interleukin-5 (IL-5) was also observed in IL15KO/NeuT mice when compared to NeuT mice. Finally, we found a lower level of CD8+ memory cells in the peripheral blood of vaccinated IL15KO/NeuT mice compared to NeuT mice. Conclusions We demonstrated that IL-15 has a role in mammary cancer immunosurveillance and that IL-15-regulated NK and CD8+ memory cells play a role in long-lasting immunoprevention, further supporting the potential use of IL-15 as adjuvant in immunological strategies against tumors. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0588-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefania Croci
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, Bologna, 40126, Italy. .,Present address: Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Arcispedale Santa Maria Nuova-IRCCS, Viale Risorgimento 80, Reggio Emilia, 42123, Italy.
| | - Patrizia Nanni
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, Bologna, 40126, Italy. .,Interdepartmental Centre for Cancer Research "Giorgio Prodi", University of Bologna, Via Massarenti 9, Bologna, 40138, Italy.
| | - Arianna Palladini
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, Bologna, 40126, Italy.
| | - Giordano Nicoletti
- Laboratory of Experimental Oncology, Rizzoli Orthopedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy.
| | - Valentina Grosso
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, Bologna, 40126, Italy.
| | - Giorgia Benegiamo
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, Bologna, 40126, Italy.
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, Rizzoli Orthopedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy.
| | - Alessia Lamolinara
- CESI Aging Research Center, G. D'Annunzio University, Via Colle dell'Ara, Chieti Scalo, Chieti, 66013, Italy.
| | - Marianna L Ianzano
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, Bologna, 40126, Italy.
| | - Dario Ranieri
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, Bologna, 40126, Italy.
| | - Massimiliano Dall'Ora
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, Bologna, 40126, Italy.
| | - Manuela Iezzi
- CESI Aging Research Center, G. D'Annunzio University, Via Colle dell'Ara, Chieti Scalo, Chieti, 66013, Italy.
| | - Carla De Giovanni
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, Bologna, 40126, Italy. .,Interdepartmental Centre for Cancer Research "Giorgio Prodi", University of Bologna, Via Massarenti 9, Bologna, 40138, Italy.
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, Bologna, 40126, Italy. .,Interdepartmental Centre for Cancer Research "Giorgio Prodi", University of Bologna, Via Massarenti 9, Bologna, 40138, Italy.
| |
Collapse
|
538
|
Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens. Nat Rev Drug Discov 2015; 14:487-98. [PMID: 26000725 DOI: 10.1038/nrd4506] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Scientific insights into the human immune system have recently led to unprecedented breakthroughs in immunotherapy. In the twenty-first century, drugs and cell-based therapies developed to bolster humoral and T cell immunity represent an established and growing component of cancer therapeutics. Although natural killer (NK) cells have long been known to have advantages over T cells in terms of their capacity to induce antigen-independent host immune responses against malignancies, their therapeutic potential in the clinic has been largely unexplored. A growing number of scientific discoveries into pathways that both activate and suppress NK cell function, as well as methods to sensitize tumours to NK cell cytotoxicity, have led to the development of numerous pharmacological and genetic methods to enhance NK cell antitumour immunity. These findings, as well as advances in our ability to expand NK cells ex vivo and manipulate their capacity to home to the tumour, have now provided investigators with a variety of new methods and strategies to harness the full potential of NK cell-based cancer immunotherapy in the clinic.
Collapse
|
539
|
Pittari G, Filippini P, Gentilcore G, Grivel JC, Rutella S. Revving up Natural Killer Cells and Cytokine-Induced Killer Cells Against Hematological Malignancies. Front Immunol 2015; 6:230. [PMID: 26029215 PMCID: PMC4429635 DOI: 10.3389/fimmu.2015.00230] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/29/2015] [Indexed: 01/29/2023] Open
Abstract
Natural killer (NK) cells belong to innate immunity and exhibit cytolytic activity against infectious pathogens and tumor cells. NK-cell function is finely tuned by receptors that transduce inhibitory or activating signals, such as killer immunoglobulin-like receptors, NK Group 2 member D (NKG2D), NKG2A/CD94, NKp46, and others, and recognize both foreign and self-antigens expressed by NK-susceptible targets. Recent insights into NK-cell developmental intermediates have translated into a more accurate definition of culture conditions for the in vitro generation and propagation of human NK cells. In this respect, interleukin (IL)-15 and IL-21 are instrumental in driving NK-cell differentiation and maturation, and hold great promise for the design of optimal NK-cell culture protocols. Cytokine-induced killer (CIK) cells possess phenotypic and functional hallmarks of both T cells and NK cells. Similar to T cells, they express CD3 and are expandable in culture, while not requiring functional priming for in vivo activity, like NK cells. CIK cells may offer some advantages over other cell therapy products, including ease of in vitro propagation and no need for exogenous administration of IL-2 for in vivo priming. NK cells and CIK cells can be expanded using a variety of clinical-grade approaches, before their infusion into patients with cancer. Herein, we discuss GMP-compliant strategies to isolate and expand human NK and CIK cells for immunotherapy purposes, focusing on clinical trials of adoptive transfer to patients with hematological malignancies.
Collapse
Affiliation(s)
- Gianfranco Pittari
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation , Doha , Qatar
| | - Perla Filippini
- Deep Immunophenotyping Core, Division of Translational Medicine, Sidra Medical and Research Center , Doha , Qatar
| | - Giusy Gentilcore
- Deep Immunophenotyping Core, Division of Translational Medicine, Sidra Medical and Research Center , Doha , Qatar
| | - Jean-Charles Grivel
- Deep Immunophenotyping Core, Division of Translational Medicine, Sidra Medical and Research Center , Doha , Qatar
| | - Sergio Rutella
- Clinical Research Center, Division of Translational Medicine, Sidra Medical and Research Center , Doha , Qatar
| |
Collapse
|
540
|
Gras Navarro A, Björklund AT, Chekenya M. Therapeutic potential and challenges of natural killer cells in treatment of solid tumors. Front Immunol 2015; 6:202. [PMID: 25972872 PMCID: PMC4413815 DOI: 10.3389/fimmu.2015.00202] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/14/2015] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells that hold tremendous potential for effective immunotherapy for a broad range of cancers. Due to the mode of NK cell killing, requiring one-to-one target engagement and site-directed release of cytolytic granules, the therapeutic potential of NK cells has been most extensively explored in hematological malignancies. However, their ability to precisely kill antibody coated cells, cancer stem cells, and genotoxically altered cells, while maintaining tolerance to healthy cells makes them appealing therapeutic effectors for all cancer forms, including metastases. Due to their release of pro-inflammatory cytokines, NK cells may potently reverse the anti-inflammatory tumor microenvironment (TME) and augment adaptive immune responses by promoting differentiation, activation, and/or recruitment of accessory immune cells to sites of malignancy. Nevertheless, integrated and coordinated mechanisms of subversion of NK cell activity against the tumor and its microenvironment exist. Although our understanding of the receptor ligand interactions that regulate NK cell functionality has evolved remarkably, the diversity of ligands and receptors is complex, as is their mechanistic foundations in regulating NK cell function. In this article, we review the literature and highlight how the TME manipulates the NK cell phenotypes, genotypes, and tropism to evade tumor recognition and elimination. We discuss counter strategies that may be adopted to augment the efficacy of NK cell anti-tumor surveillance, the clinical trials that have been undertaken so far in solid malignancies, critically weighing the challenges and opportunities with this approach.
Collapse
Affiliation(s)
| | - Andreas T Björklund
- Karolinska University Hospital, Hematology Center and Karolinska Institute , Stockholm , Sweden
| | - Martha Chekenya
- Department of Biomedicine, University of Bergen , Bergen , Norway
| |
Collapse
|
541
|
Apetoh L, Ladoire S, Coukos G, Ghiringhelli F. Combining immunotherapy and anticancer agents: the right path to achieve cancer cure? Ann Oncol 2015; 26:1813-1823. [PMID: 25922066 DOI: 10.1093/annonc/mdv209] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/17/2015] [Indexed: 12/31/2022] Open
Abstract
Recent clinical trials revealed the impressive efficacy of immunological checkpoint blockade in different types of metastatic cancers. Such data underscore that immunotherapy is one of the most promising strategies for cancer treatment. In addition, preclinical studies provide evidence that some cytotoxic drugs have the ability to stimulate the immune system, resulting in anti-tumor immune responses that contribute to clinical efficacy of these agents. These observations raise the hypothesis that the next step for cancer treatment is the combination of cytotoxic agents and immunotherapies. The present review aims to summarize the immune-mediated effects of chemotherapeutic agents and their clinical relevance, the biological and clinical features of immune checkpoint blockers and finally, the preclinical and clinical rationale for novel therapeutic strategies combining anticancer agents and immune checkpoint blockers.
Collapse
Affiliation(s)
- L Apetoh
- Lipids, Nutrition, Cancer, INSERM, U866, Dijon; Department of Medicine, Université de Bourgogne, Dijon; Department of Oncology, Centre Georges François Leclerc, Dijon, France
| | - S Ladoire
- Lipids, Nutrition, Cancer, INSERM, U866, Dijon; Department of Medicine, Université de Bourgogne, Dijon; Department of Oncology, Centre Georges François Leclerc, Dijon, France
| | - G Coukos
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - F Ghiringhelli
- Lipids, Nutrition, Cancer, INSERM, U866, Dijon; Department of Medicine, Université de Bourgogne, Dijon; Department of Oncology, Centre Georges François Leclerc, Dijon, France.
| |
Collapse
|
542
|
Bachanova V. "Uncovering" the recovery of natural killer cells after reduced-intensity conditioning transplantation. Biol Blood Marrow Transplant 2015; 21:383-4. [PMID: 25615609 PMCID: PMC5577011 DOI: 10.1016/j.bbmt.2015.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Affiliation(s)
- Veronika Bachanova
- Blood and Marrow Transplantation Program, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
543
|
Abstract
Epstein-Barr virus (EBV) is associated with a range of malignancies involving B cells, T cells, natural killer (NK) cells, epithelial cells, and smooth muscle. All of these are associated with the latent life cycles of EBV, but the pattern of latency-associated viral antigens expressed in tumor cells depends on the type of tumor. EBV-specific T cells (EBVSTs) have been explored as prophylaxis and therapy for EBV-associated malignancies for more than two decades. EBVSTs have been most successful as prophylaxis and therapy for post-transplant lymphoproliferative disease (PTLD) , which expresses the full array of latent EBV antigens (type 3 latency), in hematopoietic stem-cell transplant (HSCT) recipients. While less effective, clinical studies have also demonstrated their therapeutic potential for PTLD post-solid organ transplant and for EBV-associated malignancies such as Hodgkin's lymphoma, non-Hodgkin's lymphoma, and nasopharyngeal carcinoma (NPC) that express a limited array of latent EBV antigens (type 2 latency). Several approaches are actively being pursued to improve the antitumor activity of EBVSTs including activation and expansion of T cells specific for the EBV antigens expressed in type 2 latency, genetic approaches to render EBVSTs resistant to the immunosuppressive tumor environment, and combination approaches with other immune-modulating modalities. Given the recent advances and renewed interest in cell therapy, we hope that EBVSTs will become an integral part of our treatment armamentarium against EBV-positive malignancies in the near-future.
Collapse
|
544
|
Abstract
IL-15 is a 14-15 kDa member of the four α-helix bundle of cytokines that acts through a heterotrimeric receptor involving IL-2/IL-15R β, γc and the IL-15 specific receptor subunit IL-15R α. IL-15 stimulates the proliferation of T, B and NK cells, and induces stem, central and effector memory CD8 T cells. In rhesus macaques, continuous infusion of recombinant human IL-15 at 20 μg/kg/day was associated with approximately a 10-fold increase in the numbers of circulating NK, γ/δ cells and monocytes, and an 80- to 100-fold increase in the numbers of effector memory CD8 T cells. IL-15 has shown efficacy in murine models of malignancy. Clinical trials involving recombinant human IL-15 given by bolus infusions have been completed and by subcutaneous and continuous intravenous infusions are underway in patients with metastatic malignancy. Furthermore, clinical trials are being initiated that employ the combination of IL-15 with IL-15R α(+/-) IgFc.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 4N115, Bethesda, MD 20892-1374, USA
| |
Collapse
|