501
|
Abounit K, Scarabelli TM, McCauley RB. Autophagy in mammalian cells. World J Biol Chem 2012; 3:1-6. [PMID: 22312452 PMCID: PMC3272585 DOI: 10.4331/wjbc.v3.i1.1] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/22/2011] [Accepted: 08/29/2011] [Indexed: 02/05/2023] Open
Abstract
Autophagy is a regulated process for the degradation of cellular components that has been well conserved in eukaryotic cells. The discovery of autophagy-regulating proteins in yeast has been important in understanding this process. Although many parallels exist between fungi and mammals in the regulation and execution of autophagy, there are some important differences. The pre-autophagosomal structure found in yeast has not been identified in mammals, and it seems that there may be multiple origins for autophagosomes, including endoplasmic reticulum, plasma membrane and mitochondrial outer membrane. The maturation of the phagophore is largely dependent on 5'-AMP activated protein kinase and other factors that lead to the dephosphorylation of mammalian target of rapamycin. Once the process is initiated, the mammalian phagophore elongates and matures into an autophagosome by processes that are similar to those in yeast. Cargo selection is dependent on the ubiquitin conjugation of protein aggregates and organelles and recognition of these conjugates by autophagosomal receptors. Lysosomal degradation of cargo produces metabolites that can be recycled during stress. Autophagy is an important cellular safeguard during starvation in all eukaryotes; however, it may have more complicated, tissue specific roles in mammals. With certain exceptions, autophagy seems to be cytoprotective, and defects in the process have been associated with human disease.
Collapse
Affiliation(s)
- Kadija Abounit
- Kadija Abounit, Tiziano M Scarabelli, Roy B McCauley, Department of Pharmacology, School of Medicine, Wayne State University, Detroit , MI 48201, United States
| | | | | |
Collapse
|
502
|
Lipids in autophagy: constituents, signaling molecules and cargo with relevance to disease. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1133-45. [PMID: 22269166 DOI: 10.1016/j.bbalip.2012.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/29/2011] [Accepted: 01/02/2012] [Indexed: 01/12/2023]
Abstract
The balance between protein and lipid biosynthesis and their eventual degradation is a critical component of cellular health. Autophagy, the catabolic process by which cytoplasmic material becomes degraded in lysosomes, can be induced by various physiological stimuli to maintain cellular homeostasis. Autophagy was for a long time considered a non-selective bulk process, but recent data have shown that unwanted components such as aberrant protein aggregates, dysfunctional organelles and invading pathogens can be selectively eliminated by autophagy. Recently, also intracellular lipid droplets were described as specific autophagic cargo, indicating that autophagy plays a role in lipid metabolism and storage (Singh et al., 2009 [1]). Moreover, over the past several years, it has become increasingly evident that lipids and lipid-modifying enzymes play important roles in the autophagy process itself, both at the level of regulation of autophagy and as membrane constituents required for formation of autophagic vesicles. In this review, we will discuss the interplay between lipids and autophagy, as well as the role of lipid-binding proteins in autophagy. We also comment on the possible implications of this mutual interaction in the context of disease. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
|
503
|
Fan R, Miao Y, Shan X, Qian H, Song C, Wu G, Chen Y, Zha W. Bif-1 is overexpressed in hepatocellular carcinoma and correlates with shortened patient survival. Oncol Lett 2012; 3:851-854. [PMID: 22741005 DOI: 10.3892/ol.2012.562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 12/21/2011] [Indexed: 11/06/2022] Open
Abstract
Bax-interacting factor-1 (Bif-1) interacts with Beclin1 [the mammalian ortholog of yeast autophagy-related gene 6 (Atg6)] and affects the formation of autophagosomes during autophagy. The aim of this study was to explore Bif-1 expression and its prognostic significance in comparison with various clinicopathological predictors of survival. Bif-1 protein expression was determined by immunohistochemistry in 206 hepatocellular carcinomas. Cytoplasmic immunoreactivity was scored semi-quantitatively. The results were analyzed in correlation with various clinicopathological characteristics, including patient survival. The Chi-square test and Kaplan-Meier survival analysis were applied. The expression of Bif-1 was significantly higher in the hepatocellular cancers than in the adjacent matched non-tumor tissues (51.5 vs. 33.0%, P<0.01). Increased expression of Bif-1 in hepatocellular carcinomas was significantly correlated with a low grade of differentiation and a shortened overall survival (P<0.05). No significant differences were found between the expression of Bif-1 and age, gender, tumor size, damage of capsule, expression of hepatitis B surface antigen (HBs-Ag) and portal venous invasion. Our data demonstrated that Bif-1 is frequently expressed in hepatocellular carcinoma. Overexpression of Bif-1 is a new independent prognostic marker, which is associated with poor differentiation as well as shortened overall survival.
Collapse
Affiliation(s)
- Rengen Fan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
504
|
Abstract
Autophagy is a lysosomal degradation pathway that degrades damaged or superfluous cell components into basic biomolecules, which are then recycled back into the cytosol. In this respect, autophagy drives a flow of biomolecules in a continuous degradation-regeneration cycle. Autophagy is generally considered a pro-survival mechanism protecting cells under stress or poor nutrient conditions. Current research clearly shows that autophagy fulfills numerous functions in vital biological processes. It is implicated in development, differentiation, innate and adaptive immunity, ageing and cell death. In addition, accumulating evidence demonstrates interesting links between autophagy and several human diseases and tumor development. Therefore, autophagy seems to be an important player in the life and death of cells and organisms. Despite the mounting knowledge about autophagy, the mechanisms through which the autophagic machinery regulates these diverse processes are not entirely understood. In this review, we give a comprehensive overview of the autophagic signaling pathway, its role in general cellular processes and its connection to cell death. In addition, we present a brief overview of the possible contribution of defective autophagic signaling to disease.
Collapse
Affiliation(s)
- Ellen Wirawan
- VIB, Department for Molecular Biomedical Research, Unit for Molecular Signaling and Cell Death, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Unit for Molecular Signaling and Cell Death, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Tom Vanden Berghe
- VIB, Department for Molecular Biomedical Research, Unit for Molecular Signaling and Cell Death, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Unit for Molecular Signaling and Cell Death, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Saskia Lippens
- VIB, Department for Molecular Biomedical Research, Unit for Molecular Signaling and Cell Death, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Unit for Molecular Signaling and Cell Death, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Patrizia Agostinis
- KULeuven, Laboratory for Cell Death and Therapy, Department for Molecular and Cell Biology, O&N I Herestraat 49, B-3000 Leuven, Belgium
| | - Peter Vandenabeele
- VIB, Department for Molecular Biomedical Research, Unit for Molecular Signaling and Cell Death, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Unit for Molecular Signaling and Cell Death, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| |
Collapse
|
505
|
Abstract
Plants have developed sophisticated mechanisms to survive when in unfavorable environments. Autophagy is a macromolecule degradation pathway that recycles damaged or unwanted cell materials upon encountering stress conditions or during specific developmental processes. Over the past decade, our molecular and physiological understanding of plant autophagy has greatly increased. Most of the essential machinery required for autophagy seems to be conserved from yeast to plants. Plant autophagy has been shown to function in various stress responses, pathogen defense, and senescence. Some of its potential upstream regulators have also been identified. Here, we describe recent advances in our understanding of autophagy in plants, discuss areas of controversy, and highlight potential future directions in autophagy research.
Collapse
Affiliation(s)
- Yimo Liu
- Department of Genetics, Development, and Cell Biology and Interdepartmental Genetics Program, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
506
|
|
507
|
Itakura E, Kishi-Itakura C, Koyama-Honda I, Mizushima N. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J Cell Sci 2012; 125:1488-99. [DOI: 10.1242/jcs.094110] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Mitochondria can be degraded by autophagy; this process is termed mitophagy. The Parkinson disease-associated ubiquitin ligase Parkin can trigger mitophagy of depolarized mitochondria. However, how the autophagy machinery is involved in this specific type of autophagy remains to be determined. It has been speculated that adaptor proteins such as p62 may mediate interaction between the autophagosomal LC3 family of proteins and ubiquitinated protein on mitochondria. Here, we describe our systematic analysis of the recruitment of Atg proteins in Parkin-dependent mitophagy. Structures containing upstream Atg proteins, including ULK1, Atg14, DFCP1, WIPI-1, and Atg16L1, can associate with depolarized mitochondria even in the absence of membrane-bound LC3. Atg9A structures are also recruited to these damaged mitochondria as well as the autophagosome formation site during starvation-induced canonical autophagy. At initial steps of Parkin-mediated mitophagy, the structures containing the ULK1 complex and Atg9A are independently recruited to depolarized mitochondria and both are required for further recruitment of downstream Atg proteins except LC3. Autophagosomal LC3 is important for efficient incorporation of damaged mitochondria into the autophagosome at a later stage. These findings suggest a process whereby the isolation membrane is generated de novo on damaged mitochondria as opposed to one where a preformed isolation membrane recognizes mitochondria.
Collapse
|
508
|
The human cytomegalovirus protein TRS1 inhibits autophagy via its interaction with Beclin 1. J Virol 2011; 86:2571-84. [PMID: 22205736 DOI: 10.1128/jvi.05746-11] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human cytomegalovirus modulates macroautophagy in two opposite directions. First, HCMV stimulates autophagy during the early stages of infection, as evident by an increase in the number of autophagosomes and a rise in the autophagic flux. This stimulation occurs independently of de novo viral protein synthesis since UV-inactivated HCMV recapitulates the stimulatory effect on macroautophagy. At later time points of infection, HCMV blocks autophagy (M. Chaumorcel, S. Souquere, G. Pierron, P. Codogno, and A. Esclatine, Autophagy 4:1-8, 2008) by a mechanism that requires de novo viral protein expression. Exploration of the mechanisms used by HCMV to block autophagy unveiled a robust increase of the cellular form of Bcl-2 expression. Although this protein has an anti-autophagy effect via its interaction with Beclin 1, it is not responsible for the inhibition induced by HCMV, probably because of its phosphorylation by c-Jun N-terminal kinase. Here we showed that the HCMV TRS1 protein blocks autophagosome biogenesis and that a TRS1 deletion mutant is defective in autophagy inhibition. TRS1 has previously been shown to neutralize the PKR antiviral effector molecule. Although phosphorylation of eIF2α by PKR has been described as a stimulatory signal to induce autophagy, the PKR-binding domain of TRS1 is dispensable to its inhibitory effect. Our results show that TRS1 interacts with Beclin 1 to inhibit autophagy. We mapped the interaction with Beclin 1 to the N-terminal region of TRS1, and we demonstrated that the Beclin 1-binding domain of TRS1 is essential to inhibit autophagy.
Collapse
|
509
|
Codogno P, Mehrpour M, Proikas-Cezanne T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol 2011; 13:7-12. [PMID: 22166994 DOI: 10.1038/nrm3249] [Citation(s) in RCA: 442] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The autophagosome is the central organelle in macroautophagy, a vacuolar lysosomal catabolic pathway that degrades cytoplasmic material to fuel starving cells and eliminates intracellular pathogens. Macroautophagy has important physiological roles during development, ageing and the immune response, and its cytoprotective function is compromised in various diseases. A set of autophagy-related (ATG) proteins is hierarchically recruited to the phagophore, the initial membrane template in the construction of the autophagosome. However, recent findings suggest that macroautophagy can also occur in the absence of some of these key autophagy proteins, through the unconventional biogenesis of canonical autophagosomes. Such alternatives to the evolutionarily conserved scheme might provide additional therapeutic opportunities.
Collapse
Affiliation(s)
- Patrice Codogno
- Institut National de la Santé et de la Recherche Médicale (INSERM), University Paris-Sud 11, Châtenay-Malabry, France
| | | | | |
Collapse
|
510
|
Rambold AS, Lippincott-Schwartz J. Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle 2011; 10:4032-8. [PMID: 22101267 DOI: 10.4161/cc.10.23.18384] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Autophagy is a cellular survival pathway that recycles intracellular components to compensate for nutrient depletion and ensures the appropriate degradation of organelles. Mitochondrial number and health are regulated by mitophagy, a process by which excessive or damaged mitochondria are subjected to autophagic degradation. Autophagy is thus a key determinant for mitochondrial health and proper cell function. Mitophagic malfunction has been recently proposed to contribute to progressive neuronal loss in Parkinson's disease. In addition to autophagy's significance in mitochondrial integrity, several lines of evidence suggest that mitochondria can also substantially influence the autophagic process. The mitochondria's ability to influence and be influenced by autophagy places both elements (mitochondria and autophagy) in a unique position where defects in one or the other system could increase the risk to various metabolic and autophagic related diseases.
Collapse
Affiliation(s)
- Angelika S Rambold
- The Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
511
|
Mari M, Tooze SA, Reggiori F. The puzzling origin of the autophagosomal membrane. F1000 BIOLOGY REPORTS 2011; 3:25. [PMID: 22162728 PMCID: PMC3229206 DOI: 10.3410/b3-25] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autophagy is one of the newest and fastest emerging research areas in biomedical life sciences. Autophagosomes, large double-membrane vesicles enclosing cytoplasmic components targeted for degradation, are the hallmark of this catabolic pathway. The origin of the lipid bilayers composing these transport carriers has been the central enigma of the field since the discovery of autophagy. A series of recent studies has implicated several cellular organelles as the possible source of the autophagosomal membranes, if anything further clouding our view. In this compendium, we will discuss these apparently contradictory results and briefly emphasize the relevance of determining the lipid source used for autophagy for future translational research, for example in drug discovery programs.
Collapse
Affiliation(s)
- Muriel Mari
- Department of Cell Biology and Institute of Biomembranes, University Medical Center UtrechtHeidelberglaan 100, 3584 CX UtrechtNetherlands
| | - Sharon A. Tooze
- Secretory Pathways Laboratory, London Research institute, Lincoln's Inn Fields Laboratories, Cancer Research UK44 Lincoln's Inn Fields, WC2A 3LYLondon, UK
| | - Fulvio Reggiori
- Department of Cell Biology and Institute of Biomembranes, University Medical Center UtrechtHeidelberglaan 100, 3584 CX UtrechtNetherlands
| |
Collapse
|
512
|
Ichimura Y, Komatsu M. Pathophysiological role of autophagy: lesson from autophagy-deficient mouse models. Exp Anim 2011; 60:329-45. [PMID: 21791873 DOI: 10.1538/expanim.60.329] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Autophagy is a cellular degradation system in which cytoplasmic components including organelles are sequestered by double membrane structures called autophagosomes and sequestered materials are degraded by lysosomal hydrolases for supply of amino acids and for cellular homeostasis. The autophagy induced in response to nutrient deprivation is executed in a nonselective fashion, and adaptation to nutrient-poor conditions is the main purpose of autophagy. On the other hand, recent studies have shed light on another indispensable role for starvation-independent or constitutive autophagy in cellular homeostasis, which is mediated by selective degradation of a specific substrate(s). Herein, we introduce pathophysiological roles of starvation-induced, constitutive, and selective autophagy (in particular, selective turnover of p62 through autophagy) disclosed by autophagy-deficient mouse models.
Collapse
Affiliation(s)
- Yoshinobu Ichimura
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical ScienceSetagaya-ku, Tokyo 156-8501, Japan
| | | |
Collapse
|
513
|
Rajesh S, Bago R, Odintsova E, Muratov G, Baldwin G, Sridhar P, Rajesh S, Overduin M, Berditchevski F. Binding to syntenin-1 protein defines a new mode of ubiquitin-based interactions regulated by phosphorylation. J Biol Chem 2011; 286:39606-14. [PMID: 21949238 PMCID: PMC3234783 DOI: 10.1074/jbc.m111.262402] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/22/2011] [Indexed: 11/06/2022] Open
Abstract
Syntenin-1 is a PDZ domain-containing adaptor that controls trafficking of transmembrane proteins including those associated with tetraspanin-enriched microdomains. We describe the interaction of syntenin-1 with ubiquitin through a novel binding site spanning the C terminus of ubiquitin, centered on Arg(72), Leu(73), and Arg(74). A conserved LYPSL sequence in the N terminus, as well as the C-terminal region of syntenin-1, are essential for binding to ubiquitin. We present evidence for the regulation of this interaction through syntenin-1 dimerization. We have also established that syntenin-1 is phosphorylated downstream of Ulk1, a serine/threonine kinase that plays a critical role in autophagy and regulates endocytic trafficking. Importantly, Ulk1-dependent phosphorylation of Ser(6) in the LYPSL prevents the interaction of syntenin-1 with ubiquitin. These results define an unprecedented ubiquitin-dependent pathway involving syntenin-1 that is regulated by Ulk1.
Collapse
Affiliation(s)
- Sundaresan Rajesh
- From the School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ružica Bago
- From the School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Elena Odintsova
- From the School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gayrat Muratov
- From the School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gouri Baldwin
- From the School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Pooja Sridhar
- From the School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Sandya Rajesh
- From the School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Michael Overduin
- From the School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Fedor Berditchevski
- From the School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
514
|
Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen EL, Finkbeiner S, Fueyo-Margareto J, Gewirtz D, Jäättelä M, Kroemer G, Levine B, Melia TJ, Mizushima N, Rubinsztein DC, Simonsen A, Thorburn A, Thumm M, Tooze SA. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 2011; 7:1273-94. [PMID: 21997368 DOI: 10.4161/auto.7.11.17661] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The study of autophagy is rapidly expanding, and our knowledge of the molecular mechanism and its connections to a wide range of physiological processes has increased substantially in the past decade. The vocabulary associated with autophagy has grown concomitantly. In fact, it is difficult for readers--even those who work in the field--to keep up with the ever-expanding terminology associated with the various autophagy-related processes. Accordingly, we have developed a comprehensive glossary of autophagy-related terms that is meant to provide a quick reference for researchers who need a brief reminder of the regulatory effects of transcription factors and chemical agents that induce or inhibit autophagy, the function of the autophagy-related proteins, and the roles of accessory components and structures that are associated with autophagy.
Collapse
Affiliation(s)
- Daniel J Klionsky
- Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
515
|
Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 2011; 32:2-11. [PMID: 22025673 DOI: 10.1128/mcb.06159-11] [Citation(s) in RCA: 1117] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Living cells are adaptive self-sustaining systems. They strictly depend on the sufficient supply of oxygen, energy, and nutrients from the outside in order to sustain their internal organization. However, as autonomous entities they are able to monitor and appropriately adapt to any critical fluctuation in their environment. In the case of insufficient external nutrient supply or augmented energy demands, cells start to extensively digest their own interior. This process, known as macroautophagy, comprises the transport of cytosolic portions and entire organelles to the lysosomal compartment via specific double-membrane vesicles, called autophagosomes. Although extensively upregulated under nutrient restriction, a low level of basal autophagy is likewise crucial in order to sustain the cellular homeostasis. On the other hand, cells have to avoid excessive and enduring self-digestion. The delicate balance between external energy and nutrient supply and internal production and consumption is a demanding task. The complex protein network that senses and precisely reacts to environmental changes is thus mainly regulated by rapid and reversible posttranslational modifications such as phosphorylation. This review focuses on the serine/threonine protein kinases AMP-activated protein kinase, mammalian target of rapamycin (mTOR), and unc-51-like kinase 1/2 (Ulk1/2), three interconnected major junctions within the autophagy regulating signaling network.
Collapse
|
516
|
Chua CEL, Gan BQ, Tang BL. Involvement of members of the Rab family and related small GTPases in autophagosome formation and maturation. Cell Mol Life Sci 2011; 68:3349-58. [PMID: 21687989 PMCID: PMC11114630 DOI: 10.1007/s00018-011-0748-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/23/2011] [Accepted: 05/30/2011] [Indexed: 12/19/2022]
Abstract
Macroautophagy, the process by which cytosolic components and organelles are engulfed and degraded by a double-membrane structure, could be viewed as a specialized, multistep membrane transport process. As such, it intersects with the exocytic and endocytic membrane trafficking pathways. A number of Rab GTPases which regulate secretory and endocytic membrane traffic have been shown to play either critical or accessory roles in autophagy. The biogenesis of the pre-autophagosomal isolation membrane (or phagophore) is dependent on the functionality of Rab1. A non-canonical, Atg5/Atg7-independent mode of autophagosome generation from the trans-Golgi or endosome requires Rab9. Other Rabs, such as Rab5, Rab24, Rab33, and Rab7 have all been shown to be required, or involved at various stages of autophagosomal genesis and maturation. Another small GTPase, RalB, was very recently demonstrated to induce isolation membrane formation and maturation via its engagement of the exocyst complex, a known Rab effector. We summarize here what is now known about the involvement of Rabs in autophagy, and discuss plausible mechanisms with future perspectives.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore, 117597 Singapore
| | - Bin Qi Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore, 117597 Singapore
| | - Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore, 117597 Singapore
| |
Collapse
|
517
|
Jimenez-Sanchez M, Thomson F, Zavodszky E, Rubinsztein DC. Autophagy and polyglutamine diseases. Prog Neurobiol 2011; 97:67-82. [PMID: 21930185 PMCID: PMC3712188 DOI: 10.1016/j.pneurobio.2011.08.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 01/16/2023]
Abstract
In polyglutamine diseases, an abnormally elongated polyglutamine tract results in protein misfolding and accumulation of intracellular aggregates. The length of the polyglutamine expansion correlates with the tendency of the mutant protein to aggregate, as well as with neuronal toxicity and earlier disease onset. Although currently there is no effective cure to prevent or slow down the progression of these neurodegenerative disorders, increasing the clearance of mutant proteins has been proposed as a potential therapeutic approach. The ubiquitin–proteasome system and autophagy are the two main degradative pathways responsible for eliminating misfolded and unnecessary proteins in the cell. We will review some of the studies that have proposed autophagy as a strategy to reduce the accumulation of polyglutamine-expanded protein aggregates and protect against mutant protein neurotoxicity. We will also discuss some of the currently known mechanisms that induce autophagy, which may be beneficial for the treatment of these and other neurodegenerative disorders.
Collapse
|
518
|
Tanji K, Mori F, Kakita A, Takahashi H, Wakabayashi K. Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease. Neurobiol Dis 2011; 43:690-7. [DOI: 10.1016/j.nbd.2011.05.022] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/25/2011] [Accepted: 05/28/2011] [Indexed: 12/13/2022] Open
|
519
|
Nottingham RM, Ganley IG, Barr FA, Lambright DG, Pfeffer SR. RUTBC1 protein, a Rab9A effector that activates GTP hydrolysis by Rab32 and Rab33B proteins. J Biol Chem 2011; 286:33213-22. [PMID: 21808068 DOI: 10.1074/jbc.m111.261115] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rab GTPases regulate all steps of membrane trafficking. Their interconversion between active, GTP-bound states and inactive, GDP-bound states is regulated by guanine nucleotide exchange factors and GTPase-activating proteins. The substrates for most Rab GTPase-activating proteins (GAPs) are unknown. Rab9A and its effectors regulate transport of mannose 6-phosphate receptors from late endosomes to the trans-Golgi network. We show here that RUTBC1 is a Tre2/Bub2/Cdc16 domain-containing protein that binds to Rab9A-GTP both in vitro and in cultured cells, but is not a GTPase-activating protein for Rab9A. Biochemical screening of RUTBC1 Rab protein substrates revealed highest in vitro GTP hydrolysis-activating activity with Rab32 and Rab33B. Catalysis required Arg-803 of RUTBC1, and RUTBC1 could activate a catalytically inhibited Rab33B mutant (Q92A), in support of a dual finger mechanism for RUTBC1 action. Rab9A binding did not influence GAP activity of bead-bound RUTBC1 protein. In cells and cell extracts, RUTBC1 influenced the ability of Rab32 to bind its effector protein, Varp, consistent with a physiological role for RUTBC1 in regulating Rab32. In contrast, binding of Rab33B to its effector protein, Atg16L1, was not influenced by RUTBC1 in cells or extracts. The identification of a protein that binds Rab9A and inactivates Rab32 supports a model in which Rab9A and Rab32 act in adjacent pathways at the boundary between late endosomes and the biogenesis of lysosome-related organelles.
Collapse
Affiliation(s)
- Ryan M Nottingham
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
520
|
Abstract
Macroautophagy is mediated by a unique organelle, the autophagosome, which encloses a portion of cytoplasm for delivery to the lysosome. Autophagosome formation is dynamically regulated by starvation and other stresses and involves complicated membrane reorganization. Since the discovery of yeast Atg-related proteins, autophagosome formation has been dissected at the molecular level. In this review we describe the molecular mechanism of autophagosome formation with particular focus on the function of Atg proteins and the long-standing discussion regarding the origin of the autophagosome membrane.
Collapse
Affiliation(s)
- Noboru Mizushima
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| | | | | |
Collapse
|
521
|
Lee EJ, Tournier C. The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy 2011; 7:689-95. [PMID: 21460635 DOI: 10.4161/auto.7.7.15450] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy is an evolutionarily conserved physiological process of self-digestion by a cell to adapt to various stresses, including starvation. Its molecular basis involves the concerted activation of proteins encoded by the family of autophagy-related (Atg) genes. The best characterized is the serine/threonine protein kinase Atg1 in yeast which appears to be essential at the early stage of autophagy. In mammals, five Atg1 homologues have been identified as uncoordinated (UNC) 51-like kinase 1 to 4 and STK36. ULK1 and ULK2 are the most closely related members of the family, sharing 78% homology within their protein kinase domains. However, the specific function of ULK1 and ULK2 in mammalian autophagy is not fully understood. Here, we demonstrate that ULK1 and ULK2 are functionally redundant protein kinases required to mediate autophagy under nutrient-deprived conditions in fibroblasts. In contrast, ULK1, but not ULK2, is critical to induce the autophagic response of cerebellar granule neurons (CGN) to low potassium concentration in serum-free conditions. Furthermore, we found that ULK1 has a cytoprotective function in neurons. Together, these results provide strong genetic evidence that ULK1 is an essential component of the autophagic signaling pathway. The ability of ULK2 to compensate for the loss of ULK1 function is cell-type specific.
Collapse
Affiliation(s)
- Eun-Ju Lee
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
522
|
Yamamoto A, Simonsen A. The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Neurobiol Dis 2011; 43:17-28. [PMID: 20732422 PMCID: PMC2998573 DOI: 10.1016/j.nbd.2010.08.015] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 12/21/2022] Open
Abstract
The presence of ubiquitinated protein inclusions is a hallmark of most adult onset neurodegenerative disorders. Although the toxicity of these structures remains controversial, their prolonged presence in neurons is indicative of some failure in fundamental cellular processes. It therefore may be possible that driving the elimination of inclusions can help re-establish normal cellular function. There is growing evidence that macroautophagy has two roles; first, as a non-selective degradative response to cellular stress such as starvation, and the other as a highly selective quality control mechanism whose basal levels are important to maintain cellular health. One particular form of macroautophagy, aggrephagy, may have particular relevance in neurodegeneration, as it is responsible for the selective elimination of accumulated and aggregated ubiquitinated proteins. In this review, we will discuss the molecular mechanisms and role of protein aggregation in neurodegeneration, as well as the molecular mechanism of aggrephagy and how it may impact disease. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
Collapse
Affiliation(s)
- Ai Yamamoto
- Dept of Neurology, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
523
|
Abstract
Autophagy, a lysosome-mediated catabolic process, contributes to maintenance of intracellular homeostasis and cellular response to metabolic stress. In yeast, genes essential to the execution of autophagy have been defined, including autophagy-related gene 1 (ATG1), a kinase responsible for initiation of autophagy downstream of target of rapamycin. Here we investigate the role of the mammalian Atg1 homologs, uncoordinated family member (unc)-51-like kinase 1 and 2 (ULK1 and ULK2), in autophagy by generating mouse embryo fibroblasts (MEFs) doubly deficient for ULK1 and ULK2. We found that ULK1/2 are required in the autophagy response to amino acid deprivation but not for autophagy induced by deprivation of glucose or inhibition of glucose metabolism. This ULK1/2-independent autophagy was not the simple result of bioenergetic compromise and failed to be induced by AMP-activated protein kinase activators such as 5-aminoimidazole-4-carboxamide riboside and phenformin. Instead we found that autophagy induction upon glucose deprivation correlated with a rise in cellular ammonia levels caused by elevated amino acid catabolism. Even in complete medium, ammonia induced autophagy in WT and Ulk1/2(-/-) MEFs but not in Atg5-deficient MEFs. The autophagy response to ammonia is abrogated by a cell-permeable form of pyruvate resulting from the scavenging of excess ammonia through pyruvate conversion to alanine. Thus, although ULK1 and/or ULK2 are required for the autophagy response following deprivation of nitrogenous amino acids, the autophagy response to the enhanced amino acid catabolism induced by deprivation of glucose or direct exposure to ammonia does not require ULK1 and/or ULK2. Together, these data suggest that autophagy provides cells with a mechanism to adapt not only to nitrogen deprivation but also to nitrogen excess.
Collapse
|
524
|
Abstract
Autophagy (macroautophagy), or the degradation of large numbers of cytoplasmic components, is induced by extracellular and intracellular signals, including oxidative stress, ceramide, and endoplasmic reticulum stress. This dynamic process involves membrane formation and fusion, including autophagosome formation, autophagosome-lysosome fusion, and the degradation of intra-autophagosomal contents by lysosomal hydrolases. Autophagy is associated with tumorigenesis, neurodegenerative diseases, cardiomyopathy, Crohn's disease, fatty liver, type II diabetes, defense against intracellular pathogens, antigen presentation, and longevity. Among the proteins and multimolecular complexes that contribute to autophagosome formation are the PI(3)-binding proteins, the PI3-phosphatases, the Rab proteins, the Atg1/ULK1 protein-kinase complex, the Atg9•Atg2-Atg18 complex, the Vps34-Atg6/beclin1 class III PI3-kinase complex, and the Atg12 and Atg8/LC3 conjugation systems. Two ubiquitin-like modifications, the Atg12 and LC3 conjugations, are essential for membrane elongation and autophagosome formation. Recent findings have revealed that processes of selective autophagy, including pexophagy, mitophagy, ERphagy (reticulophagy), and the p62-dependent degradation of ubiquitin-positive aggregates, are physiologically important in various disease states, whereas "classical" autophagy is considered nonselective degradation. Processes of selective autophagy require specific Atg proteins in addition to the "core" Atg complexes. Finally, methods to monitor autophagic activity in mammalian cells are described.
Collapse
Affiliation(s)
- Isei Tanida
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjyuku, Japan.
| |
Collapse
|
525
|
Janku F, McConkey DJ, Hong DS, Kurzrock R. Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol 2011; 8:528-39. [PMID: 21587219 DOI: 10.1038/nrclinonc.2011.71] [Citation(s) in RCA: 650] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Autophagy is an important homeostatic cellular recycling mechanism responsible for degrading unnecessary or dysfunctional cellular organelles and proteins in all living cells. Autophagy is particularly active during metabolic stress. In the cancer cell it fulfils a dual role, having tumor-promoting and tumor-suppressing properties. Functional autophagy prevents necrosis and inflammation, which can lead to genetic instability. On the other hand, autophagy might be important for tumor progression by providing energy through its recycling mechanism during unfavorable metabolic circumstances. A central checkpoint that negatively regulates autophagy is mTOR, and anticancer drugs inhibiting the PI3K/Akt/mTOR axis putatively stimulate autophagy. However, whether autophagy contributes to the antitumor effect of these drugs or to drug resistance is largely unknown. The antimalarial drugs chloroquine and hydroxychloroquine inhibit autophagy, leading to increased cytotoxicity in combination with several anticancer drugs in preclinical models. The therapeutic clinical roles of autophagy induction and inhibition remain to be defined. To improve our understanding of autophagy in human cancers new methods for measuring autophagy in clinical samples need to be developed. This Review delineates the possible role of autophagy as a novel target for anticancer therapy.
Collapse
Affiliation(s)
- Filip Janku
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
526
|
Kundu M. ULK1, mammalian target of rapamycin, and mitochondria: linking nutrient availability and autophagy. Antioxid Redox Signal 2011; 14:1953-8. [PMID: 21235397 PMCID: PMC3078489 DOI: 10.1089/ars.2010.3809] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A fundamental function of autophagy conserved from yeast to mammals is mobilization of macromolecules during times of limited nutrient availability, permitting organisms to survive under starvation conditions. In yeast, autophagy is initiated following nitrogen or carbon deprivation, and autophagy mutants die rapidly under these conditions. Similarly, in mammals, autophagy is upregulated in most organs following initiation of starvation, and is critical for survival in the perinatal period following abrupt termination of the placental nutrient supply. The nutrient-sensing kinase, mammalian target of rapamycin, coordinates cellular proliferation and growth with nutrient availability, at least in part by regulating protein synthesis and autophagy-mediated degradation. This review focusses on the regulation of autophagy by Tor, a mammalian target of rapamycin, and Ulk1, a mammalian homolog of Atg1, in response to changes in nutrient availability. Given the importance of mitochondria in maintaining bioenergetic homestasis, and potentially as a source of membrane for autophagosomes during starvation, possible roles for mitochondria in this process are also discussed.
Collapse
Affiliation(s)
- Mondira Kundu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.
| |
Collapse
|
527
|
Jegga AG, Schneider L, Ouyang X, Zhang J. Systems biology of the autophagy-lysosomal pathway. Autophagy 2011; 7:477-89. [PMID: 21293178 DOI: 10.4161/auto.7.5.14811] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of the control and activity of the autophagy-lysosomal protein degradation machinery are emerging as an important theme for neurodevelopment and neurodegeneration. However, the underlying regulatory and functional networks of known genes controlling autophagy and lysosomal function and their role in disease are relatively unexplored. We performed a systems biology-based integrative computational analysis to study the interactions between molecular components and to develop models for regulation and function of genes involved in autophagy and lysosomal function. Specifically, we analyzed transcriptional and microRNA-based post-transcriptional regulation of these genes and performed functional enrichment analyses to understand their involvement in nervous system-related diseases and phenotypes. Transcriptional regulatory network analysis showed that binding sites for transcription factors, SREBP1, USF, AP-1 and NFE2, are common among autophagy and lysosomal genes. MicroRNA enrichment analysis revealed miR-130, 98, 124, 204 and 142 as the putative post-transcriptional regulators of the autophagy-lysosomal pathway genes. Pathway enrichment analyses revealed that the mTOR and insulin signaling pathways are important in the regulation of genes involved in autophagy. In addition, we found that glycosaminoglycan and glycosphingolipid pathways also make a major contribution to lysosomal gene regulation. The analysis confirmed the known contribution of the autophagy-lysosomal genes to Alzheimer and Parkinson diseases and also revealed potential involvement in tuberous sclerosis, neuronal ceroidlipofuscinoses, sepsis and lung, liver and prostatic neoplasms. To further probe the impact of autophagy-lysosomal gene deficits on neurologically-linked phenotypes, we also mined the mouse knockout phenotype data for the autophagylysosomal genes and found them to be highly predictive of nervous system dysfunction. Overall this study demonstrates the utility of systems biology-based approaches for understanding the autophagy-lysosomal pathways and gaining additional insights into the potential impact of defects in these complex biological processes.
Collapse
Affiliation(s)
- Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
528
|
Kageyama S, Omori H, Saitoh T, Sone T, Guan JL, Akira S, Imamoto F, Noda T, Yoshimori T. The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. Mol Biol Cell 2011; 22:2290-300. [PMID: 21525242 PMCID: PMC3128531 DOI: 10.1091/mbc.e10-11-0893] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
When Salmonella invade mammalian epithelial cells, some populations are surrounded by the autophagy protein LC3. We found that LC3 was recruited in proximity to Salmonella independently of both Atg9L1 and FIP200, which are required for formation of autophagosomes. The dynamics of the ULK1 complex and Atg9L1 were dependent on one another. Salmonella develops into resident bacteria in epithelial cells, and the autophagic machinery (Atg) is thought to play an important role in this process. In this paper, we show that an autophagosome-like double-membrane structure surrounds the Salmonella still residing within the Salmonella-containing vacuole (SCV). This double membrane is defective in Atg9L1- and FAK family-interacting protein of 200 kDa (FIP200)-deficient cells. Atg9L1 and FIP200 are important for autophagy-specific recruitment of the phosphatidylinositol 3-kinase (PI3K) complex. However, in the absence of Atg9L1, FIP200, and the PI3K complex, LC3 and its E3-like enzyme, the Atg16L complex, are still recruited to Salmonella. We propose that the LC3 system is recruited through a mechanism that is independent of isolation membrane generation.
Collapse
Affiliation(s)
- Shun Kageyama
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
529
|
Ding WX, Manley S, Ni HM. The emerging role of autophagy in alcoholic liver disease. Exp Biol Med (Maywood) 2011; 236:546-56. [PMID: 21478210 DOI: 10.1258/ebm.2011.010360] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a highly conserved intracellular catabolic pathway that degrades cellular long-lived proteins and organelles. Autophagy is normally activated in response to nutrient deprivation and other stresses as a cell survival mechanism. Accumulating evidence indicates that autophagy plays a critical role in liver pathophysiology, in addition to maintaining hepatic energy and nutrient balance. Alcohol consumption causes hepatic metabolic changes, oxidative stress, accumulation of lipid droplets and damaged mitochondria; all of these can be regulated by autophagy. This review summarizes the recent findings about the role and mechanisms of autophagy in alcoholic liver disease (ALD), and the possible intervention for treating ALD by modulating autophagy.
Collapse
Affiliation(s)
- Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, 66160, USA.
| | | | | |
Collapse
|
530
|
Abstract
Autophagy (macroautophagy) is a dynamic process for degradation of cytosolic components. Autophagy has intracellular anti-viral and anti-bacterial functions, and plays a role in the initiation of innate and adaptive immune system responses to viral and bacterial infections. Some viruses encode virulence factors for blocking autophagy, whereas others utilize some autophagy components for their intracellular growth or cellular budding. The "core" autophagy-related (Atg) complexes in mammals are ULK1 protein kinase, Atg9-WIPI-1 and Vps34-beclin1 class III PI3-kinase complexes, and the Atg12 and LC3 conjugation systems. In addition, PI(3)-binding proteins, PI3-phosphatases, and Rab proteins contribute to autophagy. The autophagy process consists of continuous dynamic membrane formation and fusion. In this review, the relationships between these Atg complexes and each process are described. Finally, the critical points for monitoring autophagy, including the use of GFP-LC3 and GFP-Atg5, are discussed.
Collapse
Affiliation(s)
- Isei Tanida
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama, Shinjyuku, Tokyo, Japan.
| |
Collapse
|
531
|
Bonifacino JS, Hierro A. Transport according to GARP: receiving retrograde cargo at the trans-Golgi network. Trends Cell Biol 2011; 21:159-67. [PMID: 21183348 PMCID: PMC3073588 DOI: 10.1016/j.tcb.2010.11.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/29/2010] [Accepted: 11/11/2010] [Indexed: 01/05/2023]
Abstract
Tethering factors are large protein complexes that capture transport vesicles and enable their fusion with acceptor organelles at different stages of the endomembrane system. Recent studies have shed new light on the structure and function of a heterotetrameric tethering factor named Golgi-associated retrograde protein (GARP), which promotes fusion of endosome-derived, retrograde transport carriers to the trans-Golgi network (TGN). X-ray crystallography of the Vps53 and Vps54 subunits of GARP has revealed that this complex is structurally related to other tethering factors such as the exocyst, the conserved oligomeric Golgi (COG) and Dsl1 (dependence on SLY1-20) complexes, indicating that they all might work by a similar mechanism. Loss of GARP function compromises the growth, fertility and/or viability of the defective organisms, emphasizing the essential nature of GARP-mediated retrograde transport.
Collapse
Affiliation(s)
- Juan S. Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aitor Hierro
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, 48160 Derio, Spain
| |
Collapse
|
532
|
Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W, DiPaola RS, Lotze MT, White E. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 2011; 17:654-66. [PMID: 21325294 PMCID: PMC3075808 DOI: 10.1158/1078-0432.ccr-10-2634] [Citation(s) in RCA: 715] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is an evolutionarily conserved, intracellular self-defense mechanism in which organelles and proteins are sequestered into autophagic vesicles that are subsequently degraded through fusion with lysosomes. Cells, thereby, prevent the toxic accumulation of damaged or unnecessary components, but also recycle these components to sustain metabolic homoeostasis. Heightened autophagy is a mechanism of resistance for cancer cells faced with metabolic and therapeutic stress, revealing opportunities for exploitation as a therapeutic target in cancer. We summarize recent developments in the field of autophagy and cancer and build upon the results presented at the Cancer Therapy Evaluation Program (CTEP) Early Drug Development meeting in March 2010. Herein, we describe our current understanding of the core components of the autophagy machinery and the functional relevance of autophagy within the tumor microenvironment, and we outline how this knowledge has informed preclinical investigations combining the autophagy inhibitor hydroxychloroquine (HCQ) with chemotherapy, targeted therapy, and immunotherapy. Finally, we describe ongoing clinical trials involving HCQ as a first generation autophagy inhibitor, as well as strategies for the development of novel, more potent, and specific inhibitors of autophagy.
Collapse
Affiliation(s)
- Ravi K Amaravadi
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
533
|
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13:132-41. [PMID: 21258367 DOI: 10.1038/ncb2152] [Citation(s) in RCA: 5474] [Impact Index Per Article: 391.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 12/06/2010] [Indexed: 02/06/2023]
Abstract
Autophagy is a process by which components of the cell are degraded to maintain essential activity and viability in response to nutrient limitation. Extensive genetic studies have shown that the yeast ATG1 kinase has an essential role in autophagy induction. Furthermore, autophagy is promoted by AMP activated protein kinase (AMPK), which is a key energy sensor and regulates cellular metabolism to maintain energy homeostasis. Conversely, autophagy is inhibited by the mammalian target of rapamycin (mTOR), a central cell-growth regulator that integrates growth factor and nutrient signals. Here we demonstrate a molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1. Under glucose starvation, AMPK promotes autophagy by directly activating Ulk1 through phosphorylation of Ser 317 and Ser 777. Under nutrient sufficiency, high mTOR activity prevents Ulk1 activation by phosphorylating Ulk1 Ser 757 and disrupting the interaction between Ulk1 and AMPK. This coordinated phosphorylation is important for Ulk1 in autophagy induction. Our study has revealed a signalling mechanism for Ulk1 regulation and autophagy induction in response to nutrient signalling.
Collapse
|
534
|
Takahashi Y, Meyerkord CL, Hori T, Runkle K, Fox TE, Kester M, Loughran TP, Wang HG. Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy. Autophagy 2011; 7:61-73. [PMID: 21068542 DOI: 10.4161/auto.7.1.14015] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Atg9 is a transmembrane protein essential for autophagy which cycles between the Golgi network, late endosomes and LC3-positive autophagosomes in mammalian cells during starvation through a mechanism that is dependent on ULK1 and requires the activity of the class III phosphatidylinositol-3-kinase (PI3KC3). In this study, we demonstrate that the N-BAR-containing protein, Bif-1, is required for Atg9 trafficking and the fission of Golgi membranes during the induction of autophagy. Upon starvation, Atg9-positive membranes undergo continuous tubulation and fragmentation to produce cytoplasmic punctate structures that are positive for Rab5, Atg16L and LC3. Loss of Bif-1 or inhibition of the PI3KC3 complex II suppresses starvation-induced fission of Golgi membranes and peripheral cytoplasmic redistribution of Atg9. Moreover, Bif-1 mutants, which lack the functional regions of the N-BAR domain that are responsible for membrane binding and/or bending activity, fail to restore the fission of Golgi membranes as well as the formation of Atg9 foci and autophagosomes in Bif-1-deficient cells starved of nutrients. Taken together, these findings suggest that Bif-1 acts as a critical regulator of Atg9 puncta formation presumably by mediating Golgi fission for autophagosome biogenesis during starvation.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
535
|
Abstract
Autophagy is a major catabolic pathway in eukaryotes, which is required for the lysosomal/vacuolar degradation of cytoplasmic proteins and organelles. Interest in the autophagy pathway has recently gained momentum largely owing to identification of multiple autophagy-related genes and recognition of its involvement in various physiological conditions. Here we review current knowledge of the molecular mechanisms regulating autophagy in mammals and yeast, specifically the biogenesis of autophagosomes and the selectivity of their cargo recruitment. We discuss the different steps of autophagy, from the signal transduction events that regulate it to the completion of this pathway by fusion with the lysosome/vacuole. We also review research on the origin of the autophagic membrane, the molecular mechanism of autophagosome formation, and the roles of two ubiquitin-like protein families and other structural elements that are essential for this process. Finally, we discuss the various modes of autophagy and highlight their functional relevance for selective degradation of specific cargos.
Collapse
Affiliation(s)
- Hilla Weidberg
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
536
|
Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy. EMBO J 2010; 30:636-51. [PMID: 21169990 DOI: 10.1038/emboj.2010.338] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 11/24/2010] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a membrane-mediated degradation process of macromolecule recycling. Although the formation of double-membrane degradation vesicles (autophagosomes) is known to have a central role in autophagy, the mechanism underlying this process remains elusive. The serine/threonine kinase Atg1 has a key role in the induction of autophagy. In this study, we show that overexpression of Drosophila Atg1 promotes the phosphorylation-dependent activation of the actin-associated motor protein myosin II. A novel myosin light chain kinase (MLCK)-like protein, Spaghetti-squash activator (Sqa), was identified as a link between Atg1 and actomyosin activation. Sqa interacts with Atg1 through its kinase domain and is a substrate of Atg1. Significantly, myosin II inhibition or depletion of Sqa compromised the formation of autophagosomes under starvation conditions. In mammalian cells, we found that the Sqa mammalian homologue zipper-interacting protein kinase (ZIPK) and myosin II had a critical role in the regulation of starvation-induced autophagy and mammalian Atg9 (mAtg9) trafficking when cells were deprived of nutrients. Our findings provide evidence of a link between Atg1 and the control of Atg9-mediated autophagosome formation through the myosin II motor protein.
Collapse
|
537
|
Burman C, Ktistakis NT. Autophagosome formation in mammalian cells. Semin Immunopathol 2010; 32:397-413. [PMID: 20740284 DOI: 10.1007/s00281-010-0222-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 08/08/2010] [Indexed: 02/07/2023]
Abstract
Autophagy is a fundamental intracellular trafficking pathway conserved from yeast to mammals. It is generally thought to play a pro-survival role, and it can be up regulated in response to both external and intracellular factors, including amino acid starvation, growth factor withdrawal, low cellular energy levels, endoplasmic reticulum (ER) stress, hypoxia, oxidative stress, pathogen infection, and organelle damage. During autophagy initiation a portion of the cytosol is surrounded by a flat membrane sheet known as the isolation membrane or phagophore. The isolation membrane then elongates and seals itself to form an autophagosome. The autophagosome fuses with normal endocytic traffic to mature into a late autophagosome, before fusing with lysosomes. The molecular machinery that enables formation of an autophagosome in response to the various autophagy stimuli is almost completely identified in yeast and-thanks to the observed conservation-is also being rapidly elucidated in higher eukaryotes including mammals. What are less clear and currently under intense investigation are the mechanism by which these various autophagy components co-ordinate in order to generate autophagosomes. In this review, we will discuss briefly the fundamental importance of autophagy in various pathophysiological states and we will then review in detail the various players in early autophagy. Our main thesis will be that a conserved group of heteromeric protein complexes and a relatively simple signalling lipid are responsible for the formation of autophagosomes in mammalian cells.
Collapse
Affiliation(s)
- Chloe Burman
- Signalling Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
| | | |
Collapse
|
538
|
Ohashi Y, Munro S. Membrane delivery to the yeast autophagosome from the Golgi-endosomal system. Mol Biol Cell 2010; 21:3998-4008. [PMID: 20861302 PMCID: PMC2982105 DOI: 10.1091/mbc.e10-05-0457] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 08/13/2010] [Accepted: 09/14/2010] [Indexed: 12/13/2022] Open
Abstract
While many of the proteins required for autophagy have been identified, the source of the membrane of the autophagosome is still unresolved with the endoplasmic reticulum (ER), endosomes, and mitochondria all having been evoked. The integral membrane protein Atg9 is delivered to the autophagosome during starvation and in the related cytoplasm-to-vacuole (Cvt) pathway that occurs constitutively in yeast. We have examined the requirements for delivery of Atg9-containing membrane to the yeast autophagosome. Atg9 does not appear to originate from mitochondria, and Atg9 cannot reach the forming autophagosome directly from the ER or early Golgi. Components of traffic between Golgi and endosomes are known to be required for the Cvt pathway but do not appear required for autophagy in starved cells. However, we find that pairwise combinations of mutations in Golgi-endosomal traffic components apparently only required for the Cvt pathway can cause profound defects in Atg9 delivery and autophagy in starved cells. Thus it appears that membrane that contains Atg9 is delivered to the autophagosome from the Golgi-endosomal system rather than from the ER or mitochondria. This is underestimated by examination of single mutants, providing a possible explanation for discrepancies between yeast and mammalian studies on Atg9 localization and autophagosome formation.
Collapse
Affiliation(s)
- Yohei Ohashi
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Sean Munro
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
539
|
Abstract
Macroautophagy is initiated by the formation of the phagophore (also called the isolation membrane). This membrane can both selectively and non-selectively engulf cytosolic components, grow and close around the sequestered components and then deliver them to a degradative organelle, the lysosome. Where this membrane comes from and how it grows is not well understood. Since the discovery of autophagy in the 1950s the source of the membrane has been investigated, debated and re-investigated, with the consensus view oscillating between a de novo assembly mechanism or formation from the membranes of the endoplasmic reticulum (ER) or the Golgi. In recent months, new information has emerged that both the ER and mitochondria may provide a membrane source, enlightening some older findings and revealing how complex the initiation of autophagy may be in mammalian cells.
Collapse
Affiliation(s)
- Sharon A Tooze
- Secretory Pathways Laboratory, London Research Institute Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, U.K.
| | | |
Collapse
|
540
|
Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. ACTA ACUST UNITED AC 2010; 190:1005-22. [PMID: 20855505 PMCID: PMC3101592 DOI: 10.1083/jcb.200912089] [Citation(s) in RCA: 375] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A reservoir of Atg9-containing vesicles and tubules provides the initial membranes necessary for autophagophore formation in yeast. Eukaryotes use the process of autophagy, in which structures targeted for lysosomal/vacuolar degradation are sequestered into double-membrane autophagosomes, in numerous physiological and pathological situations. The key questions in the field relate to the origin of the membranes as well as the precise nature of the rearrangements that lead to the formation of autophagosomes. We found that yeast Atg9 concentrates in a novel compartment comprising clusters of vesicles and tubules, which are derived from the secretory pathway and are often adjacent to mitochondria. We show that these clusters translocate en bloc next to the vacuole to form the phagophore assembly site (PAS), where they become the autophagosome precursor, the phagophore. In addition, genetic analyses indicate that Atg1, Atg13, and phosphatidylinositol-3-phosphate are involved in the further rearrangement of these initial membranes. Thus, our data reveal that the Atg9-positive compartments are important for the de novo formation of the PAS and the sequestering vesicle that are the hallmarks of autophagy.
Collapse
Affiliation(s)
- Muriel Mari
- Department of Cell Biology and Institute of Biomembranes, University Medical Centre Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
541
|
Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, Antonioli M, Pagliarini V, Matteoni S, Fuoco C, Giunta L, D'Amelio M, Nardacci R, Romagnoli A, Piacentini M, Cecconi F, Fimia GM. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 2010; 191:155-68. [PMID: 20921139 PMCID: PMC2953445 DOI: 10.1083/jcb.201002100] [Citation(s) in RCA: 386] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 09/01/2010] [Indexed: 12/31/2022] Open
Abstract
Autophagy is an evolutionary conserved catabolic process involved in several physiological and pathological processes such as cancer and neurodegeneration. Autophagy initiation signaling requires both the ULK1 kinase and the BECLIN 1-VPS34 core complex to generate autophagosomes, double-membraned vesicles that transfer cellular contents to lysosomes. In this study, we show that the BECLIN 1-VPS34 complex is tethered to the cytoskeleton through an interaction between the BECLIN 1-interacting protein AMBRA1 and dynein light chains 1/2. When autophagy is induced, ULK1 phosphorylates AMBRA1, releasing the autophagy core complex from dynein. Its subsequent relocalization to the endoplasmic reticulum enables autophagosome nucleation. Therefore, AMBRA1 constitutes a direct regulatory link between ULK1 and BECLIN 1-VPS34, which is required for core complex positioning and activity within the cell. Moreover, our results demonstrate that in addition to a function for microtubules in mediating autophagosome transport, there is a strict and regulatory relationship between cytoskeleton dynamics and autophagosome formation.
Collapse
Affiliation(s)
- Sabrina Di Bartolomeo
- Dulbecco Telethon Institute and Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Laboratory of Molecular Neuroembryology, Instituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| | - Marco Corazzari
- National Institute for Infectious Diseases, Instituto di Ricovero e Cura a Carattere Scientifico L. Spallanzani, 00149 Rome, Italy
| | - Francesca Nazio
- Dulbecco Telethon Institute and Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Laboratory of Molecular Neuroembryology, Instituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| | - Serafina Oliverio
- Dulbecco Telethon Institute and Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gaia Lisi
- National Institute for Infectious Diseases, Instituto di Ricovero e Cura a Carattere Scientifico L. Spallanzani, 00149 Rome, Italy
| | - Manuela Antonioli
- Dulbecco Telethon Institute and Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- National Institute for Infectious Diseases, Instituto di Ricovero e Cura a Carattere Scientifico L. Spallanzani, 00149 Rome, Italy
| | - Vittoria Pagliarini
- National Institute for Infectious Diseases, Instituto di Ricovero e Cura a Carattere Scientifico L. Spallanzani, 00149 Rome, Italy
| | - Silvia Matteoni
- National Institute for Infectious Diseases, Instituto di Ricovero e Cura a Carattere Scientifico L. Spallanzani, 00149 Rome, Italy
| | - Claudia Fuoco
- Dulbecco Telethon Institute and Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Laboratory of Molecular Neuroembryology, Instituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| | - Luigi Giunta
- Dulbecco Telethon Institute and Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Laboratory of Molecular Neuroembryology, Instituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| | - Marcello D'Amelio
- Dulbecco Telethon Institute and Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Laboratory of Molecular Neuroembryology, Instituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| | - Roberta Nardacci
- National Institute for Infectious Diseases, Instituto di Ricovero e Cura a Carattere Scientifico L. Spallanzani, 00149 Rome, Italy
| | - Alessandra Romagnoli
- National Institute for Infectious Diseases, Instituto di Ricovero e Cura a Carattere Scientifico L. Spallanzani, 00149 Rome, Italy
| | - Mauro Piacentini
- Dulbecco Telethon Institute and Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- National Institute for Infectious Diseases, Instituto di Ricovero e Cura a Carattere Scientifico L. Spallanzani, 00149 Rome, Italy
| | - Francesco Cecconi
- Dulbecco Telethon Institute and Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Laboratory of Molecular Neuroembryology, Instituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases, Instituto di Ricovero e Cura a Carattere Scientifico L. Spallanzani, 00149 Rome, Italy
| |
Collapse
|
542
|
Tooze SA, Jefferies HBJ, Kalie E, Longatti A, McAlpine FE, McKnight NC, Orsi A, Polson HEJ, Razi M, Robinson DJ, Webber JL. Trafficking and signaling in mammalian autophagy. IUBMB Life 2010; 62:503-8. [PMID: 20552641 DOI: 10.1002/iub.334] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Macroautophagy, here called autophagy, is literally a "self-eating" catabolic process, which is evolutionarily conserved. Autophagy is initiated by cellular stress pathways, resulting in the sequestration or engulfment of cytosolic proteins, membranes, and organelles in a double membrane structure that fuses with endosomes and lysosomes, thus delivering the sequestered material for degradation. Autophagy is implicated in a number of human diseases, many of which can either be characterized by an imbalance in protein, organelle, or cellular homeostasis, ultimately resulting in an alteration of the autophagic response. Here, we will review the recent progress made in understanding the induction of autophagy, with emphasis on the contributions from our laboratory.
Collapse
Affiliation(s)
- Sharon A Tooze
- Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
543
|
Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DCO, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010; 90:1383-435. [PMID: 20959619 DOI: 10.1152/physrev.00030.2009] [Citation(s) in RCA: 1368] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
(Macro)autophagy is a bulk degradation process that mediates the clearance of long-lived proteins and organelles. Autophagy is initiated by double-membraned structures, which engulf portions of cytoplasm. The resulting autophagosomes ultimately fuse with lysosomes, where their contents are degraded. Although the term autophagy was first used in 1963, the field has witnessed dramatic growth in the last 5 years, partly as a consequence of the discovery of key components of its cellular machinery. In this review we focus on mammalian autophagy, and we give an overview of the understanding of its machinery and the signaling cascades that regulate it. As recent studies have also shown that autophagy is critical in a range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including neurodegeneration, lysosomal storage diseases, cancers, and Crohn's disease, we discuss the roles of autophagy in health and disease, while trying to critically evaluate if the coincidence between autophagy and these conditions is causal or an epiphenomenon. Finally, we consider the possibility of autophagy upregulation as a therapeutic approach for various conditions.
Collapse
Affiliation(s)
- Brinda Ravikumar
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
544
|
Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S, Brown S, O’Kane CJ, Rubinsztein DC. α-Synuclein impairs macroautophagy: implications for Parkinson's disease. J Cell Biol 2010; 190:1023-37. [PMID: 20855506 PMCID: PMC3101586 DOI: 10.1083/jcb.201003122] [Citation(s) in RCA: 639] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 08/19/2010] [Indexed: 12/02/2022] Open
Abstract
Parkinson's disease (PD) is characterized pathologically by intraneuronal inclusions called Lewy bodies, largely comprised of α-synuclein. Multiplication of the α-synuclein gene locus increases α-synuclein expression and causes PD. Thus, overexpression of wild-type α-synuclein is toxic. In this study, we demonstrate that α-synuclein overexpression impairs macroautophagy in mammalian cells and in transgenic mice. Our data show that α-synuclein compromises autophagy via Rab1a inhibition and Rab1a overexpression rescues the autophagy defect caused by α-synuclein. Inhibition of autophagy by α-synuclein overexpression or Rab1a knockdown causes mislocalization of the autophagy protein, Atg9, and decreases omegasome formation. Rab1a, α-synuclein, and Atg9 all regulate formation of the omegasome, which marks autophagosome precursors.
Collapse
Affiliation(s)
- Ashley R. Winslow
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Chien-Wen Chen
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Silvia Corrochano
- Mammalian Genetics Unit, Medical Research Council Harwell, Oxfordshire OX11 0RD, England, UK
| | - Abraham Acevedo-Arozena
- Mammalian Genetics Unit, Medical Research Council Harwell, Oxfordshire OX11 0RD, England, UK
| | - David E. Gordon
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Andrew A. Peden
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Maike Lichtenberg
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Fiona M. Menzies
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Brinda Ravikumar
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Sara Imarisio
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Steve Brown
- Mammalian Genetics Unit, Medical Research Council Harwell, Oxfordshire OX11 0RD, England, UK
| | - Cahir J. O’Kane
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - David C. Rubinsztein
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| |
Collapse
|
545
|
Longatti A, Orsi A, Tooze SA. Autophagosome formation: not necessarily an inside job. Cell Res 2010; 20:1181-4. [PMID: 20838417 DOI: 10.1038/cr.2010.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Andrea Longatti
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
546
|
Otto GP, Razi M, Morvan J, Stenner F, Tooze SA. A novel syntaxin 6-interacting protein, SHIP164, regulates syntaxin 6-dependent sorting from early endosomes. Traffic 2010; 11:688-705. [PMID: 20163565 DOI: 10.1111/j.1600-0854.2010.01049.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Membrane fusion is dependent on the function of SNAREs and their alpha-helical SNARE motifs that form SNARE complexes. The Habc domains at the N-termini of some SNAREs can interact with their associated SNARE motif, Sec1/Munc18 (SM) proteins, tethering proteins or adaptor proteins, suggesting that they play an important regulatory function. We screened for proteins that interact with the Habc domain of Syntaxin 6, and isolated an uncharacterized 164-kDa protein that we named SHIP164. SHIP164 is part of a large (approximately 700 kDa) complex, and interacts with components of the Golgi-associated retrograde protein (GARP) tethering complex. Depletion of GARP subunits or overexpression of Syntaxin 6 results in a redistribution of soluble SHIP164 to endosomal structures. Co-overexpression of Syntaxin 6 and SHIP164 produced excessive tubulation of endosomes, and perturbed the transport of cation-independent mannose-6-phosphate receptor (CI-MPR) and transferrin receptor. Thus,we propose that SHIP164 functions in trafficking through the early/recycling endosomal system.
Collapse
Affiliation(s)
- Grant P Otto
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, UK
| | | | | | | | | |
Collapse
|
547
|
Abstract
Pattern recognition receptors detect microbial components and induce innate immune responses, the first line of host defense against infectious agents. However, aberrant activation of immune responses often causes massive inflammation, leading to the development of autoimmune diseases. Therefore, both activation and inactivation of innate immune responses must be strictly controlled. Recent studies have shown that the cellular machinery associated with protein degradation, such as autophagy, is important for the regulation of innate immunity. These studies reveal that autophagy-related proteins are involved in the innate immune response and may contribute to the development of inflammatory disorders.
Collapse
Affiliation(s)
- Tatsuya Saitoh
- Laboratory of Host Defense, World Premiere International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | | |
Collapse
|
548
|
Mehrpour M, Esclatine A, Beau I, Codogno P. Overview of macroautophagy regulation in mammalian cells. Cell Res 2010; 20:748-62. [DOI: 10.1038/cr.2010.82] [Citation(s) in RCA: 382] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
549
|
Zoppino FCM, Militello RD, Slavin I, Alvarez C, Colombo MI. Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 2010; 11:1246-61. [PMID: 20545908 DOI: 10.1111/j.1600-0854.2010.01086.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Autophagy is an important cellular degradation pathway present in all eukaryotic cells. Via this pathway, portions of the cytoplasm and/or organelles are sequestered in double-membrane structures called autophagosomes. In spite of the significant advance achieved in autophagy, the long-standing question about the source of the autophagic membrane remains unsolved. We have investigated the role of the secretory pathway in autophagosome biogenesis. Sar1 and Rab1b are monomeric GTPases that control traffic from the endoplasmic reticulum (ER) to the Golgi. We present evidence indicating that the activity of both proteins is required for autophagosome formation. Overexpression of dominant-negative mutants and the use of siRNAs impaired autophagosome generation as determined by LC3 puncta formation and light chain 3 (LC3)-II processing. In addition, our results indicate that the autophagic and secretory pathways intersect at a level preceding the brefeldin A blockage, suggesting that the transport from the cis/medial Golgi is not necessary for autophagosome biogenesis. Our present results highlight the role of transport from the ER in the initial events of the autophagic vacuole development.
Collapse
Affiliation(s)
- Felipe Carlos Martín Zoppino
- Instituto de Histología y Embriología (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | | | | | | | | |
Collapse
|
550
|
Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010; 141:656-67. [PMID: 20478256 PMCID: PMC3059894 DOI: 10.1016/j.cell.2010.04.009] [Citation(s) in RCA: 1060] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 02/17/2010] [Accepted: 04/02/2010] [Indexed: 12/13/2022]
Abstract
Starvation-induced autophagosomes engulf cytosol and/or organelles and deliver them to lysosomes for degradation, thereby resupplying depleted nutrients. Despite advances in understanding the molecular basis of this process, the membrane origin of autophagosomes remains unclear. Here, we demonstrate that, in starved cells, the outer membrane of mitochondria participates in autophagosome biogenesis. The early autophagosomal marker, Atg5, transiently localizes to punctae on mitochondria, followed by the late autophagosomal marker, LC3. The tail-anchor of an outer mitochondrial membrane protein also labels autophagosomes and is sufficient to deliver another outer mitochondrial membrane protein, Fis1, to autophagosomes. The fluorescent lipid NBD-PS (converted to NBD-phosphotidylethanolamine in mitochondria) transfers from mitochondria to autophagosomes. Photobleaching reveals membranes of mitochondria and autophagosomes are transiently shared. Disruption of mitochondria/ER connections by mitofusin2 depletion dramatically impairs starvation-induced autophagy. Mitochondria thus play a central role in starvation-induced autophagy, contributing membrane to autophagosomes.
Collapse
Affiliation(s)
- Dale W Hailey
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, 18 Library Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|