551
|
Vincent LG, Choi YS, Alonso-Latorre B, del Álamo JC, Engler AJ. Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol J 2013; 8:472-84. [PMID: 23390141 DOI: 10.1002/biot.201200205] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/13/2012] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cells (MSCs) respond to the elasticity of their environment, which varies between and within tissues. Stiffness gradients within tissues can result from pathological conditions, but also occur through normal variation, such as in muscle. MSC migration can be directed by shallow stiffness gradients before differentiating. Gradients with fine control over substrate compliance - both in range and rate of change (strength) - are needed to better understand mechanical regulation of MSC migration in normal and diseased states. We describe polyacrylamide stiffness gradient fabrication using three distinct systems, generating stiffness gradients of physiological (1 Pa/μm), pathological (10 Pa/μm), and step change (≥ 100Pa/μm) strength. All gradients spanned a range of physiologically relevant elastic moduli for soft tissues (1-12 kPa). MSCs migrated to the stiffest region on each gradient. Time-lapse microscopy revealed that migration velocity correlated directly with gradient strength. Directed migration was reduced in the presence of the contractile agonist lysophosphatidic acid (LPA) and cytoskeleton-perturbing drugs nocodazole and cytochalasin. LPA- and nocodazole-treated cells remained spread and protrusive on the substrate, while cytochalasin-treated cells did not. Nocodazole-treated cells spread in a similar manner to untreated cells, but exhibited greatly diminished traction forces. These data suggest that a functional actin cytoskeleton is required for migration whereas microtubules are required for directed migration. The data also imply that, in vivo, MSCs may preferentially accumulate in regions of high elastic modulus and make a greater contribution to tissue repairs in these locations.
Collapse
Affiliation(s)
- Ludovic G Vincent
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
552
|
Brown AC, Fiore VF, Sulchek TA, Barker TH. Physical and chemical microenvironmental cues orthogonally control the degree and duration of fibrosis-associated epithelial-to-mesenchymal transitions. J Pathol 2013; 229:25-35. [PMID: 23018598 DOI: 10.1002/path.4114] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/05/2012] [Accepted: 09/14/2012] [Indexed: 11/11/2022]
Abstract
Increased tissue stiffness and epithelial-to-mesenchymal transitions (EMTs) are two seemingly discrete hallmarks of fibrotic diseases. Despite recent findings highlighting the influence of tissue mechanical properties on cell phenotype, it remains unclear what role increased tissue stiffness has in the regulation of previously reported fibronectin-mediated EMTs associated with pulmonary fibrosis. Nano-indentation testing of lung interstitial spaces showed that in vivo cell-level Young's moduli increase with the onset of fibrosis from ∼2 to ∼17 kPa. In vitro, we found that stiff, but not soft, fibronectin substrates induce EMT, a response dependent on cell contraction-mediated integrin activation of TGFβ. Activation or suppression of cell contractility with exogenous factors was sufficient to overcome the effect of substrate stiffness. Pulse-chase experiments indicate that the effect of cell contractility is dose- and time-dependent. In response to low levels of TGFβ on soft surfaces, either added exogenously or produced through thrombin-induced contraction, cells will initiate the EMT programme, but upon removal revert to an epithelial phenotype. These results identify matrix stiffness and/or cell contractility as critical targets for novel therapeutics for fibrotic diseases.
Collapse
Affiliation(s)
- Ashley C Brown
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332-0535, USA
| | | | | | | |
Collapse
|
553
|
Kiang JD, Wen JH, del Álamo JC, Engler AJ. Dynamic and reversible surface topography influences cell morphology. J Biomed Mater Res A 2013; 101:2313-21. [PMID: 23355509 DOI: 10.1002/jbm.a.34543] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/14/2012] [Accepted: 11/19/2012] [Indexed: 11/06/2022]
Abstract
Microscale and nanoscale surface topography changes can influence cell functions, including morphology. Although in vitro responses to static topography are novel, cells in vivo constantly remodel topography. To better understand how cells respond to changes in topography over time, we developed a soft polyacrylamide hydrogel with magnetic nickel microwires randomly oriented in the surface of the material. Varying the magnetic field around the microwires reversibly induced their alignment with the direction of the field, causing the smooth hydrogel surface to develop small wrinkles; changes in surface roughness, ΔRRMS , ranged from 0.05 to 0.70 μm and could be oscillated without hydrogel creep. Vascular smooth muscle cell morphology was assessed when exposed to acute and dynamic topography changes. Area and shape changes occurred when an acute topographical change was imposed for substrates exceeding roughness of 0.2 μm, but longer-term oscillating topography did not produce significant changes in morphology irrespective of wire stiffness. These data imply that cells may be able to use topography changes to transmit signals as they respond immediately to changes in roughness.
Collapse
Affiliation(s)
- Jennifer D Kiang
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
554
|
Rennier K, Ji JY. Effect of shear stress and substrate on endothelial DAPK expression, caspase activity, and apoptosis. BMC Res Notes 2013; 6:10. [PMID: 23305096 PMCID: PMC3599066 DOI: 10.1186/1756-0500-6-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/08/2013] [Indexed: 01/23/2023] Open
Abstract
Background In the vasculature, misdirected apoptosis in endothelial cells leads to pathological conditions such as inflammation. Along with biochemical and molecular signals, the hemodynamic forces that the cells experience are also important regulators of endothelial functions such as proliferation and apoptosis. Laminar shear stress inhibits apoptosis induced by serum depletion, oxidative stress, and tumor necrosis factor α (TNFα). Death associated protein kinase (DAPK) is a positive regulator of TNFα induced apoptotic pathway. Here we investigate the effect of shear stress on DAPK in endothelial cells on glass or silicone membrane substrate. We have already shown a link between shear stress and DAPK expression and apoptosis in cells on glass. Here we transition our study to endothelial cells on non-glass substrates, such as flexible silicone membrane used for cyclic strain studies. Results We modified the classic parallel plate flow chamber to accommodate silicone membrane as substrate for cells, and validated the chamber for cell viability in shear stress experiments. We found that adding shear stress significantly suppressed TNFα induced apoptosis in cells; while shearing cells alone also increased apoptosis on either substrate. We also found that shearing cells at 12 dynes/cm2 for 6 hours resulted in increased apoptosis on both substrates. This shear-induced apoptosis correlated with increased caspase 3/7 activities and DAPK expression and activation via dephosphorylation of serine 308. Conclusion These data suggest that shear stress induced apoptosis in endothelial cells via increased DAPK expression and activation as well as caspase-3/7 activity. Most in vitro shear stress studies utilize the conventional parallel plate flow chamber where cells are cultured on glass, which is much stiffer than what cells encounter in vivo. Other mechanotransduction studies have utilized the flexible silicone membrane as substrate, for example, in cyclic stretch studies. Thus, this study bridges the gap between shear stress studies on cells plated on glass to studies on different stiffness of substrates or mechanical stimulation such as cyclic strain. We continue to explore the mechanotransduction role of DAPK in endothelial apoptosis, by using substrates of physiological stiffness for shear stress studies, and by using silicone substrate in cyclic stretch devices.
Collapse
Affiliation(s)
- Keith Rennier
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, 723 West Michigan Street, SL-220J, Indianapolis, IN 46202, USA
| | | |
Collapse
|
555
|
Grinnell F, Ho CH. The effect of growth factor environment on fibroblast morphological response to substrate stiffness. Biomaterials 2013; 34:965-74. [PMID: 23140998 PMCID: PMC3511597 DOI: 10.1016/j.biomaterials.2012.10.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/11/2012] [Indexed: 01/02/2023]
Abstract
According to conventional understanding regarding dependence of cell behavior on substrate stiffness, tissue cells typically remain round on soft substrates but spread on stiff substrates. The current studies were carried out to learn if the growth factor environment influenced the foregoing relationship. Using standard methods, we prepared planar (2D) polyacrylamide (PA) gels ranging from 0.5 to 40 kPa and covalently cross-linked with fibronectin and collagen at concentrations ranging from 2.5 to 50 μg/ml. We carried out experiments with fibroblasts varying in their ability to form actin stress fibers and focal adhesions. In fetal bovine serum (FBS) containing medium--the growth factor environment in which most studies on cell spreading and substrate stiffness have been carried out--cell spreading increased with increasing substrate stiffness and adhesion ligand density. However, in platelet-derived growth factor (PDGF) containing medium, cell spreading was relatively independent of substrate stiffness and adhesion ligand density except little cell attachment occurred in the complete absence of cross-linked adhesion ligands. If cell contraction was blocked with blebbistatin, then cell spreading in FBS-containing medium became independent of substrate stiffness. The findings suggest that under growth factor conditions that stimulate global cell contraction (FBS), cell spreading cannot occur unless adhesion ligand density and substrate stiffness result in cell-substrate interactions strong enough to resist and overcome the inward tractional force. Under growth factor conditions that stimulate global cell protrusion (PDGF), such resistance is not required.
Collapse
Affiliation(s)
- Frederick Grinnell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA.
| | | |
Collapse
|
556
|
Ng MR, Besser A, Danuser G, Brugge JS. Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility. ACTA ACUST UNITED AC 2012; 199:545-63. [PMID: 23091067 PMCID: PMC3483134 DOI: 10.1083/jcb.201207148] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mechanical microenvironment is known to influence single-cell migration; however, the extent to which mechanical cues affect collective migration of adherent cells is not well understood. We measured the effects of varying substrate compliance on individual cell migratory properties in an epithelial wound-healing assay. Increasing substrate stiffness increased collective cell migration speed, persistence, and directionality as well as the coordination of cell movements. Dynamic analysis revealed that wounding initiated a wave of motion coordination from the wound edge into the sheet. This was accompanied by a front-to-back gradient of myosin-II activation and establishment of cell polarity. The propagation was faster and farther reaching on stiff substrates, indicating that substrate stiffness affects the transmission of directional cues. Manipulation of myosin-II activity and cadherin-catenin complexes revealed that this transmission is mediated by coupling of contractile forces between neighboring cells. Thus, our findings suggest that the mechanical environment integrates in a feedback with cell contractility and cell-cell adhesion to regulate collective migration.
Collapse
Affiliation(s)
- Mei Rosa Ng
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
557
|
Lin CH, Lee JK, LaBarge MA. Fabrication and use of microenvironment microarrays (MEArrays). J Vis Exp 2012:4152. [PMID: 23093325 DOI: 10.3791/4152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The interactions between cells and their surrounding microenvironment have functional consequences for cellular behaviour. On the single cell level, distinct microenvironments can impose differentiation, migration, and proliferation phenotypes, and on the tissue level the microenvironment processes as complex as morphogenesis and tumorigenesis(1). Not only do the cell and molecular contents of microenvironments impact the cells within, but so do the elasticity(2) and geometry(3) of the tissue. Defined as the sum total of cell-cell, -ECM, and -soluble factor interactions, in addition to physical characteristics, the microenvironment is complex. The phenotypes of cells within a tissue are partially due to their genomic content and partially due to the combinatorial interactions with the microenviroment. A major challenge is to link specific combinations of microenvironmental components with distinctive behaviours. Here, we present the microenvironment microarray (MEArray) platform for cell-based functional screening of interactions with combinatorial microenvironments(4). The method allows for simultaneous control of the molecular composition and the elastic modulus, and combines the use of widely available microarray and micropatterning technologies. MEArray screens require as few as 10,000 cells per array, which facilitates functional studies of rare cell types such as adult progenitor cells. A limitation of the technology is that entire tissue microenvironments cannot be completely recapitulated on MEArrays. However, comparison of responses in the same cell type to numerous related microenvironments, for instance pairwise combinations of ECM proteins that characterize a given tissue, will provide insights into how microenvironmental components elicit tissue-specific functional phenotypes. MEArrays can be printed using a wide variety of recombinant growth factors, cytokines, and purified ECM proteins, and combinations thereof. The platform is limited only by the availability of specific reagents. MEArrays are amenable to time-lapsed analysis, but most often are used for end point analyses of cellular functions that are measureable with fluorescent probes. For instance, DNA synthesis, apoptosis, acquisition of differentiated states, or production of specific gene products are commonly measured. Briefly, the basic flow of an MEArray experiment is to prepare slides coated with printing substrata and to prepare the master plate of proteins that are to be printed. Then the arrays are printed with a microarray robot, cells are allowed to attach, grow in culture, and then are chemically fixed upon reaching the experimental endpoint. Fluorescent or colorimetric assays, imaged with traditional microscopes or microarray scanners, are used to reveal relevant molecular and cellular phenotypes (Figure 1).
Collapse
Affiliation(s)
- Chun-Han Lin
- Life Science Division, Lawrence Berkeley National Laboratory, University of California-Berkeley, CA, USA
| | | | | |
Collapse
|
558
|
Sunyer R, Jin AJ, Nossal R, Sackett DL. Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response. PLoS One 2012; 7:e46107. [PMID: 23056241 PMCID: PMC3464269 DOI: 10.1371/journal.pone.0046107] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022] Open
Abstract
Many fundamental cell processes, such as angiogenesis, neurogenesis and cancer metastasis, are thought to be modulated by extracellular matrix stiffness. Thus, the availability of matrix substrates having well-defined stiffness profiles can be of great importance in biophysical studies of cell-substrate interaction. Here, we present a method to fabricate biocompatible hydrogels with a well defined and linear stiffness gradient. This method, involving the photopolymerization of films by progressively uncovering an acrylamide/bis-acrylamide solution initially covered with an opaque mask, can be easily implemented with common lab equipment. It produces linear stiffness gradients of at least 115 kPa/mm, extending from ∼1 kPa to 240 kPa (in units of Young's modulus). Hydrogels with less steep gradients and narrower stiffness ranges can easily be produced. The hydrogels can be covalently functionalized with uniform coatings of proteins that promote cell adhesion. Cell spreading on these hydrogels linearly correlates with hydrogel stiffness, indicating that this technique effectively modifies the mechanical environment of living cells. This technique provides a simple approach that produces steeper gradients, wider rigidity ranges, and more accurate profiles than current methods.
Collapse
Affiliation(s)
- Raimon Sunyer
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | |
Collapse
|
559
|
Jasaitis A, Estevez M, Heysch J, Ladoux B, Dufour S. E-cadherin-dependent stimulation of traction force at focal adhesions via the Src and PI3K signaling pathways. Biophys J 2012; 103:175-84. [PMID: 22853894 DOI: 10.1016/j.bpj.2012.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 06/07/2012] [Accepted: 06/11/2012] [Indexed: 12/20/2022] Open
Abstract
The interplay between cadherin- and integrin-dependent signals controls cell behavior, but the precise mechanisms that regulate the strength of adhesion to the extracellular matrix remains poorly understood. We deposited cells expressing a defined repertoire of cadherins and integrins on fibronectin (FN)-coated polyacrylamide gels (FN-PAG) and on FN-coated pillars used as a micro-force sensor array (μFSA), and analyzed the functional relationship between these adhesion receptors to determine how it regulates cell traction force. We found that cadherin-mediated adhesion stimulated cell spreading on FN-PAG, and this was modulated by the substrate stiffness. We compared S180 cells with cells stably expressing different cadherins on μFSA and found that traction forces were stronger in cells expressing cadherins than in parental cells. E-cadherin-mediated contact and mechanical coupling between cells are required for this increase in cell-FN traction force, which was not observed in isolated cells, and required Src and PI3K activities. Traction forces were stronger in cells expressing type I cadherins than in cells expressing type II cadherins, which correlates with our previous observation of a higher intercellular adhesion strength developed by type I compared with type II cadherins. Our results reveal one of the mechanisms whereby molecular cross talk between cadherins and integrins upregulates traction forces at cell-FN adhesion sites, and thus provide additional insight into the molecular control of cell behavior.
Collapse
Affiliation(s)
- Audrius Jasaitis
- Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique, Institut Curie, Paris, France
| | | | | | | | | |
Collapse
|
560
|
Choi YS, Vincent LG, Lee AR, Kretchmer KC, Chirasatitsin S, Dobke MK, Engler AJ. The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices. Biomaterials 2012; 33:6943-51. [PMID: 22800539 DOI: 10.1016/j.biomaterials.2012.06.057] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/22/2012] [Indexed: 01/18/2023]
Abstract
Cell patterning is typically accomplished by selectively depositing proteins for cell adhesion only on patterned regions; however in tissues, cells are also influenced by mechanical stimuli, which can also result in patterned arrangements of cells. We developed a mechanically-patterned hydrogel to observe and compare it to extracellular matrix (ECM) ligand patterns to determine how to best regulate and improve cell type-specific behaviors. Ligand-based patterning on hydrogels was not robust over prolonged culture, but cells on mechanically-patterned hydrogels differentially sorted based on stiffness preference: myocytes and adipose-derived stem cells (ASCs) underwent stiffness-mediated migration, i.e. durotaxis, and remained on myogenic hydrogel regions. Myocytes developed aligned striations and fused on myogenic stripes of the mechanically-patterned hydrogel. ASCs aligned and underwent myogenesis, but their fusion rate increased, as did the number of cells fusing into a myotube as a result of their alignment. Conversely, neuronal cells did not exhibit durotaxis and could be seen on soft regions of the hydrogel for prolonged culture time. These results suggest that mechanically-patterned hydrogels could provide a platform to create tissue engineered, innervated micro-muscles of neural and muscle phenotypes juxtaposed next to each other in order better recreate a muscle niche.
Collapse
Affiliation(s)
- Yu Suk Choi
- Departments of Bioengineering, University of California, San Diego, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
561
|
Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels. Biomaterials 2012; 33:6682-90. [PMID: 22749448 DOI: 10.1016/j.biomaterials.2012.06.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 06/03/2012] [Indexed: 01/29/2023]
Abstract
Hydrogels prepared from poly-(ethylene glycol) (PEG) have been used in a variety of studies of cartilage tissue engineering. Such hydrogels may also be useful as a tunable mechanical material for cartilage repair. Previous studies have characterized the chemical and mechanical properties of PEG-based hydrogels, as modulated by precursor molecular weight and concentration. Cartilage mechanical properties vary substantially, with maturation, with depth from the articular surface, in health and disease, and in compression and tension. We hypothesized that PEG hydrogels could mimic a broad range of the compressive and tensile mechanical properties of articular cartilage. The objective of this study was to characterize the mechanical properties of PEG hydrogels over a broad range and with reference to articular cartilage. In particular, we assessed the effects of PEG precursor molecular weight (508 Da, 3.4 kDa, 6 kDa, and 10 kDa) and concentration (10-40%) on swelling property, equilibrium confined compressive modulus (H(A0)), compressive dynamic stiffness, and hydraulic permeability (k(p0)) of PEG hydrogels in static/dynamic confined compression tests, and equilibrium tensile modulus (E(ten)) in tension tests. As molecular weight of PEG decreased and concentration increased, hydrogels exhibited a decrease in swelling ratio (31.5-2.2), an increase in H(A0) (0.01-2.46 MPa) and E(ten) (0.02-3.5 MPa), an increase in dynamic compressive stiffness (0.055-42.9 MPa), and a decrease in k(p0) (1.2 × 10(-15) to 8.5 × 10(-15) m(2)/(Pa s)). The frequency-dependence of dynamic compressive stiffness amplitude and phase, as well as the strain-dependence of permeability, were typical of the time- and strain-dependent mechanical behavior of articular cartilage. H(A0) and E(ten) were positively correlated with the final PEG concentration, accounting for swelling. These results indicate that PEG hydrogels can be prepared to mimic many of the static and dynamic mechanical properties of articular cartilage.
Collapse
|
562
|
The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells. Biomaterials 2012; 33:4460-8. [DOI: 10.1016/j.biomaterials.2012.03.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/03/2012] [Indexed: 11/23/2022]
|
563
|
Markowski MC, Brown AC, Barker TH. Directing epithelial to mesenchymal transition through engineered microenvironments displaying orthogonal adhesive and mechanical cues. J Biomed Mater Res A 2012; 100:2119-27. [PMID: 22615133 DOI: 10.1002/jbm.a.34068] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/02/2011] [Accepted: 12/08/2011] [Indexed: 12/15/2022]
Abstract
Cell interactions with their extracellular matrix (ECM) microenvironments play a major role in directing cellular processes that can drive wound healing and tissue regeneration but, if uncontrolled, lead to pathological progression. One such process, epithelial to mesenchymal transition (EMT), if finely controlled could have significant potential in regenerative medicine approaches. Despite recent findings that highlight the influence of biochemical and mechanical properties of the ECM on EMT, it is still unclear how these two orthogonal cues act synergistically to control epithelial cell phenotype. Here, we cultured lung epithelial cells on combinations of different mutants of fibronectin's cell binding domain that preferentially engage specific integrins and substrates of varying stiffness. Our results suggest that while stiff substrates induce spontaneous EMT, this response can be overcome by with fragments of fibronectin that support α3 and α5 integrin engagement. Furthermore, we found that substrate-induced EMT correlates with transforming growth factor beta activation by resident epithelial cells and is dependent on Rho/ROCK signaling. Suppressing cell-contractility was sufficient to maintain an epithelial phenotype. Our results suggest that integrin-specific engagement of fibronectin adhesive domains and the mechanics of the ECM act synergistically to direct EMT.
Collapse
Affiliation(s)
- Marilyn C Markowski
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | | | | |
Collapse
|
564
|
Huang X, Yang N, Fiore VF, Barker TH, Sun Y, Morris SW, Ding Q, Thannickal VJ, Zhou Y. Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am J Respir Cell Mol Biol 2012; 47:340-8. [PMID: 22461426 DOI: 10.1165/rcmb.2012-0050oc] [Citation(s) in RCA: 386] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mechanical properties of the extracellular matrix have recently been shown to promote myofibroblast differentiation and lung fibrosis. Mechanisms by which matrix stiffness regulates myofibroblast differentiation are not fully understood. The goal of this study was to determine the intrinsic mechanisms of mechanotransduction in the regulation of matrix stiffness-induced myofibroblast differentiation. A well established polyacrylamide gel system with tunable substrate stiffness was used in this study. Megakaryoblastic leukemia factor-1 (MKL1) nuclear translocation was imaged by confocal immunofluorescent microscopy. The binding of MKL1 to the α-smooth muscle actin (α-SMA) gene promoter was quantified by quantitative chromatin immunoprecipitation assay. Normal human lung fibroblasts responded to matrix stiffening with changes in actin dynamics that favor filamentous actin polymerization. Actin polymerization resulted in nuclear translocation of MKL1, a serum response factor coactivator that plays a central role in regulating the expression of fibrotic genes, including α-SMA, a marker for myofibroblast differentiation. Mouse lung fibroblasts deficient in Mkl1 did not respond to matrix stiffening with increased α-SMA expression, whereas ectopic expression of human MKL1 cDNA restored the ability of Mkl1 null lung fibroblasts to express α-SMA. Furthermore, matrix stiffening promoted production and activation of the small GTPase RhoA, increased Rho kinase (ROCK) activity, and enhanced fibroblast contractility. Inhibition of RhoA/ROCK abrogated stiff matrix-induced actin cytoskeletal reorganization, MKL1 nuclear translocation, and myofibroblast differentiation. This study indicates that actin cytoskeletal remodeling-mediated activation of MKL1 transduces mechanical stimuli from the extracellular matrix to a fibrogenic program that promotes myofibroblast differentiation, suggesting an intrinsic mechanotransduction mechanism.
Collapse
Affiliation(s)
- Xiangwei Huang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Tinsley Harrison Tower 437B, 1900 University Blvd., Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
565
|
Shi J, Xing MMQ, Zhong W. Development of hydrogels and biomimetic regulators as tissue engineering scaffolds. MEMBRANES 2012; 2:70-90. [PMID: 24957963 PMCID: PMC4021879 DOI: 10.3390/membranes2010070] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 01/17/2012] [Accepted: 02/02/2012] [Indexed: 01/06/2023]
Abstract
This paper reviews major research and development issues relating to hydrogels as scaffolds for tissue engineering, the article starts with a brief introduction of tissue engineering and hydrogels as extracellular matrix mimics, followed by a description of the various types of hydrogels and preparation methods, before a discussion of the physical and chemical properties that are important to their application. There follows a short comment on the trends of future research and development. Throughout the discussion there is an emphasis on the genetic understanding of bone tissue engineering application.
Collapse
Affiliation(s)
- Junbin Shi
- Department of Textile Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Malcolm M Q Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Wen Zhong
- Department of Textile Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
566
|
Norian JM, Owen CM, Taboas J, Korecki C, Tuan R, Malik M, Catherino WH, Segars JH. Characterization of tissue biomechanics and mechanical signaling in uterine leiomyoma. Matrix Biol 2012; 31:57-65. [PMID: 21983114 PMCID: PMC3576015 DOI: 10.1016/j.matbio.2011.09.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 09/12/2011] [Accepted: 09/16/2011] [Indexed: 01/18/2023]
Abstract
Leiomyoma are common tumors arising within the uterus that feature excessive deposition of a stiff, disordered extracellular matrix (ECM). Mechanical stress is a critical determinant of excessive ECM deposition and increased mechanical stress has been shown to be involved in tumorigenesis. Here we tested the viscoelastic properties of leiomyoma and characterized dynamic and static mechanical signaling in leiomyoma cells using three approaches, including measurement of active RhoA. We found that the peak strain and pseudo-dynamic modulus of leiomyoma tissue was significantly increased relative to matched myometrium. In addition, leiomyoma cells demonstrated an attenuated response to applied cyclic uniaxial strain and to variation in substrate stiffness, relative to myometrial cells. However, on a flexible pronectin-coated silicone substrate, basal levels and lysophosphatidic acid-stimulated levels of activated RhoA were similar between leiomyoma and myometrial cells. In contrast, leiomyoma cells plated on a rigid polystyrene substrate had elevated levels of active RhoA, compared to myometrial cells. The results indicate that viscoelastic properties of the ECM of leiomyoma contribute significantly to the tumor's inherent stiffness and that leiomyoma cells have an attenuated sensitivity to mechanical cues. The findings suggest there may be a fundamental alteration in the communication between the external mechanical environment (extracellular forces) and reorganization of the actin cytoskeleton mediated by RhoA in leiomyoma cells. Additional research will be needed to elucidate the mechanism(s) responsible for the attenuated mechanical signaling in leiomyoma cells.
Collapse
Affiliation(s)
- John M. Norian
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Carter M. Owen
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Juan Taboas
- Department of Orthopedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Cartilage Biology and Orthopedic Branch, National Institute for Arthritis and Musculoskeletal Skin Diseases, National Institutes, of Health, Bethesda, MD, United States
| | - Casey Korecki
- Cartilage Biology and Orthopedic Branch, National Institute for Arthritis and Musculoskeletal Skin Diseases, National Institutes, of Health, Bethesda, MD, United States
| | - Rocky Tuan
- Department of Orthopedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Cartilage Biology and Orthopedic Branch, National Institute for Arthritis and Musculoskeletal Skin Diseases, National Institutes, of Health, Bethesda, MD, United States
| | - Minnie Malik
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - William H. Catherino
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - James H. Segars
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
567
|
Choi YS, Vincent LG, Lee AR, Dobke MK, Engler AJ. Mechanical derivation of functional myotubes from adipose-derived stem cells. Biomaterials 2011; 33:2482-91. [PMID: 22197570 DOI: 10.1016/j.biomaterials.2011.12.004] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 12/02/2011] [Indexed: 11/18/2022]
Abstract
Though reduced serum or myoblast co-culture alone can differentiate adipose-derived stem cells (ASCs) into mesenchymal lineages, efficiency is usually not sufficient to restore function in vivo. Often when injected into fibrotic muscle, their differentiation may be misdirected by the now stiffened tissue. Here ASCs are shown to not just simply reflect the qualitative stiffness sensitivity of bone marrow-derived stem cells (BMSCs) but to exceed BMSC myogenic capacity, expressing the appropriate temporal sequence of muscle transcriptional regulators on muscle-mimicking extracellular matrix in a tension and focal adhesion-dependent manner. ASCs formed multi-nucleated myotubes with a continuous cytoskeleton that was not due to misdirected cell division; microtubule depolymerization severed myotubes, but after washout, ASCs refused at a rate similar to pre-treated values. BMSCs never underwent stiffness-mediated fusion. ASC-derived myotubes, when replated onto non-permissive stiff matrix, maintained their fused state. Together these data imply enhanced mechanosensitivity for ASCs, making them a better therapeutic cell source for fibrotic muscle.
Collapse
Affiliation(s)
- Yu Suk Choi
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
568
|
Planas-Paz L, Strilić B, Goedecke A, Breier G, Fässler R, Lammert E. Mechanoinduction of lymph vessel expansion. EMBO J 2011; 31:788-804. [PMID: 22157817 DOI: 10.1038/emboj.2011.456] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/14/2011] [Indexed: 02/08/2023] Open
Abstract
In the mammalian embryo, few mechanical signals have been identified to influence organ development and function. Here, we report that an increase in the volume of interstitial or extracellular fluid mechanically induces growth of an organ system, that is, the lymphatic vasculature. We first demonstrate that lymph vessel expansion in the developing mouse embryo correlates with a peak in interstitial fluid pressure and lymphatic endothelial cell (LEC) elongation. In 'loss-of-fluid' experiments, we then show that aspiration of interstitial fluid reduces the length of LECs, decreases tyrosine phosphorylation of vascular endothelial growth factor receptor-3 (VEGFR3), and inhibits LEC proliferation. Conversely, in 'gain-of-fluid' experiments, increasing the amount of interstitial fluid elongates the LECs, and increases both VEGFR3 phosphorylation and LEC proliferation. Finally, we provide genetic evidence that β1 integrins are required for the proliferative response of LECs to both fluid accumulation and cell stretching and, therefore, are necessary for lymphatic vessel expansion and fluid drainage. Thus, we propose a new and physiologically relevant mode of VEGFR3 activation, which is based on mechanotransduction and is essential for normal development and fluid homeostasis in a mammalian embryo.
Collapse
Affiliation(s)
- Lara Planas-Paz
- Institute of Metabolic Physiology, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
569
|
Gutierrez E, Groisman A. Measurements of elastic moduli of silicone gel substrates with a microfluidic device. PLoS One 2011; 6:e25534. [PMID: 21980487 PMCID: PMC3184124 DOI: 10.1371/journal.pone.0025534] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 09/07/2011] [Indexed: 11/19/2022] Open
Abstract
Thin layers of gels with mechanical properties mimicking animal tissues are widely used to study the rigidity sensing of adherent animal cells and to measure forces applied by cells to their substrate with traction force microscopy. The gels are usually based on polyacrylamide and their elastic modulus is measured with an atomic force microscope (AFM). Here we present a simple microfluidic device that generates high shear stresses in a laminar flow above a gel-coated substrate and apply the device to gels with elastic moduli in a range from 0.4 to 300 kPa that are all prepared by mixing two components of a transparent commercial silicone Sylgard 184. The elastic modulus is measured by tracking beads on the gel surface under a wide-field fluorescence microscope without any other specialized equipment. The measurements have small and simple to estimate errors and their results are confirmed by conventional tensile tests. A master curve is obtained relating the mixing ratios of the two components of Sylgard 184 with the resulting elastic moduli of the gels. The rigidity of the silicone gels is less susceptible to effects from drying, swelling, and aging than polyacrylamide gels and can be easily coated with fluorescent tracer particles and with molecules promoting cellular adhesion. This work can lead to broader use of silicone gels in the cell biology laboratory and to improved repeatability and accuracy of cell traction force microscopy and rigidity sensing experiments.
Collapse
Affiliation(s)
- Edgar Gutierrez
- Department of Physics, University of California San Diego, La Jolla, California, United States of America
| | - Alex Groisman
- Department of Physics, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
570
|
Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S. Role of YAP/TAZ in mechanotransduction. Nature 2011; 474:179-83. [PMID: 21654799 DOI: 10.1038/nature10137] [Citation(s) in RCA: 4067] [Impact Index Per Article: 290.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/19/2011] [Indexed: 02/07/2023]
Abstract
Cells perceive their microenvironment not only through soluble signals but also through physical and mechanical cues, such as extracellular matrix (ECM) stiffness or confined adhesiveness. By mechanotransduction systems, cells translate these stimuli into biochemical signals controlling multiple aspects of cell behaviour, including growth, differentiation and cancer malignant progression, but how rigidity mechanosensing is ultimately linked to activity of nuclear transcription factors remains poorly understood. Here we report the identification of the Yorkie-homologues YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif, also known as WWTR1) as nuclear relays of mechanical signals exerted by ECM rigidity and cell shape. This regulation requires Rho GTPase activity and tension of the actomyosin cytoskeleton, but is independent of the Hippo/LATS cascade. Crucially, YAP/TAZ are functionally required for differentiation of mesenchymal stem cells induced by ECM stiffness and for survival of endothelial cells regulated by cell geometry; conversely, expression of activated YAP overrules physical constraints in dictating cell behaviour. These findings identify YAP/TAZ as sensors and mediators of mechanical cues instructed by the cellular microenvironment.
Collapse
Affiliation(s)
- Sirio Dupont
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua School of Medicine, viale Colombo 3, 35131 Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
571
|
How matrix properties control the self-assembly and maintenance of tissues. Ann Biomed Eng 2011; 39:1849-56. [PMID: 21491153 DOI: 10.1007/s10439-011-0310-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
Abstract
The mechanism by which cells organize into tissues is fundamental to developmental biology and tissue engineering. Likewise, the disruption of cellular order within tissues is a hallmark of many diseases including cancer and atherosclerosis. Tissue formation is regulated, in part, by a balance between cell-cell cohesion and cell-extracellular matrix (ECM) adhesion. Here, experiments and approaches to alter this balance are discussed, and the nature of this balance in the formation of microvasculature is explored. Using matrices of tailored stiffness and matrix presentation, the role of the mechanical properties and ligand density in angiogenesis has been investigated. Decreasing cell-matrix adhesion by either reducing matrix stiffness or matrix ligand density induces the self-assembly of endothelial cells into network-like structures. These structures are stabilized by the polymerization of the extracellular matrix protein fibronectin. When fibronectin polymerization is inhibited, network formation does not occur. Interestingly, this interplay between substrate mechanics, ECM assembly, and tissue self-assembly is not limited to endothelial cells and has been observed in other cell types as well. These results suggest novel approaches to foster stable cell-cell adhesion and engineer tissues.
Collapse
|
572
|
Young JL, Engler AJ. Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 2011; 32:1002-9. [PMID: 21071078 PMCID: PMC3000555 DOI: 10.1016/j.biomaterials.2010.10.020] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 10/12/2010] [Indexed: 12/22/2022]
Abstract
Tissue-specific elastic modulus (E), or 'stiffness,' arises from developmental changes in the extracellular matrix (ECM) and suggests that progenitor cell differentiation may be optimal when physical conditions mimic tissue progression. For cardiomyocytes, maturing from mesoderm to adult myocardium results in a 9-fold stiffening originating in part from a change in collagen expression and localization. To mimic this temporal stiffness change in vitro, thiolated-hyaluronic acid (HA) hydrogels were crosslinked with poly(ethylene glycol) diacrylate, and their dynamics were modulated by changing crosslinker molecular weight. With the hydrogel appropriately tuned to stiffen as heart muscle does during development, pre-cardiac cells grown on collagen-coated HA hydrogels exhibit a 3-fold increase in mature cardiac specific markers and form up to 60% more maturing muscle fibers than they do when grown on compliant but static polyacrylamide hydrogels over 2 weeks. Though ester hydrolysis does not substantially alter hydrogel stiffening over 2 weeks in vitro, model predictions indicate that ester hydrolysis will eventually degrade the material with additional time, implying that this hydrogel may be appropriate for in vivo applications where temporally changing material properties enhance cell maturation prior to its replacement with host tissue.
Collapse
Affiliation(s)
- Jennifer L. Young
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093
| |
Collapse
|
573
|
Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One 2011; 6:e15978. [PMID: 21246050 PMCID: PMC3016411 DOI: 10.1371/journal.pone.0015978] [Citation(s) in RCA: 326] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/01/2010] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stem cell (MSC) differentiation is regulated in part by tissue stiffness, yet MSCs can often encounter stiffness gradients within tissues caused by pathological, e.g., myocardial infarction ∼8.7±1.5 kPa/mm, or normal tissue variation, e.g., myocardium ∼0.6±0.9 kPa/mm; since migration predominantly occurs through physiological rather than pathological gradients, it is not clear whether MSC differentiate or migrate first. MSCs cultured up to 21 days on a hydrogel containing a physiological gradient of 1.0±0.1 kPa/mm undergo directed migration, or durotaxis, up stiffness gradients rather than remain stationary. Temporal assessment of morphology and differentiation markers indicates that MSCs migrate to stiffer matrix and then differentiate into a more contractile myogenic phenotype. In those cells migrating from soft to stiff regions however, phenotype is not completely determined by the stiff hydrogel as some cells retain expression of a neural marker. These data may indicate that stiffness variation, not just stiffness alone, can be an important regulator of MSC behavior.
Collapse
|