551
|
Ranganath RM. Asymmetric cell divisions in flowering plants - one mother, "two-many" daughters. PLANT BIOLOGY (STUTTGART, GERMANY) 2005; 7:425-48. [PMID: 16163608 DOI: 10.1055/s-2005-865899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant development shows a fascinating range of asymmetric cell divisions. Over the years, however, cellular differentiation has been interpreted mostly in terms of a mother cell dividing mitotically to produce two daughter cells of different fates. This popular view has masked the significance of an entirely different cell fate specification pathway, where the mother cell first becomes a coenocyte and then cellularizes to simultaneously produce more than two specialized daughter cells. The "one mother - two different daughters" pathways rely on spindle-assisted mechanisms, such as translocation of the nucleus/spindle to a specific cellular site and orientation of the spindle, which are coordinated with cell-specific allocation of cell fate determinants and cytokinesis. By contrast, during "coenocyte-cellularization" pathways, the spindle-assisted mechanisms are irrelevant since cell fate specification emerges only after the nuclear divisions are complete, and the number of specialized daughter cells produced depends on the developmental context. The key events, such as the formation of a coenocyte and migration of the nuclei to specific cellular locations, are coordinated with cellularization by unique types of cell wall formation. Both one mother - two different daughters and the coenocyte-cellularization pathways are used by higher plants in precise spatial and time windows during development. In both the pathways, epigenetic regulation of gene expression is crucial not only for cell fate specification but also for its maintenance through cell lineage. In this review, the focus is on the coenocyte-cellularization pathways in the context of our current understanding of the asymmetric cell divisions. Instances where cell differentiation does not involve an asymmetric division are also discussed to provide a comprehensive account of cell differentiation.
Collapse
Affiliation(s)
- R M Ranganath
- Cytogenetics and Developmental Biology Laboratory, Department of Botany, Bangalore University, India.
| |
Collapse
|
552
|
Li Y, Wang X, Zhang X, Goodrich DW. Human hHpr1/p84/Thoc1 regulates transcriptional elongation and physically links RNA polymerase II and RNA processing factors. Mol Cell Biol 2005; 25:4023-33. [PMID: 15870275 PMCID: PMC1087710 DOI: 10.1128/mcb.25.10.4023-4033.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cotranscriptional loading of RNA processing factors onto nascent RNA facilitates efficient gene expression. Mechanisms responsible for coupling transcription and RNA processing are not well defined, but the Saccharomyces cerevisiae TREX complex provides an example. TREX is composed of the subcomplex THO that associates with RNA polymerase II and is required for normal transcriptional elongation. THO associates with proteins involved in RNA splicing and export to form the larger TREX complex. Hence, assembly of TREX physically couples transcriptional elongation with RNA processing factors. Whether metazoan species with long, intron-containing genes utilize a similar mechanism has not been established. Here we show that human hHpr1/p84/Thoc1 associates with elongating RNA polymerase II and the RNA splicing and export factor UAP56 in intact cells. Depletion of hHpr1/p84/Thoc1 causes transcriptional elongation defects and associated cellular phenotypes similar to those observed in THO-deficient yeast. We conclude that hHpr1/p84/Thoc1 regulates transcriptional elongation and may participate in a protein complex functionally analogous to yeast TREX, physically linking elongating RNA polymerase II with RNA processing factors.
Collapse
Affiliation(s)
- Yanping Li
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
553
|
Luna R, Jimeno S, Marín M, Huertas P, García-Rubio M, Aguilera A. Interdependence between Transcription and mRNP Processing and Export, and Its Impact on Genetic Stability. Mol Cell 2005; 18:711-22. [PMID: 15949445 DOI: 10.1016/j.molcel.2005.05.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 03/22/2005] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
The conserved eukaryotic THO-TREX complex acts at the interface between transcription and mRNA export and affects transcription-associated recombination. To investigate the interdependence of nuclear mRNA processes and their impact on genomic integrity, we analyzed transcript accumulation and recombination of 40 selected mutants covering representative steps of the biogenesis and export of the messenger ribonucleoprotein particle (mRNP). None of the mutants analyzed shared the strong transcript-accumulation defect and hyperrecombination of THO mutants. Nevertheless, mutants in 3' end cleavage/polyadenylation, nuclear exosome, and mRNA export showed a weak but significant effect on recombination and transcript accumulation. Mutants of the nuclear exosome (rrp6) and 3' end processing factors (rna14 and rna15) showed inefficient transcription elongation and genetic interactions with THO. The results suggest a tight interdependence among mRNP biogenesis steps and transcription and an unexpected effect of the nuclear exosome and the cleavage/polyadenylation factors on transcription elongation and genetic integrity.
Collapse
Affiliation(s)
- Rosa Luna
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
554
|
Mason PB, Struhl K. Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol Cell 2005; 17:831-40. [PMID: 15780939 DOI: 10.1016/j.molcel.2005.02.017] [Citation(s) in RCA: 312] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 01/27/2005] [Accepted: 02/14/2005] [Indexed: 11/28/2022]
Abstract
A number of proteins and drugs have been implicated in the process of transcriptional elongation by RNA polymerase (Pol) II, but the factors that govern the elongation rate (nucleotide additions per min) and processivity (nucleotide additions per initiation event) in vivo are poorly understood. Here, we show that a mutation in the Rpb2 subunit of Pol II reduces both the elongation rate and processivity in vivo. In contrast, none of the putative elongation factors tested affect the elongation rate, although mutations in the THO complex and in Spt4 significantly reduce processivity. The drugs 6-azauracil and mycophenolic acid reduce both the elongation rate and processivity, and this processivity defect is aggravated by mutations in Spt4, TFIIS, and CTDK-1. Our results suggest that, in vivo, a reduced rate of Pol II elongation leads to premature dissociation along the chromatin template and that Pol II processivity can be uncoupled from elongation rate.
Collapse
Affiliation(s)
- Paul B Mason
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
555
|
Gaidamakov SA, Gorshkova II, Schuck P, Steinbach PJ, Yamada H, Crouch RJ, Cerritelli SM. Eukaryotic RNases H1 act processively by interactions through the duplex RNA-binding domain. Nucleic Acids Res 2005; 33:2166-75. [PMID: 15831789 PMCID: PMC1079969 DOI: 10.1093/nar/gki510] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 03/25/2005] [Accepted: 03/25/2005] [Indexed: 11/14/2022] Open
Abstract
Ribonucleases H have mostly been implicated in eliminating short RNA primers used for initiation of lagging strand DNA synthesis. Escherichia coli RNase HI cleaves these RNA-DNA hybrids in a distributive manner. We report here that eukaryotic RNases H1 have evolved to be processive enzymes by attaching a duplex RNA-binding domain to the RNase H region. Highly conserved amino acids of the duplex RNA-binding domain are required for processivity and nucleic acid binding, which leads to dimerization of the protein. The need for a processive enzyme underscores the importance in eukaryotic cells of processing long hybrids, most of which remain to be identified. However, long RNA-DNA hybrids formed during immunoglobulin class-switch recombination are potential targets for RNase H1 in the nucleus. In mitochondria, where RNase H1 is essential for DNA formation during embryogenesis, long hybrids may be involved in DNA replication.
Collapse
Affiliation(s)
- Sergei A. Gaidamakov
- Laboratory of Molecular Genetics, National Institute of Child Health and Human DevelopmentBethesda, MD 20892, USA
| | - Inna I. Gorshkova
- Laboratory of Molecular Genetics, National Institute of Child Health and Human DevelopmentBethesda, MD 20892, USA
- Protein Biophysics Resource, Division of Bioengineering and Physical Science, Office of Research Services, Office of the DirectorBethesda, MD 20892, USA
| | - Peter Schuck
- Protein Biophysics Resource, Division of Bioengineering and Physical Science, Office of Research Services, Office of the DirectorBethesda, MD 20892, USA
| | - Peter J. Steinbach
- Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Department of Health and Human ServicesBethesda, MD 20892, USA
| | - Hirofumi Yamada
- Laboratory of Molecular Genetics, National Institute of Child Health and Human DevelopmentBethesda, MD 20892, USA
| | - Robert J. Crouch
- Laboratory of Molecular Genetics, National Institute of Child Health and Human DevelopmentBethesda, MD 20892, USA
| | - Susana M. Cerritelli
- Laboratory of Molecular Genetics, National Institute of Child Health and Human DevelopmentBethesda, MD 20892, USA
| |
Collapse
|
556
|
Loeillet S, Palancade B, Cartron M, Thierry A, Richard GF, Dujon B, Doye V, Nicolas A. Genetic network interactions among replication, repair and nuclear pore deficiencies in yeast. DNA Repair (Amst) 2005; 4:459-68. [PMID: 15725626 DOI: 10.1016/j.dnarep.2004.11.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Accepted: 11/25/2004] [Indexed: 10/25/2022]
Abstract
The yeast RAD27 gene encodes a functional homolog of the mammalian FEN1 protein, a structure-specific endo/exonuclease which plays an important role in DNA replication and repair. Previous genetic interaction studies, including a synthetic genetic array (SGA) analysis, showed that the survival of rad27Delta cells requires several DNA metabolic processes, in particular those mediated by all members of the Rad52-dependent recombinational repair pathway. Here, we report the results of our SGA analysis of the collection of non-essential yeast genes against the rad27Delta mutation, which resulted in the identification of a novel synthetic lethal interaction conferred by mutations affecting the Nup84 nuclear pore subcomplex (nup133Delta, nup120Delta and nup84Delta). Additional screens showed that all Rad52 group genes are required for the survival of the nup133Delta and nup120Delta mutants, which are defective in nuclear pore distribution and mRNA export, but not of the nup133DeltaN mutant, which is solely defective in pore distribution. This requirement for the DNA double-strand break (DSB) repair pathway is consistent with the observation that, like rad27Delta, the nup133Delta, nup120Delta and nup84Delta mutants are sensitive to methyl methanesulfonate (MMS). Furthermore, nup133Delta cells exhibit an increased number of spontaneous DNA repair foci containing Rad52. Altogether, these data suggest that the pathological interactions between the rad27Delta and specific nupDelta mutations result from the accumulation of unrepaired DNA damages.
Collapse
Affiliation(s)
- Sophie Loeillet
- Institut Curie, Section de Recherche, UMR144 Centre National de la Recherche Scientifique, Génétique Moléculaire de la Recombinaison, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
557
|
Freedman JA, Jinks-Robertson S. Effects of mismatch repair and Hpr1 on transcription-stimulated mitotic recombination in the yeast Saccharomyces cerevisiae. DNA Repair (Amst) 2005; 3:1437-46. [PMID: 15380099 DOI: 10.1016/j.dnarep.2004.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Indexed: 11/17/2022]
Abstract
High levels of transcription driven by the GAL1-10 promoter stimulate mitotic recombination between direct repeats (DR) as well as between substrates positioned on non-homologous chromosomes. When the substrates are on non-homologous chromosomes, transcription stimulates both gene conversion and crossover events, but the degree of the stimulation varies depending on which substrate is highly transcribed. In gene conversion assays where only one of the substrates is highly transcribed, the effect of transcribing the donor versus the recipient allele can be highly asymmetric. We have examined the basis of this asymmetry and demonstrate that it relates to the nature of the mismatch present in recombination intermediates and the presence of the Msh3 mismatch repair (MMR) protein. In addition to examining the asymmetry conferred by donor versus recipient allele transcription, the possible contribution of transcription elongation problems to transcription-stimulated recombination has been examined using hpr1 mutants. Hpr1 is important for efficient elongation through certain sequences, and in hpr1 mutants, elongation problems have been correlated with elevated recombination between direct repeats. As expected, we found that combining loss of Hpr1 with high levels of transcription had very strong synergistic effects on recombination rates between direct repeats. When the substrates were on non-homologous chromosomes, a weaker synergistic interaction between transcription and Hpr1 loss was observed in gene conversion assays, but only an additive relationship was observed in a crossover-specific assay. Although these data support a causal link between transcription elongation problems and elevated recombination rates, they also indicate that high levels of transcription can stimulate recombination by additional mechanisms.
Collapse
Affiliation(s)
- Jennifer A Freedman
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30030, USA
| | | |
Collapse
|
558
|
Abstract
The synthesis of mRNA by RNA polymerase II appears coupled to numerous RNA-processing events, based on physical or functional connections revealed by biochemical or genetic tests. New findings were presented at a recent meeting in Spain that begin to illuminate the mechanisms underlying the connections between mRNA processing and specific steps in transcription (initiation, elongation, and termination) as well as recombination.
Collapse
Affiliation(s)
- Manuel Ares
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
559
|
Prado F, Aguilera A. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J 2005; 24:1267-76. [PMID: 15775982 PMCID: PMC556405 DOI: 10.1038/sj.emboj.7600602] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 02/07/2005] [Indexed: 01/27/2023] Open
Abstract
Homologous recombination safeguards genome integrity, but it can also cause genome instability of important consequences for cell proliferation and organism development. Transcription induces recombination, as shown in prokaryotes and eukaryotes for both spontaneous and developmentally regulated events such as those responsible for immunoglobulin class switching. Deciphering the molecular basis of transcription-associated recombination (TAR) is important in understanding genome instability. Using novel plasmid-borne recombination constructs in Saccharomyces cerevisiae, we show that RNA polymerase II (RNAPII) transcription induces recombination by impairing replication fork progression. RNAPII transcription concomitant to head-on oncoming replication causes a replication fork pause (RFP) that is linked to a significant increase in recombination. However, transcription that is codirectional with replication has little effect on replication fork progression and recombination. Transcription occurring in the absence of replication does not affect either recombination or replication fork progression. The Rrm3 helicase, which is required for replication fork progression through nucleoprotein complexes, facilitates replication through the transcription-dependent RFP site and reduces recombination. Therefore, our work provides evidence that one mechanism responsible for TAR is RNAP-mediated replication impairment.
Collapse
Affiliation(s)
- Félix Prado
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Andrés Aguilera
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain. Tel.: +34 95 455 7107; Fax: +34 95 455 7104; E-mail:
| |
Collapse
|
560
|
Vinciguerra P, Iglesias N, Camblong J, Zenklusen D, Stutz F. Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. EMBO J 2005; 24:813-23. [PMID: 15692572 PMCID: PMC549612 DOI: 10.1038/sj.emboj.7600527] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 11/26/2004] [Indexed: 11/09/2022] Open
Abstract
The mRNA export adaptor Yra1p/REF contributes to nascent mRNP assembly and recruitment of the export receptor Mex67p. yra1 mutants exhibit mRNA export defects and a decrease in LacZ reporter and certain endogenous transcripts. The loss of Mlp1p/Mlp2p, two TPR-like proteins attached to nuclear pores, rescues LacZ mRNA levels and increases their appearance in the cytoplasm, without restoring bulk poly(A)+ RNA export. Chromatin immunoprecipitation, FISH and pulse-chase experiments indicate that Mlps downregulate LacZ mRNA synthesis in a yra1 mutant strain. Microarray analyses reveal that Mlp2p also reduces a subset of cellular transcripts in the yra1 mutant. Finally, we show that Yra1p genetically interacts with the shuttling mRNA-binding protein Nab2p and that loss of Mlps rescues the growth defect of yra1 and nab2 but not other mRNA export mutants. We propose that Nab2p and Yra1p are required for proper mRNP docking to the Mlp platform. Defects in Yra1p prevent mRNPs from crossing the Mlp gate and this block negatively feeds back on the transcription of a subset of genes, suggesting that Mlps link mRNA transcription and export.
Collapse
Affiliation(s)
- Patrizia Vinciguerra
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Nahid Iglesias
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Jurgi Camblong
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Daniel Zenklusen
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Françoise Stutz
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
- Department of Cell Biology, Sciences III, University of Geneva, 30 Quai E Ansermet, 1211 Geneva 4, Switzerland. Tel.: +41 22 379 67 29; Fax: +41 22 379 64 42; E-mail:
| |
Collapse
|
561
|
Broccoli S, Rallu F, Sanscartier P, Cerritelli SM, Crouch RJ, Drolet M. Effects of RNA polymerase modifications on transcription-induced negative supercoiling and associated R-loop formation. Mol Microbiol 2005; 52:1769-79. [PMID: 15186424 DOI: 10.1111/j.1365-2958.2004.04092.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transcription in the absence of topoisomerase I, but in the presence of DNA gyrase, can result in the formation of hypernegatively supercoiled DNA and associated R-loops. In this paper, we have used several strategies to study the effects of elongation/termination properties of RNA polymerase on such transcription-induced supercoiling. Effects on R-loop formation were exacerbated when cells were exposed to translation inhibitors, a condition that stimulated the accumulation of R-loop-dependent hypernegative supercoiling. Translation inhibitors were not acting by decreasing (p)ppGpp levels as the absence of (p)ppGpp in spoT relA mutant strains had little effect on hypernegative supercoiling. However, an rpoB mutation leading to the accumulation of truncated RNAs considerably reduced R-loop-dependent hypernegative supercoiling. Transcription of an rrnB fragment preceded by a mutated and inactive boxA sequence to abolish the rrnB antitermination system also considerably reduced R-loop-dependent supercoiling. Taken together, our results indicate that RNA polymerase elongation/termination properties can have a major impact on R-loop-dependent supercoiling. We discuss different possibilities by which RNA polymerase directly or indirectly participates in R-loop formation in Escherichia coli. Finally, our results also indicate that what determines the steady-state level of hypernegatively supercoiled DNA in topA null mutants is likely to be complex and involves a multitude of factors, including the status of RNA polymerase, transcription-translation coupling, the cellular level of RNase HI, the status of DNA gyrase and the rate of relaxation of supercoiled DNA.
Collapse
Affiliation(s)
- Sonia Broccoli
- Département de Microbiologie et Immunologie, Université de Montréal, CP 6128, Succursale Centre-ville, Montréal, P. Québec, Canada, H3C 3J7
| | | | | | | | | | | |
Collapse
|
562
|
West S, Gromak N, Proudfoot NJ. Human 5' --> 3' exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 2004; 432:522-5. [PMID: 15565158 DOI: 10.1038/nature03035] [Citation(s) in RCA: 374] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 09/16/2004] [Indexed: 01/11/2023]
Abstract
Eukaryotic protein-encoding genes possess poly(A) signals that define the end of the messenger RNA and mediate downstream transcriptional termination by RNA polymerase II (Pol II). Termination could occur through an 'anti-termination' mechanism whereby elongation factors dissociate when the poly(A) signal is encountered, producing termination-competent Pol II. An alternative 'torpedo' model postulated that poly(A) site cleavage provides an unprotected RNA 5' end that is degraded by 5' --> 3' exonuclease activities (torpedoes) and so induces dissociation of Pol II from the DNA template. This model has been questioned because unprocessed transcripts read all the way to the site of transcriptional termination before upstream polyadenylation. However, nascent transcripts located 1 kilobase downstream of the human beta-globin gene poly(A) signal are associated with a co-transcriptional cleavage (CoTC) activity that acts with the poly(A) signal to elicit efficient transcriptional termination. The CoTC sequence is an autocatalytic RNA structure that undergoes rapid self-cleavage. Here we show that CoTC acts as a precursor to termination by presenting a free RNA 5' end that is recognized by the human 5' --> 3' exonuclease Xrn2. Degradation of the downstream cleavage product by Xrn2 results in transcriptional termination, as envisaged in the torpedo model.
Collapse
Affiliation(s)
- Steven West
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
563
|
Jensen TH, Boulay J, Olesen JR, Colin J, Weyler M, Libri D. Modulation of transcription affects mRNP quality. Mol Cell 2004; 16:235-44. [PMID: 15494310 DOI: 10.1016/j.molcel.2004.09.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2004] [Revised: 07/26/2004] [Accepted: 08/10/2004] [Indexed: 11/30/2022]
Abstract
Cotranscriptional loading of proteins onto nascent transcripts contributes to the formation of messenger ribonucleoprotein particles (mRNPs) competent for nuclear export. The transcription machinery is believed to play a pivotal role in mRNP assembly, which is at least partially linked to the function of the THO/TREX complex and the mRNA termination/polyadenylation apparatus. Here we demonstrate a prominent role for the rate of transcription in the production of export-competent mRNPs. We show that a transcription-defective allele of the Rad3p helicase, a component of the TFIIH transcription initiation factor, suppresses several phenotypes associated with defective mRNA processing and export. Strikingly, the effects of compromised Rad3p activity can be phenocopied by a transcription elongation drug as well as by other mutations affecting transcription. Our results suggest that efficient mRNP assembly is under a kinetic control that is influenced by the rate of transcription.
Collapse
Affiliation(s)
- Torben Heick Jensen
- Department of Molecular Biology, Aarhus University, C.F. Møllers Alle, Building 130, 8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
564
|
Baaklini I, Hraiky C, Rallu F, Tse-Dinh YC, Drolet M. RNase HI overproduction is required for efficient full-length RNA synthesis in the absence of topoisomerase I in Escherichia coli. Mol Microbiol 2004; 54:198-211. [PMID: 15458416 DOI: 10.1111/j.1365-2958.2004.04258.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has long been known that Escherichia coli cells deprived of topoisomerase I (topA null mutants) do not grow. Because mutations reducing DNA gyrase activity and, as a consequence, negative supercoiling, occur to compensate for the loss of topA function, it has been assumed that excessive negative supercoiling is somehow involved in the growth inhibition of topA null mutants. However, how excess negative supercoiling inhibits growth is still unknown. We have previously shown that the overproduction of RNase HI, an enzyme that degrades the RNA portion of an R-loop, can partially compensate for the growth defects because of the absence of topoisomerase I. In this article, we have studied the effects of gyrase reactivation on the physiology of actively growing topA null cells. We found that growth immediately and almost completely ceases upon gyrase reactivation, unless RNase HI is overproduced. Northern blot analysis shows that the cells have a significantly reduced ability to accumulate full-length mRNAs when RNase HI is not overproduced. Interestingly, similar phenotypes, although less severe, are also seen when bacterial cells lacking RNase HI activity are grown and treated in the same way. All together, our results suggest that excess negative supercoiling promotes the formation of R-loops, which, in turn, inhibit RNA synthesis.
Collapse
Affiliation(s)
- Imad Baaklini
- Département de microbiologie et immunologie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, P. Québec, Canada, H3C 3J7
| | | | | | | | | |
Collapse
|
565
|
Abstract
PriA helicase is the major DNA replication restart initiator in Escherichia coli and acts to reload the replicative helicase DnaB back onto the chromosome at repaired replication forks and D-loops formed by recombination. We have discovered that PriA-catalysed unwinding of branched DNA substrates is stimulated specifically by contact with the single-strand DNA binding protein of E.coli, SSB. This stimulation requires binding of SSB to the initial DNA substrate and is effected via a physical interaction between PriA and the C-terminus of SSB. Stimulation of PriA by the SSB C-terminus may act to ensure that efficient PriA-catalysed reloading of DnaB occurs only onto the lagging strand template of repaired forks and D-loops. Correlation between the DNA repair and recombination defects of strains harbouring an SSB C-terminal mutation with inhibition of this SSB-PriA interaction in vitro suggests that SSB plays a critical role in facilitating PriA-directed replication restart. Taken together with previous data, these findings indicate that protein-protein interactions involving SSB may coordinate replication fork reloading from start to finish.
Collapse
Affiliation(s)
- Chris J Cadman
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | |
Collapse
|
566
|
Abstract
Gene expression occurs through a complex mRNA-protein (mRNP) system that stretches from transcription to translation. Gene expression processes are increasingly studied from global perspectives in order to understand their pathways, properties, and behaviors as a system. Here we review these beginnings of mRNP systems biology, as they have emerged from recent large-scale investigation of mRNP components, interactions, and dynamics. Such work has begun to lay the foundation for a broader, integrated view of mRNP organization in gene expression.
Collapse
Affiliation(s)
- Haley Hieronymus
- Department of Systems Biology, Harvard Medical School and the Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
567
|
Franklin A, Blanden RV. On the molecular mechanism of somatic hypermutation of rearranged immunoglobulin genes. Immunol Cell Biol 2004; 82:557-67. [PMID: 15550113 DOI: 10.1111/j.1440-1711.2004.01289.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Somatic hypermutation (SHM) diversifies the genes that encode immunoglobulin variable regions in antigen-activated germinal centre B lymphocytes. Available evidence strongly suggests that DNA deamination potentiates phase I SHM and subsequently triggers phase II SHM. A concise review of this evidence is followed by a detailed critique of two possible models which suggest that polymerase-eta potentiates phase II SHM via either its DNA-dependent or its RNA-dependent DNA synthetic activity. Quantitative analysis, in the context of extant data that define the features of SHM, favours the RNA-dependent mechanism.
Collapse
Affiliation(s)
- Andrew Franklin
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| | | |
Collapse
|
568
|
Abstract
The year 2004 marks the fortieth anniversary of the Holliday junction. This extraordinary DNA structure, originally proposed by Robin Holliday to explain genetic recombination in fungi, now appears to be a pivotal intermediate in many aspects of DNA metabolism. In those forty years the Holliday junction has gone from a hypothetical structure to models for its atomic structure and visualization of its dynamics at the single molecule level.
Collapse
Affiliation(s)
- Wolf-Dietrich Heyer
- Section of Microbiology, Center for Genetics and Development, University of California, Davis, CA 95616 USA.
| | | |
Collapse
|
569
|
Abstract
Nuclear export of mRNA is a central step in gene expression that shows extensive coupling to transcription and transcript processing. However, little is known about the fate of mRNA and its export under conditions that damage the DNA template and RNA itself. Here we report the discovery of four new factors required for mRNA export through a screen of all annotated nonessential Saccharomyces cerevisiae genes. Two of these factors, mRNA surveillance factor Rrp6 and DNA repair protein Lrp1, are nuclear exosome components that physically interact with one another. We find that Lrp1 mediates specific mRNA degradation upon DNA-damaging UV irradiation as well as general mRNA degradation. Lrp1 requires Rrp6 for genomic localization to genes encoding its mRNA targets, and Rrp6 genomic localization in turn correlates with transcription. Further, Rrp6 and Lrp1 are both required for repair of UV-induced DNA damage. These results demonstrate coupling of mRNA surveillance to mRNA export and suggest specificity of the RNA surveillance machinery for different transcript populations. Broadly, these findings link DNA and RNA surveillance to mRNA export.
Collapse
Affiliation(s)
- Haley Hieronymus
- Department of Systems Biology, Harvard Medical School and the Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
570
|
Abstract
Active mechanisms exist to prevent transcription that is uncoupled from translation in the protein-coding genes of bacteria, as exemplified by the phenomenon of nonsense polarity. Bacterial transcription-translation coupling may be viewed as one among several co-transcriptional processes, including those for mRNA processing and export in the eukaryotes, that operate in the various life forms to render the nascent transcript unavailable for formation of otherwise deleterious R-loops in the genome.
Collapse
Affiliation(s)
- J Gowrishankar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076, India.
| | | |
Collapse
|
571
|
Prusty R, Keil RL. SCH9, a putative protein kinase from Saccharomyces cerevisiae, affects HOT1 -stimulated recombination. Mol Genet Genomics 2004; 272:264-74. [PMID: 15349770 DOI: 10.1007/s00438-004-1049-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2004] [Accepted: 07/21/2004] [Indexed: 10/26/2022]
Abstract
HOT1 is a mitotic recombination hotspot derived from yeast rDNA. To further study HOT1 function, trans-acting H OT1 recombination mutants (hrm) that alter hotspot activity were isolated. hrm2-1 mutants have decreased HOT1 activity and grow slowly. The HRM2 gene was cloned and found to be identical to SCH9, a gene that affects a growth-control mechanism that is partially redundant with the cAMP-dependent protein kinase A (PKA) pathway. Deletion of SCH9 decreases HOT1 and rDNA recombination but not other mitotic exchange. Although high levels of RNA polymerase I transcription initiated at HOT1 are required for its recombination-stimulating activity, sch9 mutations do not affect transcription initiated within HOT1. Thus, transcription is necessary but not sufficient for HOT1 activity. TPK1, which encodes a catalytic subunit of PKA, is a multicopy suppressor of the recombination and growth defects of sch9 mutants, suggesting that increased PKA activity compensates for SCH9 loss. RAS2( val19), which codes for a hyperactive RAS protein and increases PKA activity, suppresses both phenotypic defects of sch9 mutants. In contrast to TPK1 and RAS2(val19), the gene for split zinc finger protein 1 (SFP1) on a multicopy vector suppresses only the growth defects of sch9 mutants, indicating that growth and HOT1 functions of Sch9p are separable. Sch9p may affect signal transduction pathways which regulate proteins that are specifically required for HOT1-stimulated exchange.
Collapse
Affiliation(s)
- R Prusty
- Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA
| | | |
Collapse
|
572
|
Fischer T, Rodríguez-Navarro S, Pereira G, Rácz A, Schiebel E, Hurt E. Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery. Nat Cell Biol 2004; 6:840-8. [PMID: 15311284 DOI: 10.1038/ncb1163] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 07/27/2004] [Indexed: 11/09/2022]
Abstract
Centrins are calmodulin-like proteins that function in the duplication of microtubule-organizing centres. Here we describe a new function of the yeast centrin Cdc31. We show that overproduction of a sequence, termed CID, in the carboxy-terminal domain of the nuclear export factor Sac3 titrates Cdc31, causing a dominant-lethal phenotype and a block in spindle pole body (SPB) duplication. Under normal conditions, the CID motif recruits Cdc31 and Sus1 (a subunit of the SAGA transcription complex) to the Sac3-Thp1 complex, which functions in mRNA export together with specific nucleoporins at the nuclear basket. A previously reported cdc31 temperature-sensitive allele, which is neither defective in SPB duplication nor Kic1 kinase activation, induces mRNA export defects. Thus, Cdc31 has an unexpected link to the mRNA export machinery.
Collapse
Affiliation(s)
- Tamás Fischer
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
573
|
Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev 2004; 18:1618-29. [PMID: 15231739 PMCID: PMC443523 DOI: 10.1101/gad.1200804] [Citation(s) in RCA: 425] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We show that intracellular transcription of G-rich regions produces novel DNA structures, visible by electron microscopy as large (150-500 bp) loops. These G-loops are formed cotranscriptionally, and they contain G4 DNA on one strand and a stable RNA/DNA hybrid on the other. G-loop formation requires a G-rich nontemplate strand and reflects the unusual stability of the rG/dC base pair. G-loops and G4 DNA form efficiently within plasmid genomes transcribed in vitro or in Escherichia coli. These results establish that G4 DNA can form in vivo, a finding with implications for stability and maintenance of all G-rich genomic regions.
Collapse
Affiliation(s)
- Michelle L Duquette
- Department of Genetics, Yale University School of Medicine, New Haven, Conneticut 06520, USA
| | | | | | | | | |
Collapse
|
574
|
Surrallés J, Jackson SP, Jasin M, Kastan MB, West SC, Joenje H. Molecular cross-talk among chromosome fragility syndromes. Genes Dev 2004; 18:1359-70. [PMID: 15198978 PMCID: PMC423188 DOI: 10.1101/gad.1216304] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jordi Surrallés
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autonòma de Barcelona, 08193-Bellaterra, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
575
|
Gilbert C, Kristjuhan A, Winkler GS, Svejstrup JQ. Elongator interactions with nascent mRNA revealed by RNA immunoprecipitation. Mol Cell 2004; 14:457-64. [PMID: 15149595 DOI: 10.1016/s1097-2765(04)00239-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 03/26/2004] [Accepted: 03/28/2004] [Indexed: 10/26/2022]
Abstract
The histone acetyltransferase Elongator was originally isolated as a component of the elongating form of RNA polymerase II (RNAPII) and a plethora of data has since supported a role for the factor in transcription. However, recent data has suggested that it is predominantly cytoplasmic and does not associate with the DNA of transcribed genes in vivo. Here, we report that Elongator binds to RNA both in vitro and in vivo. Using a modified chromatin immunoprecipitation procedure, RNA immunoprecipitation (RIP), we show that Elongator is indeed present at several actively transcribed genes and that it associates with the nascent RNA emanating from elongating RNAPII along the entire coding region of a gene. These results strongly support a role for Elongator in transcript elongation.
Collapse
Affiliation(s)
- Christopher Gilbert
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | | | |
Collapse
|
576
|
Abruzzi KC, Lacadie S, Rosbash M. Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes. EMBO J 2004; 23:2620-31. [PMID: 15192704 PMCID: PMC449771 DOI: 10.1038/sj.emboj.7600261] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 05/10/2004] [Indexed: 11/09/2022] Open
Abstract
The TREX complex is involved in both transcription elongation and mRNA export and is recruited to nascent transcription complexes. We have examined Yra1p, Sub2p and Hpr1p recruitment to nine genes of varying lengths and transcription frequencies. All three proteins increase from the 5' to the 3' ends of the four intronless genes examined. A modified chromatin immunoprecipitation assay that includes an RNase step indicates that Sub2p is bound to nascent RNA, Yra1p is associated with both RNA and DNA, and Hpr1p is associated with DNA. Although Hpr1p is recruited similarly to both intronless and intron-containing genes, low Yra1p and Sub2p levels are present on a subset of intron-containing genes. The residual Yra1p and Sub2p recruitment is less RNA-associated, and this correlates with high levels of U1 SnRNP on these genes. These experiments support a model in which TREX is recruited via the transcription machinery and then Yra1p and Sub2p are transferred to the nascent RNA. On some intron-containing genes, retention and/or transfer of Yra1p and Sub2p to nascent RNA are inhibited.
Collapse
Affiliation(s)
| | - Scott Lacadie
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA
| | - Michael Rosbash
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA
| |
Collapse
|
577
|
Lippert MJ, Freedman JA, Barber MA, Jinks-Robertson S. Identification of a distinctive mutation spectrum associated with high levels of transcription in yeast. Mol Cell Biol 2004; 24:4801-9. [PMID: 15143174 PMCID: PMC416428 DOI: 10.1128/mcb.24.11.4801-4809.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High levels of transcription are associated with increased mutation rates in Saccharomyces cerevisiae, a phenomenon termed transcription-associated mutation (TAM). To obtain insight into the mechanism of TAM, we obtained LYS2 forward mutation spectra under low- versus high-transcription conditions in which LYS2 was expressed from either the low-level pLYS2 promoter or the strong pGAL1-10 promoter, respectively. Because of the large size of the LYS2 locus, forward mutations first were mapped to specific LYS2 subregions, and then those mutations that occurred within a defined 736-bp target region were sequenced. In the low-transcription strain base substitutions comprised the majority (64%) of mutations, whereas short insertion-deletion mutations predominated (56%) in the high-transcription strain. Most notably, deletions of 2 nucleotides (nt) comprised 21% of the mutations in the high-transcription strain, and these events occurred predominantly at 5'-(G/C)AAA-3' sites. No -2 events were present in the low-transcription spectrum, thus identifying 2-nt deletions as a unique mutational signature for TAM.
Collapse
Affiliation(s)
- Malcolm J Lippert
- Department of Biology, Saint Michael's College, 1 Winooski Park, Colchester, VT 05439, USA.
| | | | | | | |
Collapse
|
578
|
Rehwinkel J, Herold A, Gari K, Köcher T, Rode M, Ciccarelli FL, Wilm M, Izaurralde E. Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster. Nat Struct Mol Biol 2004; 11:558-66. [PMID: 15133499 DOI: 10.1038/nsmb759] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Accepted: 03/18/2004] [Indexed: 11/09/2022]
Abstract
In yeast cells, the THO complex has been implicated in mitotic recombination, transcription elongation and mRNA nuclear export. The stable core of THO consists of Tho2p, Hpr1p, Mft1p and Thp2p. Whether a complex with similar functions assembles in metazoa has not yet been established. Here we report that Drosophila melanogaster THO consists of THO2, HPR1 and three proteins, THOC5-THOC7, which have no orthologs in budding yeast. Gene expression profiling in cells depleted of THO components revealed that <20% of the transcriptome was regulated by THO. Nonetheless, export of heat-shock mRNAs under heat stress was strictly dependent on THO function. Notably, 8% of upregulated genes encode proteins involved in DNA repair. Thus, although THO function seems to be conserved, the vast majority of mRNAs are transcribed and exported independently of THO in D. melanogaster.
Collapse
Affiliation(s)
- Jan Rehwinkel
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
579
|
Corbett AH, Krebber H. Hot trends erupting in the nuclear transport field. Workshop on mechanisms of nuclear transport. EMBO Rep 2004; 5:453-8. [PMID: 15105827 PMCID: PMC1299058 DOI: 10.1038/sj.embor.7400155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 03/23/2004] [Indexed: 12/25/2022] Open
Affiliation(s)
- Anita H. Corbett
- 4117 Rollins Research Center, Emory University School of Medicine, 1510 Clifton Road, NE Atlanta, Georgia 30322, USA
| | - Heike Krebber
- Institut für Molekularbiologie und Tumorforschung (IMT), Philipps-Universität Marburg, Emil-Mannkopffstrasse 2, 35037 Marburg, Germany
- Tel: +49 6421 286 6773; Fax: +49 6421 286 5932;
| |
Collapse
|
580
|
Franklin A, Milburn PJ, Blanden RV, Steele EJ. Human DNA polymerase‐η, an A‐T mutator in somatic hypermutation of rearranged immunoglobulin genes, is a reverse transcriptase. Immunol Cell Biol 2004; 82:219-25. [PMID: 15061777 DOI: 10.1046/j.0818-9641.2004.01221.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have proposed previously that error-prone reverse transcription using pre-mRNA of rearranged immunoglobulin variable (IgV) regions as templates is involved in the antibody diversifying mechanism of somatic hypermutation (SHM). As patients deficient in DNA polymerase-eta exhibit an abnormal spectrum of SHM, we postulated that this recently discovered Y-family polymerase is a reverse transcriptase (RT). This possibility was tested using a product-enhanced RT (PERT) assay that uses a real time PCR step with a fluorescent probe to detect cDNA products of at least 27-37 nucleotides. Human pol-eta and two other Y-family enzymes that are dispensable for SHM, human pols-iota and -kappa, copied a heteropolymeric DNA-primed RNA template in vitro under conditions with substantial excesses of template. Repeated experiments gave highly reproducible results. The RT activity detected using one aliquot of human pol-eta was confirmed using a second sample from an independent source. Human DNA pols-beta and -mu, and T4 DNA polymerase repeatedly demonstrated no RT activity. Pol-eta was the most efficient RT of the Y-family enzymes assayed but was much less efficient than an HIV-RT standard in vitro. It is thus feasible that pol-eta acts as both a RNA- and a DNA-dependent DNA polymerase in SHM in vivo, and that Y-family RT activity participates in other mechanisms of physiological importance.
Collapse
Affiliation(s)
- Andrew Franklin
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, GPO Box 334, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|
581
|
Deng S, Stein RA, Higgins NP. Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium chromosome. Proc Natl Acad Sci U S A 2004; 101:3398-403. [PMID: 14993611 PMCID: PMC373473 DOI: 10.1073/pnas.0307550101] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 01/13/2004] [Indexed: 11/18/2022] Open
Abstract
Transcription and replication both influence and are influenced by superhelical changes in DNA. Explaining how supercoil movement is channeled in living chromosomes has been a major problem for 30 years. Transcription of membrane-associated proteins leads to localized hypersupercoiling of plasmid DNA, and this behavior indicates the presence of aberrant supercoil diffusion. Using the lambda Red recombination system, we constructed model domains in the Salmonella typhimurium chromosome to analyze supercoiling dynamics of regions encoding membrane proteins. Regulation of Tn10-derived tetracycline resistance involves a repressor, TetR, and a membrane-bound export pump, TetA. Strains deficient in TetR activity had 60-fold higher transcription levels (from P(A)) than TetR-positive strains. High tetA transcription caused a 10- to 80-fold decrease in the gammadelta resolution efficiency for the domain that includes the Tet module. Replacing tetA with genes encoding cytosolic proteins LacZ and Kan also caused the appearance of supercoil diffusion barriers in a defined region of the chromosome. In strains containing a functional TetR located next to a regulated lacZ reporter (P(R)tetR-P(A)lacZ), induction of transcription with chlortetracycline caused a 5-fold drop in resolution efficiency in the test domain interval. A short half-life resolvase showed that barriers appeared and disappeared over a 10- to 20-min span. These studies demonstrate the importance of transcription in chromosome structure and the plasticity of supercoil domains in bacterial chromosomes.
Collapse
MESH Headings
- Antiporters/genetics
- Antiporters/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Chromosomes, Bacterial/chemistry
- Chromosomes, Bacterial/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- Genes, Bacterial
- Nucleic Acid Conformation
- Recombination, Genetic
- Salmonella typhimurium/chemistry
- Salmonella typhimurium/genetics
- Salmonella typhimurium/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Shuang Deng
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, AL 35294-2170, USA
| | | | | |
Collapse
|
582
|
Svejstrup JQ. The RNA polymerase II transcription cycle: cycling through chromatin. ACTA ACUST UNITED AC 2004; 1677:64-73. [PMID: 15020047 DOI: 10.1016/j.bbaexp.2003.10.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 10/03/2003] [Accepted: 10/03/2003] [Indexed: 01/22/2023]
Abstract
The cycle of events that characterizes RNA polymerase II transcription has been the focus of intense study over the past two decades. Our knowledge of the molecular processes leading to transcriptional initiation is greatly improved, and the focus of many recent studies has shifted towards the less well-characterized events taking place after assembly of the pre-initiation complex, such as promoter clearance, elongation, and termination. This review gives a brief overview of the transcription cycle as a whole, focusing especially on selected mechanisms that may drive or restrict the cycle, and on how the presence of chromatin may influence these mechanisms.
Collapse
Affiliation(s)
- Jesper Q Svejstrup
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, UK.
| |
Collapse
|
583
|
Hurt E, Luo MJ, Röther S, Reed R, Strässer K. Cotranscriptional recruitment of the serine-arginine-rich (SR)-like proteins Gbp2 and Hrb1 to nascent mRNA via the TREX complex. Proc Natl Acad Sci U S A 2004; 101:1858-62. [PMID: 14769921 PMCID: PMC357017 DOI: 10.1073/pnas.0308663100] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TREX (transcription/export) complex couples transcription elongation to the nuclear export of mRNAs. In this article, we show that the poly(A)(+) RNA-binding proteins Gbp2 and Hrb1, which resemble the serine-arginine-rich (SR) family of splicing factors found in higher eukaryotes, are specifically associated with the yeast TREX complex. We also show that Gbp2 and Hrb1 interact with Ctk1, a kinase that phosphorylates the C-terminal domain of RNA polymerase II during transcription elongation. Consistent with these findings, Gbp2 and Hrb1 associate with actively transcribed genes throughout their entire lengths. By using an RNA immunoprecipitation assay, we show that Gbp2 and Hrb1 also are bound to transcripts that are derived from these genes. We conclude that recruitment of the SR-like proteins Gbp2 and Hrb1 to mRNA occurs cotranscriptionally by means of association with the TREX complex and/or Ctk1.
Collapse
Affiliation(s)
- Ed Hurt
- Biochemie-Zentrum Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
584
|
Affiliation(s)
- Jesper Svejstrup
- Mechanisms of Gene Transcription Laboratory, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, United Kingdom
| |
Collapse
|