551
|
Iskandar S, Murphy KJ, Baird AD, West R, Armilio M, Craik FIM, Stuss DT. Interacting effects of age and time of day on verbal fluency performance and intraindividual variability. AGING NEUROPSYCHOLOGY AND COGNITION 2015; 23:1-17. [PMID: 25827792 DOI: 10.1080/13825585.2015.1028326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We explored the effects of age and time of day (TOD) on verbal fluency ability with respect to performance level and intraindividual variability (IIV). Verbal fluency, which involves complex cognitive operations, was examined in 20 older (mean age = 72.8 years) and 20 younger (mean age = 24.2 years) adults with test start time alternating between morning and evening across four days. Older adults generated more words in the morning and younger adults more in the evening, corresponding with self-report peak TOD. Age by TOD interactions were also observed across fluency tasks on the number of switches among subcategory exemplars during word generation and on the IIV observed in switching behavior. Older adults exhibited greater variability in switching in the evening than in the morning, whereas younger adults showed the opposite pattern. These findings demonstrate that processes involving energization (initiating and sustaining) and attentional control may be particularly sensitive to age differences in TOD influences on cognition.
Collapse
Affiliation(s)
- Sam Iskandar
- a Psychology Department , University of Windsor , Windsor , ON , Canada
| | - Kelly J Murphy
- b Psychology Department , Baycrest , Toronto , ON , Canada.,c Psychology Department , University of Toronto , Toronto , ON , Canada
| | - Anne D Baird
- a Psychology Department , University of Windsor , Windsor , ON , Canada
| | - Robert West
- d Psychology Department , Iowa State University , Ames , IA , USA
| | - Maria Armilio
- e Credit Valley Neuropsychology Group , Toronto , ON , Canada
| | - Fergus I M Craik
- c Psychology Department , University of Toronto , Toronto , ON , Canada.,f Rotman Research Institute , Baycrest & University of Toronto , Toronto , ON , Canada
| | - Donald T Stuss
- c Psychology Department , University of Toronto , Toronto , ON , Canada.,f Rotman Research Institute , Baycrest & University of Toronto , Toronto , ON , Canada.,g Ontario Brain Institute , Toronto , ON , Canada
| |
Collapse
|
552
|
Williamson JB, Porges EC, Lamb DG, Porges SW. Maladaptive autonomic regulation in PTSD accelerates physiological aging. Front Psychol 2015; 5:1571. [PMID: 25653631 PMCID: PMC4300857 DOI: 10.3389/fpsyg.2014.01571] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/18/2014] [Indexed: 12/18/2022] Open
Abstract
A core manifestation of post-traumatic stress disorder (PTSD) is a disconnection between physiological state and psychological or behavioral processes necessary to adequately respond to environmental demands. Patients with PTSD experience abnormal oscillations in autonomic states supporting either fight and flight behaviors or withdrawal, immobilization, and dissociation without an intervening “calm” state that would provide opportunities for positive social interactions. This defensive autonomic disposition is adaptive in dangerous and life threatening situations, but in the context of every-day life may lead to significant psychosocial distress and deteriorating social relationships. The perpetuation of these maladaptive autonomic responses may contribute to the development of comorbid mental health issues such as depression, loneliness, and hostility that further modify the nature of cardiovascular behavior in the context of internal and external stressors. Over time, changes in autonomic, endocrine, and immune function contribute to deteriorating health, which is potently expressed in brain dysfunction and cardiovascular disease. In this theoretical review paper, we present an overview of the literature on the chronic health effects of PTSD. We discuss the brain networks underlying PTSD in the context of autonomic efferent and afferent contributions and how disruption of these networks leads to poor health outcomes. Finally, we discuss treatment approaches based on our theoretical model of PTSD.
Collapse
Affiliation(s)
- John B Williamson
- Brain Rehabilitation and Research Center, Malcom Randall Veterans Affairs Medical Center , Gainesville, FL, USA ; Center for Neuropsychological Studies, Department of Neurology, University of Florida College of Medicine , Gainesville, FL, USA
| | - Eric C Porges
- Brain Rehabilitation and Research Center, Malcom Randall Veterans Affairs Medical Center , Gainesville, FL, USA ; Institute on Aging, Department of Aging and Geriatric Research, University of Florida , Gainesville, FL, USA
| | - Damon G Lamb
- Brain Rehabilitation and Research Center, Malcom Randall Veterans Affairs Medical Center , Gainesville, FL, USA ; Center for Neuropsychological Studies, Department of Neurology, University of Florida College of Medicine , Gainesville, FL, USA
| | - Stephen W Porges
- Department of Psychiatry, University of North Carolina at Chapel Hill , Durham, NC, USA
| |
Collapse
|
553
|
Donovan NJ, Hsu DC, Dagley AS, Schultz AP, Amariglio RE, Mormino EC, Okereke OI, Rentz DM, Johnson KA, Sperling RA, Marshall GA. Depressive Symptoms and Biomarkers of Alzheimer's Disease in Cognitively Normal Older Adults. J Alzheimers Dis 2015; 46:63-73. [PMID: 25697700 PMCID: PMC4544638 DOI: 10.3233/jad-142940] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Even low levels of depressive symptoms are associated with an increased risk of cognitive decline in older adults without overt cognitive impairment (CN). Our objective was to examine whether very low, "subthreshold symptoms of depression" are associated with Alzheimer's disease (AD) biomarkers of neurodegeneration in CN adults and whether these associations are specific to particular depressive symptoms. We analyzed data from 248 community-dwelling CN older adults, including measurements of cortical amyloid burden, neurodegeneration markers of hippocampal volume (HV) and cerebral 18F-fluorodeoxyglucose (FDG) metabolism in a composite of AD-related regions and the 30-item Geriatric Depression Scale (GDS). Participants with GDS >10 were excluded. General linear regression models evaluated the cross-sectional relations of GDS to HV or FDG in separate backward elimination models. Predictors included GDS total score, age, gender, premorbid intelligence, a binary amyloid variable and its interaction with GDS. Principal component analyses of GDS item scores revealed three factors (the Dysphoria, Apathy-Anhedonia, and Anxiety-Concentration Factors). In secondary analyses, GDS total score was replaced with the three factor scores in repeated models. Higher GDS score (p = 0.03) was significantly associated with lower HV and was marginally related (p = 0.06) to FDG hypometabolism. In secondary models, higher Dysphoria (p = 0.02) and Apathy-Anhedonia (p = 0.05) were related to lower HV while higher Apathy-Anhedonia (p = 0.003) was the sole factor related to FDG hypometabolism. Amyloid was not a significant predictor in any model. In conclusion, very low-level dysphoria, apathy and anhedonia may point to neurodegeneration in AD-related regions but this association appears to be independent of amyloid burden.
Collapse
Affiliation(s)
- Nancy J. Donovan
- Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David C. Hsu
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexander S. Dagley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Aaron P. Schultz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rebecca E. Amariglio
- Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Elizabeth C. Mormino
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Olivia I. Okereke
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dorene M. Rentz
- Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Keith A. Johnson
- Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Reisa A. Sperling
- Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Gad A. Marshall
- Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
554
|
Sperling R, Mormino E, Johnson K. The evolution of preclinical Alzheimer's disease: implications for prevention trials. Neuron 2014; 84:608-22. [PMID: 25442939 DOI: 10.1016/j.neuron.2014.10.038] [Citation(s) in RCA: 515] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As the field begins to test the concept of a "preclinical" stage of neurodegenerative disease, when the pathophysiological process has begun in the brain, but clinical symptoms are not yet manifest, a number of intriguing questions have already arisen. In particular, in preclinical Alzheimer's disease (AD), the temporal relationship of amyloid markers to markers of neurodegeneration and their relative utility in the prediction of cognitive decline among clinically normal older individuals remains to be fully elucidated. Secondary prevention trials in AD have already begun in both genetic at-risk and amyloid at-risk cohorts, with several more trials in the planning stages, and should provide critical answers about whether intervention at this very early stage of disease can truly bend the curve of clinical progression. This review will highlight recent progress in cognitive, imaging, and biomarker outcomes in the field of preclinical AD, and the remaining gaps in knowledge.
Collapse
Affiliation(s)
- Reisa Sperling
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Elizabeth Mormino
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Keith Johnson
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
555
|
Hedden T, Schultz AP, Rieckmann A, Mormino EC, Johnson KA, Sperling RA, Buckner RL. Multiple Brain Markers are Linked to Age-Related Variation in Cognition. Cereb Cortex 2014; 26:1388-400. [PMID: 25316342 DOI: 10.1093/cercor/bhu238] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Age-related alterations in brain structure and function have been challenging to link to cognition due to potential overlapping influences of multiple neurobiological cascades. We examined multiple brain markers associated with age-related variation in cognition. Clinically normal older humans aged 65-90 from the Harvard Aging Brain Study (N = 186) were characterized on a priori magnetic resonance imaging markers of gray matter thickness and volume, white matter hyperintensities, fractional anisotropy (FA), resting-state functional connectivity, positron emission tomography markers of glucose metabolism and amyloid burden, and cognitive factors of processing speed, executive function, and episodic memory. Partial correlation and mediation analyses estimated age-related variance in cognition shared with individual brain markers and unique to each marker. The largest relationships linked FA and striatum volume to processing speed and executive function, and hippocampal volume to episodic memory. Of the age-related variance in cognition, 70-80% was accounted for by combining all brain markers (but only ∼20% of total variance). Age had significant indirect effects on cognition via brain markers, with significant markers varying across cognitive domains. These results suggest that most age-related variation in cognition is shared among multiple brain markers, but potential specificity between some brain markers and cognitive domains motivates additional study of age-related markers of neural health.
Collapse
Affiliation(s)
- Trey Hedden
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron P Schultz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Rieckmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA Department of Radiation Sciences, Umeå University, Umeå SE-901 87, Sweden
| | - Elizabeth C Mormino
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa A Sperling
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Randy L Buckner
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
556
|
Vidal-Piñeiro D, Valls-Pedret C, Fernández-Cabello S, Arenaza-Urquijo EM, Sala-Llonch R, Solana E, Bargalló N, Junqué C, Ros E, Bartrés-Faz D. Decreased Default Mode Network connectivity correlates with age-associated structural and cognitive changes. Front Aging Neurosci 2014; 6:256. [PMID: 25309433 PMCID: PMC4174767 DOI: 10.3389/fnagi.2014.00256] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 09/09/2014] [Indexed: 11/13/2022] Open
Abstract
Ageing entails cognitive and motor decline as well as brain changes such as loss of gray (GM) and white matter (WM) integrity, neurovascular and functional connectivity alterations. Regarding connectivity, reduced resting-state fMRI connectivity between anterior and posterior nodes of the Default Mode Network (DMN) relates to cognitive function and has been postulated to be a hallmark of ageing. However, the relationship between age-related connectivity changes and other neuroimaging-based measures in ageing is fragmentarily investigated. In a sample of 116 healthy elders we aimed to study the relationship between antero-posterior DMN connectivity and measures of WM integrity, GM integrity and cerebral blood flow (CBF), assessed with an arterial spin labeling sequence. First, we replicated previous findings demonstrating DMN connectivity decreases in ageing and an association between antero-posterior DMN connectivity and memory scores. The results showed that the functional connectivity between posterior midline structures and the medial prefrontal cortex was related to measures of WM and GM integrity but not to CBF. Gray and WM correlates of anterio-posterior DMN connectivity included, but were not limited to, DMN areas and cingulum bundle. These results resembled patterns of age-related vulnerability which was studied by comparing the correlates of antero-posterior DMN with age-effect maps. These age-effect maps were obtained after performing an independent analysis with a second sample including both young and old subjects. We argue that antero-posterior connectivity might be a sensitive measure of brain ageing over the brain. By using a comprehensive approach, the results provide valuable knowledge that may shed further light on DMN connectivity dysfunctions in ageing.
Collapse
Affiliation(s)
- Didac Vidal-Piñeiro
- Departament de Psiquiatria i Psicobiologica Clinica, Facultat de Medicina, Universitat de Barcelona Barcelona, Spain
| | - Cinta Valls-Pedret
- Unitat de Lípids, Servei Endicronologia i Nutrició, Hospital Clínic Barcelona, Spain
| | - Sara Fernández-Cabello
- Departament de Psiquiatria i Psicobiologica Clinica, Facultat de Medicina, Universitat de Barcelona Barcelona, Spain
| | - Eider M Arenaza-Urquijo
- Departament de Psiquiatria i Psicobiologica Clinica, Facultat de Medicina, Universitat de Barcelona Barcelona, Spain ; Laboratoire de neuropsychologie, INSERM U1077 Caen, France
| | - Roser Sala-Llonch
- Departament de Psiquiatria i Psicobiologica Clinica, Facultat de Medicina, Universitat de Barcelona Barcelona, Spain ; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) Barcelona, Spain
| | - Elisabeth Solana
- Departament de Psiquiatria i Psicobiologica Clinica, Facultat de Medicina, Universitat de Barcelona Barcelona, Spain
| | - Núria Bargalló
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) Barcelona, Spain ; Servei de Radiologia, Hospital Clínic de Barcelona Barcelona, Spain
| | - Carme Junqué
- Departament de Psiquiatria i Psicobiologica Clinica, Facultat de Medicina, Universitat de Barcelona Barcelona, Spain ; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) Barcelona, Spain
| | - Emilio Ros
- Unitat de Lípids, Servei Endicronologia i Nutrició, Hospital Clínic Barcelona, Spain
| | - David Bartrés-Faz
- Departament de Psiquiatria i Psicobiologica Clinica, Facultat de Medicina, Universitat de Barcelona Barcelona, Spain ; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) Barcelona, Spain
| |
Collapse
|
557
|
Pieramico V, Esposito R, Cesinaro S, Frazzini V, Sensi SL. Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals. Front Syst Neurosci 2014; 8:153. [PMID: 25228860 PMCID: PMC4151335 DOI: 10.3389/fnsys.2014.00153] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022] Open
Abstract
Brain aging and aging-related neurodegenerative disorders are major health challenges faced by modern societies. Brain aging is associated with cognitive and functional decline and represents the favourable background for the onset and development of dementia. Brain aging is associated with early and subtle anatomo-functional physiological changes that often precede the appearance of clinical signs of cognitive decline. Neuroimaging approaches unveiled the functional correlates of these alterations and helped in the identification of therapeutic targets that can be potentially useful in counteracting age-dependent cognitive decline. A growing body of evidence supports the notion that cognitive stimulation and aerobic training can preserve and enhance operational skills in elderly individuals as well as reduce the incidence of dementia. This review aims at providing an extensive and critical overview of the most recent data that support the efficacy of non-pharmacological and pharmacological interventions aimed at enhancing cognition and brain plasticity in healthy elderly individuals as well as delaying the cognitive decline associated with dementia.
Collapse
Affiliation(s)
- Valentina Pieramico
- Molecular Neurology Unit, Center of Excellence on Aging, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Roberto Esposito
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Stefano Cesinaro
- Molecular Neurology Unit, Center of Excellence on Aging, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Valerio Frazzini
- Molecular Neurology Unit, Center of Excellence on Aging, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Stefano L Sensi
- Molecular Neurology Unit, Center of Excellence on Aging, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy ; Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy ; Departments of Neurology and Pharmacology, Institute for Memory Impairments and Neurological Disorders, University of California-Irvine Irvine, CA, USA
| |
Collapse
|
558
|
Lockhart SN, DeCarli C. Structural imaging measures of brain aging. Neuropsychol Rev 2014; 24:271-89. [PMID: 25146995 PMCID: PMC4163469 DOI: 10.1007/s11065-014-9268-3] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/05/2014] [Indexed: 01/18/2023]
Abstract
During the course of normal aging, biological changes occur in the brain that are associated with changes in cognitive ability. This review presents data from neuroimaging studies of primarily "normal" or healthy brain aging. As such, we focus on research in unimpaired or nondemented older adults, but also include findings from lifespan studies that include younger and middle aged individuals as well as from populations with prodromal or clinically symptomatic disease such as cerebrovascular or Alzheimer's disease. This review predominantly addresses structural MRI biomarkers, such as volumetric or thickness measures from anatomical images, and measures of white matter injury and integrity respectively from FLAIR or DTI, and includes complementary data from PET and cognitive or clinical testing as appropriate. The findings reveal highly consistent age-related differences in brain structure, particularly frontal lobe and medial temporal regions that are also accompanied by age-related differences in frontal and medial temporal lobe mediated cognitive abilities. Newer findings also suggest that degeneration of specific white matter tracts such as those passing through the genu and splenium of the corpus callosum may also be related to age-related differences in cognitive performance. Interpretation of these findings, however, must be tempered by the fact that comorbid diseases such as cerebrovascular and Alzheimer's disease also increase in prevalence with advancing age. As such, this review discusses challenges related to interpretation of current theories of cognitive aging in light of the common occurrence of these later-life diseases. Understanding the differences between "Normal" and "Healthy" brain aging and identifying potential modifiable risk factors for brain aging is critical to inform potential treatments to stall or reverse the effects of brain aging and possibly extend cognitive health for our aging society.
Collapse
Affiliation(s)
- Samuel N. Lockhart
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA, USA
| | - Charles DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
559
|
Fouquet M, Besson FL, Gonneaud J, La Joie R, Chételat G. Imaging Brain Effects of APOE4 in Cognitively Normal Individuals Across the Lifespan. Neuropsychol Rev 2014; 24:290-9. [DOI: 10.1007/s11065-014-9263-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022]
|
560
|
The relevance of beta-amyloid on markers of Alzheimer's disease in clinically normal individuals and factors that influence these associations. Neuropsychol Rev 2014; 24:300-12. [PMID: 25108368 DOI: 10.1007/s11065-014-9267-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/30/2014] [Indexed: 12/20/2022]
Abstract
Aberrant accumulation of beta-amyloid (Aβ) is thought to be an early event in a biological cascade that eventually leads to Alzheimer's disease (AD). Along these lines, many clinically normal (CN) older individuals have evidence of beta-amyloid (Aβ) accumulation, which may be indicative of preclinical AD. However, relationships between Aβ and "downstream" AD markers are often inconsistent across studies. These inconsistencies may be due to the presence of other age-related processes that also influence AD markers, as well as additional risk factors that interact with Aβ to influence downstream changes. For instance, it is possible that the effect of Aβ is modified by neurodegeneration, genetics, sex-differences and cognitive reserve. Thus, a multivariate approach to determining risk of AD within CN participants may be more appropriate than reliance on Aβ status alone. An understanding of how additional risk factors interact with Aβ to influence an individual's trajectory towards AD is essential for characterizing preclinical AD and has implications for prevention trials.
Collapse
|