551
|
Abstract
Advances in our understanding of the signal transduction pathways involved in cellular growth control have provided several new strategies for cancer therapy. Recent advances now make it possible to develop selective inhibitors targeting genomic instability, the growth, survival, and invasion of the tumor, and its nourishment through the growth of new blood vessels.
Collapse
Affiliation(s)
- S A Courtneidge
- SUGEN Inc. 230 East Grand Avenue South San Francisco CA 94080 USA.
| | | |
Collapse
|
552
|
Haas-Kogan D, Shalev N, Wong M, Mills G, Yount G, Stokoe D. Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr Biol 1998; 8:1195-8. [PMID: 9799739 DOI: 10.1016/s0960-9822(07)00493-9] [Citation(s) in RCA: 361] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Glioblastomas are highly malignant tumors of the central nervous system that are resistant to radiation and chemotherapy [1]. We explored the role of the phosphatidylinositol (PI) 3-kinase signal transduction pathway in glioblastomas, as this pathway has been shown to inhibit apoptosis induced by cytokine withdrawal and the detachment of cells from the extracellular matrix [2]. Components of this pathway have been implicated in tumor development [3-6]. We show that glioblastoma cells, in contrast to primary human astrocytes, contain high endogenous protein kinase B (PKB/Akt) activity and high levels of PI 3,4,5-triphosphate (PI(3,4,5)P3) and PI(3,4)P2, the lipid products of PI 3-kinase. These glioblastoma cells express mutant forms of the putative 3' phospholipid phosphatase PTEN, also known as MMAC. Expression of wild-type PTEN derived from primary astrocytes, but not of mutant forms of PTEN, reduced the levels of 3' phosphoinositides and inhibited PKB/Akt activity. PTEN antagonized the activation of PKB/Akt by growth factors, by activated PI 3-kinase and by PI-dependent protein kinase-1 (PDK1), but did not antagonize the phospholipid-independent activation of PKB/Akt lacking the pleckstrin homology (PH) domain. These results suggest a role for PTEN in regulating the activity of the PI 3-kinase pathway in malignant human cells.
Collapse
Affiliation(s)
- D Haas-Kogan
- Department of Radiation Oncology University of California San Francisco, California, 94115, USA.
| | | | | | | | | | | |
Collapse
|
553
|
O'Connor R. Survival factors and apoptosis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1998; 62:137-66. [PMID: 9755644 DOI: 10.1007/bfb0102309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This chapter will explore the role of survival factors in suppression of apoptosis, and illustrate how survival signals play a critical role in the survival of both normal and tumor cells. Survival factors necessary for the development and maintenance of the nervous system and hemopoietic system will be surveyed. This will be followed by a detailed discussion of the role of insulin-like growth factor I (IGF-I) and its receptor in suppression of apoptosis. The importance of survival signals from the IGF-IR for development and tumorigenesis will be discussed, and results of a mutational analysis of the receptor to assign domains necessary for suppression of apoptosis will be summarized. Finally, a discussion of the signal transduction pathways involved in survival factor-signaling will review the roles played by PI-3 kinase and AKT and speculate on how activation of these kinases by survival factors might regulate the apoptotic pathway.
Collapse
Affiliation(s)
- R O'Connor
- Department of Biochemistry, University College Cork, Ireland.
| |
Collapse
|
554
|
Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998; 95:29-39. [PMID: 9778245 DOI: 10.1016/s0092-8674(00)81780-8] [Citation(s) in RCA: 1899] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PTEN is a tumor suppressor with sequence homology to protein tyrosine phosphatases and the cytoskeletal protein tensin. mPTEN-mutant mouse embryos display regions of increased proliferation. In contrast, mPTEN-deficient immortalized mouse embryonic fibroblasts exhibit decreased sensitivity to cell death in response to a number of apoptotic stimuli, accompanied by constitutively elevated activity and phosphorylation of protein kinase B/Akt, a crucial regulator of cell survival. Expression of exogenous PTEN in mutant cells restores both their sensitivity to agonist-induced apoptosis and normal pattern of PKB/Akt phosphorylation. Furthermore, PTEN negatively regulates intracellular levels of phosphatidylinositol (3,4,5) trisphosphate in cells and dephosphorylates it in vitro. Our results show that PTEN may exert its role as a tumor suppressor by negatively regulating the PI3'K/PKB/Akt signaling pathway.
Collapse
Affiliation(s)
- V Stambolic
- Amgen Institute, and Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
555
|
Gorunova L, Höglund M, Andrén-Sandberg A, Dawiskiba S, Jin Y, Mitelman F, Johansson B. Cytogenetic analysis of pancreatic carcinomas: intratumor heterogeneity and nonrandom pattern of chromosome aberrations. Genes Chromosomes Cancer 1998; 23:81-99. [PMID: 9739011 DOI: 10.1002/(sici)1098-2264(199810)23:2<81::aid-gcc1>3.0.co;2-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Twenty-nine nonendocrine pancreatic carcinomas (20 primary tumors and nine metastases) were studied by chromosome banding after short-term culture. Acquired clonal aberrations were found in 25 tumors and a detailed analysis of these revealed extensive cytogenetic intratumor heterogeneity. Apart from six carcinomas with one clone only, 19 tumors displayed from two to 58 clones, bringing the total number of clones to 230. Karyotypically related clones, signifying evolutionary variation, were found in 16 tumors, whereas unrelated clones were present in nine, the latter finding probably reflecting a distinct pathogenetic mechanism. The cytogenetic profile of pancreatic carcinoma was characterized by multiple numerical and structural changes. In total, more than 500 abnormal chromosomes, including rings, markers, homogeneously stained regions, and double minutes, altogether displaying 608 breakpoints, were detected. This complexity and heterogeneity notwithstanding, a nonrandom karyotypic pattern can be discerned in pancreatic cancer. Chromosomes 1, 3, 6, 7, 8, 11, 12, 17, and 19 and bands 1q12, 1q21, 3q11, 6p21, 6q21, 7q11, 7q22, 7q32, 11q13, 13cen, 14cen, 17q11, 17q21, and 19q13 were most frequently involved in structural rearrangements. A total of 19 recurrent unbalanced structural changes were identified, 11 of which were not reported previously: del(1)(q11), del(3)(p11), i(3)(q10), del(4)(q25), del(11)(p13), dup(11)(q13q23), i(12)(p10), der(13;15)(q10;q10), del(18)(q12), del(18)(q21), and i(19)(q10). The main karyotypic imbalances were entire-copy losses of chromosomes 18, Y, and 21, gains of chromosomes 7, 2, and 20, partial or whole-arm losses of 1p, 3p, 6q, 8p, 9p, 15q, 17p, 18q, 19p, and 20p, and partial or whole-arm gains of 1q, 3q, 5p, 6p, 7q, 8q, 11q, 12p, 17q, 19q, and 20q. In general, the karyotypic pattern of pancreatic carcinoma fits the multistep carcinogenesis concept. The observed cytogenetic heterogeneity appears to reflect a multitude of interchangeable but oncogenetically equivalent events, and the nonrandomness of the chromosomal alterations underscores the preferential pathways involved in tumor initiation and progression.
Collapse
Affiliation(s)
- L Gorunova
- Department of Clinical Genetics, University Hospital, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
556
|
Curtis LJ, Li Y, Gerbault-Seureau M, Kuick R, Dutrillaux AM, Goubin G, Fawcett J, Cram S, Dutrillaux B, Hanash S, Muleris M. Amplification of DNA sequences from chromosome 19q13.1 in human pancreatic cell lines. Genomics 1998; 53:42-55. [PMID: 9787076 DOI: 10.1006/geno.1998.5405] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Conventional cytogenetics and comparative genomic hybridization (CGH) were utilized to identify recurrent chromosomal imbalances in 12 pancreatic adenocarcinoma cell lines. Multiple deletions and gains were observed in all cell lines. Losses affecting chromosomes or chromosome arms 9p, 13, 18q, 8p, 4, and 10p and gains involving chromosome arms or bands 19q13.1, 20q, 5p, 7p, 11q, 3q25-qter, 8q24, and 10q were commonly observed. Interestingly, 19 distinct sites of high-level amplification were found by CGH. Recurrent sites involved 19q13.1 (6 cases), 5p (3 cases), and 12p and 16p (2 cases). Amplification of KRAS2 was demonstrated in 2 cell lines and that of ERBB2 in another. To define the occurrence of chromosome 19 amplification further, two-dimensional analysis of NotI genomic restriction digests and fluorescence in situ hybridization using probes from band 19q13.1 were utilized. High-level amplification of overlapping sets of chromosome 19 NotI fragments was exhibited in 3 cell lines of which 2 showed amplification of both OZF and AKT2 genes and 1 that of AKT2 alone. In these 3 cell lines, amplification of chromosome 19 sequences was associated with the presence of a homogeneously staining region. Our results provide evidence of heterogeneity in the extent of chromosome 19 amplification and suggest the existence of yet unknown amplified genes that may play a role in pancreatic carcinogenesis.
Collapse
Affiliation(s)
- L J Curtis
- Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, Scotland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
557
|
Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci U S A 1998; 95:11211-6. [PMID: 9736715 PMCID: PMC21621 DOI: 10.1073/pnas.95.19.11211] [Citation(s) in RCA: 874] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Integrin-linked kinase (ILK) is an ankyrin-repeat containing serine-threonine protein kinase capable of interacting with the cytoplasmic domains of integrin beta1, beta2, and beta3 subunits. Overexpression of ILK in epithelial cells disrupts cell-extracellular matrix as well as cell-cell interactions, suppresses suspension-induced apoptosis (also called Anoikis), and stimulates anchorage-independent cell cycle progression. In addition, ILK induces nuclear translocation of beta-catenin, where the latter associates with a T cell factor/lymphocyte enhancer-binding factor 1 (TCF/LEF-1) to form an activated transcription factor. We now demonstrate that ILK activity is rapidly, but transiently, stimulated upon attachment of cells to fibronectin, as well as by insulin, in a phosphoinositide-3-OH kinase [Pi(3)K]-dependent manner. Furthermore, phosphatidylinositol(3,4,5)trisphosphate specifically stimulates the activity of ILK in vitro, and in addition, membrane targetted constitutively active Pi(3)K activates ILK in vivo. We also demonstrate here that ILK is an upstream effector of the Pi(3)K-dependent regulation of both protein kinase B (PKB/AKT) and glycogen synthase kinase 3 (GSK-3). Specifically, ILK can directly phosphorylate GSK-3 in vitro and when stably, or transiently, overexpressed in cells can inhibit GSK-3 activity, whereas the overexpression of kinase-deficient ILK enhances GSK-3 activity. In addition, kinase-active ILK can phosphorylate PKB/AKT on serine-473, whereas kinase-deficient ILK severely inhibits endogenous phosphorylation of PKB/AKT on serine-473, demonstrating that ILK is involved in agonist stimulated, Pi(3)K-dependent, PKB/AKT activation. ILK is thus a receptor-proximal effector for the Pi(3)K-dependent, extracellular matrix and growth factor mediated, activation of PKB/AKT, and inhibition of GSK-3.
Collapse
Affiliation(s)
- M Delcommenne
- British Columbia Cancer Agency, Jack Bell Research Centre, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6 Canada
| | | | | | | | | | | |
Collapse
|
558
|
|
559
|
Summers SA, Lipfert L, Birnbaum MJ. Polyoma middle T antigen activates the Ser/Thr kinase Akt in a PI3-kinase-dependent manner. Biochem Biophys Res Commun 1998; 246:76-81. [PMID: 9600071 DOI: 10.1006/bbrc.1998.8575] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyoma middle T antigen (PMT) was originally identified as the tumorigenic component of the polyomavirus genome. To investigate whether the serine/ threonine kinase Akt/PKB, which is the proto-oncogene transduced by the transforming AKT8 retrovirus, is activated by PMT, 3T3-L1 fibroblasts were stably transfected with wild type PMT. PMT expression accelerated glucose transport and increased phosphorylation of p70 S6-kinase and MAPK. PMT expression also stimulated Akt kinase activity 7 fold as compared to untreated, mock infected cells. This stimulation rivaled that obtained following insulin treatment of both mock and PMT infected cells. Akt activation and phosphorylation were eliminated in a PMT mutant incapable of interacting with PI3-kinase, but not one which does not interact with Shc, and correlated closely to the amount of PI3-kinase activity in anti-phosphotyrosine immunoprecipitates. These results indicate that the PI3-kinase pathway is requisite, but the Shc pathway is dispensable, for Akt activation. The studies further suggest that Akt may participate in PMT and PI3-kinase's regulation of cellular transformation and tumorigenesis.
Collapse
Affiliation(s)
- S A Summers
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | |
Collapse
|
560
|
Walker KS, Deak M, Paterson A, Hudson K, Cohen P, Alessi DR. Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha. Biochem J 1998; 331 ( Pt 1):299-308. [PMID: 9512493 PMCID: PMC1219352 DOI: 10.1042/bj3310299] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The regulatory and catalytic properties of the three mammalian isoforms of protein kinase B (PKB) have been compared. All three isoforms (PKBalpha, PKBbeta and PKBgamma) were phosphorylated at similar rates and activated to similar extents by 3-phosphoinositide-dependent protein kinase-1 (PDK1). Phosphorylation and activation of each enzyme required the presence of PtdIns(3,4,5)P3 or PtdIns(3,4)P2, as well as PDK1. The activation of PKBbeta and PKBgamma by PDK1 was accompanied by the phosphorylation of the residues equivalent to Thr308 in PKBalpha, namely Thr309 (PKBbeta) and Thr305 (PKBgamma). PKBgamma which had been activated by PDK1 possessed a substrate specificity identical with that of PKBalpha and PKBbeta towards a range of peptides. The activation of PKBgamma and its phosphorylation at Thr305 was triggered by insulin-like growth factor-1 in 293 cells. Stimulation of rat adipocytes or rat hepatocytes with insulin induced the activation of PKBalpha and PKBbeta with similar kinetics. After stimulation of adipocytes, the activity of PKBbeta was twice that of PKBalpha, but in hepatocytes PKBalpha activity was four-fold higher than PKBbeta. Insulin induced the activation of PKBalpha in rat skeletal muscle in vivo, with little activation of PKBbeta. Insulin did not induce PKBgamma activity in adipocytes, hepatocytes or skeletal muscle, but PKBgamma was the major isoform activated by insulin in rat L6 myotubes (a skeletal-muscle cell line).
Collapse
Affiliation(s)
- K S Walker
- MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, Dundee DD1 4HN, Scotland, U.K.
| | | | | | | | | | | |
Collapse
|
561
|
Abstract
Protein kinase B (PKB)/Akt is a growth-factor-regulated serine/threonine kinase which contains a pleckstrin homology domain. Binding of phosphoinositide 3-OH kinase products to the pleckstrin homology domain results in translocation of PKB/Akt to the plasma membrane where it is activated by phosphorylation by upstream kinases including the phosphoinoside-dependent kinase 1 (PDK1). Activated PKB/Akt provides a survival signal that protects cells from apoptosis induced by various stresses, and also mediates a number of metabolic effects of insulin.
Collapse
Affiliation(s)
- J Downward
- Imperial Cancer Research Fund, London, UK.
| |
Collapse
|
562
|
Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 1998; 12:502-13. [PMID: 9472019 PMCID: PMC316523 DOI: 10.1101/gad.12.4.502] [Citation(s) in RCA: 701] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/1997] [Accepted: 12/19/1997] [Indexed: 02/06/2023]
Abstract
Growth factors and hormones activate protein translation by phosphorylation and inactivation of the translational repressors, the eIF4E-binding proteins (4E-BPs), through a wortmannin- and rapamycin-sensitive signaling pathway. The mechanism by which signals emanating from extracellular signals lead to phosphorylation of 4E-BPs is not well understood. Here we demonstrate that the activity of the serine/threonine kinase Akt/PKB is required in a signaling cascade that leads to phosphorylation and inactivation of 4E-BP1. PI 3-kinase elicits the phosphorylation of 4E-BP1 in a wortmannin- and rapamycin-sensitive manner, whereas activated Akt-mediated phosphorylation of 4E-BP1 is wortmannin resistant but rapamycin sensitive. A dominant negative mutant of Akt blocks insulin-mediated phosphorylation of 4E-BP1, indicating that Akt is required for the in vivo phosphorylation of 4E-BP1. Importantly, an activated Akt induces phosphorylation of 4E-BP1 on the same sites that are phosphorylated upon serum stimulation. Similar to what has been observed with serum and growth factors, phosphorylation of 4E-BP1 by Akt inhibits the interaction between 4E-BP1 and eIF-4E. Furthermore, phosphorylation of 4E-BP1 by Akt requires the activity of FRAP/mTOR. FRAP/mTOR may lie downstream of Akt in this signaling cascade. These results demonstrate that the PI 3-kinase-Akt signaling pathway, in concert with FRAP/mTOR, induces the phosphorylation of 4E-BP1.
Collapse
Affiliation(s)
- A C Gingras
- Department of Biochemistry, McGill University Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
563
|
Abstract
The past year has seen significant advances in our understanding of how protein kinase B (PKB) is activated and of the central role it plays in insulin signalling and in mediating the protective effects of survival factors against apoptosis. The highlights include the discovery of a protein kinase required for the 3-phosphoinositide-dependent activation of PKB and the identification of several physiological substrates for PKB.
Collapse
Affiliation(s)
- D R Alessi
- MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK.
| | | |
Collapse
|
564
|
Ruggeri BA, Huang L, Wood M, Cheng JQ, Testa JR. Amplification and overexpression of theAKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas. Mol Carcinog 1998. [DOI: 10.1002/(sici)1098-2744(199802)21:2<81::aid-mc1>3.0.co;2-r] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
565
|
Häusler P, Papoff G, Eramo A, Reif K, Cantrell DA, Ruberti G. Protection of CD95-mediated apoptosis by activation of phosphatidylinositide 3-kinase and protein kinase B. Eur J Immunol 1998; 28:57-69. [PMID: 9485186 DOI: 10.1002/(sici)1521-4141(199801)28:01<57::aid-immu57>3.0.co;2-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis may be triggered, in a variety of tissues, by interaction of the cell surface molecule CD95 with its specific ligand, CD95L. CD95 plays a physiological role in the regulation of the immune response; furthermore, alterations in CD95/CD95L function may contribute to the pathogenesis of a number of human diseases, including cancer, autoimmune diseases and viral infections. Many cells that express CD95, however, are not susceptible to CD95-mediated apoptosis. It is therefore important to identify the mechanisms that counteract the CD95 apoptotic process that are still poorly understood. Growth factors and lymphokines such as interleukin (IL)-4 that counteract CD95-mediated apoptosis may activate phosphatidylinositide 3-kinase (PI 3-kinase). We therefore used two different approaches to investigate the role of PI 3-kinase on CD95-mediated apoptosis. First we tested the effect of two pharmacological PI 3-kinase inhibitors, wortmannin and LY294002, on CD95 agonistic antibody-induced apoptosis in three different cell lines. Second, we co-expressed in COS7 cells CD95 with constitutively active PI 3-kinase. Results of both approaches indicate that active PI 3-kinase effectively protects against CD95-mediated apoptosis. Furthermore we extended our studies on the CD95 downstream mediator, FADD, and on the PI 3-kinase downstream mediator, the serine/threonine protein kinase PKB, using the co-expression approach in COS7 cells. We provide evidence that apoptosis induced by triggering the CD95 cell death receptor is counteracted by PI 3-kinase activation; moreover, PKB but not p70S6K represents the relevant downstream target of PI 3-kinase signaling.
Collapse
Affiliation(s)
- P Häusler
- Department of Immunobiology, Institute of Cell Biology, National Research Council, Rome, Italy
| | | | | | | | | | | |
Collapse
|
566
|
Höglund M, Gorunova L, Andrén-Sandberg Å, Dawiskiba S, Mitelman F, Johansson B. Cytogenetic and fluorescence in situ hybridization analyses of chromosome 19 aberrations in pancreatic carcinomas: Frequent loss of 19p13.3 and gain of 19q13.1-13.2. Genes Chromosomes Cancer 1998. [DOI: 10.1002/(sici)1098-2264(199801)21:1<8::aid-gcc3>3.0.co;2-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
567
|
Andjelković M, Alessi DR, Meier R, Fernandez A, Lamb NJ, Frech M, Cron P, Cohen P, Lucocq JM, Hemmings BA. Role of translocation in the activation and function of protein kinase B. J Biol Chem 1997; 272:31515-24. [PMID: 9395488 DOI: 10.1074/jbc.272.50.31515] [Citation(s) in RCA: 812] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have investigated the role of subcellular localization in the regulation of protein kinase B (PKB) activation. The myristoylation/palmitylation motif from the Lck tyrosine kinase was attached to the N terminus of protein kinase B to alter its subcellular location. Myristoylated/palmitylated (m/p)-PKBalpha was associated with the plasma membrane of transfected cells, whereas the wild-type kinase was mostly cytosolic. The activity of m/p-PKBalpha was 60-fold higher compared with the unstimulated wild-type enzyme, and could not be stimulated further by growth factors or phosphatase inhibitors. In vivo 32P labeling and mutagenesis demonstrated that m/p-PKBalpha activity was due to phosphorylation on Thr308 and Ser473, that are normally induced on PKB following stimulation of the cells with insulin or insulin-like growth factor-1 (IGF-1). A dominant negative form of phosphoinositide 3-kinase (PI3-K) did not affect m/p-PKBalpha activity. The pleckstrin homology (PH) domain of m/p-PKBalpha was not required for its activation or phosphorylation on Thr308 and Ser473, suggesting that this domain may serve as a membrane-targeting module. Consistent with this view, PKBalpha was translocated to the plasma membrane within minutes after stimulation with IGF-1. This translocation required the PH domain and was sensitive to wortmannin. Our results indicate that PI3-K activity is required for translocation of PKB to the plasma membrane, where its activation occurs through phosphorylation of the same sites that are induced by insulin or IGF-1. Following activation the kinase detached from the membrane and translocated to the nucleus.
Collapse
Affiliation(s)
- M Andjelković
- Friedrich Miescher-Institut, Maulbeerstrasse 66, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
568
|
Mahlamäki EH, Höglund M, Gorunova L, Karhu R, Dawiskiba S, Andrén-Sandberg A, Kallioniemi OP, Johansson B. Comparative genomic hybridization reveals frequent gains of 20q, 8q, 11q, 12p, and 17q, and losses of 18q, 9p, and 15q in pancreatic cancer. Genes Chromosomes Cancer 1997; 20:383-91. [PMID: 9408755 DOI: 10.1002/(sici)1098-2264(199712)20:4<383::aid-gcc10>3.0.co;2-o] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Comparative genomic hybridization (CGH) was used to screen for genomic imbalances in 24 exocrine pancreatic carcinomas, including II low-passage cell lines (4-8 subcultures) and 13 uncultured samples. Aberrations were found in all cell lines and in seven of the 13 biopsies. The most frequent changes in the cell lines were gains of 20q (91%), 11q (64%), 17q (64%), 19q (64%), 8q, 12p, 14q, and 20p (55%), and losses of 18q (100%), 9p (91%), 15q(73%), 21q (64%), 3p (55%), and 13q (55%). High-levels gains (tumor to normal ratio over 1.5) were detected at 3q, 6p, 7q, 8q, 12p, 19q, and 20q. Among the tumor biopsies, overrepresentations of 7p and 8q were most common (31%), followed by 5p, 5q, 11p, 11q, 12p, and 18q (23%), whereas the most frequent losses involved 18p and 18q (31%) and 6q and 17p (23%). The genetic changes in nine samples obtained from metastatic lesions did not differ significantly from those in 15 primary carcinomas. Most of the gains and losses detected in this CGH study correspond well to those identified in previous cytogenetic and molecular genetic investigations of pancreatic carcinomas. However, frequent gain of 12p and loss of 15q have not been previously reported. Molecular genetic analyses of these chromosome arms are warranted, and may lead to the discovery of novel genes important in pancreatic carcinogenesis.
Collapse
Affiliation(s)
- E H Mahlamäki
- Laboratory of Cancer Genetics, Tampere University Hospital, Finland
| | | | | | | | | | | | | | | |
Collapse
|
569
|
Meier R, Alessi DR, Cron P, Andjelković M, Hemmings BA. Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase Bbeta. J Biol Chem 1997; 272:30491-7. [PMID: 9374542 DOI: 10.1074/jbc.272.48.30491] [Citation(s) in RCA: 297] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protein kinase B (PKB) is a member of the second messenger-dependent family of serine/threonine kinases that has been implicated in signaling pathways downstream of growth factor receptor tyrosine kinases and phosphatidylinositol 3-kinase. Here we report the characterization of the human beta-isoform of PKB (PKBbeta). PKBbeta is ubiquitously expressed in a number of human tissues, with mRNA and protein levels elevated in heart, liver, skeletal muscle, and kidney. After transfection into HEK-293 or COS-1 cells, PKBbeta is activated 2- to 12-fold by mitogens and survival factors. Activation was due to phosphorylation on Thr-309 and Ser-474, which correspond to Thr-308 and Ser-473 implicated in the regulation of PKBalpha. Both phosphorylation and activation were prevented by the phosphatidylinositol 3-kinase inhibitor wortmannin. Moreover, membrane-targeted PKBbeta was constitutively activated when overexpressed in HEK-293 cells. Although the specific activity of PKBbeta was lower than that of PKBalpha toward Crosstide as a substrate (23 nmol/min/mg compared with 178 nmol/min/mg for PKBalpha), both enzymes showed similar substrate specificities. Using confocal microscopy, we show that activation of PKBbeta results in its nuclear translocation within 20 to 30 min after stimulation. These observations provide evidence that PKBbeta undergoes nuclear translocation upon mitogenic activation and support a role for PKB in signaling from receptor tyrosine kinases to the nucleus through phosphatidylinositol 3-kinase.
Collapse
Affiliation(s)
- R Meier
- Friedrich Miescher Institute, P. O. Box 2543, CH-4002 Basel, Switzerland
| | | | | | | | | |
Collapse
|
570
|
Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D, Ashworth A, Bownes M. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 1997; 7:776-89. [PMID: 9368760 DOI: 10.1016/s0960-9822(06)00336-8] [Citation(s) in RCA: 577] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The activation of protein kinase B (PKB, also known as c-Akt) is stimulated by insulin or growth factors and results from its phosphorylation at Thr308 and Ser473. We recently identified a protein kinase, termed PDK1, that phosphorylates PKB at Thr308 only in the presence of lipid vesicles containing phosphatidylinositol 3,4,5-trisphosphate (Ptdlns(3,4,5)P3) or phosphatidylinositol 3,4-bisphosphate (Ptdlns(3,4)P2). RESULTS We have cloned and sequenced human PDK1. The 556-residue monomeric enzyme comprises a catalytic domain that is most similar to the PKA, PKB and PKC subfamily of protein kinases and a carboxy-terminal pleckstrin homology (PH) domain. The PDK1 gene is located on human chromosome 16p13.3 and is expressed ubiquitously in human tissues. Human PDK1 is homologous to the Drosophila protein kinase DSTPK61, which has been implicated in the regulation of sex differentiation, oogenesis and spermatogenesis. Expressed PDK1 and DSTPK61 phosphorylated Thr308 of PKB alpha only in the presence of Ptdlns(3,4,5)P3 or Ptdlns(3,4)P2. Overexpression of PDK1 in 293 cells activated PKB alpha and potentiated the IGF1-induced phosphorylation of PKB alpha at Thr308. Experiments in which the PH domains of either PDK1 or PKB alpha were deleted indicated that the binding of Ptdlns(3,4,5)P3 or Ptdlns(3,4)P2 to PKB alpha is required for phosphorylation and activation by PDK1. IGF1 stimulation of 293 cells did not affect the activity or phosphorylation of PDK1. CONCLUSIONS PDK1 is likely to mediate the activation of PKB by insulin or growth factors. DSTPK61 is a Drosophila homologue of PDK1. The effect of Ptdlns(3,4,5)P3/Ptdlns(3,4)P2 in the activation of PKB alpha is at least partly substrate directed.
Collapse
Affiliation(s)
- D R Alessi
- Department of Biochemistry, University of Dundee, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
571
|
|
572
|
Souttou B, Ahmad S, Riegel AT, Wellstein A. Signal transduction pathways involved in the mitogenic activity of pleiotrophin. Implication of mitogen-activated protein kinase and phosphoinositide 3-kinase pathways. J Biol Chem 1997; 272:19588-93. [PMID: 9235965 DOI: 10.1074/jbc.272.31.19588] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pleiotrophin (PTN) is a developmentally regulated protein which exhibits neurite-outgrowth, mitogenic, and angiogenic properties. It has also been shown to be involved in tumor growth and metastasis. Here we used primary BEL (bovine epithelial lens) cells to investigate the signal transduction pathways involved in the mitogenic activity of recombinant PTN. PTN was purified from conditioned media of SW-13 cells transfected with the human PTN cDNA. We show that inhibitors of tyrosine kinase, mitogen-activated protein kinase, or phosphoinositide (PI) 3-kinase inhibit DNA synthesis stimulated by PTN. Analysis of tyrosine-phosphorylated proteins following PTN stimulation showed phosphorylation of two novel 190- and 215-kDa proteins in addition to SHC, ERK1, and ERK2. A mobility shift of phosphorylated ERK1 and ERK2 was detected with a panERK antibody confirming the phosphorylation of the two ERKs. Furthermore, in vitro immunocomplex kinase assay with Akt1, a natural substrate of PI 3-kinase, showed an activation of the kinase following PTN stimulation and a reversal by the PI 3-kinase inhibitor wortmannin. We conclude that the mitogenic activity of PTN is dependent on tyrosine kinase activation and utilizes the mitogen-activated protein kinase and the PI 3-kinase pathways to transduce a mitogenic signal.
Collapse
Affiliation(s)
- B Souttou
- Lombardi Cancer Center and Department of Pharmacology, Georgetown University, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
573
|
Abstract
The initial steps in insulin signal transduction occur at the plasma membrane and lead to the activation of phosphatidylinositide (PtdIns) 3-kinase and the formation of PtdIns(3,4,5,)P3 in the inner leaflet of the plasma membrane which is then converted to PtdIns(3,4)P2 by a specific phosphatase. Inhibitors of PtdIns 3-kinase suppress nearly all the metabolic actions of insulin indicating that PtdIns(3,4,5)P3 and/or PtdIns(3,4)P2 are key 'second messengers' for this hormone. A major effect of insulin is its ability to stimulate the synthesis of glycogen in skeletal muscle. By 'working backwards' from glycogen synthesis, we have dissected an insulin-stimulated protein kinase cascade which is triggered by the activation of PtdIns 3-kinase. The first enzyme in this cascade is termed 3-phosphoinositide-dependent protein kinase (PDK1), because it is only active in the presence of PtdIns(3,4,5)P3 or PtdIns(3,4)P2. PDK1 then activates protein kinase B (PKB) which, in turn, inactivates glycogen synthase kinase-3 (GSK3), leading to the dephosphorylation and activation of glycogen synthase and hence to an acceleration of glycogen synthesis. We review the evidence which indicates that the phosphorylation of other proteins by PKB and GSK3 is likely to mediate many of the intracellular actions of insulin.
Collapse
Affiliation(s)
- P Cohen
- Department of Biochemistry, University of Dundee, Scotland, UK
| | | | | |
Collapse
|
574
|
Khwaja A, Rodriguez-Viciana P, Wennström S, Warne PH, Downward J. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J 1997; 16:2783-93. [PMID: 9184223 PMCID: PMC1169887 DOI: 10.1093/emboj/16.10.2783] [Citation(s) in RCA: 851] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Upon detachment from the extracellular matrix, epithelial cells enter into programmed cell death, a phenomenon known as anoikis, ensuring that they are unable to survive in an inappropriate location. Activated ras oncogenes protect cells from this form of apoptosis. The nature of the survival signals activated by integrin engagement and usurped by oncogenic Ras are unknown: here we show that in both cases phosphoinositide 3-OH kinase (PI 3-kinase), but not Raf, mediates this protection, acting through protein kinase B/Akt (PKB/Akt). Constitutively activated PI 3-kinase or PKB/Akt block anoikis, while inhibition of PI 3-kinase abrogates protection by Ras, but not PKB/Akt. Inhibition of either PI 3-kinase or PKB/Akt induces apoptosis in adherent epithelial cells. Attachment of cells to matrix leads to rapid elevation of the levels of PI 3-kinase lipid products and PKB/Akt activity, both of which remain high in Ras-transformed cells even in suspension. PI 3-kinase acting through PKB/Akt is therefore implicated as a key mediator of the aberrant survival of Ras-transformed epithelial cells in the absence of attachment, and mediates matrix-induced survival of normal epithelial cells.
Collapse
Affiliation(s)
- A Khwaja
- Imperial Cancer Research Fund, London, UK
| | | | | | | | | |
Collapse
|
575
|
Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 1997; 7:261-9. [PMID: 9094314 DOI: 10.1016/s0960-9822(06)00122-9] [Citation(s) in RCA: 2204] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Protein kinase B (PKB), also known as c-Akt, is activated rapidly when mammalian cells are stimulated with insulin and growth factors, and much of the current interest in this enzyme stems from the observation that it lies 'downstream' of phosphoinositide 3-kinase on intracellular signalling pathways. We recently showed that insulin or insulin-like growth factor 1 induce the phosphorylation of PKB at two residues, Thr308 and Ser473. The phosphorylation of both residues is required for maximal activation of PKB. The kinases that phosphorylate PKB are, however, unknown. RESULTS We have purified 500 000-fold from rabbit skeletal muscle extracts a protein kinase which phosphorylates PKBalpha at Thr308 and increases its activity over 30-fold. We tested the kinase in the presence of several inositol phospholipids and found that only low micromolar concentrations of the D enantiomers of either phosphatidylinositol 3,4,5-triphosphate (PtdIns(3,4,5)P3) or PtdIns(3,4)P2 were effective in potently activating the kinase, which has been named PtdIns(3,4,5)P3-dependent protein kinase-1 (PDK1). None of the inositol phospholipids tested activated or inhibited PKBalpha or induced its phosphorylation under the conditions used. PDK1 activity was not affected by wortmannin, indicating that it is not likely to be a member of the phosphoinositide 3-kinase family. CONLCUSIONS: PDK1 is likely to be one of the protein kinases that mediate the activation of PKB by insulin and growth factors. PDK1 may, therefore, play a key role in mediating many of the actions of the second messenger(s) PtdIns(3,4, 5)P3 and/or PtdIns(3,4)P2.
Collapse
Affiliation(s)
- D R Alessi
- Medical Research Council Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, Dundee, DD1 4HN, Scotland.
| | | | | | | | | | | | | |
Collapse
|
576
|
van der Kaay J, Batty IH, Cross DA, Watt PW, Downes CP. A novel, rapid, and highly sensitive mass assay for phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and its application to measure insulin-stimulated PtdIns(3,4,5)P3 production in rat skeletal muscle in vivo. J Biol Chem 1997; 272:5477-81. [PMID: 9038150 DOI: 10.1074/jbc.272.9.5477] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The pivotal role of phosphatidylinositol 3-kinase (PI 3-kinase) in signal transduction has been well established in recent years. Receptor-regulated forms of PI 3-kinase are thought to phosphorylate phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) at the 3-position of the inositol ring to give the putative lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4, 5)P3). Cellular levels of PtdIns(3,4,5)P3 are currently measured by time-consuming procedures involving radiolabeling with high levels of 32PO4, extraction, and multiple chromatography steps. To avoid these lengthy and hazardous procedures, many laboratories prefer to assay PI 3-kinase activity in cell extracts and/or appropriate immunoprecipitates. Such approaches are not readily applied to measurements of PtdIns(3,4,5)P3 in extracts of animal tissues. Moreover, they can be misleading since the association of PI 3-kinases in molecular complexes is not necessarily correlated with the enzyme's activity state. Direct measurements of PtdIns(3,4,5)P3 would also be desirable since its concentration may be subject to additional control mechanisms such as activation or inhibition of the phosphatases responsible for PtdIns(3,4,5)P3 metabolism. We now report a simple, reproducible isotope dilution assay which detects PtdIns(3,4,5)P3 at subpicomole sensitivity, suitable for measurements of both basal and stimulated levels of PtdIns(3,4,5)P3 obtained from samples containing approximately 1 mg of cellular protein. Total lipid extracts, containing PtdIns(3,4,5)P3, are first subjected to alkaline hydrolysis which results in the release of the polar head group Ins(1,3,4,5)P4. The latter is measured by its ability to displace [32P]Ins(1,3,4,5)P4 from a highly specific binding protein present in cerebellar membrane preparations. We show that this assay solely detects PtdIns(3,4,5)P3 and does not suffer from interference by other compounds generated after alkaline hydrolysis of total cellular lipids. Measurements on a wide range of cells, including rat-1 fibroblasts, 1321N1 astrocytoma cells, HEK 293 cells, and rat adipocytes, show wortmannin-sensitive increased levels of PtdIns(3,4,5)P3 upon stimulation with appropriate agonists. The enhanced utility of this procedure is further demonstrated by measurements of PtdIns(3,4,5)P3 levels in tissue derived from whole animals. Specifically, we show that stimulation with insulin increases PtdIns(3,4,5)P3 levels in rat skeletal muscle in vivo with a time course which parallels the activation of protein kinase B in the same samples.
Collapse
Affiliation(s)
- J van der Kaay
- Department of Biochemistry, Medical Sciences Institute, University of Dundee, DD1 4HN Dundee, United Kingdom.
| | | | | | | | | |
Collapse
|
577
|
Marte BM, Rodriguez-Viciana P, Wennström S, Warne PH, Downward J. R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways. Curr Biol 1997; 7:63-70. [PMID: 8999998 DOI: 10.1016/s0960-9822(06)00028-5] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The small GTPase R-Ras displays a less potent transforming activity than the closely related Ras oncogene products. Although R-Ras has been reported to interact with c-Raf1 and Ral-GDS in vitro, the pathways by which it exerts its effects on cellular proliferation are not known. RESULTS Both Ras and R-Ras interact with phosphoinositide (PI) 3-kinase in vitro, and induce elevation of the levels of PI 3-kinase lipid products in intact cells. Unlike Ras, R-Ras does not activate Raf or mitogen-activated protein (MAP) kinase in cells. In co-transfection assays, the serine/threonine protein kinase PKB (or Akt) is effectively stimulated by R-Ras, Ras, mutants of Ras that activate PI 3-kinase but not other effectors, and activated forms of PI 3-kinase. Ras and R-Ras stimulate PKB/Akt through a non-autocrine mechanism that involves PI 3-kinase. The constitutive activation of PI 3-kinase alone is sufficient to activate PKB/Akt, but not the MAP kinase ERK or the stress-activated protein kinase, Jun N-terminal kinase. Transformation assays in fibroblasts suggest that PKB/Akt and Raf are part of distinct oncogenic signalling pathways. CONCLUSIONS Both the Raf-MAP kinase and PI 3-kinase-PKB/Akt pathways are activated by Ras, but only the PI 3-kinase-PKB/Akt pathway is activated by R-Ras. PI 3-kinase, and downstream targets such as PKB/Akt, are likely to be essential mediators of transformation induced by R-Ras. PI 3-kinase, as well as Raf, is thus implicated also in Ras transformation.
Collapse
Affiliation(s)
- B M Marte
- Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | |
Collapse
|
578
|
Alessi DR, Caudwell FB, Andjelkovic M, Hemmings BA, Cohen P. Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett 1996; 399:333-8. [PMID: 8985174 DOI: 10.1016/s0014-5793(96)01370-1] [Citation(s) in RCA: 517] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The substrate specificity of protein kinase-B alpha (PKBalpha, also known as RAC kinase or Akt) was investigated using synthetic peptide substrates related to the sequence surrounding the phosphorylation site on glycogen synthase kinase-3 (GSK3). The minimum sequence motif required for efficient phosphorylation was Arg-Xaa-Arg-Yaa-Zaa-Ser/Thr-Hyd, where Xaa is any amino acid, Yaa and Zaa are small residues other than glycine and Hyd is a bulky hydrophobic residue (Phe, Leu). The most effective substrate, Arg-Pro-Arg-Thr-Ser-Ser-Phe, was phosphorylated with a Km of 5 microM and Vmax of 260 U/mg. PKBalpha phosphorylated histone H2B (Km 5 microM, Vmax 68 U/mg) specifically at Ser-36 which also lies in an Arg-Xaa-Arg-Xaa-Xaa-Ser-Hyd motif. The peptide Arg-Pro-Arg-Ala-Ala-Thr-Phe may be a relatively specific substrate for PKBalpha because, unlike other substrates, it is not phosphorylated by p70 S6 kinase or MAP kinase activated protein (MAPKAP) kinase-1.
Collapse
Affiliation(s)
- D R Alessi
- MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK
| | | | | | | | | |
Collapse
|
579
|
Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 1996; 15:6541-51. [PMID: 8978681 PMCID: PMC452479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Insulin activated endogenous protein kinase B alpha (also known as RAC/Akt kinase) activity 12-fold in L6 myotubes, while after transfection into 293 cells PKBalpha was activated 20- and 50-fold in response to insulin and IGF-1 respectively. In both cells, the activation of PKBalpha was accompanied by its phosphorylation at Thr308 and Ser473 and, like activation, phosphorylation of both of these residues was prevented by the phosphatidylinositol 3-kinase inhibitor wortmannin. Thr308 and/or Ser473 were mutated to Ala or Asp and activities of mutant PKBalpha molecules were analysed after transfection into 293 cells. The activity of wild-type and mutant PKBalpha was also measured in vitro after stoichiometric phosphorylation of Ser473 by MAPKAP kinase-2. These experiments demonstrated that activation of PKBalpha by insulin or insulin-like growth factor-1 (IGF-1) results from phosphorylation of both Thr308 and Ser473, that phosphorylation of both residues is critical to generate a high level of PKBalpha activity and that the phosphorylation of Thr308 in vivo is not dependent on phosphorylation of Ser473 or vice versa. We propose a model whereby PKBalpha becomes phosphorylated and activated in insulin/IGF-1-stimulated cells by an upstream kinase(s).
Collapse
Affiliation(s)
- D R Alessi
- MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK
| | | | | | | | | | | | | |
Collapse
|