551
|
Global analysis of genomic instability caused by DNA replication stress in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2016; 113:E8114-E8121. [PMID: 27911848 DOI: 10.1073/pnas.1618129113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA replication stress (DRS)-induced genomic instability is an important factor driving cancer development. To understand the mechanisms of DRS-associated genomic instability, we measured the rates of genomic alterations throughout the genome in a yeast strain with lowered expression of the replicative DNA polymerase δ. By a genetic test, we showed that most recombinogenic DNA lesions were introduced during S or G2 phase, presumably as a consequence of broken replication forks. We observed a high rate of chromosome loss, likely reflecting a reduced capacity of the low-polymerase strains to repair double-stranded DNA breaks (DSBs). We also observed a high frequency of deletion events within tandemly repeated genes such as the ribosomal RNA genes. By whole-genome sequencing, we found that low levels of DNA polymerase δ elevated mutation rates, both single-base mutations and small insertions/deletions. Finally, we showed that cells with low levels of DNA polymerase δ tended to accumulate small promoter mutations that increased the expression of this polymerase. These deletions conferred a selective growth advantage to cells, demonstrating that DRS can be one factor driving phenotypic evolution.
Collapse
|
552
|
Spatial intratumoral heterogeneity and temporal clonal evolution in esophageal squamous cell carcinoma. Nat Genet 2016; 48:1500-1507. [PMID: 27749841 PMCID: PMC5127772 DOI: 10.1038/ng.3683] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/31/2016] [Indexed: 12/14/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is among the most common malignancies, but little is known about its spatial intratumor heterogeneity (ITH) and temporal clonal evolutionary processes. To address this, we performed multiregion whole-exome sequencing on 51 tumor regions from 13 ESCCs, and multiregion global methylation profiling on three of these 13 cases. We found an average of 35.8% heterogeneous somatic mutations with strong evidence of ITH. Half of driver mutations located on the branches targeted oncogenes, including PIK3CA, NFE2L2, MTOR, etc. By contrast, the majority of truncal and clonal driver mutations occurred in tumor suppressor genes, including TP53, KMT2D, ZNF750, etc. Interestingly, the phyloepigenetic trees robustly recapitulated the topologic structures of the phylogenetic ones, indicating the possible relationship between genetic and epigenetic alterations. Our integrated investigations of the spatial ITH and clonal evolution provide an important molecular foundation for enhanced understanding of the tumorigenesis and progression of ESCC.
Collapse
|
553
|
Morgan AP, Holt JM, McMullan RC, Bell TA, Clayshulte AMF, Didion JP, Yadgary L, Thybert D, Odom DT, Flicek P, McMillan L, de Villena FPM. The Evolutionary Fates of a Large Segmental Duplication in Mouse. Genetics 2016; 204:267-85. [PMID: 27371833 PMCID: PMC5012392 DOI: 10.1534/genetics.116.191007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/27/2016] [Indexed: 01/21/2023] Open
Abstract
Gene duplication and loss are major sources of genetic polymorphism in populations, and are important forces shaping the evolution of genome content and organization. We have reconstructed the origin and history of a 127-kbp segmental duplication, R2d, in the house mouse (Mus musculus). R2d contains a single protein-coding gene, Cwc22 De novo assembly of both the ancestral (R2d1) and the derived (R2d2) copies reveals that they have been subject to nonallelic gene conversion events spanning tens of kilobases. R2d2 is also a hotspot for structural variation: its diploid copy number ranges from zero in the mouse reference genome to >80 in wild mice sampled from around the globe. Hemizygosity for high copy-number alleles of R2d2 is associated in cis with meiotic drive; suppression of meiotic crossovers; and copy-number instability, with a mutation rate in excess of 1 per 100 transmissions in some laboratory populations. Our results provide a striking example of allelic diversity generated by duplication and demonstrate the value of de novo assembly in a phylogenetic context for understanding the mutational processes affecting duplicate genes.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - J Matthew Holt
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Rachel C McMullan
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Timothy A Bell
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Amelia M-F Clayshulte
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - John P Didion
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Liran Yadgary
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David Thybert
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge, CB10 1SD, United Kingdom
| | - Duncan T Odom
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, United Kingdom
| | - Paul Flicek
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge, CB10 1SD, United Kingdom Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, United Kingdom
| | - Leonard McMillan
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
554
|
Loss of BRCA1 or BRCA2 markedly increases the rate of base substitution mutagenesis and has distinct effects on genomic deletions. Oncogene 2016; 36:746-755. [PMID: 27452521 PMCID: PMC5096687 DOI: 10.1038/onc.2016.243] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/20/2016] [Accepted: 05/26/2016] [Indexed: 12/23/2022]
Abstract
Loss-of-function mutations in the BRCA1 and BRCA2 genes increase the risk of cancer. Owing to their function in homologous recombination repair, much research has focused on the unstable genomic phenotype of BRCA1/2 mutant cells manifest mainly as large-scale rearrangements. We used whole-genome sequencing of multiple isogenic chicken DT40 cell clones to precisely determine the consequences of BRCA1/2 loss on all types of genomic mutagenesis. Spontaneous base substitution mutation rates increased sevenfold upon the disruption of either BRCA1 or BRCA2, and the arising mutation spectra showed strong and specific correlation with a mutation signature associated with BRCA1/2 mutant tumours. To model endogenous alkylating damage, we determined the mutation spectrum caused by methyl methanesulfonate (MMS), and showed that MMS also induces more base substitution mutations in BRCA1/2-deficient cells. Spontaneously arising and MMS-induced insertion/deletion mutations and large rearrangements were also more common in BRCA1/2 mutant cells compared with the wild-type control. A difference in the short deletion phenotypes of BRCA1 and BRCA2 suggested distinct roles for the two proteins in the processing of DNA lesions, as BRCA2 mutants contained more short deletions, with a wider size distribution, which frequently showed microhomology near the breakpoints resembling repair by non-homologous end joining. An increased and prolonged gamma-H2AX signal in MMS-treated BRCA1/2 cells suggested an aberrant processing of stalled replication forks as the cause of increased mutagenesis. The high rate of base substitution mutagenesis demonstrated by our experiments is likely to significantly contribute to the oncogenic effect of the inactivation of BRCA1 or BRCA2.
Collapse
|
555
|
Dampier W, Antell GC, Aiamkitsumrit B, Nonnemacher MR, Jacobson JM, Pirrone V, Zhong W, Kercher K, Passic S, Williams JW, James T, Devlin KN, Giovannetti T, Libon DJ, Szep Z, Ehrlich GD, Wigdahl B, Krebs FC. Specific amino acids in HIV-1 Vpr are significantly associated with differences in patient neurocognitive status. J Neurovirol 2016; 23:113-124. [PMID: 27400931 DOI: 10.1007/s13365-016-0462-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/05/2016] [Accepted: 06/09/2016] [Indexed: 11/26/2022]
Abstract
Even in the era of combination antiretroviral therapies used to combat human immunodeficiency virus type 1 (HIV-1) infection, up to 50 % of well-suppressed HIV-1-infected patients are still diagnosed with mild neurological deficits referred to as HIV-associated neurocognitive disorders (HAND). The multifactorial nature of HAND likely involves the HIV-1 accessory protein viral protein R (Vpr) as an agent of neuropathogenesis. To investigate the effect of naturally occurring variations in Vpr on HAND in well-suppressed HIV-1-infected patients, bioinformatic analyses were used to correlate peripheral blood-derived Vpr sequences with patient neurocognitive performance, as measured by comprehensive neuropsychological assessment and the resulting Global Deficit Score (GDS). Our studies revealed unique associations between GDS and the presence of specific amino acid changes in peripheral blood-derived Vpr sequences [neuropsychological impairment Vpr (niVpr) variants]. Amino acids N41 and A55 in the Vpr sequence were associated with more pronounced neurocognitive deficits (higher GDS). In contrast, amino acids I37 and S41 were connected to measurably lower GDS. All niVpr variants were also detected in DNA isolated from HIV-1-infected brain tissues. The implication of these results is that niVpr variants alter the genesis and/or progression of HAND through differences in Vpr-mediated effects in the peripheral blood and/or the brain.
Collapse
Affiliation(s)
- Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Gregory C Antell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Benjamas Aiamkitsumrit
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jeffrey M Jacobson
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Clinical and Translational Medicine, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Section of Infectious Disease, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Wen Zhong
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Katherine Kercher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shendra Passic
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jean W Williams
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Tony James
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kathryn N Devlin
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | | | - David J Libon
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
| | - Zsofia Szep
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Garth D Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fred C Krebs
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
556
|
Third Chromosome Balancer Inversions Disrupt Protein-Coding Genes and Influence Distal Recombination Events in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2016; 6:1959-67. [PMID: 27172211 PMCID: PMC4938649 DOI: 10.1534/g3.116.029330] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Balancer chromosomes are multiply inverted chromosomes that suppress meiotic crossing over and prevent the recovery of crossover products. Balancers are commonly used in Drosophila melanogaster to maintain deleterious alleles and in stock construction. They exist for all three major chromosomes, yet the molecular location of the breakpoints and the exact nature of many of the mutations carried by the second and third chromosome balancers has not been available. Here, we precisely locate eight of 10 of the breakpoints on the third chromosome balancer TM3, six of eight on TM6, and nine of 11 breakpoints on TM6B. We find that one of the inversion breakpoints on TM3 bisects the highly conserved tumor suppressor gene p53—a finding that may have important consequences for a wide range of studies in Drosophila. We also identify evidence of single and double crossovers between several TM3 and TM6B balancers and their normal-sequence homologs that have created genetic diversity among these chromosomes. Overall, this work demonstrates the practical importance of precisely identifying the position of inversion breakpoints of balancer chromosomes and characterizing the mutant alleles carried by them.
Collapse
|
557
|
Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, Weng Z, Liu Y, Mason CE, Alexander N, Henaff E, McIntyre AB, Chandramohan D, Chen F, Jaeger E, Moshrefi A, Pham K, Stedman W, Liang T, Saghbini M, Dzakula Z, Hastie A, Cao H, Deikus G, Schadt E, Sebra R, Bashir A, Truty RM, Chang CC, Gulbahce N, Zhao K, Ghosh S, Hyland F, Fu Y, Chaisson M, Xiao C, Trow J, Sherry ST, Zaranek AW, Ball M, Bobe J, Estep P, Church GM, Marks P, Kyriazopoulou-Panagiotopoulou S, Zheng GX, Schnall-Levin M, Ordonez HS, Mudivarti PA, Giorda K, Sheng Y, Rypdal KB, Salit M. Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci Data 2016; 3:160025. [PMID: 27271295 PMCID: PMC4896128 DOI: 10.1038/sdata.2016.25] [Citation(s) in RCA: 445] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/15/2016] [Indexed: 02/01/2023] Open
Abstract
The Genome in a Bottle Consortium, hosted by the National Institute of Standards and Technology (NIST) is creating reference materials and data for human genome sequencing, as well as methods for genome comparison and benchmarking. Here, we describe a large, diverse set of sequencing data for seven human genomes; five are current or candidate NIST Reference Materials. The pilot genome, NA12878, has been released as NIST RM 8398. We also describe data from two Personal Genome Project trios, one of Ashkenazim Jewish ancestry and one of Chinese ancestry. The data come from 12 technologies: BioNano Genomics, Complete Genomics paired-end and LFR, Ion Proton exome, Oxford Nanopore, Pacific Biosciences, SOLiD, 10X Genomics GemCode WGS, and Illumina exome and WGS paired-end, mate-pair, and synthetic long reads. Cell lines, DNA, and data from these individuals are publicly available. Therefore, we expect these data to be useful for revealing novel information about the human genome and improving sequencing technologies, SNP, indel, and structural variant calling, and de novo assembly.
Collapse
Affiliation(s)
- Justin M. Zook
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - David Catoe
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Jennifer McDaniel
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Lindsay Vang
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Noah Spies
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Stanford University, Stanford, California 94305, USA
| | - Arend Sidow
- Stanford University, Stanford, California 94305, USA
| | - Ziming Weng
- Stanford University, Stanford, California 94305, USA
| | - Yuling Liu
- Stanford University, Stanford, California 94305, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, the Feil Family Brain and Mind Research Institute, and HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College, Cornell University, New York, New York 10065, USA
| | - Noah Alexander
- Department of Physiology and Biophysics, the Feil Family Brain and Mind Research Institute, and HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College, Cornell University, New York, New York 10065, USA
| | - Elizabeth Henaff
- Department of Physiology and Biophysics, the Feil Family Brain and Mind Research Institute, and HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College, Cornell University, New York, New York 10065, USA
| | - Alexa B.R. McIntyre
- Department of Physiology and Biophysics, the Feil Family Brain and Mind Research Institute, and HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College, Cornell University, New York, New York 10065, USA
| | - Dhruva Chandramohan
- Department of Physiology and Biophysics, the Feil Family Brain and Mind Research Institute, and HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College, Cornell University, New York, New York 10065, USA
| | - Feng Chen
- Illumina Mission Bay, San Francisco, California 94158, USA
| | - Erich Jaeger
- Illumina Mission Bay, San Francisco, California 94158, USA
| | - Ali Moshrefi
- Illumina Mission Bay, San Francisco, California 94158, USA
| | - Khoa Pham
- BioNano Genomics, San Diego, California 92121, USA
| | | | | | | | | | - Alex Hastie
- BioNano Genomics, San Diego, California 92121, USA
| | - Han Cao
- BioNano Genomics, San Diego, California 92121, USA
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ali Bashir
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | | | | | - Natali Gulbahce
- Complete Genomics Inc., Mountain View, California 94043, USA
| | - Keyan Zhao
- Thermo Fisher Scientific, South San Francisco, California 94080, USA
| | - Srinka Ghosh
- Thermo Fisher Scientific, South San Francisco, California 94080, USA
| | - Fiona Hyland
- Thermo Fisher Scientific, South San Francisco, California 94080, USA
| | - Yutao Fu
- Thermo Fisher Scientific, South San Francisco, California 94080, USA
| | - Mark Chaisson
- Genome Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Chunlin Xiao
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, Maryland 20892, USA
| | - Jonathan Trow
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, Maryland 20892, USA
| | - Stephen T. Sherry
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, Maryland 20892, USA
| | | | | | - Jason Bobe
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- PersonalGenomes.org, Boston, Massachusetts 02115, USA
| | - Preston Estep
- PersonalGenomes.org, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - George M. Church
- PersonalGenomes.org, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital, Kirkeveien 166, Bygg 25, Oslo 0450, Norway
| | | | - Marc Salit
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Stanford University, Stanford, California 94305, USA
| |
Collapse
|
558
|
Lilljebjörn H, Henningsson R, Hyrenius-Wittsten A, Olsson L, Orsmark-Pietras C, von Palffy S, Askmyr M, Rissler M, Schrappe M, Cario G, Castor A, Pronk CJH, Behrendtz M, Mitelman F, Johansson B, Paulsson K, Andersson AK, Fontes M, Fioretos T. Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun 2016; 7:11790. [PMID: 27265895 PMCID: PMC4897744 DOI: 10.1038/ncomms11790] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 12/16/2022] Open
Abstract
Fusion genes are potent driver mutations in cancer. In this study, we delineate the fusion gene landscape in a consecutive series of 195 paediatric B-cell precursor acute lymphoblastic leukaemia (BCP ALL). Using RNA sequencing, we find in-frame fusion genes in 127 (65%) cases, including 27 novel fusions. We describe a subtype characterized by recurrent IGH-DUX4 or ERG-DUX4 fusions, representing 4% of cases, leading to overexpression of DUX4 and frequently co-occurring with intragenic ERG deletions. Furthermore, we identify a subtype characterized by an ETV6-RUNX1-like gene-expression profile and coexisting ETV6 and IKZF1 alterations. Thus, this study provides a detailed overview of fusion genes in paediatric BCP ALL and adds new pathogenetic insights, which may improve risk stratification and provide therapeutic options for this disease.
Collapse
Affiliation(s)
- Henrik Lilljebjörn
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | | | - Axel Hyrenius-Wittsten
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Linda Olsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Christina Orsmark-Pietras
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Sofia von Palffy
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Maria Askmyr
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Marianne Rissler
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Anders Castor
- Department of Pediatrics, Skåne University Hospital, Lund University, Lund 22185, Sweden
| | - Cornelis J. H. Pronk
- Department of Pediatrics, Skåne University Hospital, Lund University, Lund 22185, Sweden
| | - Mikael Behrendtz
- Department of Pediatrics, Linköping University Hospital, Linköping 58185, Sweden
| | - Felix Mitelman
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Bertil Johansson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
- Department of Clinical Genetics, University and Regional Laboratories Region Skåne, Lund 22185, Sweden
| | - Kajsa Paulsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Anna K. Andersson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Magnus Fontes
- Centre for Mathematical Sciences, Lund University, Lund 22362, Sweden
| | - Thoas Fioretos
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
- Department of Clinical Genetics, University and Regional Laboratories Region Skåne, Lund 22185, Sweden
| |
Collapse
|
559
|
Andrews TD, Jeelall Y, Talaulikar D, Goodnow CC, Field MA. DeepSNVMiner: a sequence analysis tool to detect emergent, rare mutations in subsets of cell populations. PeerJ 2016; 4:e2074. [PMID: 27257550 PMCID: PMC4888318 DOI: 10.7717/peerj.2074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/03/2016] [Indexed: 01/13/2023] Open
Abstract
Background. Massively parallel sequencing technology is being used to sequence highly diverse populations of DNA such as that derived from heterogeneous cell mixtures containing both wild-type and disease-related states. At the core of such molecule tagging techniques is the tagging and identification of sequence reads derived from individual input DNA molecules, which must be first computationally disambiguated to generate read groups sharing common sequence tags, with each read group representing a single input DNA molecule. This disambiguation typically generates huge numbers of reads groups, each of which requires additional variant detection analysis steps to be run specific to each read group, thus representing a significant computational challenge. While sequencing technologies for producing these data are approaching maturity, the lack of available computational tools for analysing such heterogeneous sequence data represents an obstacle to the widespread adoption of this technology. Results. Using synthetic data we successfully detect unique variants at dilution levels of 1 in a 1,000,000 molecules, and find DeeepSNVMiner obtains significantly lower false positive and false negative rates compared to popular variant callers GATK, SAMTools, FreeBayes and LoFreq, particularly as the variant concentration levels decrease. In a dilution series with genomic DNA from two cells lines, we find DeepSNVMiner identifies a known somatic variant when present at concentrations of only 1 in 1,000 molecules in the input material, the lowest concentration amongst all variant callers tested. Conclusions. Here we present DeepSNVMiner; a tool to disambiguate tagged sequence groups and robustly identify sequence variants specific to subsets of starting DNA molecules that may indicate the presence of a disease. DeepSNVMiner is an automated workflow of custom sequence analysis utilities and open source tools able to differentiate somatic DNA variants from artefactual sequence variants that likely arose during DNA amplification. The workflow remains flexible such that it may be customised to variants of the data production protocol used, and supports reproducible analysis through detailed logging and reporting of results. DeepSNVMiner is available for academic non-commercial research purposes at https://github.com/mattmattmattmatt/DeepSNVMiner.
Collapse
Affiliation(s)
- T Daniel Andrews
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra ACT, Australia; National Computational Infrastructure, Canberra ACT, Australia
| | - Yogesh Jeelall
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra ACT, Australia; School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute, Perth, Australia
| | - Dipti Talaulikar
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra ACT, Australia; Haematology Translational Research Unit, Haematology Unit, ACT Pathology, Canberra ACT, Australia; ANU Medical School, Australian National University, Canberra ACT, Australia
| | - Christopher C Goodnow
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra ACT, Australia; Immunology Division, Garvan Institute of Medical Research, Sydney NSW, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst NSW, Australia
| | - Matthew A Field
- Department of Immunology, John Curtin School of Medical Research, Australian National University , Canberra ACT , Australia
| |
Collapse
|
560
|
Genotyping by Sequencing Using Specific Allelic Capture to Build a High-Density Genetic Map of Durum Wheat. PLoS One 2016; 11:e0154609. [PMID: 27171472 PMCID: PMC4865223 DOI: 10.1371/journal.pone.0154609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/15/2016] [Indexed: 11/19/2022] Open
Abstract
Targeted sequence capture is a promising technology which helps reduce costs for sequencing and genotyping numerous genomic regions in large sets of individuals. Bait sequences are designed to capture specific alleles previously discovered in parents or reference populations. We studied a set of 135 RILs originating from a cross between an emmer cultivar (Dic2) and a recent durum elite cultivar (Silur). Six thousand sequence baits were designed to target Dic2 vs. Silur polymorphisms discovered in a previous RNAseq study. These baits were exposed to genomic DNA of the RIL population. Eighty percent of the targeted SNPs were recovered, 65% of which were of high quality and coverage. The final high density genetic map consisted of more than 3,000 markers, whose genetic and physical mapping were consistent with those obtained with large arrays.
Collapse
|
561
|
Szikriszt B, Póti Á, Pipek O, Krzystanek M, Kanu N, Molnár J, Ribli D, Szeltner Z, Tusnády GE, Csabai I, Szallasi Z, Swanton C, Szüts D. A comprehensive survey of the mutagenic impact of common cancer cytotoxics. Genome Biol 2016; 17:99. [PMID: 27161042 PMCID: PMC4862131 DOI: 10.1186/s13059-016-0963-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic mutations caused by cytotoxic agents used in cancer chemotherapy may cause secondary malignancies as well as contribute to the evolution of treatment-resistant tumour cells. The stable diploid genome of the chicken DT40 lymphoblast cell line, an established DNA repair model system, is well suited to accurately assay genomic mutations. RESULTS We use whole genome sequencing of multiple DT40 clones to determine the mutagenic effect of eight common cytotoxics used for the treatment of millions of patients worldwide. We determine the spontaneous mutagenesis rate at 2.3 × 10(-10) per base per cell division and find that cisplatin, cyclophosphamide and etoposide induce extra base substitutions with distinct spectra. After four cycles of exposure, cisplatin induces 0.8 mutations per Mb, equivalent to the median mutational burden in common leukaemias. Cisplatin-induced mutations, including short insertions and deletions, are mainly located at sites of putative intrastrand crosslinks. We find two of the newly defined cisplatin-specific mutation types as causes of the reversion of BRCA2 mutations in emerging cisplatin-resistant tumours or cell clones. Gemcitabine, 5-fluorouracil, hydroxyurea, doxorubicin and paclitaxel have no measurable mutagenic effect. The cisplatin-induced mutation spectrum shows good correlation with cancer mutation signatures attributed to smoking and other sources of guanine-directed base damage. CONCLUSION This study provides support for the use of cell line mutagenesis assays to validate or predict the mutagenic effect of environmental and iatrogenic exposures. Our results suggest genetic reversion due to cisplatin-induced mutations as a distinct mechanism for developing resistance.
Collapse
Affiliation(s)
- Bernadett Szikriszt
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary
| | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary
| | - Orsolya Pipek
- Department of Physics of Complex Systems, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Marcin Krzystanek
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Nnennaya Kanu
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - János Molnár
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary
| | - Dezső Ribli
- Department of Physics of Complex Systems, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Zoltán Szeltner
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary
| | - Gábor E Tusnády
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary
| | - István Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Zoltan Szallasi
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800, Lyngby, Denmark.
- Computational Health Informatics Program (CHIP), Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, 02215, USA.
- MTA-SE-NAP, Brain Metastasis Research Group, 2nd Department of Pathology, Semmelweis University, 1091, Budapest, Hungary.
| | - Charles Swanton
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK.
- Francis Crick Institute, 44 Lincoln's Inn Fields, London, WCA2 3PX, UK.
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.
| |
Collapse
|
562
|
Transformed Recombinant Enrichment Profiling Rapidly Identifies HMW1 as an Intracellular Invasion Locus in Haemophilus influenza. PLoS Pathog 2016; 12:e1005576. [PMID: 27124727 PMCID: PMC4849778 DOI: 10.1371/journal.ppat.1005576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022] Open
Abstract
Many bacterial species actively take up and recombine homologous DNA into their genomes, called natural competence, a trait that offers a means to identify the genetic basis of naturally occurring phenotypic variation. Here, we describe “transformed recombinant enrichment profiling” (TREP), in which natural transformation is used to generate complex pools of recombinants, phenotypic selection is used to enrich for specific recombinants, and deep sequencing is used to survey for the genetic variation responsible. We applied TREP to investigate the genetic architecture of intracellular invasion by the human pathogen Haemophilus influenzae, a trait implicated in persistence during chronic infection. TREP identified the HMW1 adhesin as a crucial factor. Natural transformation of the hmw1 operon from a clinical isolate (86-028NP) into a laboratory isolate that lacks it (Rd KW20) resulted in ~1,000-fold increased invasion into airway epithelial cells. When a distinct recipient (Hi375, already possessing hmw1 and its paralog hmw2) was transformed by the same donor, allelic replacement of hmw2AHi375 by hmw1A86-028NP resulted in a ~100-fold increased intracellular invasion rate. The specific role of hmw1A86-028NP was confirmed by mutant and western blot analyses. Bacterial self-aggregation and adherence to airway cells were also increased in recombinants, suggesting that the high invasiveness induced by hmw1A86-028NP might be a consequence of these phenotypes. However, immunofluorescence results found that intracellular hmw1A86-028NP bacteria likely invaded as groups, instead of as individual bacterial cells, indicating an emergent invasion-specific consequence of hmw1A-mediated self-aggregation. Many bacteria are naturally competent, actively taking up DNA from their surroundings and incorporating it into their genomes by homologous recombination. This cellular process has had a large impact on the evolution of these species, for example by enabling pathogens to acquire virulence factors and antibiotic resistances from their relatives. But natural competence can also be exploited by researchers to identify the underlying genetic variation responsible for naturally varying phenotypic traits, similar to how eukaryotic geneticists use meiotic recombination during sexual reproduction to create genetically admixed populations. Here we exploited natural competence, phenotypic selection, and deep sequencing to rapidly identify the hmw1 locus as a major contributor to intracellular invasion of airway epithelial cells by the human pathogen Haemophilus influenzae, a trait that likely allows bacterial cells to evade the immune system and therapeutic interventions during chronic infections. Genetic variation in this locus can strongly modulate bacterial intracellular invasion rates, and possession of a certain allele favors adhesion and self-aggregation, which appear to prompt bacteria to invade airway cells as groups, rather than as individuals. Overall, our findings indicate that targeting HMW1 could block the ability of H. influenzae to invade airway cells, which would make antibiotic therapy to treat chronic lung infections more effective. Furthermore, our new approach to identifying the genetic basis of natural phenotypic variation is applicable to a wide-range of phenotypically selectable traits within the widely distributed naturally competent bacterial species, including pathogenesis traits in many human pathogens.
Collapse
|
563
|
Madan V, Shyamsunder P, Han L, Mayakonda A, Nagata Y, Sundaresan J, Kanojia D, Yoshida K, Ganesan S, Hattori N, Fulton N, Tan KT, Alpermann T, Kuo MC, Rostami S, Matthews J, Sanada M, Liu LZ, Shiraishi Y, Miyano S, Chendamarai E, Hou HA, Malnassy G, Ma T, Garg M, Ding LW, Sun QY, Chien W, Ikezoe T, Lill M, Biondi A, Larson RA, Powell BL, Lübbert M, Chng WJ, Tien HF, Heuser M, Ganser A, Koren-Michowitz M, Kornblau SM, Kantarjian HM, Nowak D, Hofmann WK, Yang H, Stock W, Ghavamzadeh A, Alimoghaddam K, Haferlach T, Ogawa S, Shih LY, Mathews V, Koeffler HP. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia. Leukemia 2016; 30:1672-81. [PMID: 27063598 PMCID: PMC4972641 DOI: 10.1038/leu.2016.69] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/12/2016] [Accepted: 03/15/2016] [Indexed: 12/16/2022]
Abstract
Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential.
Collapse
Affiliation(s)
- V Madan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - P Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - L Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - A Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Y Nagata
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - J Sundaresan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - D Kanojia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - K Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - S Ganesan
- Department of Haematology, Christian Medical College, Vellore, India
| | - N Hattori
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - N Fulton
- Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - K-T Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - T Alpermann
- Munich Leukemia Laboratory (MLL), Munich, Germany
| | - M-C Kuo
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - S Rostami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - J Matthews
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Sanada
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - L-Z Liu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Y Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - S Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - E Chendamarai
- Department of Haematology, Christian Medical College, Vellore, India
| | - H-A Hou
- Department of Internal Medicine, National Taiwan University, Medical College and Hospital, Taipei, Taiwan
| | - G Malnassy
- Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - T Ma
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Internal Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - M Garg
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - L-W Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Q-Y Sun
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - W Chien
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - T Ikezoe
- Department of Hematology and Respiratory Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - M Lill
- Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA
| | - A Biondi
- Paediatric Haematology-Oncology Department and 'Tettamanti' Research Centre, Milano-Bicocca University, 'Fondazione MBBM', San Gerardo Hospital, Monza, Italy
| | - R A Larson
- Department of Medicine, University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - B L Powell
- Department of Internal Medicine, Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC, USA
| | - M Lübbert
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Internal Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - W J Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore, Singapore
| | - H-F Tien
- Department of Internal Medicine, National Taiwan University, Medical College and Hospital, Taipei, Taiwan
| | - M Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - A Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - M Koren-Michowitz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Hematology and Bone Marrow Transplantation, Sheba Medical Center, Tel Hashomer, Israel
| | - S M Kornblau
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H M Kantarjian
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D Nowak
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - W-K Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - H Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - W Stock
- Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - A Ghavamzadeh
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - K Alimoghaddam
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - T Haferlach
- Munich Leukemia Laboratory (MLL), Munich, Germany
| | - S Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - L-Y Shih
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - V Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - H P Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA.,Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore, Singapore
| |
Collapse
|
564
|
Lyons LA, Creighton EK, Alhaddad H, Beale HC, Grahn RA, Rah H, Maggs DJ, Helps CR, Gandolfi B. Whole genome sequencing in cats, identifies new models for blindness in AIPL1 and somite segmentation in HES7. BMC Genomics 2016; 17:265. [PMID: 27030474 PMCID: PMC4815086 DOI: 10.1186/s12864-016-2595-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The reduced cost and improved efficiency of whole genome sequencing (WGS) is drastically improving the development of cats as biomedical models. Persian cats are models for Leber's congenital amaurosis (LCA), the most severe and earliest onset form of visual impairment in humans. Cats with innocuous breed-defining traits, such as a bobbed tail, can also be models for somite segmentation and vertebral column development. METHODS The first WGS in cats was conducted on a trio segregating for LCA and the bobbed tail abnormality. Variants were identified using FreeBayes and effects predicted using SnpEff. Variants within a known haplotype block for cat LCA and specific candidate genes for both phenotypes were prioritized by the predicted variant effect on the proteins and concordant segregation within the trio. The efficiency of WGS of a single trio of domestic cats was evaluated. RESULTS A stop gain was identified at position c.577C > T in cat AIPL1, a predicted p.Arg193*. A c.5A > G variant causing a p.V2A was identified in HES7. The variants segregated concordantly in a Persian - Japanese bobtail pedigree. Over 1700 cats from 40 different breeds and populations were genotyped for the AIPL1 variant, defining an allelic frequency in only Persian -related breeds of 1.15%. A sub-set of cats was genotyped for the HES7 variant, supporting the variant as private to the Japanese bobtail breed. Approximately 18 million SNPs were identified for application in cat research. The cat AIPL1 variant would have been considered a high priority variant for evaluation, regardless of a priori knowledge from previous genetic studies. CONCLUSIONS This study represents the first effort of the 99 Lives Cat Genome Sequencing Initiative to identify disease--causing variants in the domestic cat using WGS. The current cat reference assembly is efficient for gene and variant identification. However, as the feline variant database improves, development of cats as biomedical models for human disease will be more efficient, providing an alternative, large animal model for drug and gene therapy trials. Undiagnosed human patients with early-onset blindness should be screened for this AIPL1 variant. The HES7 variant should further calibrate the somite segmentation clock.
Collapse
Affiliation(s)
- Leslie A. Lyons
- />Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, E109 Vet Med Building, 1600 E. Rollins Street, Columbia, MO 65211 USA
| | - Erica K. Creighton
- />Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, E109 Vet Med Building, 1600 E. Rollins Street, Columbia, MO 65211 USA
| | - Hasan Alhaddad
- />College of Science, Kuwait University, Safat, 13060 Kuwait
| | | | - Robert A. Grahn
- />Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
| | - HyungChul Rah
- />Graduate School of Health Science Business Convergence, College of Medicine, Chungbuk National University, Chongju, Chungbuk Province 28644 South Korea
| | - David J. Maggs
- />Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
| | - Christopher R. Helps
- />Langford Veterinary Services, University of Bristol, Langford, Bristol, BS40 5DU UK
| | - Barbara Gandolfi
- />Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, E109 Vet Med Building, 1600 E. Rollins Street, Columbia, MO 65211 USA
| |
Collapse
|
565
|
Rare recombination events generate sequence diversity among balancer chromosomes in Drosophila melanogaster. Proc Natl Acad Sci U S A 2016; 113:E1352-61. [PMID: 26903656 DOI: 10.1073/pnas.1601232113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiply inverted balancer chromosomes that suppress exchange with their homologs are an essential part of the Drosophila melanogaster genetic toolkit. Despite their widespread use, the organization of balancer chromosomes has not been characterized at the molecular level, and the degree of sequence variation among copies of balancer chromosomes is unknown. To map inversion breakpoints and study potential diversity in descendants of a structurally identical balancer chromosome, we sequenced a panel of laboratory stocks containing the most widely used X chromosome balancer, First Multiple 7 (FM7). We mapped the locations of FM7 breakpoints to precise euchromatic coordinates and identified the flanking sequence of breakpoints in heterochromatic regions. Analysis of SNP variation revealed megabase-scale blocks of sequence divergence among currently used FM7 stocks. We present evidence that this divergence arose through rare double-crossover events that replaced a female-sterile allele of the singed gene (sn(X2)) on FM7c with a sequence from balanced chromosomes. We propose that although double-crossover events are rare in individual crosses, many FM7c chromosomes in the Bloomington Drosophila Stock Center have lost sn(X2) by this mechanism on a historical timescale. Finally, we characterize the original allele of the Bar gene (B(1)) that is carried on FM7, and validate the hypothesis that the origin and subsequent reversion of the B(1) duplication are mediated by unequal exchange. Our results reject a simple nonrecombining, clonal mode for the laboratory evolution of balancer chromosomes and have implications for how balancer chromosomes should be used in the design and interpretation of genetic experiments in Drosophila.
Collapse
|
566
|
Propionibacterium acnes: Disease-Causing Agent or Common Contaminant? Detection in Diverse Patient Samples by Next-Generation Sequencing. J Clin Microbiol 2016; 54:980-7. [PMID: 26818667 PMCID: PMC4809928 DOI: 10.1128/jcm.02723-15] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/16/2016] [Indexed: 01/01/2023] Open
Abstract
Propionibacterium acnes is the most abundant bacterium on human skin, particularly in sebaceous areas. P. acnes is suggested to be an opportunistic pathogen involved in the development of diverse medical conditions but is also a proven contaminant of human clinical samples and surgical wounds. Its significance as a pathogen is consequently a matter of debate. In the present study, we investigated the presence of P. acnes DNA in 250 next-generation sequencing data sets generated from 180 samples of 20 different sample types, mostly of cancerous origin. The samples were subjected to either microbial enrichment, involving nuclease treatment to reduce the amount of host nucleic acids, or shotgun sequencing. We detected high proportions of P. acnes DNA in enriched samples, particularly skin tissue-derived and other tissue samples, with the levels being higher in enriched samples than in shotgun-sequenced samples. P. acnes reads were detected in most samples analyzed, though the proportions in most shotgun-sequenced samples were low. Our results show that P. acnes can be detected in practically all sample types when molecular methods, such as next-generation sequencing, are employed. The possibility of contamination from the patient or other sources, including laboratory reagents or environment, should therefore always be considered carefully when P. acnes is detected in clinical samples. We advocate that detection of P. acnes always be accompanied by experiments validating the association between this bacterium and any clinical condition.
Collapse
|
567
|
Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, Garrison EP, Marth GT, Quinlan AR, Hall IM. SpeedSeq: ultra-fast personal genome analysis and interpretation. Nat Methods 2015; 12:966-8. [PMID: 26258291 PMCID: PMC4589466 DOI: 10.1038/nmeth.3505] [Citation(s) in RCA: 392] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/28/2015] [Indexed: 12/11/2022]
Abstract
SpeedSeq is an open-source genome analysis platform that accomplishes alignment, variant detection and functional annotation of a 50× human genome in 13 h on a low-cost server and alleviates a bioinformatics bottleneck that typically demands weeks of computation with extensive hands-on expert involvement. SpeedSeq offers performance competitive with or superior to current methods for detecting germline and somatic single-nucleotide variants, structural variants, insertions and deletions, and it includes novel functionality for streamlined interpretation.
Collapse
Affiliation(s)
- Colby Chiang
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ryan M. Layer
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
- USTAR Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Gregory G. Faust
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Michael R. Lindberg
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - David B. Rose
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Erik P. Garrison
- USTAR Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT, USA
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Gabor T. Marth
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
- USTAR Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Aaron R. Quinlan
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
- USTAR Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ira M. Hall
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
568
|
Gandolfi B, Grahn RA, Creighton EK, Williams DC, Dickinson PJ, Sturges BK, Guo LT, Shelton GD, Leegwater PAJ, Longeri M, Malik R, Lyons LA. COLQ variant associated with Devon Rex and Sphynx feline hereditary myopathy. Anim Genet 2015; 46:711-5. [PMID: 26374066 PMCID: PMC4637250 DOI: 10.1111/age.12350] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2015] [Indexed: 01/26/2023]
Abstract
Some Devon Rex and Sphynx cats have a variably progressive myopathy characterized by appendicular and axial muscle weakness, megaesophagus, pharyngeal weakness and fatigability with exercise. Muscle biopsies from affected cats demonstrated variable pathological changes ranging from dystrophic features to minimal abnormalities. Affected cats have exacerbation of weakness following anticholinesterase dosing, a clue that there is an underlying congenital myasthenic syndrome (CMS). A genome-wide association study and whole-genome sequencing suggested a causal variant for this entity was a c.1190G>A variant causing a cysteine to tyrosine substitution (p.Cys397Tyr) within the C-terminal domain of collagen-like tail subunit (single strand of homotrimer) of asymmetric acetylcholinesterase (COLQ). Alpha-dystroglycan expression, which is associated with COLQ anchorage at the motor end-plate, has been shown to be deficient in affected cats. Eighteen affected cats were identified by genotyping, including cats from the original clinical descriptions in 1993 and subsequent publications. Eight Devon Rex and one Sphynx not associated with the study were identified as carriers, suggesting an allele frequency of ~2.0% in Devon Rex. Over 350 tested cats from other breeds did not have the variant. Characteristic clinical features and variant presence in all affected cats suggest a model for COLQ CMS. The association between the COLQ variant and this CMS affords clinicians the opportunity to confirm diagnosis via genetic testing and permits owners and breeders to identify carriers in the population. Moreover, accurate diagnosis increases available therapeutic options for affected cats based on an understanding of the pathophysiology and experience from human CMS associated with COLQ variants.
Collapse
Affiliation(s)
- Barbara Gandolfi
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, Columbia, MO, 65211, USA
| | - Robert A Grahn
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, CA, 95616, USA
| | - Erica K Creighton
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, Columbia, MO, 65211, USA
| | - D Colette Williams
- The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California - Davis, Davis, CA, 95616, USA
| | - Peter J Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, 95616, USA
| | - Beverly K Sturges
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, 95616, USA
| | - Ling T Guo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, 95616, USA
| | - G Diane Shelton
- Department of Pathology, University of California - San Diego, La Jolla, CA, 92093, USA
| | - Peter A J Leegwater
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3508 TD, Utrecht, The Netherlands
| | - Maria Longeri
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, University of Milan, Milan, Italy
| | - Richard Malik
- Centre for Veterinary Education, University of Sydney, Sydney, NSW, 2006, Australia
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, Columbia, MO, 65211, USA
| |
Collapse
|
569
|
Hawkey J, Hamidian M, Wick RR, Edwards DJ, Billman-Jacobe H, Hall RM, Holt KE. ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data. BMC Genomics 2015; 16:667. [PMID: 26336060 PMCID: PMC4558774 DOI: 10.1186/s12864-015-1860-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/18/2015] [Indexed: 11/23/2022] Open
Abstract
Background Insertion sequences (IS) are small transposable elements, commonly found in bacterial genomes. Identifying the location of IS in bacterial genomes can be useful for a variety of purposes including epidemiological tracking and predicting antibiotic resistance. However IS are commonly present in multiple copies in a single genome, which complicates genome assembly and the identification of IS insertion sites. Here we present ISMapper, a mapping-based tool for identification of the site and orientation of IS insertions in bacterial genomes, directly from paired-end short read data. Results ISMapper was validated using three types of short read data: (i) simulated reads from a variety of species, (ii) Illumina reads from 5 isolates for which finished genome sequences were available for comparison, and (iii) Illumina reads from 7 Acinetobacter baumannii isolates for which predicted IS locations were tested using PCR. A total of 20 genomes, including 13 species and 32 distinct IS, were used for validation. ISMapper correctly identified 97 % of known IS insertions in the analysis of simulated reads, and 98 % in real Illumina reads. Subsampling of real Illumina reads to lower depths indicated ISMapper was able to correctly detect insertions for average genome-wide read depths >20x, although read depths >50x were required to obtain confident calls that were highly-supported by evidence from reads. All ISAba1 insertions identified by ISMapper in the A. baumannii genomes were confirmed by PCR. In each A. baumannii genome, ISMapper successfully identified an IS insertion upstream of the ampC beta-lactamase that could explain phenotypic resistance to third-generation cephalosporins. The utility of ISMapper was further demonstrated by profiling genome-wide IS6110 insertions in 138 publicly available Mycobacterium tuberculosis genomes, revealing lineage-specific insertions and multiple insertion hotspots. Conclusions ISMapper provides a rapid and robust method for identifying IS insertion sites directly from short read data, with a high degree of accuracy demonstrated across a wide range of bacteria.
Collapse
Affiliation(s)
- Jane Hawkey
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia. .,Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Mohammad Hamidian
- School of Molecular Bioscience, The University of Sydney, Sydney, 2006, Australia.
| | - Ryan R Wick
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - David J Edwards
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Helen Billman-Jacobe
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Ruth M Hall
- School of Molecular Bioscience, The University of Sydney, Sydney, 2006, Australia.
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
570
|
Abstract
UNLABELLED FermiKit is a variant calling pipeline for Illumina whole-genome germline data. It de novo assembles short reads and then maps the assembly against a reference genome to call SNPs, short insertions/deletions and structural variations. FermiKit takes about one day to assemble 30-fold human whole-genome data on a modern 16-core server with 85 GB RAM at the peak, and calls variants in half an hour to an accuracy comparable to the current practice. FermiKit assembly is a reduced representation of raw data while retaining most of the original information. AVAILABILITY AND IMPLEMENTATION https://github.com/lh3/fermikit CONTACT hengli@broadinstitute.org.
Collapse
Affiliation(s)
- Heng Li
- Genomics Platform, Broad Institute, Cambridge, MA 02142, USA
| |
Collapse
|
571
|
Herzeel C, Costanza P, Decap D, Fostier J, Reumers J. elPrep: High-Performance Preparation of Sequence Alignment/Map Files for Variant Calling. PLoS One 2015; 10:e0132868. [PMID: 26182406 PMCID: PMC4504710 DOI: 10.1371/journal.pone.0132868] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/18/2015] [Indexed: 11/27/2022] Open
Abstract
elPrep is a high-performance tool for preparing sequence alignment/map files for variant calling in sequencing pipelines. It can be used as a replacement for SAMtools and Picard for preparation steps such as filtering, sorting, marking duplicates, reordering contigs, and so on, while producing identical results. What sets elPrep apart is its software architecture that allows executing preparation pipelines by making only a single pass through the data, no matter how many preparation steps are used in the pipeline. elPrep is designed as a multithreaded application that runs entirely in memory, avoids repeated file I/O, and merges the computation of several preparation steps to significantly speed up the execution time. For example, for a preparation pipeline of five steps on a whole-exome BAM file (NA12878), we reduce the execution time from about 1:40 hours, when using a combination of SAMtools and Picard, to about 15 minutes when using elPrep, while utilising the same server resources, here 48 threads and 23GB of RAM. For the same pipeline on whole-genome data (NA12878), elPrep reduces the runtime from 24 hours to less than 5 hours. As a typical clinical study may contain sequencing data for hundreds of patients, elPrep can remove several hundreds of hours of computing time, and thus substantially reduce analysis time and cost.
Collapse
Affiliation(s)
| | - Pascal Costanza
- Intel Corporation, Leuven, Belgium
- ExaScience Life Lab, Leuven, Belgium
| | - Dries Decap
- Department of Information Technology, Ghent University—iMinds, Ghent, Belgium
- ExaScience Life Lab, Leuven, Belgium
| | - Jan Fostier
- Department of Information Technology, Ghent University—iMinds, Ghent, Belgium
- ExaScience Life Lab, Leuven, Belgium
| | - Joke Reumers
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Beerse, Belgium
- ExaScience Life Lab, Leuven, Belgium
| |
Collapse
|
572
|
Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 2015; 31:2032-4. [PMID: 25697820 PMCID: PMC4765878 DOI: 10.1093/bioinformatics/btv098] [Citation(s) in RCA: 1413] [Impact Index Per Article: 141.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/10/2015] [Indexed: 11/13/2022] Open
Abstract
Summary: Sambamba is a high-performance robust tool and library for working with SAM, BAM and CRAM sequence alignment files; the most common file formats for aligned next generation sequencing data. Sambamba is a faster alternative to samtools that exploits multi-core processing and dramatically reduces processing time. Sambamba is being adopted at sequencing centers, not only because of its speed, but also because of additional functionality, including coverage analysis and powerful filtering capability. Availability and implementation: Sambamba is free and open source software, available under a GPLv2 license. Sambamba can be downloaded and installed from http://www.open-bio.org/wiki/Sambamba. Sambamba v0.5.0 was released with doi:10.5281/zenodo.13200. Contact: j.c.p.prins@umcutrecht.nl
Collapse
Affiliation(s)
- Artem Tarasov
- Department of Statistical Simulation, St. Petersburg State University, St. Petersburg, Russia, Illumina Cambridge, Cambridge, UK, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands, Department of Medical Genetics, Institute for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands and Department of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Albert J Vilella
- Department of Statistical Simulation, St. Petersburg State University, St. Petersburg, Russia, Illumina Cambridge, Cambridge, UK, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands, Department of Medical Genetics, Institute for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands and Department of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Edwin Cuppen
- Department of Statistical Simulation, St. Petersburg State University, St. Petersburg, Russia, Illumina Cambridge, Cambridge, UK, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands, Department of Medical Genetics, Institute for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands and Department of Nematology, Wageningen University, Wageningen, The Netherlands Department of Statistical Simulation, St. Petersburg State University, St. Petersburg, Russia, Illumina Cambridge, Cambridge, UK, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands, Department of Medical Genetics, Institute for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands and Department of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Isaac J Nijman
- Department of Statistical Simulation, St. Petersburg State University, St. Petersburg, Russia, Illumina Cambridge, Cambridge, UK, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands, Department of Medical Genetics, Institute for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands and Department of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Pjotr Prins
- Department of Statistical Simulation, St. Petersburg State University, St. Petersburg, Russia, Illumina Cambridge, Cambridge, UK, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands, Department of Medical Genetics, Institute for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands and Department of Nematology, Wageningen University, Wageningen, The Netherlands Department of Statistical Simulation, St. Petersburg State University, St. Petersburg, Russia, Illumina Cambridge, Cambridge, UK, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands, Department of Medical Genetics, Institute for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands and Department of Nematology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
573
|
Kelly BJ, Fitch JR, Hu Y, Corsmeier DJ, Zhong H, Wetzel AN, Nordquist RD, Newsom DL, White P. Churchill: an ultra-fast, deterministic, highly scalable and balanced parallelization strategy for the discovery of human genetic variation in clinical and population-scale genomics. Genome Biol 2015; 16:6. [PMID: 25600152 PMCID: PMC4333267 DOI: 10.1186/s13059-014-0577-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/23/2014] [Indexed: 12/18/2022] Open
Abstract
While advances in genome sequencing technology make population-scale genomics a possibility, current approaches for analysis of these data rely upon parallelization strategies that have limited scalability, complex implementation and lack reproducibility. Churchill, a balanced regional parallelization strategy, overcomes these challenges, fully automating the multiple steps required to go from raw sequencing reads to variant discovery. Through implementation of novel deterministic parallelization techniques, Churchill allows computationally efficient analysis of a high-depth whole genome sample in less than two hours. The method is highly scalable, enabling full analysis of the 1000 Genomes raw sequence dataset in a week using cloud resources. http://churchill.nchri.org/.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Peter White
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus 43205, OH, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|